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The Hamiltonian describing particle motion in an accelerator belongs to a large class of systems, the
members of which can be integrated with a new set of high order symplectic integrators. One benefit of
these integrators is their strong numerical stability, which results from the inclusion of only forward
integration steps, independent of the order of accuracy. Using these integrators, the transfer map of any
multipolar accelerator magnet is derived and presented here. From these maps, the Hamiltonian flow in
different lattices is simulated and benchmarked against other well established integration schemes in the
accelerator community. By comparing quantities such as the linear phase advance and action invariant, the
chromaticity, as well as the working point and the tune spread with amplitude, the superiority of the novel
symplectic integrators is demonstrated with respect to accuracy and integration cost.

DOI: 10.1103/PhysRevAccelBeams.25.034001

I. INTRODUCTION

In nonlinear dynamical systems, the accurate tracking
of dynamical variables for long integration periods is
paramount for a thorough understanding of their evolution.
A characteristic example of such a system is the particle
motion in an accelerator like the Large Hadron Collider
(LHC) [1] and its High Luminosity upgrade (HL-LHC)
[2,3]. In particular for such colliders or storage rings, the
particles must be tracked for millions of turns in order to
estimate the phase space limits where chaotic particle
diffusion occurs, defining the dynamic aperture, which
is correlated to the beam lifetime and the overall accele-
rator performance [4,5]. In order to prevent an artificial

“numerical” diffusion to occur during this long time
tracking, the integration of the Hamilton equations of
motion should be symplectic, i.e., the Hamiltonian form,
the fundamental Poisson bracket, and density of states in
phase space should be preserved [6–9].
Each electromagnetic element of a beam line can be

modeled by a HamiltonianH, which is generally nonlinear.
As the system described by H cannot be integrated
analytically, numerical integration techniques preserving
the symplecticity should be employed. Any symplectic
integration scheme is a canonical transformation that pro-
pagates the dynamical variables of a new Hamiltonian,
slightly different from the original one but integrable, from
an initial state ½qð0Þ; pð0Þ� to ½qðλÞ; pðλÞ� for some later
“time” λ. Since this mapping ½qð0Þ; pð0Þ� → ½qðλÞ; pðλÞ�
describes the exact evolution of the new Hamiltonian, the
total energy error is kept bounded.
The considerable interest in long term integration for

different dynamical systems guided the development of
various symplectic integrators which served the peculiar-
ities of each specific system [10–18]. Within the accelerator
community, high order symplectic integrators are most often
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used for tracking particles through the lattice [10,11,19],
while for complicated multiparticle effects such as beam-
beam and space charge, specialized symplectic maps were
developed [20,21], requiring large computational power to
improve their accuracy. Suzuki [22] has shown that any high
order integrator of order ζ > 2 should include negative time
steps, which appear as coefficients of the symplectic map. A
problemarising from these negative steps is the need for large
integrator coefficients which can cause the lack of good
numerical stability when large time integration steps are
employed [13,23]. For an equivalent integration cost, the less
accurate symplectic integrators with positive steps (e.g.,
LEAPFROG) are more efficient and numerically stable than
the higher order ones. This stability problem can bemitigated
for a class of Hamiltonian systems, such as the ones
describing the motion in particle accelerators, with the use
of the CSABAm & CSBABm symplectic integrators [13],
which are high order integration schemes with positive
integration steps. The performance of this family of integra-
tors as compared to the TEAPOTm [19] and the fourth order
Yoshida-Forest-Ruth (YFR3) [10,11] symplectic integrators
is studied in this paper.
In Sec. II, the Lie algebra needed for the construction of

the studied integration schemes is defined and later on the
CSABAm & CSBABm symplectic integrators are described.
In Sec. III and in the Appendixes A–C, the maps needed for
the use of the CSABAm & CSBABm in accelerators are
derived. Finally, the performances of the CSABAm &
CSBABm symplectic integrators in comparison with the
TEAPOTm and the YFR3 ones are presented in Sec. IV,
while the conclusions of our work are presented in Sec. V.

II. CSABAm & CSBABm SYMPLECTIC
INTEGRATORS

For introducing the CSABAm & CSBABm symplectic
integrators, the Lie algebraic structure [24] of the
Hamiltonian mechanics [25–27] should be employed.
For a system with N degrees of freedom, the multiplication
rule of this Lie algebra is defined by the Poisson bracket,
which is given by

ωðq; pÞ • υðq; pÞ ¼ fωðq; pÞ; υðq; pÞg ¼ Lωυðq; pÞ

¼
XN
n¼1

∂ω
∂pn

∂υ
∂qn −

∂ω
∂qn

∂υ
∂pn

; ð1Þ

with Lω, the Lie operator. The canonical conjugate
variables can be represented by the generalized coordinate

q ¼ ðq1; q2;…; qNÞ and momentum p ¼ ðp1; p2;…; pNÞ
vectors, while wðq; pÞ and υðq; pÞ are general functions
of the canonical variables. In this framework, and for a
function of the canonical variables Ψ¼ ðq1;p1;q2;…;pNÞ,
the Hamilton equations of motion and their formal solution
are written as

dΨ
ds

¼ fH;Ψg ¼ LHΨ; ð2aÞ

ΨðsfÞ ¼ MΨðsiÞ ¼ exp

�Z
sf

si
LHds

�
ΨðsiÞ

¼ exp ðλLHÞΨðsiÞ ¼
X∞
n≥0

λn

n!
Ln
HΨðsiÞ; ð2bÞ

where s is the independent variable and λ ¼ sf − si is the
integration step from the initial si to the final sf point. Using
Eq. (2a) and the left equality of Eq. (2b), the differential
equation of the symplectic map M can be obtained and is
given by the equation dM

ds ¼ MLH. The solution of this

differential equation is the Lie transformation M ¼
exp ðR sfsi LH dsÞ ¼ exp ðλLHÞ and can be obtained from
the use of the Magnus expansion [28] with the condition
fHðΨ; s1Þ;HðΨ; s2Þg ¼ 0 for any s1 and s2. Even for
nonautonomous systems, this solution [exp ðR sfsi LH dsÞ ¼
exp ðλLHÞ] is true if the time depended Hamiltonian
Hðq; p; sÞ is transformed to an autonomous one H̄ðq̄; p̄Þ
with the use of a Legendre transformation that is defined by
the generating function F2 ¼

P
N
n¼1 p̄nqn þ p̄Nþ1s (the

phase space is expanded to N þ 1 degrees of freedom).
The Lie transformation exp ðλLHÞ propagates the initial
conditions ΨðsiÞ to the final ones ΨðsfÞ and the map M ¼
exp ðλLHÞ ¼

P∞
n≥0

λn

n!L
n
H is symplectic (a canonical trans-

formation) only if the summation defined by the previous
series is not truncated.
For many nonlinear systems, especially for the non-

integrable ones, the application of the Lie transformation
exp ðλLHÞ on the dynamical variables Ψ is not trivial.
However, for Hamiltonians of the formH ¼ Aþ ϵV where
A and V do not commute (i.e., fA; Vg ≠ 0) and are
independently integrable, an alternative but equivalent
integration scheme to exp ðλLHÞ can be found with the
use of the Campbell-Baker-Hausdorf theorem [24]. This
alternative symplectic scheme is described by Hamiltonian
splitting in several maps exp ðcnλLAÞ and exp ðdnλLϵVÞ and
can be expressed as

exp ðλLKÞ ¼
Y
n≥1

expðcnλLAÞ exp ðdnλLϵVÞ ¼ exp ½λðLA þ LϵVÞ� ¼ exp ðλLHÞ; ð3aÞ

K ¼ k1;1Aþ ϵk1;2V þ λϵk2;1fA; Vg þ λ2ϵk3;1fA; fA; Vgg þ λ2ϵ2k3;2ffA; Vg; Vg
þ λ3ϵk4;1fA; fA; fA; Vggg þ λ3ϵ2k4;2fA; ffA; Vg; Vgg þ λ3ϵ3k4;3fffA; Vg; Vg; Vg þ � � � ð3bÞ
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where “· · · ” in the expression of the effective Hamiltonian
K indicates terms involving higher order commutators. The
use of parameter ϵ just facilitates the track of the power of V
and therefore can be set to ϵ ¼ 1, without loss of generality.
The coefficients k1;1 ¼

