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Abstract Variational data assimilation (DA) has enabled huge improvements in the skill of operational
weather forecasting. In this study, we use a simple solar-wind propagation model to develop the first
solar-wind variational DA scheme. This scheme enables solar-wind observations far from the Sun, such as
at 1 AU, to update and improve the inner-boundary conditions of the solar wind model (at 30 solar radii).
In this way, observational information can be used to improve estimates of the near-Earth solar wind,
even when the observations are not directly downstream of the Earth. Using controlled experiments with
synthetic observations, we demonstrate this method’s potential to improve solar wind forecasts, though
the best results are achieved in conjunction with accurate initial estimates of the solar wind. The variational
DA scheme is also applied to Solar-Terrestrial Relations Observatory (STEREO) in situ observations using
initial solar wind conditions supplied by a coronal model of the observed photospheric magnetic field. We
consider the period October 2010 to October 2011, when the STEREO spacecraft were approximately 80∘
ahead/behind Earth in its orbit. For 12 of 13 Carrington Rotations, assimilation of STEREO data improves
the near-Earth solar wind estimate over the nonassimilated state, with a 18.4% reduction in the root mean
square error. The largest gains are made by the DA during times when the steady-state assumption of the
coronal models breaks down. While applying this pure variational approach to complex solar-wind models
is technically challenging, we discuss hybrid DA approaches which are simpler to implement and may retain
many of the advantages demonstrated here.

Plain Language Summary In order to forecast space weather, it is necessary to accurately
model the solar wind, the continually expanding solar atmosphere which fills the solar system. At present,
telescopic observations of the Sun’s surface are used to provide the starting conditions for computer
simulations of the solar wind, which then propagate conditions all the way from the Sun to Earth. But
spacecraft also make direct measurements of the solar wind, which provide useful additional information
that is not presently used. In this study we use a simple solar wind model to develop a method to routinely
“assimilate” spacecraft observations into the model and thus improve space weather forecasts. This data
assimilation (DA) approach closely follows that of terrestrial weather prediction, where DA has led to
increasingly accurate forecasts. We use artificial and real spacecraft observations to test the new solar wind
DA method and show that the error in predicting the near-Earth solar wind can be reduced by around a fifth
using available observations.

1. Introduction

In meteorology, data assimilation has long been used to improve initial conditions for forecasting, leading to
a reduction in the butterfly effect and hence improvements in forecasting skill. Furthermore, improvements in
the implementation of data assimilation methods into numerical weather prediction (NWP) models have led
to huge improvements in the forecasting accuracy of longer lead times over the past 20–30 years (Kalnay,
2003). However, space weather forecasting has yet to exploit the great potential available from implementing
data assimilation methods into their forecasting models.

For space weather forecasting, data assimilation has been attempted in three main domains: the photosphere,
the solar wind, and the ionosphere. Ionospheric data assimilation is arguably the most mature and as the
number of observations of the ionosphere increases so does its importance and effectiveness. Various data
assimilation methods have been applied to the ionosphere, such as 3DVar (Bust & Mitchell, 2008), 4DVar
(Wang et al., 2004), and Local Ensemble Transform Kalman Filter (Durazo et al., 2017). Photospheric data assim-
ilation, such as the Air Force Data Assimilative Photospheric Flux Transport model (Arge et al., 2010), uses
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Figure 1. A schematic of a data assimilation scheme that updates the model inner boundary (the white circle) on the basis of observations from a position
behind Earth in its orbit (the yellow star). This enables the updated model conditions (the purple regions) to persist until solar rotation brings them to the
forecast point at Earth’s location (the black circle). Without this ability, any localized change to the model state is quickly lost from the model domain by the
supersonic radial solar wind flow. (a) Observations of the solar wind contain information about the inner-boundary condition at previous time. (b) Mapping this
information back in time allows the inner boundary to be updated by the observations. (c) Running the update forward in time updates conditions between the
Sun and the point of observation. (d) Running the model forward to the forecast time results in improved forecasts in near-Earth space.

observations of the magnetic field at the Sun’s surface with physics-based temporal evolution to improve the
inner boundary condition to coronal models. The improved representation of the corona can in turn be used
to generate improved inner-boundary conditions for solar wind models.

