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Abstract. Air mass classification has become an important area in synoptic climatology, simplifying the com-
plexity of the atmosphere by dividing the atmosphere into discrete similar thermodynamic patterns. However, the
constant growth of atmospheric databases in both size and complexity implies the need to develop new adaptive
classifications. Here, we propose a robust unsupervised and supervised classification methodology of a large ther-
modynamic dataset, on a global scale and over several years, into discrete air mass groups homogeneous in both
temperature and humidity that also provides underlying probability laws. Temperature and humidity at different
pressure levels are aggregated into a set of cumulative distribution function (CDF) values instead of classical
ones. The method is based on a Gaussian mixture model and uses the expectation–maximization (EM) algo-
rithm to estimate the parameters of the mixture. Spatially gridded thermodynamic profiles come from ECMWF
reanalyses spanning the period 2000–2009. Different aspects are investigated, such as the sensitivity of the classi-
fication process to both temporal and spatial samplings of the training dataset. Comparisons of the classifications
made either by the EM algorithm or by the widely used k-means algorithm show that the former can be viewed
as a generalization of the latter. Moreover, the EM algorithm delivers, for each observation, the probabilities
of belonging to each class, as well as the associated uncertainty. Finally, a decision tree is proposed as a tool
for interpreting the different classes, highlighting the relative importance of temperature and humidity in the
classification process.

1 Introduction

Contemporary synoptic climatology can be seen as a method-
ological perspective of climatology that creates and/or uses a
classification of atmospheric variables at nearly any spatial
or temporal scale to either simplify the climate system into
a manageable set of discrete states or to gain a better under-
standing of how atmospheric variability impacts any climate-
related outcome (Lee and Sheridan, 2015). A good overview
of synoptic climatology as well as examples of studies can
be found in Yarnal (1993), Yarnal et al. (2001), Barry and
Perry (2001), Huth et al. (2008), Philipp et al. (2010) or
Sheridan and Lee (2013).

Among the various classifications, air masses classically
refer to large volumes of air which are fairly horizontally uni-
form with respect to temperature and humidity at any given
altitude. Their thermodynamic features are related to the con-
dition of the sea, land, or ice beneath it (Crowe, 1971). Such
a definition varies somewhat from the traditional descrip-
tion of Bergeron (1930), which defines continental/maritime,
polar/tropical (cP, cT, mP, mT) air masses according to the
surface properties of their source regions (Bergeron, 1930;
Willett, 1933). Therefore, air masses are characterized es-
sentially by their thermodynamic character through various
temperature and humidity variables (Kalkstein et al., 1996)
defined at several lower- and mid-tropospheric pressure lev-
els, possibly also including surface variables or even vertical
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profiles (Huth et al., 2008). However, additional variables,
such as dynamic ones (e.g. sea level pressure, wind field),
could be added to characterize missing dynamic behaviours,
as in Živkovíć (1995).

This paper focuses on the classification of a large dataset
of “atmospheric columns” homogeneous in both tempera-
ture and humidity on a global spatial grid and at different
times. Such entities are closely related to the notion of air
mass, and as such, will be mentioned by this term from
now on. They are of great importance, in particular in in-
verse problems where climate variables as well as the three-
dimensional structure of the atmosphere can be estimated
from satellite data via inverse radiative transfer models (e.g.
Chédin and Scott, 1985; Scott et al., 1999). Such models need
to be initialized by a priori information as thermodynamic
profiles and surface variables. For that purpose, real profiles
and variables are usually considered, in particular those com-
ing from radiosonde reports, as the thermodynamic Initial
Guess Retrieval (TIGR) dataset (Chédin et al., 1985; Cheval-
lier et al., 2000). With the technological advance of satellite
instruments, such databases need to be enhanced in both sam-
pling and air mass classification. Furthermore, adding prior
information directly to the data leads to Bayesian statistics, in
which the knowledge of the distribution of each statistic vari-
able is essential, hence a probability point of view adopted
here.

Over the past year, use of symbolic data has gained pop-
ularity (Bock and Diday, 2000; Diday, 2001; Floriana and
Diday., 2003; Billard and Diday, 2012), since, as principal
component analysis (PCA), they turn large databases into
summarized data with manageable size while keeping use-
ful information through a process commonly called “data ag-
gregation” or “data compression”. This process is often nec-
essary as a step of pre-processing before any classification
procedure. Symbolic data change the way in which the de-
scription of the data is viewed, since they refer to data which
do not only contain values as in classical data, but also have
a structure and include internal variations. This is the case
with distributions, considered by Schweizer (1984) as the
“the numbers of the future”, such as probability density func-
tions (PDFs) or cumulative distribution functions (CDFs).

In the present work, CDFs are used in combination with
a probabilistic classification method based on a Gaussian
mixture model that has been used for example in Vrac et
al. (2007), Rust et al. (2010) or Carreau and Vrac (2011).
Such a model relies on the assumption that observations
from a given dataset come from several sub-populations and
that the overall population can therefore be modelled as a
Gaussian finite mixture model, or in other words a mix-
ture of weighted PDFs, each one corresponding to a given
sub-population (Fraley and Raftery, 2002). The main prob-
lem consists then in estimating the parameters of the mix-
ture so that the model best fits the data, which can be done
through two different approaches: (i) the “estimation ap-
proach” focuses on the estimation of the mixture model pa-

rameters usually using maximum likelihood estimation tech-
niques. The most efficient algorithms rely on the iterative
expectation–maximization (EM) algorithm (Dempster et al.,
1977; McLachlan and Krishnan, 2008). An optional partition
can then be obtained by applying the maximum a posteriori
principle; (ii) the “clustering approach” focuses directly on
grouping the entities for classification into a number of clus-
ters such that each cluster can be seen as a sub-population
with a given PDF. In that case, the algorithms generally used
rely on the so-called dynamical clustering algorithms (Di-
day et al., 1974), applicable to a multivariate Gaussian mix-
ture (Symons, 1981; Celeux et al., 1989). These algorithms
were also combined with the EM algorithm to develop a
variant of the latter, the classification EM (CEM) algorithm
(Celeux and Govaert, 1992). Another clustering approach is
the widely used k-means algorithm (e.g. Huth, 2001). It is
an iterative relocation algorithm which iteratively calculates
the centre of each cluster (initially randomly chosen) and al-
locates the data to the cluster whose centre is closest. Other
examples include hierarchical classification (e.g. Kalkstein
et al., 1987; Vrac et al., 2007), neural networks and more
particularly self-organizing maps (SOM) (e.g. Hewitson and
Crane, 2002; Reusch et al., 2007), or the mixed clustering
strategy of Molliere (1985) as in Vrac (2002), among oth-
ers. An extended overview of classification can be found in
Gordon (1999) or Hastie et al. (2009).

In Vrac (2002) and Vrac et al. (2005, 2011), a mixture
of copulas was proposed, providing not only a partition of
the atmosphere into air mass classes, but also a probabilis-
tic model describing classes as well as the dependencies be-
tween and among temperature and humidity through the so-
called copula functions (Schweizer and Sklar, 1983; Nelsen,
1999; Diday and Vrac, 2005). The thermodynamic vertical
profiles characterizing each atmospheric situation were first
aggregated into four CDF values (two for both temperature
and specific humidity). The classification method applied to
these four statistical variables was then an extension of the
problem of the mixture model to these distribution-valued
data, so that multidimensional copulas could be used. The
algorithm chosen for this purpose, initialized by a partition
based on seven zonal clusters, was a dynamical clustering
method (clustering approach). As a first step, the results were
validated only for a limited dataset of 1 winter day and short-
range projections not exceeding 1 month.

Setting aside copula, this paper aims at consolidating the
results of Vrac (2002) and Vrac et al. (2005, 2011) by
proposing a robust air mass classification method based on
a Gaussian mixture model and the EM algorithm (estimation
approach). This method is able to deal with a much larger
dataset covering a decade and providing larger-range projec-
tions without having to use arbitrary a priori information as
an initialization strategy in the absence of a prior reference
atmospheric column type classification. The larger spatio-
temporal coverage of the dataset considered here enabled one
to take into consideration more statistical variables for a bet-
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Figure 1. Principle of the methodology used in this paper.

ter description of the troposphere while studying more thor-
oughly different aspects that had not been taken into account
previously, such as sensitivity to both temporal and spatial
samplings of the training dataset, consistency with the num-
ber of clusters or comparison with a k-means algorithm. A
decision tree is also proposed as a tool for interpreting the
different classes, highlighting the relative importance of tem-
perature and humidity in the classification process.

The article is organized as follows. Section 2 presents the
data to classify, the pre-processing data compression step, the
classification method and the choice of the optimal configu-
ration of the model. Section 3 discusses different aspects re-
garding the quality of the classifications. Section 4 focuses on
the interest of the a posteriori probabilities provided by the
EM algorithm, and introduces an interpretation of the classes
based on a decision tree. Section 5 concludes with a discus-
sion.