P
n¼1 cn, k1;2 ¼

P
n¼1 dn, and the

rest of ki>1;j coefficients are polynomials of cn and dn with
degree i. The Lie transformation exp ðλLKÞ is equivalent to
exp ðλLHÞ when the coefficients cn and dn satisfy the
equations k1;1 ¼ k1;2 ¼ 1 and ki>1;j ¼ 0. Although the
new integration scheme involved Lie transformations
[exp ðcnλLAÞ and exp ðdnλLϵVÞ� that are integrable, the
upper limit of the n can be very large (n → ∞) for many
Hamiltonian systems. Nevertheless, since any Lie trans-
formation is symplectic [25], a truncated form of Eq. (3a)
can be used. In that case, the cn and dn coefficients are not
enough for eliminating all the ki>1;j polynomials (the upper
limit of n is finite, n → m) and therefore, the resulted
integrator exp ðλLKÞ is an approximated but symplectic
alternative of the exp ðλLHÞ and Eq. (3a) takes the follow-
ing form:

exp ðλLKÞ ¼ Symmetric

�Ym
n¼1

exp ðcnλLAÞ exp ðdnλLϵVÞ
�

¼ exp ðλLHÞ þOðλ2ζÞÞ: ð4Þ

where ζ is the order of the integration. The accuracy of the
exp ðλLKÞ can be improved if a symmetric placement of the
maps with respect to the center of the full integration step is
used {Symmetric½Qm

n¼1 exp ðcnλLAÞ exp ðdnλLϵVÞ�}.As de-
scribed in [10,13], for symmetric integrators, the effective

Hamiltonian K of Eq. (3b) includes only even powers of λ
and thus, the symplectic integrator exp ðλLKÞ is given by

exp ðλLKÞ ¼ Symmetric

�Ym
n¼1

exp ðcnλLAÞ exp ðdnλLϵVÞ
�

¼ exp ðλLHÞ þOðλ2ζÞ: ð5Þ
The motion of the particles through each element of an

accelerator ring canbedescribedby aHamiltonian of the type
H ¼ Aþ ϵV, where one of the two terms is much weaker
than the other and can be seen as a perturbation. In general,
for perturbativeHamiltonian systemswhere ϵV ≪ A, a set of
symmetric symplectic integrators with only positive integra-
tion steps (cn; dn > 0) is proposed in [12] and all orders of
these integrators are derived in [13]. These integrators,
named SABAm & SBABm [with A≡ exp ðcnλLAÞ and
B≡ exp ðdnλLϵVÞ], eliminate the terms ki>1;1 where the
perturbation (ϵV) appears at first order and keeps the less
important ones ki>1;j>1 (where the perturbation ϵV appears at
higher orders). The resultant order of accuracy for these
symplectic integration schemes is Oðλ2mϵþ λ2ϵ2Þ. A more
accurate version of these integrators can be used for
Hamiltonianswhere the termF ¼ ffA; Vg; Vg is integrable.
The authors in [13] proposed the addition of a correction term
at thebeginning and the endof theSABAm & SBABm in order
to eliminate the k3;2 term in Eq. (3b). This correction is
described by the Lie transformation exp ð− 1

2
fmλ3ϵ2LF Þ

where fm is the corrector coefficient. The resulted symmetric
symplectic integrators after the addition of the corrector,
named CSABAm & CSBABm, are of order Oðλ2mϵþ λ4ϵ2Þ
and they are defined as follows:

for even m:

CSABAm ¼ exp

�
−
1

2
fmλ3ϵ2LF

�
exp ðc1λLAÞ exp ðd1λLϵVÞ � � �

× exp ðdm
2
λLϵVÞ exp ðcm

2
þ1λLAÞ exp ðdm

2
λLϵVÞ � � �

× exp ðd1λLϵVÞ exp ðc1λLAÞ exp
�
−
1

2
fmλ3ϵ2LF

�
; ð6aÞ

CSBABm ¼ exp

�
−
1

2
fmλ3ϵ2LF

�
exp ðd1λLϵVÞ exp ðc2λLAÞ � � �

× expðcm
2
þ1λLAÞ expðdm

2
þ1λLϵVÞ exp ðcm

2
þ1λLAÞ � � �

× exp ðc2λLAÞ exp ðd1λLϵVÞ exp
�
−
1

2
fmλ3ϵ2LF

�
; ð6bÞ

for odd m:

CSABAm ¼ exp

�
−
1

2
fmλ3ϵ2LF

�
exp ðc1λLAÞ exp ðd1λLϵVÞ � � �

× exp ðcmþ1
2
λLAÞ exp ðdmþ1

2
λLϵVÞ exp ðcmþ1

2
λLAÞ � � �

× exp ðd1λLϵVÞ exp ðc1λLAÞ exp
�
−
1

2
fmλ3ϵ2LF

�
; ð6cÞ
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CSBABm ¼ exp

�
−
1

2
fmλ3ϵ2LF

�
exp ðd1λLϵVÞ exp ðc2λLAÞ � � �

× exp ðdmþ1
2
λLϵVÞ exp ðcmþ3

2
λLAÞ exp ðdmþ1

2
λLϵVÞ � � �

× exp ðc2λLAÞ exp ðd1λLϵVÞ exp
�
−
1

2
fmλ3ϵ2LF

�
: ð6dÞ

The parameters cn, dn, and fm can be found in [13]. Since
all the cn and dn are positive and satisfy the condition
k1;1 ¼ k1;2 ¼ 1, their value is getting smaller with the
increase of m (and so with the integrators order). Due to
that and also because the correctors’ “strength” fm is
always smaller than the cn and dn (for a given integrator
m) [13], the stability of the CSABAm & CSBABm integra-
tors is guaranteed even for large integration steps. It must
be noted that the CSABAm & CSBABm integrators can be
still used even for Hamiltonians where ϵ is not very small
(ϵ → 1) [29] and the resulted integration scheme is up to
fourth order [Oðλ2m þ λ4Þ]. The CSABAm & CSBABm

symplectic integrators are successfully used in different
dynamical problems [13,23,29,30] but never compared
with the standard integration schemes like the ones used
by MAD-X [31] and SixTrack [32].