In this study, we are looking to exploit observations of the solar wind itself to further improve the inner-
boundary conditions for solar wind models (and, as a by product, provide an observationally constrained val-
idation data set for the outer boundary of coronal models). Previous studies applying data assimilation to in
situ observations of the solar wind, such as Lang et al. (2017), have focussed on using ensemble-based data
assimilation methods to improve the representation of the modeled solar wind. The advantage of these meth-
ods is that they are relatively easy to implement for complex numerical models, and recent developments
have allowed these methods to be incorporated via Message Passing Interface (Browne & Wilson, 2015; Nerger
et al., 2005), in parallel to the numerical models. However, as shown in Lang et al. (2017), in order to improve
the forecast of solar wind conditions in near-Earth space, these methods require observations downstream
of the Earth, which are not routinely available. This is due to the localization of the data assimilation, which
means any improvements to the model state from the observations are swept out of the model domain due
to the continual radial outflow of the solar wind. In order to make a persistent change to the model state, the
model inner-boundary conditions must be updated. This is shown schematically in Figure 1. Ensemble-based
Kalman filter techniques cannot propagate information back in time (i.e., back toward the Sun), meaning they
cannot be used in this way.

This study investigates the possibility of using variational data assimilation methods (e.g., Courtier et al., 1994;
Dimet & Talagrand, 1986) for assimilating in situ observations of the solar wind, specifically to update the
inner-boundary conditions of the solar wind model. This is achieved using an adjoint method (Errico, 1997)
to map information from the point of observation back to the model’s inner boundary. Such changes to the
model state would be persistent and remain within the model domain, long after the observation’s time step.
A simple solar wind model is described in the next section, followed by a description, in general, of variational
data assimilation and a derivation of the particular scheme used in this study. Numerical twin experiments are
presented using synthetic observations to test if the method can reconstruct solar wind speed structures and
time series over one solar rotation (i.e. one Carrington Rotation). The data assimilation method is then applied
to real spacecraft data, assimilating Solar-Terrestrial Relations Observatory (STEREO; Kaiser et al., 2008) solar
wind observations from a time when the spacecraft were well separated from Earth (2010–2011), and results
verified against Advanced Composition Explorer (ACE) (Stone et al., 1998) observations in near-Earth space.

Future developments are discussed in the concluding section. Here we note, however, that while the require-
ment for an adjoint model means that the variational approach is not expected to be practical for a full
magnetohydrodynamic (MHD) solar wind model like Enlil (Odstrcil, 2003), it is nevertheless of interest for two
reasons. First, it is useful in developing new solar wind data assimilation techniques with simpler models, as
described in section 5, which may be valuable in forecast situations. Second, it enables us to test whether
updating the inner-boundary conditions of the solar wind model is indeed effective in improving model
forecast capability, as demonstrated in section 6.3. It is hoped that in the future, ensemble-based Kalman
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smoother methods may be able to provide many of the benefits of variational data assimilation without the
need for an adjoint and thus can be readily applied to MHD models of the solar wind.

2. Solar Wind
The solar wind is a continuous outflow of plasma and magnetic flux which fills the heliosphere (e.g., Owens &
Forsyth, 2013). The solar wind becomes supermagnetosonic within 10–20 solar radii (rS = 695, 508 km). Thus,
forecasting the near-Earth solar wind conditions is normally treated as a boundary-value problem, with the
near-Sun conditions fixed using empirical relations to the coronal magnetic field (McGregor et al., 2011; Riley
et al., 2015), which itself is determined by extrapolation from the observed photospheric magnetic field (e.g.,
Linker et al., 1999; Mackay & Yeates, 2012). The solar wind is then propagated to Earth, typically by a numerical
MHD model such as Enlil (Odstrcil, 2003), with no further observational constraints. In situ spacecraft provide
single-point measurements of the solar wind and heliospheric magnetic field which can potentially be used
to constrain the solar wind model.