2 Data and methods

Figure 1 outlines the methodology used in this paper. The
goal is first to build air mass clusters from atmospheric situa-
tions characterized by temperature and humidity probabilis-
tic data only, along with probabilities of the situations be-
longing to each cluster. The clusters have to be as coherent as
possible in terms of temperature and humidity (e.g. hot and
wet, or cold and dry air masses) and as different as possi-
ble from each other. To achieve this, a representative training
dataset of thermodynamic profiles is first turned into a man-
ageable set of CDF values. The latter are used as input into
the EM algorithm to obtain a partition of the atmospheric sit-

uations as well as a probabilistic description of each group
(cluster) of the partition, without having any prior reference
classification (a process called unsupervised classification,
clustering or cluster analysis). The information contained in
this probabilistic description can then be used in a second
step to identify to which of the existing groups (classes) any
new atmospheric situation belongs, on the basis of the train-
ing dataset whose group assignment is already known (a pro-
cess called supervised classification or simply classification
when explicitly compared to clustering).

2.1 Thermodynamic description of the atmosphere

The atmospheric dataset used in this study is based on ERA-
Interim global atmospheric reanalyses from the European
Centre for Medium-Range Weather Forecasts (ECMWF)
covering the period from 1 January 2000 to 31 December
2009 (Dee et al., 2011). The different daily products (e.g. sur-
face pressure, surface temperature, temperature and specific
humidity profiles) are available on a 0.75◦ by 0.75◦ latitude–
longitude global grid (241× 480 data points) every 6 h for 4
synoptic hours, i.e. 00:00, 06:00, 12:00 and 18:00 (Coordi-
nated Universal Time). Vertical profiles are described on 60
pressure (or altitude) coordinates called “sigma levels” from
the surface to 0.1 hPa (about 65 km in altitude on sea).

Unless explicitly mentioned, the set of observed data cor-
responding to 00:00 and 12:00 UTC of the 15th day of Jan-
uary, April, July and October from 2005 to 2009 will be used
in this article and referred to as “training dataset”. Each syn-
optic hour gathers 241× 480= 115 680 atmospheric situa-
tions spatially distributed over the Earth corresponding to
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(a) (b)

Figure 2. Total column water vapour in precipitable centimetres (a), and average temperature in the 47–37 sigma-level layer (800–425 hPa
on the sea) in K (b).

different local hours. This implies that the previous dataset
contains 115 680× 40= 4 627 200 atmospheric situations.
However, keeping all these situations may not be necessary
to get the intended atmospheric partition. The influence of
the temporal and spatial sampling of the dataset on the clas-
sification will be studied in Sect. 3.2.

Humidity can be measured by various variables. Here, spe-
cific humidity, dew point temperature as well as total column
water vapour will be considered. They correspond to the ra-
tio of the mass of water vapour to the mass of dry air plus wa-
ter vapour (expressed in kg kg−1), the temperature at which
air is saturated with water vapour (in K) and the amount of
vertical integrated water vapour in the whole atmospheric
column (expressed here as the height of an equivalent col-
umn of liquid water in precipitable centimetres) respectively.

In order to have data homogeneous to temperature, spe-
cific humidity from ERA-Interim reanalyses has been con-
verted into dew point temperature, whose relation can be de-
duced from Buck (1981), so that each atmospheric situation
is characterized by temperature and dew point temperature
profiles only. The first 38 temperature values (from the sur-
face to 67 hPa) and the first 30 dew point temperature values
(from the surface to 230 hPa) from each profile are kept in
order to feature the thermodynamic properties of the tropo-
sphere. Figure 2 illustrates such thermodynamic variables by
representing the total column water vapour and average tem-

perature between the 47th and 37th sigma levels (800 and
425 hPa on sea respectively). The atmospheric situations as-
sociated with elevation above sea level higher than 1 km have
been discarded, which corresponds here to 13 % of the situ-
ations. This pre-filtering puts aside the question of whether
the atmospheric situations corresponding to high elevations
require a specific handling.

2.2 From numerical data to cumulative distribution
function data

The approach proposed here consists in working with CDFs
instead of using classical numerical values of temperature
and dew point temperature at different pressure levels. A
cumulative distribution function F of a real-valued random
variable X is defined as the probability that X will take a
value lower than or equal to a value x:

FX(x)= P (X ≤ x). (1)

Here, X refers to either temperature or dew point tempera-
ture. Thus, for example, the previous definition means that
CDF value FT (290 K)=P (T ≤ 290 K) gathers information
from all the temperature values at different pressure levels
which are lower than 290 K.
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Figure 3. From numerical data to CDF values. The parts of the thermodynamic profiles (temperature ones here) of given atmospheric
situations (four typical examples here, denoted by A, B, C and D), shown in (a), are turned via KDE into PDFs (b) from which CDFs are
obtained (c). A discrete set of temperature and dew point temperature CDF values FT(t)=P (T ≤ t) and FTdp(tdp)=P (Tdp ≤ tdp) are then
chosen and used as input to the classification algorithm (like FT (230 K) and FT (260 K) in the plots).

Figure 3 illustrates the transformation process from ther-
modynamic profiles to CDFs for four example temperature
profiles (the method remains the same with dew point tem-
perature profiles). The selected part of the profiles is con-
verted into a PDF first and then into a CDF from which a dis-
crete set of key CDF values is selected as being the most rep-
resentative information of the temperature (or dew point tem-
perature) vertical profiles (data aggregation step). Here, since
the general shape of temperature and humidity distributions
is not known a priori, the conversion into PDF is performed
using the non-parametric Rosenblatt–Parzen kernel density
estimation (KDE) method (Rosenblatt, 1956; Parzen, 1962),
which can be seen as a weighted sum of p parametric nor-
mal distributions centered at each value of the sample (e.g.
the p = 38 values of interest of a given temperature profile
here). More details can be found in Vrac et al. (2005, 2011).

A priori knowledge is often essential to choose the rele-
vant variables (here, the CDF values) able to distinguish the
intrinsic groups in a given dataset. Such a problem is known
as “feature selection” or “variable selection”. Some numer-
ical techniques exist in the literature to help make a choice
(e.g. Diday and Vrac, 2005; Vrac et al., 2011; Pudil et al.,
1994; Raftery and Dean, 2006), but they remain not really
relevant for the datasets studied here. Looking at the diver-
sity of the profiles leads one to select subjectively CDF val-
ues at several temperature values from 200 to 290 K, and the
same for dew point temperature. A set of 10 values within
this interval, every 10 K, seems a good compromise between

keeping enough information and reducing as much as possi-
ble the number of dimensions.

Finally, the database used as input data into the cluster-
ing algorithms (EM or k-means) is an array of size N ×D,
where N is the number of selected atmospheric situations
(e.g. 4 627 200 observations for the training dataset presented
in Sect. 2.1) and D is the dimensionality or number of vari-
ables characterizing each situation (10 CDF values for tem-
perature and 10 CDF values for dew point temperature).

2.3 Clustering and classification using the Gaussian
mixture model

2.3.1 The Gaussian mixture model and the EM
algorithm

Model-based clustering relies on the assumption that a given
observed dataset contains several sub-populations and that
the overall population can therefore be modelled as a fi-
nite mixture model. Usually, and as done here, a Gaussian
mixture model is used, that is, a mixture of weighted Gaus-
sian PDFs, each one associated with a given cluster related
to a sub-population. Let x= { xi ∈RD|i = 1,. . ., N} be a
population of N observed data, each one represented by
a D-dimensional vector xi , containing K sub-populations
modelled by multivariate Gaussian PDFs parameterized by
their mean vector µk and covariance matrix 6k . With θk =
(θ1
k , . . ., θ

D
k )= ( µk ,6k), the PDF g of x takes the following
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form:

g(x |φ)=
K∑
k=1

πkfk(x|θk), (2)

where φ = (π1,. . ., πK , θ1,. . ., θK ) is the collection of the
mixture model parameters and π1,. . ., πK are positive mix-
ture proportions summing to one, corresponding to the a pri-
ori probabilities that xi will belong to each cluster.

The main problem consists then in estimating the mixture
model parameters φ, so that the density function g associated
with the mixture best fits the data. Here, these parameters are
estimated through maximum likelihood estimation (MLE) by
using the widely applied expectation–maximization (EM) it-
erative algorithm (Dempster et al., 1977; McLachlan and Kr-
ishnan, 2008).

The EM algorithm alternates between the E-step and the
M-step. At each iteration, the parameters φ are updated
while the log-likelihood monotonically increases (Hastie et
al., 2009). The E-step computes at iteration l the a posteri-
ori conditional probability tik that observation i belongs to
cluster k:

t
(l)
ik =

π
(l−1)
k fk(xi | θ

(l−1)
k )

K∑
k′=1

π
(l−1)
k′

fk(xi | θ
(l−1)
k′

)
. (3)

The M-step estimates the mixture model parameters φ given
the tik . Starting from some initial values of the parameters
φ, the algorithm repeats the E-step and M-step cycle until
it converges towards a local maximum of the log-likelihood.
Then, the a posteriori probabilities tik can be used to gener-
ate a partition P = (P1,. . ., PK ) of the i = 1,. . ., N obser-
vations by assigning each of them to the cluster k provid-
ing the highest probability tik among the K clusters. This
assignment process corresponds in fact to the maximum a
posteriori (MAP) estimation method, based on Bayes’ theo-
rem (Bayes and Price, 1763) and the law of total probabil-
ity. From the parameters φ obtained at the end of the unsu-
pervised classification process, supervised classification can
then be performed via a single E-step followed by the MAP
principle. To implement EM, the Rmixmod (Mixmod Team,
2008; Lebret et al., 2015) S4 package has been used.