III. INTEGRATION WITH CSABAm & CSBABm
SYMPLECTIC INTEGRATORS FOR AN

ACCELERATOR LATTICE

The Hamiltonian that describes the particle motion
through the electromagnetic fields (elements) of a storage
ring or an accelerator with piecewise constant curvature (ρ)
is described in [25] and is given by

Hðx; px; y; py; l; δ; sÞ ¼
δ

βr0
− ð1þ hxÞ

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δþ 1

βr0
−

qϕ
cP0

�
2

− ðpx − axÞ2 − ðpy − ayÞ2 −
ð1 − β2r0Þ

β2r0

s
þ as

#
; ð7Þ

where the path length (s) along the beam line is the
independent variable. h ¼ 1

ρ, βr0 is the ratio of the reference
particle velocity over the speed of light c, q is the particle
charge, P0 is the reference particle momentum, and δ is the
energy spread. In this work, the lattices that are used
include only magnetic multipoles (i.e., no radio frequency
cavities or other elements with electric field are simulated)
thus, ϕ ¼ 0. The magnetic fields are assumed to be zero
outside the magnets and vary only along the transverse
directions (x, y), therefore, the scaled vector potentials
ax ¼ ay ¼ 0 and as ¼ asðx; yÞ (“hard edge” approxima-
tion). In addition, ultrarelativistic particles are used
(βr0 → 1) and since their longitudinal momentum is quite
larger than the transverse one, the paraxial approximationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ δÞ2 − p2

x − p2
y

q
≃ ð1þ δÞ − p2

xþp2
y

2ð1þδÞ can be applied.

Using these simplifications, the general form of the studied
Hamiltonian is given by

Hðx; px; y; py; l; δ; sÞ ¼ Aðx; px; py; δÞ þ Vðx; y; δÞ ð8aÞ

with

Aðx; px; py; δÞ ¼ ð1þ hxÞ p
2
x þ p2

y

2ð1þ δÞ ð8bÞ

and

Vðx; y; δÞ ¼ −ð1þ δÞhx − ð1þ hxÞas; ð8cÞ

where A includes the kinematic terms (px; py; δ) and V
depends only on the Cartesian coordinates (x, y) and the
energy spread δ.
For the majority of multipoles found in an accelerator,

the “potential” V in Eq. (8) can be seen as a perturbation
of A thus, the SABAm & SBABm symplectic integrators
can be used for the study of the particles motion. Given that
V ≪ A and using Eqs. (8b) and (8c), the quantity F ¼
ffA; Vg; Vg is written as

F ¼ ffA; Vg; Vg ¼ 1þ hx
1þ δ

��∂V
∂x
�

2

þ
�∂V
∂y
�

2
�
¼ 1þ hx

1þ δ

��
ð1þ hxÞ ∂as∂x þ hð1þ δþ asÞ

�
2

þ
�
ð1þ hxÞ ∂as∂y

�
2
�
:

ð9Þ
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It can be seen in Eq. (9) thatF deepens only on the positions
and the energy spread [F ¼ F ðx; y; δÞ] therefore is inte-
grable. The integrability ofF is a direct effect of the paraxial
approximation where the kinematic terms in Eq. (8b) are
of the form A ¼ Aðqn; p2Þ with n ¼ 0, 1 and because
V ¼ Vðδn; qwÞ with w ¼ 0; 1; 2;…. When F is integrable
(the paraxial approximation holds), the more accurate
CSABAm & CSBABm symplectic integrators can be used,
whereas, in the opposite case, the SABAm & SBABm
symplectic integrators are applicable. In the case of a straight
element (lack of dipolar component), the bending radius is
infinite (ρ → ∞), thus, the curvature h in Eqs. (8b), (8c), and
(9) can be set to zero. For a generic asðx; yÞ, the symplectic
transfer maps (equations of motion) that are generated by the
Lie transformations expð− 1

2
fmλ3ϵ2LF Þ, expðdnλLϵVÞ, and

expðcnλLAÞ are given in Appendixes A and B. Using these
results, the exact form of the transfer map for the most
common linear and nonlinear magnets (specific as) is also
derived and can be found in Appendix C.

IV. COMPARISON STUDIES

For the comparison of the CSABAm & CSBABm against
the TEAPOTm [19] and the fourth order YFR3 [10,11]
symplectic integrators, which are commonly used in
accelerator tracking codes, quantities that can be calculated
analytically and others that require numerical simulations
are studied. For the Hamiltonians used in the following
studies, the performance of the CSABAm & CSBABm
symplectic integrators is almost identical (due to their
construction similarities) and thus, only the results from
the CSABAm integrator are presented.

A. Analytical studies: Transfer matrix accuracy
and phase advance calculation

A first and quite fundamental study is to estimate the
ability of the different integrators to reproduce the linear

properties of a lattice. For that reason, the approximation

Aðx; px; py; δÞ ≈ A0ðx; px; py; δÞ ¼ p2
xþp2

y

2ð1þδÞ is used and a

linear periodic lattice that consists of repeated FODO cells
that include dipoles (a periodic alternation of drift sections,
dipoles, and quadrupoles) is studied. Since the lattice is
linear, the transfer map for any section of this lattice can be
expressed in a matrix form (M) and can be calculated
without the use of a symplectic integrator (exact solution).
Using small integration steps (i.e., small λ), the exact transfer
matrix can be expanded in a Taylor series. Comparing each
Mi;j element of this expanded form with the corresponding
one in the transfer matrix generated by the symplectic
integrators, the integrators accuracy ζ can be obtained, as
described by Eqs. (3b) and (4) through the term OðλζÞ.
Performing this expansion to the exact transfer matrix of a
quadrupole and comparing the elements that describe the
horizontal motion (M1;1,M1;2,M2;1, andM2;2), the order of
accuracy ζ for different symplectic integrators like the
LEAPFROG [33], the CSABAm and the TEAPOTm is plotted
in Fig. 1(a). The numbers in the labels inside the parentheses
(nk,ntot) refer to the amount of kicks nk and the total maps
needed to construct the integrator ntot, e.g., (4, 7) the
integrator consists of seven maps from which the nk ¼ 4

are kicks and the others are drifts. The CSABA1 and all the
studied TEAPOT integrators can describe the elements of
the quadrupole transfer matrix with the same accuracy. On
the other hand, the CSABAm>1 integrators can describe the
Mi;j components better than any of the TEAPOTm except
the M2;1 component where the two integrator families are
equivalent. It seems that the TEAPOT splittings improve
slowly with the increase of the number of kicks while the
overall behavior of the CSABAs is two orders of magnitude
better than any of the TEAPOTs. The only exception is the
CSABA1 which is equivalent to TEAPOTs behavior.
It is also important to study the integrators capabilities to

reproduce correctly quantities that describe the dynamics of

FIG. 1. (a) The order of accuracy ζ for each elementMi;j of the quadrupole transfer matrix is plotted for various integrators where the
numbers in the labels inside the parentheses (nk,ntot) refer to the amount of kicks nk and the total maps needed to construct the integrator
ntot. The order of accuracy of μ, in a FODO cell that include dipoles, for different KQ and LQ with the use of (b) the CSABA2 and (c) the
TEAPOT5 symplectic integrators. The area below the white dashed curve guarantees stable motion through the FODO cell.
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the problem. Such a quantity in this linear periodic lattice is
the phase advance. Since there is no coupling between the
planes of motion (no skew quadrupoles), the phase advance
μ after one period (one FODO cell), is equal to
μj ¼ arccotðM1þw;1þw