In principle, the data assimilation framework developed here will also be applicable to other solar wind obser-
vations, such as Interplanetary Scintillation (e.g., Breen et al., 2006) or Heliospheric Imagers (e.g., Eyles et al.,
2009). These remote measurements of solar wind density structures are subject to line-of-sight integration
effects, and estimation of solar wind speed further requires some form of correlation tracking. Thus, relative
to (single-point) in situ observations, there is increased uncertainty in both the measurement and its location
but with the advantage of a more synoptic picture of the solar wind. By explicitly accounting for observa-
tional errors, a solar wind data assimilation scheme can exploit the positives of both forms of data. Though
determining the observational errors is a significant task which is not addressed in the current study.

In the next section we describe a simple solar wind propagation tool which permits more rapid develop-
ment of data assimilation techniques than the complex and computationally expensive full MHD approaches
(Odstrcil, 2003). This approach was recently used to explore the forecast potential of large ensembles of
solar wind solutions with perturbed initial conditions Owens and Riley (2017), as is routinely used for
operational NWP.

3. Solar Wind Propagation Model
In this study, we use the solar wind propagation model of Riley and Lionello (2011), which maps the equatorial
(i.e., two dimensional) solar wind speed over the heliocentric domain from 30rS to 215rS from the Sun:

vi+1,j(𝜙) = vi,j +
ΔrΩROT

vi,j

(vi,j+1 − vi,j

CΔ𝜙

)
, (1)

where vi,j is the speed (in km/s) at radius, ri (the i is the radius coordinate), and at Carrington longitude, 𝜙j

(where j is the longitude coordinate). Using the same setup as Owens and Riley (2017), Δr = 1rS is the radial
grid resolution (in km), Δ𝜙 = 2.81∘ is the latitudinal grid resolution, C = 2𝜋

180
is a constant representing the

conversion factor from degrees to radians, and ΩROT = 2𝜋
25.38(86400)

s−1 is the solar rotational speed.

After this solution is obtained, an additional term, vacc
i,j , is added to the vi,j to represent the acceleration of the

solar wind in the domain considered, which is given by

vacc
i,j = 𝛼v0,j(𝜙)

(
1 − e

ri
rH

)
, (2)

where v0,j is the solar wind speed at the inner boundary and 𝛼 = 0.15 and rH = 50rS are constants determined
by Riley and Lionello (2011).

Given the 2-dimensional nature of the solar wind model, in this study we must assume the ecliptic plane to
be equatorial. In reality, the ecliptic is inclined by 7.25∘ to the heliographic equator. We note that a solar wind
data assimilation scheme in a full 3-dimensional solar wind model could relax this assumption.

4. Data Assimilation
Data assimilation is the study of combining prior knowledge from a model of a system with information con-
tained in actual observations of that system in order to obtain an optimal estimate of the truth, including its
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uncertainty. Data assimilation methods can be used to (1) provide better model initial conditions for forecast-
ing (e.g., Browne & van Leeuwen, 2015; Clayton et al., 2013; Dee et al., 2011), (2) generate optimal evolution
trajectories for the system to study important physical processes (e.g., Broquet et al., 2011; Macbean et al.,
2016), and (3) improve the model physics by studying model-observation misfits (Lang et al., 2016).