2.3.2 Initialization strategy

In order not to use arbitrary a priori information, the ini-
tialization strategy used in this paper consists in repeating r
(here, r = 50) random draws of the component means in the
dataset with short runs of EM, that is, until the number of it-
erations has reached a pre-defined maximum number of iter-
ations (here, 10) if convergence has not been reached before.
The resulting mixture model parameters corresponding to the
random partition that maximizes the log-likelihood among
the r runs are then provided as initial parameters to the nor-
mal EM procedure. This method, which was introduced by

Biernacki et al. (2003), is often considered as a reference
strategy since it is a trade-off between avoiding suboptimal
solutions, often obtained with a single run of EM with a ran-
dom initialization partition, and reducing the number of iter-
ations to reach convergence.

2.3.3 Choice of the number of clusters and covariance
matrix models

As in Banfield and Raftery (1993) and Celeux and Gov-
aert (1995), each covariance matrix 6k related to the kth
cluster is expressed in terms of its eigenvalue decomposition,
leading to several parsimonious models (actually, 14). These
models can be simply indicated by three sequential letters
corresponding to three attributes characterizing the disper-
sion of the mixture component distributions, that is, the hy-
pervolume, the shape and the orientation of their isocontour
in the multidimensional space. Further details can be found
in Appendix A and the references mentioned above.

Among the three covariance matrix models which do not
lead here to poor structures in terms of air mass patterns
(too much zonal structure or a preponderance of one clus-
ter over the other ones), only two models, known as hyper-
spherical models, will be studied in this paper: the model de-
noted VII assumes isotropic dispersion which can vary be-
tween the clusters, whereas EII differs only from the previ-
ous model by constraining the dispersion to be equal between
the clusters. The expressions of the 6k eigenvalue decompo-
sition for these two models are respectively the diagonal ma-
trices λkI and λI , where I is the identity matrix, λ is a scalar
and the presence of the subscript k implies that λ can vary
between the clusters. For illustrative purposes, Fig. 4 shows
the projection in a two-dimensional subspace of the result of
an unsupervised classification into seven clusters with EM-
VII (EM and model VII) applied to the D = 20 CDF values
corresponding to 10 % of the observations coming from the
training dataset (for 2005, 00:00 UTC only). The central fig-
ure shows the FT (230 K) and FT (260 K) CDF values for
the N atmospheric situations as well as their corresponding
cluster, where the four representative temperature profiles of
Fig. 3 are also represented. Here, the projected hyperspher-
ical isocontours are reduced to circles whose radius equals
the standard deviation of the samples within each cluster. The
two other plots show the two corresponding univariate den-
sities either per cluster or for the mixture.

One of the most difficult problems in unsupervised classi-
fication is the determination of the optimal number of clus-
ters (unless already known) which must be fixed before per-
forming the clustering process. When the number of clus-
ters is not apparent from prior knowledge, many methods
have been established over the years to help make a suit-
able choice. Several criteria have been tested (e.g. Akaike,
1973; Schwarz, 1978; Raftery, 1995; Hardy, 1996, 2006;
Gordon, 1999; Biernacki et al., 2000), including the approxi-
mate weight of evidence (AWE) adopted in Vrac et al. (2005,
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Figure 4. Result of a 20-dimensional multivariate seven-cluster unsupervised classification process via EM-VII (isotropic dispersion which
can vary between the clusters) projected in a 2-dimensional subspace, that is, for the variables FT (230 K) and FT (260 K) here. The radius
of each circle indicates the standard deviation of the cluster where each of the atmospheric situations is represented by a point (the four
situations of Fig. 3 are also indicated). The adjacent plots represent, for each of the two variables chosen for the projection, the associated
univariate densities per cluster (the full width at half maximum corresponds to the diameter of the associated circle) or for the mixture.

2011). Some of them are based on maximizing the log-
likelihood to which a penalization term is added, depending
on the number of independent parameters to estimate for the
model selected (the covariance matrix model, here), but all of
them lead to similar results. In the end, all the criteria are not
able to distinguish which covariance matrix model or number
of clusters suit the present data, so that their choice remains
suggestive here.

Following Vrac et al. (2005, 2011), the number of clusters
is fixed to seven. This choice was motivated by the fact that

an odd number of clusters is a priori expected to take into ac-
count the natural difference in the mid-latitude and polar air
masses between summer and winter (hence, at least four clus-
ters) while favouring a kind of symmetry around the Equator
with more than one air mass for the tropics (hence, at least
three additional classes).
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122 J. Pernin et al.: Probabilistic atmospheric air mass classification

 30

 40
 50
 60
 70
 80
 90

 100

 200

 300

 400
 500
 600
 700
 800
 900

 1000
 200  220  240  260  280  300

Temperature (K)

Average

Pr
es

su
re

 (
hP

a)
01
02
03
04
05
06
07

 30

 40
 50
 60
 70
 80
 90

 100

 200

 300

 400
 500
 600
 700
 800
 900

 1000
 0  2  4  6  8  10  12  14

 

Standard deviation
 100

 200

 300

 400

 500

 600
 700
 800
 900

 1000
 200  220  240  260  280  300

Dew point temperature (K)

Average

01
02
03
04
05
06
07

 100

 200

 300

 400

 500

 600
 700
 800
 900

 1000
 0  2  4  6  8  10  12  14

Standard deviation

Figure 5. Average and associated standard deviation profiles for temperature (left) and dew point temperature (right) for each cluster obtained
with EM-VII. The black line indicates the upper pressure level kept used for computing the cumulative distribution functions.

Table 1. Main features of the air mass clusters. The percentages have been computed after discarding the high relief atmospheric situations,
so that each sum of a given row equals 100 %.

Features 1 2 3 4 5 6 7

EM-VII clustering

Total column water vapour (cm) 5.32 3.93 2.66 1.81 1.04 0.52 0.22
800–320 hPa average temperature (K) 267.2 265.9 265.1 258.1 248.0 240.1 234.2
Average surface temperature (K) 300.7 299.2 297.9 289.3 278.1 268.8 251.0
Atmospheric situations % 9.8 13.7 11.8 22.1 17.9 13.9 10.8

EM-EII (≈ k-means) clustering

Total column water vapour (cm) 4.83 2.89 1.49 1.56 0.78 0.38 0.17
800–320 hPa average temperature (K) 266.8 264.0 260.6 252.0 244.5 237.5 232.9
Average surface temperature (K) 300.1 296.9 293.3 280.7 275.1 262.5 246.4
Atmospheric situations % 17.9 20.6 11.9 15.0 16.6 11.7 6.3

3 Clustering and classification of atmospheric
situations

3.1 Unsupervised classification: comparison between
EM-VII and EM-EII

3.1.1 Partition and cluster features

In this section, unsupervised classification is applied to the
training dataset with no spatial sampling. The situations as-
sociated with elevations above sea level higher than 1 km will
be referred to as air mass 0 from now on to indicate that they
have been discarded (Sect. 2.1). The seven resulting clusters
are ordered from the average hottest surface temperature to
the average coldest one, that is, globally from a tropical air
mass (1) to a polar one (7), and can be thermodynamically
correlated with the maps shown in Fig. 2. The features of
each cluster can be represented for example by their mean
and standard deviation profiles for temperature and dew point
temperature shown in Fig. 5, and also by the total column

water vapour mean and mid-tropospheric layer average tem-
perature (here, 800–320 hPa) listed in Table 1. This table also
contains the percentage of situations per cluster for the whole
period on which the clustering has been performed, after dis-
carding the high relief situations (Sect. 2.1). Figure 6 shows
partitions resulting from EM-VII (a) and from EM-EII (b).
These results are discussed in the following sections.

3.1.2 EM-VII clustering

The clusters shown in Fig. 6a present relevant thermody-
namic homogeneous areas: three tropical/sub-tropical hot air
masses which are distinguished essentially by humidity, that
is, very wet (1), wet (2) and relatively wet (3) ones; one
temperate air mass mixing warm to cool, relatively wet to
dry atmospheric situations (4); and three sub-polar/polar air
masses corresponding respectively to a relatively cold and
dry air mass including northern summer situations (5), a cold
and dry one (6) and finally a winter frigid, very dry one (7).
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(a) (b)

Figure 6. Seven-cluster unsupervised classification with the EM-VII model (a) and EM-EII (≈ k-means) (b), for 2 months.