M1þw;2þw
βj − αjÞ, where M is the block diago-

nal transfer matrix of the repeated cell including both
transverse planes. In this respect, the index j corresponds to
x or y and w ¼ 0 for j ¼ x, while w ¼ 2 for j ¼ y. The
parameters βj and αj correspond to the usual Courant-
Snyder functions [34] at the beginning and end of the
repeated periodic cell. The studied FODO cell include one
focusing and one defocusing quadrupole with the same
length LQ and the same magnitude of normalized strength
jKQj≡ jk1j. Due to these symmetries, the phase advance μ

in both planes is defined by the ratio M1;1

M1;2
. Starting from a

mirror symmetric point in the cell (αx ¼ αy ¼ 0) and using
different symplectic integrators, the μ for a set of KQ and
LQ combinations (different lattices) is calculated. For the
CSABA2 and TEAPOT5 integrators, their order of accu-

racy defined as OðμÞ ¼
���log10����MðintÞ

1;1

MðintÞ
1;2

β − MðexÞ
1;1

MðexÞ
1;2

β
���	��� is plot-

ted in Figs. 1(b) and 1(c), respectively. In this formula, the
matrix MðexÞ is the exact solution and the MðexÞ is the one
resulted from the studied symplectic integrator. For
the configurations under the white dashed curve where
the optics is stable, the CSABA2 is at least two orders of
magnitude more accurate than the TEAPOT5, even if
the TEAPOT5 consists of more maps as compared
with CSABA2 (eleven in contrast to seven). Indeed, the
CSABAm & CSBABm are not only more accurate than
TEAPOTm but they are also more economical with respect
to the integration time.
Another important quantity that can be calculated

analytically in a linear lattice like a FODO cell (a periodic
alternation of drifts and quadrupoles) is the action invariant
J ¼ 1

2βj
½j2 þ ðαjjþ βjpjÞ2� with j ¼ x, y. Using the exact

transfer matrices for the different lattice elements, the exact
value of the action (JðexÞ) is calculated for a variate of
lattices (different KQ and LQ combinations). Applying the
CSABA2 and TEAPOT3 integration schemes, the action
(JðintÞ) is also calculated for the same lattices. Based on
these results, the integrators order of accuracy defined as
OðJÞ ¼ jlog10ðjJðintÞ − JðexÞjÞj is plotted in Figs. 2(a)
and 2(b) for the CSABA2 and TEAPOT3 integrations,
respectively. With purple color are plotted the least accurate
areas while with red the more accurate ones. Interested in
the KQ and LQ configuration under the white dashed curve
where the motion is stable, the CSABA2 is either similar or
more accurate than the TEAPOT3 by one order of magni-
tude. This shows that with the same computational cost
(both integrators consist of seven steps), the CSABA2 can
preserve better fundamental quantities of integrable motion,
which indeed the primary purpose of a symplectic integrator.

B. Analytical studies: Chromaticity and tune spread
with amplitude calculation

In order to study the linear chromaticity from sextupoles

ξ and the tune spread with amplitude ∂Qj

∂Jj with j ¼ x, y, a

periodic nonlinear lattice is used. The repeated cell of this
lattice is the same as the one used in the previous linear
lattice but with the addition of sextupoles that are used to
cancel out the natural chromaticity from quadrupoles. The
natural chromaticity (ξn) and the linear chromaticity from
sextupoles (ξ) are given by

ξnj ¼
ΔQj

δ
¼ ð−1Þτ

4π

Z
sf

si
k1ðsÞβjðsÞds; ð10aÞ

ξj ¼
ΔQj

δ
¼ ð−1Þτþ1

8π

Z
sf

si
k2ðsÞβjðsÞDxðsÞds; ð10bÞ

where for j ¼ x, τ ¼ 1 and for j ¼ y, τ ¼ 2. Dx is the
horizontal dispersion, k1 and k2 are the normalized

FIG. 2. The order of accuracy of J in a FODO cell, for different
KQ and LQ with the use of (a) the CSABA2 and (b) the
TEAPOT3 symplectic integrators. The area below the white
dashed curve guarantees stable motion through the FODO cell.
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strengths of the quadrupole and the sextupole, respectively.
Using the symplectic integrators only for the nonlinear
elements of the lattice (same optical functions for all the
integrators), the ξ and its order of accuracy OðξÞ ¼
jlog10ðjξðintÞ − ξðexÞjÞj are calculated for different KQ and
LQ combinations (different lattices) that guarantee stability.
OðξÞ is the accuracy of the studied symplectic integrator,
ξðexÞ is the target value of the sextupole chromaticity, and
ξðintÞ is the one resulting from employing the studied
integrator. In these calculations, any contribution from
the sextupoles at the optical functions is neglected since
it is a second order effect. For the couples CSABA2 &
YFR3,CSABA2 & TEAPOT3, andCSABA4 & TEAPOT5,
the difference in their order of accuracy OðξÞ at the
horizontal plane is presented in Figs. 3(a), 3(b), and 3(c)
and at the vertical one in Figs. 3(d), 3(e), and 3(f). As can be
seen in these plots, the results for the two planes are very
similar for all the compared integrator couples. Focusing at
the results in Figs. 3(a) and 3(d), the seven map integrators
CSABA2 and YFR3 present very similar performance across
the different (KQ,LQ) configurations. The averagedifference
from all the studied lattices mean ½OðξjÞ½CSABA2� −
OðξjÞ½YFR3�� equals 0.25, which demonstrates that the
CSABA2 is slightly more accurate. Between the CSABA2

and the other seven step integratorTEAPOT3 [Figs. 3(b) and
3(e)], the CSABA2 is at least one order of magnitude more
accurate for small ðKQ; LQÞ and improves significantly, as
the values of KQ and LQ are increased. This behavior is true
even for higher order integrators, as can be observed in
Figs. 3(c) and 3(f), where the order of accuracy difference
between the 11 step integrators CSABA4 and TEAPOT5 is
plotted. The accuracy degradation of the TEAPOTm for
larger values of ðKQ; LQÞ seems to be an inherent problem of
that integration scheme. Since these integrators are con-
structed to reproduce very well the M2;1 element of the
quadrupole transfer matrix, they start losing in accuracy for
higher ordermultipolemagnets. In contrast, anyHamiltonian-
centric integrator, such as the CSABAm & YFRm, is more
stable for larger values of ðKQ; LQÞ. The black dots in Fig. 3
are points where the CSABAm is accurate up to the 16th
decimal digit of ξ, i.e., it reaches machine precision.
For long “time” integration studies that exhibit diffusion

[35], the high order nonlinear effects (e.g., tune spread with
amplitude from sextupoles, nonlinear energy detuning, etc.)
should be also considered for an accurate description of
the particle motion. For this reason, the tune spread

with amplitude ∂Qj

∂Jj with j ¼ x, y generated by the sextu-

poles in the aforementioned nonlinear lattices is studied.

FIG. 3. The difference in order of accuracy of ξx between (a) CSABA2 & YFR3, (b) CSABA2 & TEAPOT3, and (c) CSABA4 &
TEAPOT5. The difference in order of accuracy of ξy between (d) CSABA2 & YFR3, (e) CSABA2 & TEAPOT3, and (f) CSABA4 &
TEAPOT5. The combinations of ðKQ; LQÞ in the white area guarantee unstable motion and the black dots are configurations where the
CSABAν is accurate up to the 16th decimal digit of ξx or ξy.
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The formulas for the leading order terms of the tune spread
with amplitude generated by a sextupole can be found in
[36,37] and as before, the symplectic integrators are used
only for the sextupolar magnets. Once again, the order of

accuracy Oð∂Qj

∂Jj Þ ¼ jlog10ðj∂Qj

∂Jj
ðintÞ − ∂Qj

∂Jj
ðexÞjÞj is calculated

for both transverse planes (j ¼ x, y) where ∂Qj

∂Jj
ðexÞ is the

target value of the sextupoles tune spread with amplitude

and ∂Qj

∂Jj
ðintÞ is the one resulting from the use of the studied

integrators. For the comparison betweenCSABA2 & YFR3,
CSABA2 & TEAPOT3 and CSABA4 & TEAPOT5, the

difference in their order of accuracy Oð∂Qj

∂Jj Þ in the hori-

zontal plane is displayed in Figs. 4(a), 4(b), and 4(c) and for
the vertical one in Figs. 4(d), 4(e), and 4(f). Among the
seven step integrators (CSABA2, YFR3, and TEAPOT3),
CSABA2 can reach higher accuracy in the tune spread with
amplitude estimation, for the majority of the (KQ, LQ)
combinations, in both planes. More specific, in the hori-
zontal plane and for all the KQ and LQ values, the CSABA2

is at least one order more accurate than the YFR3 as can be
seen in Fig. 4(a). Similarly, in the vertical plane [Fig. 4(d)],
the CSABA2 is at least one order of magnitude more
accurate than the YFR3 except from a narrow band of (KQ,
LQ) values, where the YFR3 is more accurate (blue shades).