As confirmed by Fig. 5, polar air masses are characterized,
as expected, by a higher variability in temperature and hu-
midity, while air mass 4 acts as a transition cluster between
tropical/sub-tropical air masses and sub-polar/polar ones. As
for air mass 3, it is associated with a strong dew point vertical
gradient in the middle troposphere reflecting areas of dry air
subsidence in both hemispheres between 20 and 35◦ in lat-
itude depending on season, which correspond to the bound-
aries between the Hadley and Ferrel cells of the global atmo-
spheric circulation scheme (Peixoto and Oort, 1996; Verga-
dos et al., 2015).

Comparing these air mass maps to Fig. 2 shows some sim-
ilarities, particularly regarding the distribution of the total
column water vapour regardless of the amount of humidity.
Tropical situations are precisely depicted, as shown for in-
stance by humid incursion of air masses 1 and 2 into the
drier air mass 3, spiralling clockwise towards the centre of
a depression in the southern Pacific Ocean between −180
and −150◦W on 15 January 2006, 00:00 UTC. More gener-
ally, the partition so obtained is rather well correlated with
synoptic weather phenomena. However, since no dynamic
variables (e.g. wind speed, speed direction, potential vortic-
ity) have been taken into account here, air pressure and wind
can vary within these air masses, as stated by Kalkstein et
al. (1996). Therefore, the shapes of synoptic meteorological
phenomena, as depressions, are not always depicted contin-
uously.

The hottest and wettest air mass cluster 1, particularly,
follows closely the Intertropical Convergence Zone (ITCZ).
The latter consists in hot, very wet air masses meeting to-
gether due to the trade winds, and involving very hot low
tropospheric temperatures as well as convective systems con-
sisting in large-scale thunderstorms when the surface is also
wet (oceans, tropical forests). The slight seasonal shift of the
ITCZ location is then visible, moving annually towards the
northern Tropic of Cancer in northern summer and towards
the southern Tropic of Capricorn in northern winter, since
the belt of maximum temperatures migrates as the Earth or-
bits the Sun. This is also illustrated in Fig. 7, which shows
the percentages of observations per cluster, or corresponding
to high relief (white colour), for the whole band of latitude
(top bar) or per 10◦ band of latitude (lower bars) for the 15th
day of January/April/July/October 2006 at 00:00 UTC. The
peak in latitude of the red bars corresponding to air mass 1
moves from about−5 ◦C in January to 10 ◦C in July. This fig-
ure also highlights the transition role of air mass 4 mentioned
earlier, particularly visible in summer, as well as the differ-
ences in behaviour of the sub-polar/polar air masses through
the different seasons. For instance, air mass 7 is mainly lo-
cated north in northern winter and south in southern winter,
reflecting the role of seasonal insolation, and is thus essen-
tially associated with extremely cold and dry winter polar
atmospheric situations. This air mass corresponds closely to
the traditional winter continental polar (cP) air mass of Berg-
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Figure 7. Percentage of observations per cluster on the whole band of latitude and per 10◦ band of latitude, obtained with EM-VII, for 4
months. The “No cluster” label corresponds to the high relief atmospheric situations.

eron (1930), which forms over large, high-latitude lands as
source regions, like North America, Greenland or northern
Asia (Siberia). These regions are usually snow-covered and
characterized by short days and low solar angles, so that they
reflect much of the solar radiation when it reaches the sur-
face. The atmospheric situations are therefore extremely cold
and dry, and are characterized by high lower tropospheric sta-
bility inhibiting vertical mixing, as illustrated by the temper-
ature inversion near the surface in Fig. 5.

As in Vrac et al. (2005) the discrimination between the
air masses as well as their features can also be illustrated by
plotting the temperature (and dew point temperature) PDFs
representing the distribution of the thermodynamic variable
at a given sigma pressure level for each air mass cluster (not
shown). This shows for example the behaviour of the first
two tropical air masses seen from Figs. 5 and 6a (i.e. over-
lapping temperature PDFs corresponding to air masses 1 and

2, with well-distinguished dew point temperature PDFs) and
the fact that the result of the clustering procedure is mainly
due to the mid- and lower troposphere, and, to a lesser ex-
tent, to the tropopause, since discrimination between clusters
decreases at higher altitudes. This explains the lower temper-
ature variabilities in the lower and mid-troposphere and the
higher temperature variabilities around the tropopause ob-
served in Fig. 5.

3.1.3 EM-EII clustering

The second possible kind of classification leading to rele-
vant air masses is obtained with EM-EII, whose partitions
are nearly identical to those obtained with the widely used
k-means algorithm (Lloyd, 1957; Forgy, 1965; MacQueen,
1967; Diday et al., 1974; Hartigan and Wong, 1979). This is
not surprising since the classification variant of the EM al-
gorithm (CEM) along with the EII model as well as equal
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mixture proportions are equivalent to the k-means algorithm:
in that case, maximizing the complete log-likelihood (objec-
tive of CEM) involves minimizing the within-cluster sum of
squares criterion (objective of k-means). Although CEM is
substituted here by EM and the assumption about the equal-
ity of the mixture proportions is not verified here, the other
assumption (equal isotropic dispersion between the clusters)
is self-sufficient and proves that EM generalizes k-means.
From now on, EM-EII will only be explicitly used, but it can
be substituted by the k-means algorithm without changing
the results.

As shown in Fig. 6, the resulting partitions coming from
the two covariance matrix models (EM-EII and EM-VII) are
quite different. An arrow diagram (not shown) close to those
described in Huth (1996) indicates that EM-EII air mass k,
except for air mass 7, approximately corresponds to a mix-
ture of EM-VII air masses k and k+ 1, as well as k+ 2 for
the second and third EM-EII air masses. At seven clusters,
EM-EII brings a more balanced influence of temperature and
humidity on the clustering, leading to coarser tropical air
masses (Fig. 6b) associated with higher standard deviation
profiles (not shown) compared to EM-VII. The latter detects
more accurately the tropical air masses, but with a coarser
temperate air mass acting as a transition cluster (Figs. 5
and 6a). This difference in behaviour is due to the difference
in the underlying assumptions, i.e. equal isotropic dispersion
against variable one, the last assumption being more physi-
cally expected.

The choice between these two models will be made after
studying the sensitivity of the clustering to the choice of the
spatio-temporal sampling of the dataset on which the cluster-
ing is applied.

3.2 Temporal and spatial clustering sensitivities

A good quality clustering should be relatively insensitive to
changes in sample size or spatial and temporal sampling.
As mentioned in Sect. 2.1, each synoptic hour (UTC) gath-
ers different local hours spatially distributed over the Earth.
Therefore, sensitivity to the temporal sampling is expected
to be lower than its spatial counterpart. The former is then
studied before the latter.

3.2.1 Sensitivity to the temporal sampling

Depending on the choice of the spatial sampling step on
which the atmospheric situations are selected for the clus-
tering process, air masses may be significantly different. In
order to know how many years, how many months a year,
and so on, should be used, a sensitivity study must be per-
formed. Studies within the period 2000 to 2009 show that
resulting partitions are similar as soon as 4 months represen-
tative of each season are used. However, there is an exception
for 2003, for which the features of air masses 3 and 4 are
significantly different from those corresponding to the other

years (not shown). In a more general framework, in order
to avoid possible singular partitions due to specific thermo-
dynamical features over the years, the training dataset will
contain 2 synoptic hours, 1 day, 4 months and 5 years, hence
the choice of the training dataset mentioned in Sect. 2.1.

3.2.2 Sensitivity to the spatial sampling

The temporal sampling being adopted, the sensitivity of
the clustering to the choice of the spatial sampling is now
studied. The latter is characterized not only by its longi-
tude/latitude spatial sampling step, but also by its starting
grid point whose choice may also alter the resulting partition.
A spatial sampling step S (in grid points unit) means that one
grid point out of S consecutive ones is kept in both longi-
tude and latitude (so one out of S2 grid points globally). The
starting grid point refers here to the first grid point to be kept
from which sampling is performed and chosen among the S2

possible ones (−180◦W+x× 0.75◦ and−90◦ S+ x× 0.75◦

with x = 0,. . ., S− 1), leading to S2 possible spatial grids.
To evaluate the impact of decreasing the spatial sampling,

misclassification rates r (from 0 to 1) are used, that is, the
rates of pairs of observations which are assigned to different
groups between two partitions of the same size. Here, the two
partitions correspond to the training dataset with no spatial
sampling and have been obtained through two different ways:
first, via unsupervised classification, and second, via super-
vised classification from each of the S2 possible training
datasets corresponding to the S2 possible spatial grids. The
box-and-whisker plots represented in Fig. 8 show the distri-
bution of the misclassification rates with the spatial sampling
step S for both EM-EII and EM-VII. In both plots, the bot-
tom, middle and top of the blue boxes are respectively the
first quartile (25 %), the second one (the median, i.e. 50 %)
and the third one (75 %), whereas the whiskers indicate the
minimum and maximum of the sample consisting in the S2

misclassification rates for a given spatial sampling step S.
For EM-VII, spatial sensitivity is low until S = 5, since mis-
classification values are lower than 2 % in the worst case and
lower than 1 % for at least 75 % of the possible cases. For
S = 6 and 7, sensitivity slightly increases, but the misclassifi-
cation rates are not higher than 4 %, which are still relatively
low values. For S ≥ 8, there are significant differences among
the partitions. The red dashed curve shows the misclassifi-
cation rate for each spatial sampling step S when random
starting grid points are selected, which is what will be used
in practice. This curve is generally below the curve which
would link the median values, meaning that randomly draw-
ing the starting grid point for each synoptic hour selected
appears to reduce even more the misclassification rate. How-
ever, EM-EII is much more sensitive to the spatial grid than
its counterpart. In the following, S is set to 5 (thus 3.75◦ in
longitude and latitude) for building the training dataset since
it is a good trade-off between reducing the size of the training
database and avoiding differences in terms of clustering.
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Figure 8. Clustering sensitivity to spatial sampling step and starting grid point through misclassification rates (%) for EM-EII (≈ k-means)
(a) and EM-VII (b).