The difference between CSABA2 and TEAPOT3 is not
very significant but again the CSABA2 is slightly more
accurate for all the (KQ, LQ) configurations in both planes
(horizontal and vertical), as it is shown in Figs. 4(b)
and 4(e). With the 11 step integrators, the CSABA4 and
TEAPOT5 present very similar results in the vertical plane
[Fig. 4(f)] for almost all the KQ and LQ values. In the
horizontal one [Fiq. 4(c)], the CSABA4 is at least one order
more accurate than the TEAPOT5 for the majority of
lattices (red shades). For the rest, the two symplectic
integrators (CSABA4 & TEAPOT5) are equally accurate
except a narrow band of configurations where the
TEAPOT5 is more accurate (blue shades). In general,
the integrator performances are affected by the lattice
configuration (mostly by the quadrupole length and
strength, i.e., the phase advance between the integrator
kicks), as can be seen in Figs. 5(a) and 5(b). In these plots,
the accuracy with which the CSABA4 [Fig. 5(a)] and the
TEAPOT5 [Figs. 5(b)] can describe the sextupole tune
spread with amplitude in the horizontal plane (∂Qx∂Jx ) for
different lattices (different KQ and LQ configurations) is
presented. For both integrators, the order of accuracy

Oð∂Qj

∂Jj Þ is smoothly degrading, as the (KQ, LQ) values

approach the unstable motion area (white color). However,

FIG. 4. The difference in order of accuracy of ∂Qx∂Jx between (a) CSABA2 & YFR3, (b) CSABA2 & TEAPOT3, and (c) CSABA4 &

TEAPOT5. The difference in order of accuracy of ∂Qy

∂Jy between (d) CSABA2 & YFR3, (e) CSABA2 & TEAPOT3, and (f) CSABA4 &

TEAPOT5. The combinations of ðKQ; LQÞ in the white area guarantee unstable motion.
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this smooth degradation of the accuracy is truncated by
narrow bands of lattice configurations, for which the
integrator performances are significantly improved. This
improvement is mostly due to phase advance between the
integrator kicks. These “beneficial” phase advances (KQ

and LQ pairs) are not the same for the two integrators.

C. Tracking studies: Tune calculation

The results from particle tracking studies are also of
greatest importance for a detailed understanding of the
system dynamics. Therefore, fundamental quantities like
the invariants of motion (e.g., the tune of particles execut-
ing regular motion, etc.) as well as quantities like the tune
diffusion (used for distinguishing the regular from the
irregular motions) should be described as accurately as
possible by the symplectic integration schemes. The value
of such a quantity is affected by the numerical precision of
the tracking algorithms that disturb the symplecticity and
from the integration scheme used. Based on that, the more
accurate integrators will be affected less.
In order to further evaluate the differences between the

CSABAm and TEAPOTm integration schemes, a more
complicated lattice, similar to the LHC one during the
run II, was constructed and analyzed. More specifically, the
linear chromaticity is set to 15 units for both transverse
planes, the octupoles strength is maximized in order to
enhance the nonlinearities and the radio frequency (rf)
cavities are switched off (5D tracking with constant
energy spread δ). First, a frequency map analysis is
performed for studying the particle dynamics in this
lattice. Using the CSABAm or TEAPOTm symplectic
integrators for the propagation through the nonlinear
elements and the highly accurate algorithm NAFF (numeri-
cal analysis of fundamental frequencies) [38–40] for the
calculation of the horizontal and the vertical tunes
(Qx, Qy), the tune diffusion resulted from the use of
the CSABA2 and TEAPOT3 integrators is plotted in
Fig. 6. The tune diffusion is defined by the formula

log10
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðQin
x −Qfi

x Þ2 þ ðQin
y −Qfi

y Þ2
q 	

where Qin
x;y is the

tune at the first 1000 revolutions and Qfi
x;y the tune at the

next 1000 revolutions. As can be seen from the results
taken with the CSABA2 [Fig. 6(a) in coordinate space and
Fig. 6(b) in tune space] and the ones with the TEAPOT3

[Fig. 6(c) in coordinate space and Fig. 6(d) in tune space],
the tune diffusion is described in a very similar way by the
two integrators.
Despite the similarities seen in Fig. 6, the integrators

effectiveness to capture the Hamiltonian (dynamical) prop-
erties of the system is better described from the tune study
of particles that trace out Kolmogorov-Arnold-Moser
(KAM) tori [41–43] in phase space (nonchaotic particles
that move on circular trajectories in normal form phase
space) which is an invariant of the motion. Given that the
lattice used is nonlinear and thus no exact transfer map
exists for the calculation of the target values of the invariant
(tune), an “exact” symplectic integration scheme is con-
structed. This integration scheme uses the exact solutions
for the linear elements and for the nonlinear ones, a ray
tracing LEAPFROG [44] is applied. The general form of the
ray tracing LEAPFROG transfer map (RTLFν) is written as

RTLFm ¼
Ym
w¼1

fexp ½ð2mÞ−1λLA�

× exp ðm−1λLϵVÞ exp ½ð2mÞ−1λLA�gw: ð11Þ

With this symplectic integrator (RTLFm), the new
Hamiltonian K is given by the original one H as follow
K ¼ HþOðPw≥1

λ2w

m2wÞ. For large m values, the contribu-
tion from the leading order (λ2) and from the higher ones is
very small since they are scaled with m. In our case, the
density of the kicks used at each nonlinear element is
identical to the one needed for the description up to double
precision (16th decimal) the deflection (of the conjugate
variables) from a thick quadrupole. More specifically, at
least 1000 kicks (m ≥ 1000) are used for each nonlinear

FIG. 5. The variation of the Oð∂Qj

∂Jj Þ for differed lattice configurations using (a) the CSABA4 and (b) the TEAPOT5 symplectic
integrators.
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element. Using the results of the exact integrator, the tune

accuracy OðQjÞ ¼ jlog10ðjQðintÞ
j −QðexÞ

j jÞj in both planes
(j ¼ x, y) for the seven steps integrators CSABA2 and
TEAPOT3 is estimated. Their accuracy difference in the
horizontal and vertical planes is presented in Figs. 7(a) and
7(b), respectively. In the horizontal plane [Fig. 7(a)], the
CSABA2 is more accurate than the TEAPOT3

[ΔOðQxÞ > 0] for 86% of the initial conditions, with the
average improvement close to 1 order of magnitude
[MeanðΔQxÞ ¼ 0.8]. In the vertical plane [Fig. 7(b)], the
CSABA2 is more accurate than the TEAPOT3 for almost
all of the initial conditions (99.7%) and again the

average improvement is close to 1 order of magnitude
[MeanðΔQxÞ ¼ 0.8]. The CSABA2 is still better than many
TEAPOT integrators which consists of more than seven
maps. A characteristic example can be seen in Figs. 7(c)
and 7(d) where the tune accuracy differences between the
CSABA2 and the TEAPOT5 (an integrator that consists of
11 maps) are plotted. In the horizontal plane [Fig. 7(c)], the
CSABA2 is more accurate for 60% of the initial conditions
and, in the vertical one, for 99.6% of the initial conditions.
It is worth noticing that, in the horizontal plane, the areas
where the CSABA2 is less accurate than the TEAPOT3

[Fig. 7(a)] or the TEAPOT5 [Fig. 7(c)], the tune diffusion

FIG. 6. Tune diffusion resulted from the use of the CSABA2 symplectic integrator in (a) the coordinate space and (b) in the tune space.
Tune diffusion resulted from the use of the TEAPOT3 symplectic integrator in (c) the coordinate space and (d) in the tune space.
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is large, as it is shown in Fig. 6(a). The large tune diffusion
is an indication that these particles may not be on KAM tori
and thus their tune is not an invariant of motion.

V. SUMMARY AND CONCLUSIONS

In this work, the benefits from employing theCSABAm&
CSBABm symplectic integrators over TEAPOTm and the
fourth order YFR3, which are widely used in the accelerator
community, are presented. This new set of symplectic
integrators (CSABAm & CSBABm) is ideal for Hamiltonian
systems that include a perturbative term, like the ones
found in accelerators, and consists of only forward

integration steps that guarantee the stability of the integra-
tor even with large integration steps.
In order to evaluate the effectiveness of the proposed

integrators to describe particle motion in an accelerator,
quantities that calculated analytically or through numerical
simulations are estimated and compared. For the analytical
studies, a plethora of latticeswas produced and the compared
quantities were the phase advance, the linear action invariant,
the linear chromaticity, and the tune spreadwith amplitude. It
was clearly shown that for the vast majority of these lattices,
the CSABAm & CSBABm symplectic integrators are more
accurate. It is to be stressed that, in most of the cases, the
accuracy difference is larger than 1 order of magnitude.

FIG. 7. The difference in order of accuracy ofQx between (a)CSABA2 & TEAPOT3 and (c)CSABA2 & TEAPOT5. The difference in
order of accuracy of Qy between (b) CSABA2 & TEAPOT3 and (d) CSABA2 & TEAPOT5.
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Similarly, exceptionally good results were also obtained
from the tracking studies, where the CSABAm & CSBABm
integrators can estimate the tunesof nonchaotic particleswith
better accuracy as compared to TEAPOTm, with the equiv-
alent or even larger number of integration steps. These
findings indicate that the implementation of these new
symplectic integrators in particle tracking codes will be very
beneficial for the beam physics community. In this respect,
the transfer maps for any combined function magnet with
normal or skew symmetry are presented in the Appendixes.

APPENDIX A: GENERAL FORM OF THE
SYMPLECTIC TRANSFER MAPS NEEDED
FOR THE USE OF THE CSABAm & CSBABm

SYMPLECTIC IN ACCELERATORS

Using Eqs. (8b), (8c), and (9) in the Lie transformations
for the maps exp ðcnλLAÞ, exp ðdnλLVÞ and the corrector
exp ð− 1

2
fmλ3LF Þ, the solution of the equations of motion

(symplectic transfer maps) for a generic vector potential
asðx; yÞ is given by

ecnλLAðx; px; y; py; l; δÞ∶

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

xf ¼ 1
h fð1þ hxiÞ½cosðηÞ þ pi

x
pi
y
sinðηÞ�2 − 1g;

pf
x ¼ pi

y
pi
x−pi

y tanðηÞ
pi
y−pi

x tanðηÞ ;

yf ¼ yi þ 1þhxi
h

h
pi2
x þpi2

y

pi2
y

ηþ pi2
y þpi2

x

pi2
y

sin ð2ηÞ þ 2 pi
x

pi
y
sin2ðηÞ

i
;

pf
y ¼ pi

y;

lf ¼ li − η
ðpi2

x þpi2
y Þð1þhxiÞ

hpi
yð1þδiÞ ;

δf ¼ δi;

ðA1Þ

ednλLV ðx; px; y; py; l; δÞ∶

8>>>>>>>>><
>>>>>>>>>:

xf ¼ xi;

pf
x ¼ pi

x þ dnλ½hð1þ δiÞ þ hasji þ ð1þ hxiÞ ∂as∂x ji�;
yf ¼ yi;

pf
y ¼ pi

y þ dnλð1þ hxiÞ ∂as∂y ji;
lf ¼ li − dnλhxi;

δf ¼ δi;

ðA2Þ

e−
1
2
fmλ3LF ðx; px; y; py; l; δÞ∶

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

xf ¼ xi;

pf
x ¼ pi

x þ fmλ3

2ð1þδiÞ ½hððhð1þ δi þ asjiÞ þ ð1þ hxiÞ ∂as∂x jiÞ2 þ ðð1þ hxiÞ ∂as∂y jiÞ2Þ
þ 2ð1þ hxiÞððhð1þ δi þ asjiÞ þ ð1þ hxiÞ ∂as∂x jiÞ × ð2h ∂as∂x ji þ ð1þ hxiÞ ∂2as∂x2 jiÞ
þ hð1þ hxiÞð∂as∂y jiÞ2 þ ð1þ hxiÞ2 ∂as∂y ji ∂

2as∂x∂y jiÞ�;
yf ¼ yi;

pf
y ¼ pi

y þ fmλ3ð1þhxiÞ
2ð1þδiÞ ½2ð1þ hxiÞ2 ∂as∂y ji ∂

2as
∂y2 ji

þ 2ðhð1þ δi þ asjiÞ þ ð1þ hxiÞ ∂as∂x jiÞðh ∂as∂y ji þ ð1þ hxiÞ ∂2as∂x∂y jiÞ�;
lf ¼ li − fmλ3ð1þhxiÞ

2ð1þδiÞ2 ½2hð1þ δiÞðhð1þ δi þ asjiÞ þ ð1þ hxiÞ ∂as∂x jiÞ
− ðhð1þ δi þ asjiÞ þ ð1þ hxiÞ ∂as∂x jiÞ2 − ðð1þ hxiÞ ∂as∂y jiÞ2�;

δf ¼ δi;

ðA3Þ

where λ ¼ sf − si, h ¼ 1
ρ with ρ the bending radius, η ¼ pi

y
cnλh

2ð1þδiÞ and cn, dn, and fm are coefficients of the Lie

transformations. The detailed derivation of Eq. (A1) can be found in Appendix B, while the derivation of Eqs. (A2) and
(A3) is not presented here since are trivial.
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APPENDIX B: DERIVATION OF THE
SYMPLECTIC TRANSFER MAP THAT
DESCRIBES THE EFFECT OF THE LIE
TRANSFORMATION exp ðcnλLAÞ ON THE