It should be noted that the choice of the sampling in both
time and space based on the results found in the present
Sect. 3.2 does not change the results presented in Sect. 2.3.3
relating to the choice of the covariance matrix model and of
the number of clusters.

3.3 Consistency with the number of clusters

From now on, EM-VII will be used since it relies on better
physical assumptions (Sect. 2.3.3), depicts more accurately
tropical air masses (Sect. 3.1) and has lower sensitivity to
the choice of the spatial sampling (Sect. 3.2.2) compared to
EM-EII.

Since no criterion was able to help us select the optimal
number of air mass clusters, it has been subjectively fixed to
seven in this paper (Sect. 2.3.3). However, such a choice may
seem rather arbitrary, especially as air mass 4 acts in fact as
a coarse transition cluster between tropical/sub-tropical and
sub-polar/polar (Sect. 3.1.2). We now focus on the evolution
of the classification with the number of clusters.

Dealing with eight clusters involves the separation of the
previous air mass 4 associated with the seven-cluster parti-
tion, denoted 4(7), into two air masses as shown in Fig. 9a,
with an interesting distinction between the Northern and
Southern hemispheres in northern summer: a warm, dry air
mass (new air mass 4(8)), and a cool, relatively wet one (new
air mass 5(8)). The first air mass can be found over both tradi-
tional continental tropical (cT) source regions (deserts) and
maritime tropical (mT) ones, whereas the second air mass is
located near polar source regions. At 13 clusters (Fig. 9b),
we globally find back the previous 8 clusters, except for sub-
polar new air masses 7(13) and 8(13) for which significant
modifications can be noticed in northern summer, due to their
high variability.

For an easier comparison of partitions for two different
numbers of clusters, an arrow diagram can be used such as
the one shown in Fig. 10. This figure reflects the fact that the
classification is rather consistent with the number of clusters,
meaning that a successive increase in the number of clusters
(caused by a change in this pre-set parameter) leads to the
division of a rather small set of clusters while not changing
the other ones, alternating tropical/temperate air masses and
polar ones at each successive increase.

In particular, the classification is stable from 7 to 8 and
from 12 to 13 clusters, which would indicate at least two suit-
able range numbers of clusters to consider as priority. Mov-
ing from 7/8 to 12/13 is straightforward. For example, transi-
tion air masses 4(8) and 5(8), whose union matches 4(7), cor-
respond respectively to 5(13) plus 7(13) and 6(13) plus 8(13). It
can be noted that polar air masses 11(13) and 12(13) are quite
similar in the lower and mid-troposphere in both tempera-
ture and humidity, whereas their temperature profiles diverge
drastically above 300 hPa.

As expected, if the clustering is found to be rather con-
sistent with the number of clusters, the mixture model can
hardly reach the perfect consistency provided by hierarchi-
cal clustering by definition (Huth, 1996; Huth et al., 2008).
Even if some numbers of clusters can be chosen as priority
based on the previous figure, confirming our initial choice
(seven clusters), the quality of the classification ensures that
the choice of the number of clusters mainly depends on the
intended objective.

3.4 Supervised classification

In the following sections, the supervised classification of
the atmospheric situations corresponding to a given synoptic
hour is obtained by using the mixture model parameters esti-
mated via unsupervised classification of the training dataset
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(a) (b)

Figure 9. Unsupervised classification with EM-VII into 8 (a) and 13 (b) classes.
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Figure 10. Arrow diagram illustrating the correspondence between the K classes of the unsupervised classification results obtained with
EM-VII from K = 7 to K = 13. The classes are indicated by their number (from 1 to K). The evolution from one classification to the next
one is indicated by the arrows. The style of the arrows characterizes the percentage of atmospheric situations shared relative to the size of
the original class: bold (higher than 80%), doubled (between 80 and 60 %), single (between 60 and 40 %), dashed (between 40 and 20 %),
dotted (lower than 20 %).
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(a) (b)

Figure 11. (a) Seven-cluster supervised classification with EM-VII for 2002; (b) cluster index difference between supervised and unsuper-
vised classification.

with a spatial sampling step of 3.75◦ in both longitude and
latitude and random starting grid points.

Figure 11a shows examples of supervised classification
maps for the 15th day of January and July at 00:00 UTC for
1 year outside the 5-year time period of the training dataset,
that is, 2002, for which the subtraction between supervised
classification and unsupervised classification (using in that
case the period 2000–2004 instead of 2005–2009 for the
training dataset) is also shown. It is important to notice that
air mass patterns are similar to the ones resulting from un-
supervised classification at the same day, which is expected
since air masses retain their essential features when they are
not sensitive to the choice of the spatial and temporal rich-
ness of the training dataset. According to Fig. 11b, misclas-
sified situations are mainly located in the narrow regions be-
tween the air mass clusters. If this property is verified at the
temporal scales studied in this paper, that may not be the case
for studies over longer periods spanning several decades.

4 Cluster analysis

4.1 A posteriori probabilities of belonging to each
cluster and uncertainty

In contrast to the k-means algorithm, EM gives access to a
posteriori probabilities of belonging to a given class for each
of the atmospheric situations studied, and thus to the error

probability, that is, the probability that an atmospheric situa-
tion will be assigned to a group which is not associated with
the highest a posteriori probability. Figure 12 focuses on the
geographic area from 60 to 30◦ S and from 105 to 30◦W on
15 July 2006, 00:00 UTC, which is characterized by several
types of surface, from mountain to sea, and by a depression
located west of Chile. In this figure are represented, from top
to bottom and from left to right, (a) the corresponding su-
pervised classification map; (b) the error probability for each
of the atmospheric situations, that is, one minus the highest
occurrence probability among the posterior probabilities tik
that observation i will belong to class k; (c) to (f), the poste-
rior probabilities ti4, ti5, ti6 and ti7 of belonging to classes 4,
5, 6 and 7 respectively.

Non-zero error probabilities are located at the transition
between different air masses where they take the highest val-
ues, but only a few situations are involved, meaning that air
mass classes are rather well separated. Besides, a plot of the
competitiveness index p1/p2 between the two highest occur-
rence probabilities per class p1 and p2 where px is the poste-
rior probability and x the probability rank from 1 (the highest
probability) to K (the lowest probability), as in Levavasseur
et al. (2012), shows that this index is highly correlated with
the error probability; the probabilities p3,. . ., p7 are thus al-
most always negligible (not shown).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)Figure 12. Geographical zoom on 15 July 2006 (00:00 UTC). Supervised classification map (a) with the associated error probability (b) and
the probabilities of belonging to clusters 4 to 7 (c to f).

The boundary regions separating the different air masses,
across which the thermodynamic conditions change rapidly,
correspond to meteorological fronts whose 1 to 3◦ narrow
extents in longitude and latitude are visible in plots (c) to (f).
The depression located west of Chile is highlighted by the
separation between air mass 4 and the drier, colder air mass
5. Besides, the latter rises to higher altitudes when approach-
ing the Andes Mountains, becoming colder and drier such
that it is converted progressively to air masses 6 and 7, be-
fore descending to lower altitudes beyond the high reliefs by
finding back warmer and wetter features.

A plot representing the percentage of atmospheric situa-
tions against the number of classes per error probability step
(every 0.1 for example) confirms that not only is the number
of situations associated with a high error probability low, but
also indicates that it slightly increases with the number of
classes, since there are more boundary regions between air
masses. Furthermore, it shows that the range 7/8 and 12/13
classes mentioned in Sect. 3.3 (as well as 16/17) are associ-
ated with a slight decrease in error probability, although the
corresponding value is too low to indicate any optimal num-
ber of classes (not shown).
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Figure 13. Decision tree obtained from the seven-cluster partition built with the training database and EM-VII.