DYNAMICAL VARIABLES

For A ¼ ð1þ hxÞ p2
xþp2

y

2ð1þδÞ and h being piecewise constant,

the action of exp ðcnλLAÞ on the dynamical variables
ðx; px; y; py; l; δÞ is equivalent to solve the following
Hamilton equations:

dx
ds

¼ ∂A
∂px

¼ ð1þ hxÞ px

ð1þ δÞ ðB1aÞ

dpx

ds
¼ −

∂A
∂x ¼ −h

p2
x þ p2

y

2ð1þ δÞ ðB1bÞ

dy
ds

¼ ∂A
∂py

¼ ð1þ hxÞ py

ð1þ δÞ ðB1cÞ

dpy

ds
¼ −

∂A
∂y ¼ 0 ⇒ pf

y ¼ pi
y ðB1dÞ

dl
ds

¼ ∂A
∂δ ¼ −ð1þ hxÞ p2

x þ p2
y

2ð1þ δÞ2 ðB1eÞ

dδ
ds

¼ −
∂A
∂l ¼ 0 ⇒ δf ¼ δi : ðB1fÞ

Inserting Eqs. (B1d) and (B1f) in Eq. (B1b), the
evolution of px is given by

dpx

ds
¼ −h

p2
x þ pi2

y

2ð1þ δiÞ ⇒
Z

pf
x

pi
x

dpx

p2
x þ pi2

y

¼ −
Z

cnsf

cnsi

h
2ð1þ δiÞ ds

⇒ arctan

�
pf
x

pf
y

�
¼ arctan

�
pi
x

pf
y

�
− cnλ

hpi
y

2ð1þ δiÞ ⇒ pf
x ¼ pi

y tanðσ − ηÞ; ðB2Þ

where λ ¼ sf − si, σ ¼ arctanðpi
x

pi
y
Þ and η ¼ pi

y
cnλh

2ð1þδiÞ. By applying the identity tan ðκ þ ωÞ ¼ tanðκÞ−tanðωÞ
1þtanðκÞ tanðωÞ with κ ¼ σ and

ω ¼ η, Eq. (B2) is written as

pf
x ¼ pi

y
pi
x − pi

y tanðηÞ
pi
y − pi

x tan ðηÞ : ðB3Þ

Implementing Eqs. (B2) and (B1f) in Eq. (B1a) results in

dx
ð1þ hxÞ ¼

pi
y tan ðσ − ηÞ
ð1þ δiÞ ds ⇒

Z
xf

xi

dx
1þ hx

¼ 2

h

Z
η

0

tan ðσ − η̃Þdη̃

⇒ Loge

�
1þ hxf

1þ hxi

�
¼ Loge

�
cos ðσ − ηÞ
cosðσÞ

�
⇒ xf ¼ 1

h

�
ð1þ hxiÞ

�
cosðηÞ þ pi

x

pi
y
sinðηÞ

�
2

− 1

�
: ðB4Þ

For the evolution of y, Eqs. (B4) and (B1d) are used in Eq. (B1c) and the result is expressed as

dy
ds

¼ ð1þ hxiÞ
�
cosðηÞ þ pi

x

pi
y
sinðηÞ

�
2 pi

y

ð1þ δiÞ ⇒
Z

yf

yi
dy ¼

Z
η

0

2ð1þ hxiÞ
h

�
cosðη̃Þ þ pi

x

pi
y
sinðη̃Þ

�
2

dη̃

⇒ yf ¼ yi þ 1þ hxi

h

�
pi2
x þ pi2

y

pi2
y

ηþ pi2
y þ pi2

x

pi2
y

sin ð2ηÞ þ 2
pi
x

pi
y
sin2ðηÞ

�
: ðB5Þ

Finally, for the evolution of l, Eqs. (B4), (B2), (B1d), and (B1f) are used in Eq. (B1e) and after the integration over η, the
result is given by

Z
lf

li
dl ¼

Z
η

0

−ð1þ hxiÞ
�
cosðη̃Þ þ pi

x

pi
y
sinðη̃Þ

�
2 pi

y½1þ tan2ðσ − η̃Þ�
hð1þ δiÞ dη̃ ⇒ lf ¼ li − η

ðpi2
x þ pi2

y Þð1þ hxiÞ
hpi

yð1þ δiÞ : ðB6Þ
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APPENDIX C: SYMPLECTIC TRANSFER MAPS
FOR THE LIE TRANSFORMATIONS exp ðdnλLVÞ

AND exp ð− 1
2 fmλ

3LF Þ IN THE CASE OF
LINEAR AND NONLINEAR COMBINED

FUNCTION MAGNETS

For different combined function multipoles like the
linear combined function dipole-quadrupole and the non-
linear combined function sextupole-octupole, the action of
exp ðdnλLVÞ and exp ð− 1

2
fmλ3LF Þ on the dynamical var-

iables ðx; px; y; py; l; δÞ is presented here. From these
results, the transfer maps for pure dipole, quadrupole,
sextupole, octupole, etc., can be also obtained. The general
formulas of V and F for an arbitrary as are given in
Eqs. (8c) and (9), respectively. For straight combined
function magnets (i.e., except from dipoles where
h−1 ≠ 0), the rescaled vector potential as, in curvilinear
coordinates, for normal multipoles is given by

as ¼ℜ

�
−
XG
w>1

q
P0

B0

bw−1
w

rweiwθ
�
¼ℜ

�
−
XG
w>1

kw−1
w!

rweiwθ
�

ðC1Þ

and for skew ones, it is given by

as¼ℜ

�
−
XG
w>1

q
P0

B0

iαw−1
w

rweiwθ
�
¼ℜ

�
−
XG
w>1

ik̄w−1
w!

rweiwθ
�
:

ðC2Þ

In Eqs. (C1) and (C2), the normalized strength of the
normal and skew multipoles is given by kw ¼ q

P0
w!B0bw

and k̄w ¼ q
P0
w!B0aw, respectively, w ¼ 2; 3;… for the 2wth

multipoles, rweiwθ ¼ ðxþ iyÞw, B0 is the magnetic field of
the main dipole, P0 the reference particle momentum, and
the symbol ℜ denotes the real part. Using Eqs. (C1) and
(C2), the general form of the function F for straight
combined function magnets is written as

F ðx; y; δÞ ¼ 1

1þ δ

XG
w>1

�
g2w−1r

2ðw−1Þ

þ
XG

u¼wþ1

2gw−1gu−1rwþu−2Tu−w

�
x
r

��
; ðC3Þ

where gw ¼ ðkww! ; k̄ww!Þ, G ≥ w, and Tj½z� are the Chebyshev
polynomials of the first kind. For a single multipole
(G ¼ w > 1), Eq. (C3) is reduced to F ¼ 1

1þδg
2
w−1r

2ðw−1Þ.
Equation (C3) has the same form for normal and skew
multipoles of the same order but with different coefficients
gw. It must also be noted that the function F is only a
mathematical object that improves the accuracy of the
SABAm & SBABm and not a Maxwellian field despite their
similarities. Using Eqs. (A2), (A3), (C1), (C2), and (C3) for
straight (h ¼ 0) combined function multipoles, the sym-
plectic transfer maps that describe the effect of the Lie
transformations exp ðdnλLVÞ and exp ð− 1

2
fmλ3LF Þ on the

dynamical variables are given by

ednλLV ðx; px; y; py; l; δÞ∶

8>>>>>>>>><
>>>>>>>>>:

xf ¼ xi;

pf
x ¼ pi

x þ dnλℜð−PG
w>1 g̃w−1ðxþ iyÞw−1Þ;

yf ¼ yi;

pf
y ¼ pi

y þ dnλℜð−PG
w>1 ig̃w−1ðxþ iyÞw−1Þ;

lf ¼ li;

δf ¼ δi;

ðC4Þ
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e−
1
2
fmλ3LF ðx; px; y; py; l; δÞ∶