Error probabilities can be used for adding one or several
transition classes associated with a low level of confidence or
for keeping observations whose classification is considered
sufficiently representative of the corresponding class features
to be associated with some meteorological phenomena. Prob-
ability distributions can also be used to enhance a priori in-
formation in remote sensing applications, for example.
4.2 Cluster interpretation with a decision tree

Another interesting way to interpret a partition is to build a
decision tree, that is, a supervised classification method in
the form of a tree structure separating a dataset into smaller
and smaller subsets through some decision rules given a par-
tition known a priori. The goal of such a tree is to predict the
value of the variable to be explained (here, the class to which
a given observation belongs) given a subset of input explana-
tory variables (here, the D = 20 CDF values) corresponding
to observations whose partition is already known. For this
purpose, R package “rpart” (Therneau and Atkinson, 2015)
has been used, based mainly on Breiman et al. (1984) and on
binary trees: each node has at most two children. In this sec-
tion, the terms “cluster” and “class” will refer respectively to
the unsupervised classification and supervised classification
results.

Separations between the nodes have been performed via
maximal impurity reduction, with the use of the Gini index
as an impurity function. That means that the tree tries to build
nodes containing as few clusters from the reference partition
as possible. In order to compare the classes obtained from

the decision tree to the reference partition, the tree has been
pruned to seven terminal nodes. It is done by setting a com-
plexity parameter measuring the “cost” of adding another ex-
planatory variable among the 20 possible ones in the model
underlying the decision tree. For more technical details, see
Therneau and Atkinson (2015). Pruning the tree implies that
we may not have the same set of explanatory variables as
used previously in the EM algorithm.

Figure 13 shows the classification tree obtained by con-
sidering as a priori probabilities of belonging to each cluster
the mixture proportions of the reference partition obtained
via unsupervised classification with EM-VII on the train-
ing dataset. These mixture proportions are similar to those
listed in the fourth line of Table 1 for EM-VII. In Fig. 13,
CDF values FT (x)=P (T ≤ x) for temperature and FTdp
(x)=P (Tdp≤ x) for dew point temperature are denoted re-
spectively by “T _x” and “Tdp_x”. The terminal nodes could
be considered as air mass classes by following the decision
rules. For instance, class 7 on the bottom right would be asso-
ciated with the decision rule FT (270 K)≥ 0.664 AND FTdp
(260 K)≥ 0.647 AND FTdp (250 K)≥ 0.642), and thus can
be interpreted as an air mass whose atmospheric situations
satisfy P (T ≤ 270 K)≥ 0.664 and P (Tdp≤ 250 K)≥ 0.642.
Each of the bar charts related to these terminal nodes indi-
cates the proportions of observations (from 0 to 1) belonging
to each cluster of the reference partition.

The most striking feature appearing in Fig. 13 is the fact
that temperature is used first to separate the atmospheric sit-
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uations into two main groups, i.e. polar and sub-polar air
masses on the one hand, and temperate, sub-tropical and
tropical ones on the other hand. Then, humidity is used to
make the remaining separations in order to obtain a seven-
class partition. This confirms the findings described in Sect. 3
(high correlation between air mass clustering and humidity).
From the decision tree, temperature variables could be con-
sidered less important compared to humidity ones, in terms
of the respective number of variables used to build the tree.
However, removing the temperature CDF value used as the
first variable, i.e. FT (270 K) here, used to separate the root
node of the tree, only leads to replacing it by FT (260 K) with
a different threshold value for the first decision rule, the rest
of the tree remaining similar to the one displayed in Fig. 13.
And this process can be continued twice with the following
successive variables: FT (280 K) and FT (290 K). That proves
that the tree is here not only very sensitive to the first variable
used to make the first separation, but also that temperature is
necessary in the clustering process. That is confirmed by the
partition obtained with EM-VII by taking into account only
the five variables which have been used in the model underly-
ing the decision tree: one CDF value in temperature against
four in dew point temperature is not enough to counterbal-
ance the fact that air masses are too closely correlated with
humidity (not shown).

Misclassification rates, i.e. one minus the highest propor-
tion of observations belonging to each cluster, are particu-
larly low. For instance, considering the bottom right group
as an air mass class implies that the latter would contain
here 17 546 observations coming at 93 % from cluster 7 of
the reference partition and at 7 % from cluster 6, and would
be associated with a misclassification rate of 7 %. These low
values indicate that the clustering process used to create the
reference partition is efficient and robust and that resulting
partitions make sense.

The same study with EM-EII shows that the resulting deci-
sion tree alternates temperature and humidity decision rules
(not shown): temperature seems to have a higher importance
in the partitioning with EM-EII than with EM-VII, which ex-
plains the difference between both types of classification.

5 Summary and conclusions

In this paper, a methodology for unsupervised and supervised
classifications of various and large atmospheric databases
into distinct air masses has been proposed and applied to
thermodynamic profiles (temperature and dew point temper-
ature) from ECMWF reanalyses. These three-dimensional
data are gridded in latitude, longitude and vertical layers,
homogeneously distributed over the Earth, and span the pe-
riod 2000–2009. This methodology follows a similar proba-
bilistic point of view considered by Vrac et al. (2005, 2011)
through a different approach to the problem of mixture mod-
els (estimation approach against clustering one previously).
It relies (i) on a probabilistic classification method based

on a multivariate Gaussian mixture model whose parame-
ters are estimated via maximum likelihood estimation by the
expectation–maximization (EM) algorithm; and (ii) on the
use of probabilistic data: classical thermodynamic values at
different pressure levels are converted into a set of cumula-
tive distribution function (CDF) values whose number repre-
sents the number of statistical variables needed to character-
ize each atmospheric situation. This data compression step
implies a description of the data different from the common
ones, giving information on the vertical distribution of the
temperature and dew point temperature values regardless of
the successive pressure levels.

In Vrac et al. (2005, 2011), (i) a limited set of observa-
tions consisting of only 1 winter day was used as a train-
ing dataset for classifying new data through projections not
exceeding 1 month; (ii) only four statistical variables were
used to characterize each atmospheric situation; (iii) an ini-
tial partition based on seven subjective zonal clusters homo-
geneous in temperature and humidity was used. Such choices
were not enough to steadily characterize air masses at any
time and any location on large temporal scales. To overcome
this problem, several updates have been implemented. First,
a much larger set of observations has been selected as a train-
ing dataset in order to take into account their high variability,
that is, 2 synoptic hours of the central day of 4 months rep-
resentative of each season for a period covering 5 years. Sec-
ond, each atmospheric situation has been characterized by a
substantially higher number of statistical variables for a bet-
ter thermodynamical description of the profiles: 10 CDF val-
ues for temperature, and 10 for dew point temperature. And
third, an initialization strategy for EM based on the use of
a suitable random initial partition has been adopted to avoid
the use of arbitrarily chosen prior information.

Furthermore, 14 models adding different constraints (or
not) to the structure of the covariance matrices and thus to
the dispersion of the observations have been studied, since
dealing with the unconstrained model does not provide rep-
resentative partitions. Several criteria have been tested as a
selection criterion for both the covariance matrix model and
the number of clusters. However, no optimal number of clus-
ters emerges from their evolution. Hence, following Vrac et
al. (2005, 2011), seven clusters have been subjectively cho-
sen.

If most of the covariance matrix models imply either too
much zonal structure or a preponderance of one air mass
class over the other ones, three of them lead to relevant air
mass spatial regions. These three models are distinguished by
a different relative influence of temperature and humidity on
the classification process, as shown by the use of a decision
tree for helping in the interpretation of the resulting clusters.
For instance, the two models EII and VII assume either equal
isotropic dispersion between the clusters (equivalent in fact
to the widely used k-means algorithm) or variable one. The
latter is more physically expected and leads to a classifica-
tion which depicts more accurate tropical air masses due to
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a stronger influence of humidity on the classification. These
results show that EM generalizes k-means by providing, in
addition, the probabilities of belonging to each class for each
atmospheric situation and thus the corresponding uncertain-
ties as well.

The proposed method shows low temporal and spatial sen-
sitivity to the choice of the training dataset. Within the pe-
riod 2000–2009, we have not only shown that the partitions
are similar as soon as the training dataset contains 1 day of
4 months representative of each season and spans several
years, but also that a 3.75◦ by 3.75◦ spatial sampling delivers
partitions similar to those obtained with no spatial sampling.
This low sensitivity provides the ability to classify new data
through long-range projections (more than 3 years).

Our method complies with the five properties introduced
by Huth (1996) and Huth et al. (2008) to assess the quality of
a classification: (i) the method reproduces expected patterns
known to exist in the data, as low-pressure systems or the tra-
ditional winter continental polar (cP) air mass; (ii) it shows
little sensitivity in time and space to the choice of the train-
ing dataset, both in terms of observation selection and size;
(iii) it shows neither high equability (clusters tending to be
equal in size) nor low equability (a huge cluster accompanied
by small ones, called the snowballing effect); (iv) it makes a
good distinction between clusters since the boundary regions
separating the air masses, associated with high uncertainty,
present narrow extents not exceeding 3◦ in longitude and lat-
itude, despite the difficulties induced by the continuous na-
ture and the high variability of the atmosphere; and (v) it is
in fact quite consistent with the number of clusters, meaning
adding successively one cluster does not drastically change
most of the clusters.

Based on temperature and dew point temperature vari-
ables, the proposed classification method is applicable to
most atmospheric datasets used by the atmospheric science

community, such as radiosonde measurements, meteorolog-
ical reanalyses or satellite data. Depending on the intended
objective, other variables could also be considered, espe-
cially dynamic variables to help monitor air mass move-
ment, such as potential vorticity, which is commonly used
for weather analysis (e.g. Emanuel, 2008). An important fea-
ture of this method consists in providing probabilistic infor-
mation, which can be used to provide the uncertainties as-
sociated with the classes or improving a priori information
in many atmospheric applications such as in remote sensing.
Finally, through the evolution of the classes and their asso-
ciated probabilities along several decades, the method could
be easily adapted to evaluate general circulation models and
study climate variability and potential changes at different
spatial and temporal scales.

6 Data availability

The temperature and specific humidity profiles as well as the
surface temperatures and pressures used in this study come
from ERA-Interim global atmospheric reanalyses (ECMWF,
2016) and can be downloaded for example from http://apps.
ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/. The
elevations above sea level are from the 1 / 6◦ global ele-
vation dataset compiled by the U.S. Navy Fleet Numer-
ical Oceanography Center (2016) (which can be down-
loaded from http://rda.ucar.edu/datasets/ds754.0/). The EM
algorithm has been implemented using the Rmixmod
S4 package (Mixmod Team, 2008; Lebret et al., 2015),
which is available at https://cran.r-project.org/web/packages/
Rmixmod/index.html (CRAN, 2016a). As for the deci-
sion tree, it has been implemented using R package rpart,
which can be downloaded from https://cran.r-project.org/
web/packages/rpart/index.html (CRAN, 2016b).
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Appendix A: Eigenvalue decomposition of the
covariance matrices

Table A1. The 14 covariance matrix models.

Model Distribution Identifier
category

λI Hyper- EII
λkI spherical VII

λE EEI
λkE Hyper- VEI
λEk diagonal EVI
λkEk VVI

λVEV ′ EEE
λkVEV

′ VEE
λVEkV

′ EVE
λkVEkV

′ Hyper- VVE
λVkEV

′
k

ellipsoidal EEV
λkVkEV

′
k

VEV
λVkEkV

′
k

EVV
λkVkEkV

′
k

VVV

Here we give more details on the eigenvalue decompo-
sition of the covariance matrices described in Banfield and
Raftery (1993) and Celeux and Govaert (1995). Each covari-
ance matrix6k related to the kth cluster is expressed in terms
of their eigenvalue decomposition, whose general form is

6k = λkVkEkV
′

k, (A1)

where λk , Ek and Vk determine respectively the hypervol-
ume, the shape and the orientation of the isocontour of mix-
ture component distributions associated with the kth cluster.
We denote by Vk the matrix of eigenvectors, by V ′k its trans-
pose and byEk the diagonal matrix of eigenvalues. The latter
is scaled so that |Ek| = 1, with the normalized eigenvalues of

6k in decreasing order. Then, λk = |6k|1/
D , where D is the

number of dimensions. The presence of the subscript k im-
plies that λ,E or V can vary between the clusters or are equal
otherwise.

Such decomposition leads to 14 parsimonious models
(column 1 in the table below) depending on whether some
assumptions about the structure of the covariance matrices
are added or not.

These models can be classified into three families (col-
umn 2): the hyperspherical models (isotropic dispersion), the
hyperdiagonal models (coordinate axis-aligned orientation)
and the hyperellipsoidal models (free orientation).

These models can be simply indicated by three sequential
letters (column 3) corresponding to the three attributes char-
acterizing the dispersion of the mixture component distribu-
tions, that is, the hypervolume, the shape and the orientation
of their isocontour in the multidimensional space, providing
an easy geometric interpretation of the models. Each letter
indicates whether the corresponding attribute is equal (E) or
variable (V ) between the clusters, or does not make sense (I ),
so that the 6k are in that case assumed to be either identity
matrices in the case of the hyperspherical models or diagonal
matrices in the case of the hyperdiagonal models (Vk are then
permutation matrices).

For illustrative purposes, the typical isocontours of the
mixture component distributions are commonly drawn in a
two-dimensional subspace, where the hypervolume, shape
and orientation features then correspond respectively to the
surface, the major and minor axis ratios, and the orientation
of the major axis of the elliptic isocontours. In the case of the
two hyperspherical models, elliptic isocontours are reduced
to circles.

www.adv-stat-clim-meteorol-oceanogr.net/2/115/2016/ Adv. Stat. Clim. Meteorol. Oceanogr., 2, 115–136, 2016



134 J. Pernin et al.: Probabilistic atmospheric air mass classification

Edited by: W. Kleiber
Reviewed by: two anonymous referees

References

Akaike, A.: Information theory and an extension of the maxi-
mum likelihood principle, in: Second International Symposium
on Information Theory, edited by: Petrov, B. N. and Csaki, F.,
Akadémiai Kiado, Budapest, Hungary, 267–281, 1973.

Banfield, J. D. and Raftery, A. E.: Model-based Gaussian
and non-Gaussian clustering, Biometrics, 49, 803–821,
doi:10.2307/2532201, 1993.

Barry, R. G. and Perry, A. H.: Synoptic Climatology and Its Appli-
cations, in: Synoptic and Dynamic Climatology, edited by: Barry,
R. G. and Carleton, A. M., Routledge, London, UK, 547–603,
2001.

Bayes, T. and Price, M.: An Essay towards solving a Problem in
the Doctrine of Chances, Philos. T. R. Soc. Lond., 53, 370–418,
doi:10.1098/rstl.1763.0053, 1763.

Bergeron, T.: Richtlinien einer dynamischen klimatologie, Meteo-
rol. Z., 47, 246–262, 1930.

Biernacki, C., Celeux, G., and Govaert, G.: Assessing a mixture
model for clustering with the integrated completed likelihood,
IEEE T. Pattern Anal., 22, 719–725, doi:10.1109/34.865189,
2000.

Biernacki, C., Celeux, G., and Govaert, G.: Choosing starting val-
ues for the EM algorithm for getting the highest likelihood in
multivariate Gaussian mixture models, Comput. Stat. Data An.,
41, 561–575, doi:10.1016/S0167-9473(02)00163-9, 2003.

Billard, L. and Diday, E.: Symbolic Data Analysis: Concep-
tual Statistics and Data Mining, Wiley series in computational
statistics, John Wiley & Sons Ltd, Chichester, UK, 330 pp.,
doi:10.1002/9780470090183.ch1, 2012.

Bock, H. H. and Diday, E.: Analysis of Symbolic Data. Exploratory
Methods for Extracting Statistical Information from Complex
Data, Springer-Verlag, Berlin and Heidelberg, Germany, 443 pp.,
doi:10.1007/978-3-642-57155-8, 2000.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone C. J.: Classi-
fication and Regression Trees, The Wadsworth and Brooks-Cole
statistics-probability series, The Wadsworth statistics/probability
series, Wadsworth and Brooks, Monterey, CA, USA, 368 pp.
1984.

Buck, A. L.: New equations for computing vapor pressure
and enhancement factor, J. Appl. Meteorol., 20, 1527–1532,
doi:10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2,
1981.

Carreau, J. and Vrac, M.: Stochastic downscaling of precipitation
with neural network conditional mixture models, Water. Resour.
Res., 47, W10502, doi:10.1029/2010WR010128, 2011.

Celeux, G. and Govaert, G.: A classification EM algorithm for clus-
tering and two stochastic versions. Comput. Stat. Data An., 14,
315–332, doi:10.1016/0167-9473(92)90042-E, 1992.

Celeux, G. and Govaert, G.: Gaussian parsimonious cluster-
ing models, Pattern Recogn., 28, 781–793, doi:10.1016/0031-
3203(94)00125-6, 1995.

Celeux, G., Diday, E., Govaert, G., Lechevallier, Y., and Ralam-
bondrainy, H.: Classification automatique des données, Dunod
Informatique, Paris, France, 1989.

Chédin, A. and Scott, N. A.: Initialization of the radiative trans-
fer equation inversion problem from a pattern recognition type
approach. Applications to the satellites of the Tiros-N Series,
in: Advances in Remote Sensing Retrieval Methods, Deepak A.,
Academic Press, New York, USA, 495–515, 1985.

Chevallier, F., Chédin, A., Cheruy, F., and Morcrette, J. J.:
TIGR-like atmospheric-profile databases for accurate radiative-
flux computation, Q. J. Roy. Meteor. Soc., 126, 777–785,
doi:10.1002/qj.49712656319, 2000.

CRAN: EM algorithm, available at: https://cran.r-project.org/web/
packages/Rmixmod/index.html, last access: 10 October 2016a.

CRAN: Decision tree, available at: https://cran.r-project.org/web/
packages/rpart/index.html, last access: 10 October 2016b.