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

xf ¼ xi;

pf
x ¼ pi

x þ fmλ3

2ð1þδiÞ

2
64XG

w>1

2g2w−1x
iðw − 1Þðxi2 þ yi

2Þw−2

þ
XG

u¼wþ1

2gu−1gw−1

0
B@ðuþ w − 2Þxiðxi2 þ yi

2Þuþw−4
2 Tu−w

2
64 xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi
2 þ yi

2

q
3
75

þ ðu − wÞðxi2 þ yi
2Þuþw−3

2

�
1 − xi

2

xi
2þyi

2

�
Uu−w−1

2
64 xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi
2 þ yi

2

q
3
75
1
CA
3
75;

yf ¼ yi;

pf
y ¼ pi

y þ fmλ3

2ð1þδiÞ

2
64PG

w>1 2g
2
w−1y

iðw − 1Þðxi2 þ yi
2Þw−2

þ
XG

u¼wþ1

2gu−1gw−1

0
B@ðuþ w − 2Þyiðxi2 þ yi

2Þuþw−4
2 Tu−w

2
64 xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi
2 þ yi

2

q
3
75

− ðu − wÞxiyiðxi2 þ yi
2Þuþw−5

2 Uu−w−1

2
64 xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi
2 þ yi

2

q
3
75
1
CA
3
75;

lf ¼ li þ fmλ3

2ð1þδiÞ2

2
64XG

w>1

g2w−1ðxi
2 þ yi

2Þw−1

þ
XG

u¼wþ1

2gu−1gw−1ðxi2 þ yi
2Þuþw−2

2 Tu−w

2
64 xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi
2 þ yi

2

q
3
75
3
75;

δf ¼ δi

ðC5Þ

where g̃w ¼ ðkww! ; ik̄ww!Þ and Uj½z� are the Chebyshev polynomials of the second kind.

1. Combined function dipole-quadrupole

For a combined function dipole-quadrupole magnet with constant inverse bending radius h ¼ ρ−1 ¼ const, the function
V, in curvilinear coordinates, is equal to

V ¼ −ð1þ δÞhx − ð1þ hxÞas ¼ −ð1þ δÞhxþ ð1þ hxÞ
"
hx −

h2x2

2ð1þ hxÞ þ
k1
2

�
x2 − y2ð1þ hxÞ sinh

−1ð hy
1þhxÞ

hy

�

−
hk1x3

6ð1þ hxÞ −
k1y2

6

 
2ð1þ hxÞ2

h2x2
þ
�
1 −

2ð1þ hxÞ2
h2x2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2x2

ð1þ hxÞ2

s !#
; ðC6Þ

where the rescaled vector potential as, in curvilinear coordinates, can be found in [25]. In order to describe correctly the
linear dynamics and the transfer maps of a pure dipole (h ≠ 0; k1 ¼ 0) and a pure quadrupole (h ¼ 0; k1 ≠ 0), the following
approximated forms for V and F are used:
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V ¼ −hxδþ h2 þ k1
2

x2 −
k1
2
y2; ðC7aÞ

F ¼ 1þ hx
1þ δ

f½xðh2 þ k1Þ − hδ�2 þ ðk1yÞ2g: ðC7bÞ

The higher-order terms in Eq. (C6) are neglected since
they are important mostly for the particles far from the
reference trajectory. From Eqs. (C6) and (C7a), the corre-
sponding transfer maps are given by

ednλLV ðx;px;y;py;l;δÞ∶

8>>>>>>>>><
>>>>>>>>>:

xf ¼ xi;

pf
x ¼pi

xþdnλ½hδi− ðh2þk1Þxi�;
yf ¼ yi;

pf
y ¼pi

yþdnλk1yi;

lf ¼ li−dnλhxi;

δf ¼ δi;

ðC8aÞ

e−
1
2
fmλ3LF ðx;px; y;py; l;δÞ∶

8>>>>>>>>>>><
>>>>>>>>>>>:

xf ¼ xi;

pf
x ¼ pi

x þ fmλ3h
2ð1þδiÞ f½xiðh2 þ k1Þ− hδi�2 þ ðk1yiÞ2gþ fmλ3ð1þhxiÞ

1þδi
ðh2 þ k1Þ½xiðh2 þ k1Þ− hδi�;

yf ¼ yi;

pf
y ¼ pi

y þ fmλ3ð1þhxiÞ
1þδi

k21y
i;

lf ¼ li þ fmλ3ð1þhxiÞ
2ð1þδiÞ2 fxiðh2 þ k1Þ½xiðh2 þ k1Þ þ 2h�− h2δi

2 − 2h2δi þ k21y
i2g;

δf ¼ δi:

ðC8bÞ

In the case of a bending magnet (h ≠ 0), apart from
Eqs. (A1), (C8a), and (C8) which describe the motion of the
particle inside the magnet, the effect of the nonperpendic-
ular entrance and exit of the particles in the magnetic field
should be taken into account. This effect is described in
[45] and can be well approximated by a thin kick that is
expressed as

TðθÞ∶

8>>>>>>>>><
>>>>>>>>>:

xf ¼ xi;

pf
x ¼ pi

x þ hxi tanðθÞ;
yf ¼ yi;

pf
y ¼ pi

y þ hyi tanðθÞ;
lf ¼ li;

δf ¼ δi:

ðC9Þ

The angle θ is defined by the face of the magnet and the
perpendicular to the beam line plane. When the particle
enters the magnet θ ¼ θ1 and at the exit θ ¼ θ2.

2. Combined function sextupole-octupole

For a combined function sextupole-octupole magnet, the
expressions for V and F are written as

V ¼ as ¼
k2
6
ðx3 − 3xy2Þ þ k3

24
ðx4 − 6x2y2 þ y4Þ ðC10aÞ

F ¼ ðx2 þ y2Þ2½ð3k2 þ k3xÞ2 þ k23y
2�

36ð1þ δÞ ðC10bÞ

and the corresponding transfer maps are given by

ednλLV ðx; px; y; py; l; δÞ∶

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

xf ¼ xi;

pf
x ¼ pi

x − dnλ

�
k2
2
ðxi2 − yi

2Þ þ k3
6
ðxi3 − 3xiyi

2Þ
�
;

yf ¼ yi;

pf
y ¼ pi

y þ dnλ

�
k2xiyi þ k3

6
ð3yixi2 − yi

3Þ
�
;

lf ¼ li;

δf ¼ δi;

ðC11aÞ
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e−
1
2
fmλ3LF ðx; px; y; py; l; δÞ∶

8>>>>>>>>>>><
>>>>>>>>>>>:

xf ¼ xi;

pf
x ¼ pi

x þ fmλ3

12ð1þδiÞ ½ðxi
2 þ yi

2Þðxið2k2 þ k3xiÞð3k2 þ k3xiÞ þ k3yi
2ðk2 þ k3xiÞÞ�;

yf ¼ yi;

pf
y ¼ pi

y þ fmλ3

12ð1þδiÞ ½yiðxi
2 þ yi

2Þð6k22 þ k23ðxi
2 þ yi

2Þ þ 4k2k3xiÞ�;
lf ¼ li þ fmλ3

72ð1þδiÞ2 ½ðxi
2 þ yi

2Þ2ðð3k2 þ k3xiÞ2 þ k23y
i2Þ�;

δf ¼ δi:

ðC11bÞ

The transfer maps of a pure sextupole and a pure
octupole are resulted from Eqs. (C10) and (C11) by setting
k2 ¼ 0 or k3 ¼ 0, respectively.
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