Crowe, P. R.: Concepts in Climatology, Longman, London, UK,
612 pp., 1971.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,
P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,
Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bid-
lot, J., Normann, N., Delsol, C., Dragani, R., Fuentes, M., Geer,
A. J., Haimverger, L., Healy, S. B., Hersbach, H., Hólm, E. V.,
Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally,
A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey,
C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The
ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
doi:10.1002/qj.828, 2011.

Dempster, A., Laird, N., and Rubin, D.: Maximum likelihood from
incomplete data via the EM algorithm, J. R. Stat. Soc. B., 39,
1–38, 1977.

Diday, E.: A generalization of the mixture decomposition prob-
lem in the symbolic data analysis framework, Research Report,
CEREMADE, Paris, France, 2001.

Diday, E. and Vrac, M.: Mixture decomposition of distributions by
copulas in the symbolic data analysis framework, Discrete Appl.
Math., 147, 27–41, doi:10.1016/j.dam.2004.06.018, 2005.

Diday, E., Schroeder, A., and Ok, Y.: The dynamic clusters method
in pattern recognition, in: Proceedings of International Federa-
tion for Information Processing congress 74, Stockholm, Swe-
den, 5–10 August 1974, 691–697, 1974.

ECMWF: ERA Interim, Daily, available at: http://apps.ecmwf.int/
datasets/data/interim-full-daily/levtype=sfc/, last access: 10 Oc-
tober 2016.

Emanuel, K.: Back to Norway: An essay, Synoptic-Dynamic Me-
teorology and Weather Analysis and Forecasting, Meteor. Mon.,
33, 87–96, doi:10.1007/978-0-933876-68-2, 2008.

Floriana, E. and Diday, E.: An introduction to symbolic data anal-
ysis and the SODAS software, Intell. Data Anal., 7, 583–601,
2003.

Forgy, E. W.: Cluster analysis of multivariate data: efficiency vs in-
terpretability of classifications, Biometrics, 21, 768–769, 1965.

Fraley, C. and Raftery, A. E.: Model-based clustering, discriminant
analysis and density estimation, J. Am. Stat. Assoc., 97, 611–
631, doi:10.1198/016214502760047131, 2002.

Gordon, A. D.: Classification (2nd Edition), Chapman and
Hall/CRC Press, London, UK, 256 pp., 1999.

Hardy, A.: On the number of clusters, Comput. Stat. Data An., 23,
83–96, doi:10.1016/S0167-9473(96)00022-9, 1996.

Adv. Stat. Clim. Meteorol. Oceanogr., 2, 115–136, 2016 www.adv-stat-clim-meteorol-oceanogr.net/2/115/2016/

http://dx.doi.org/10.2307/2532201
http://dx.doi.org/10.1098/rstl.1763.0053
http://dx.doi.org/10.1109/34.865189
http://dx.doi.org/10.1016/S0167-9473(02)00163-9
http://dx.doi.org/10.1002/9780470090183.ch1
http://dx.doi.org/10.1007/978-3-642-57155-8
http://dx.doi.org/10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2
http://dx.doi.org/10.1029/2010WR010128
http://dx.doi.org/10.1016/0167-9473(92)90042-E
http://dx.doi.org/10.1016/0031-3203(94)00125-6
http://dx.doi.org/10.1016/0031-3203(94)00125-6
http://dx.doi.org/10.1002/qj.49712656319
https://cran.r-project.org/web/packages/Rmixmod/index.html
https://cran.r-project.org/web/packages/Rmixmod/index.html
https://cran.r-project.org/web/packages/rpart/index.html
https://cran.r-project.org/web/packages/rpart/index.html
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1016/j.dam.2004.06.018
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://dx.doi.org/10.1007/978-0-933876-68-2
http://dx.doi.org/10.1198/016214502760047131
http://dx.doi.org/10.1016/S0167-9473(96)00022-9


J. Pernin et al.: Probabilistic atmospheric air mass classification 135

Hardy, A.: NBCLUST, A module for the determination of the num-
ber of clusters in the SODAS 2 software, IFCS 2006 Conference,
Ljubjiana, Slovenia, 2006.

Hartigan, J. A. and Wong, M. A.: Algorithm AS136, A k-means
clustering algorithm, J. Roy. Stat. Soc. C-App., 28, 100–108,
doi:10.2307/2346830, 1979.

Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Sta-
tistical Learning: Data Mining, Inference, and Prediction (2nd
Edition), Springer, New York, USA, 745 pp., doi:10.1007/978-
0-387-84858-7, 2009.

Hewitson, B. C. and Crane, R. G.: Self-organizing maps: ap-
plications to synoptic climatology, Clim. Res., 22, 13–26,
doi:10.3354/cr022013, 2002.

Huth, R.: An intercomparison of computer-assisted circu-
lation classification methods, Int. J. Climatol., 16, 893–
922, doi:10.1002/(SICI)1097-0088(199608)16:8<893::AID-
JOC51>3.0.CO;2-Q, 1996.

Huth, R.: Disaggregating climatic trends by classification of circula-
tion patterns, Int. J. Climatol., 21, 135–153, doi:10.1002/joc.605,
2001.

Huth, R., Beck, C., Philipp, A., Demuzere, M., Ustrnul, Z.,
Cahynová, M., Kyselý, J., and Tveito, O. E.: Classifications of
atmospheric circulation patterns. Recent advances and applica-
tions, in: Trends and Directions in Climate Research, Ann. NY
Acad. Sci., 1146, 105–152, doi:10.1196/annals.1446.019, 2008.

Kalkstein, L. S., Tan, G., and Skindlov, J. A.: An evaluation of three
clustering procedures for use in synoptic climatological classifi-
cation, J. Clim. Appl. Meteorol., 26, 717–730, doi:10.1175/1520-
0450(1987)026<0717:AEOTCP>2.0.CO;2, 1987.

Kalkstein, L. S., Barthel, C. D., Nichols, M. C., and Greene,
J. S.: A New Spatial Synoptic Classification: Application
to Air Mass Analysis, Int. J. Climatol., 16, 983–1004,
doi:10.1002/(SICI)1097-0088(199609)16:9<983::AID-
JOC61>3.0.CO;2-N, 1996.

Levavasseur, G., Vrac, M., Roche, D. M., and Paillard, D.: Sta-
tistical modelling of a new global potential vegetation dis-
tribution, Environ. Res. Lett., 7, 044019, doi:10.1088/1748-
9326/7/4/044019, 2012.

Lebret, R., Iovleff, S., Langrognet, F., Biernacki, C., Celeux,
G., and Govaert, G.: Rmixmod: The R Package of the
Model-Based Unsupervised, Supervised and Semi-Supervised
Classification Mixmod Library, J. Stat. Softw., 67, 241–270,
doi:10.18637/jss.v067.i06, 2015.

Lee, C. C. and Sheridan, S. C.: Synoptic Climatology: An
Overview, Reference Module in Earth Systems and Environmen-
tal Sciences, doi:10.1016/B978-0-12-409548-9.09421-5, 2015.

Lloyd, S.: Least squares quantization in PCM, Technical Note,
Bell Telephone Laboratories Paper, published in journal much
later in 1982 in IEEE T. Inform. Theory, 28, 128–137,
doi:10.1109/TIT.1982.1056489, 1957.

MacQueen, J. B.: Some Methods for classification and Analysis of
Multivariate Observations, in: Proceedings of 5th Berkeley Sym-
posium on Mathematical Statistics and Probability, University of
California Press, USA, 1, 281–297, 1967.

McLachlan, G. J. and Krishnan, T.: The EM algorithm and Exten-
sions (2nd edition), Wiley, New York, USA, 400 pp., 2008.

Mixmod Team: Mixmod Statistical Documentation, Technical re-
port, CNRS, Université de Besançon, Université de Franche-
Comté, Besançon, France, 2008.

Molliere, J. L.: What is the real number of clusters?, 9th meeting of
the German Classification Society, 26–28 June 1985, University
of Karlsruhe, Karlsruhe, Germany, 1985.

Nelsen, R. B.: An Introduction to Copulas, Springer-Verlag, New
York, USA, 1999.

Parzen, E.: On estimation of a probability density func-
tion and mode, Ann. Math. Stat., 33, 1065–1076,
doi:10.1214/aoms/1177704472, 1962.

Peixoto, J. P. and Oort, A. H.: The climatology of rela-
tive humidity in the atmosphere, J. Climate, 9, 3443–3463,
doi:10.1175/JCLI3956.1, 1996.

Philipp, A., Bartholy, J., Beck, C., Erpicum, M., Esteban, P.,
Fettweis, X., Huth, R., James, P., Jourdain, S., Kreienkamp,
F., Krennert, T., Lykoudis, S., Michalides, S. C., Pianko-
Kluczynska, K., Post, P., Alvarez, D. R., Scheimann, R., Spekat,
A., and Tymvios, F. S.: Cost733cat – a database of weather and
circulation type classifications, Phys. Chem. Earth, 35, 360–373,
2010.
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