Variational data assimilation refers to the subset of data assimilation methods used extensively in meteoro-
logical applications (Sasaki, 1970) that provide an optimal fit over the whole time window (the period of time
over which the data assimilation is applied). Variational data assimilation typically aims to correct the variables
under consideration at the initial time by making use of all the data available over the entire time window.
Sequential assimilation, on the other hand, provides an optimal fit at the end of the window by considering
each observation sequentially each time a new observation becomes available. Variational data assimilation
methods also tend to find the maximum of the posterior probability distribution (the probability distribution
of the state given the observations, see Appendix A for more details), whereas sequential methods typically
seek the mean of the posterior probability distribution. For linear systems, this means that the sequential
and variational approaches will lead to the same results at the end of the assimilation window. For nonlinear
systems, however, the posterior probability distribution may have multiple modes, which may lead to the vari-
ational approach getting stuck in a local maxima, as opposed to the global maxima of the system, leading to
a poorer analysis. Conversely, multimodal posterior distributions may lead to the mean of the system occur-
ring in an area of low probability in the posterior distribution, leading to the sequential assimilation approach
being substandard. In these cases, it is unclear what the “optimal” estimate should be; hence, there has been
substantial efforts to develop Particle Filters (Ades & van Leeuwen, 2013; Browne & van Leeuwen, 2015; van
Leeuwen, 2014; Zhu et al., 2016), which aim to estimate the full posterior probability distribution as opposed
to a single optimal estimate.

With the development of the 4DVar and adjoint model systems (Dimet & Talagrand, 1986; Lorenc, 1986), vari-
ational methodologies have become much more viable and efficient methods than optimal interpolation
methods based on finite-difference methods to calculate the gradient of the cost function (and the Kalman
filter methods that preceded them), particularly for applications within high-dimensional meteorological
models with large quantities of observations. The 4DVar methodology is typically used to estimate the initial
condition of a model given observations over a fixed time window. However, the purpose of using a varia-
tional approach for the solar wind is to map information contained within observations back closer to the
Sun, where we can then alter the inner boundary of the model and then recompute the solar wind speed in
the whole domain. Specifically, we wish to estimate the solar wind speed at all Carrington longitudes at the
inner boundary (30rS) using the observations at greater heliocentric distances (i.e., beyond 30rS from the Sun,
typically at Earth orbit, approximately 215rS). In the remainder of this section, we indicate the general defini-
tions of data assimilation, followed by specific definitions when applied to the solar wind model. Following
this, we explain the methodology behind the variational data assimilation proposed in this paper.

In data assimilation, the variables within a numerical model, x, are described by a Nx-dimensional state vector,
which contains the values of the quantities of interest at all grid points, N. The variables within a state vector
for meteorological applications could include the temperature field over Africa, the mean sea level pressure
over the UK, wind speed/direction, and so forth, depending upon the purpose of the NWP model. The typical
dimension of (number of variables within) the state vector in NWP models is of the order ≈109 (Browne &
Wilson, 2015; Trémolet, 2006).

For this application, the state vector is defined as a vector that contains the solar wind speed at each
Carrington longitude, 𝜙j , in the model domain for a given radius coordinate, i, and is written as

vi =
(

vi,1, vi,2,… , vi,N

)
, (3)

where i = 0,… , 185 corresponds to radii coordinates from the Sun as ri = 30rS,… , 215rS and N = 128.

For a state x (e.g., solar wind speed), an estimate of the initial conditions before any data assimilation is referred
to as the prior (or background) state, denoted by xb. The prior state is generated using available prior informa-
tion about the state. In meteorological applications, this typically comes from a previous forecast. The prior
state is assumed to be a random perturbation away from the true state, such that

xt
0 = xb + 𝝃0, (4)
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where xt
0 is an Nx-dimensional discretization of the true initial state, and 𝝃0 represents the random error in the

prior state.

For our solar wind model, the prior inner-boundary condition, vb
0 , is an inner-boundary condition that we

must provide (i.e., from a previous forecast of the inner boundary, such as from a previous coronal solution).
The prior inner-boundary condition is assumed to be a random perturbation from the true state, such that
vb

0 ∼  (vt
0,B), where vt

0 represents the true speed at the inner boundary and B represents the prior error
covariance matrix (i.e., the covariance matrix of the errors at the inner boundary).

Observations within the time window provide information about the true state of the system. In order to
merge the information contained by the observations with the state generated by the numerical model, it is
necessary to define a function that maps from the state space to the observation space. This function is called
the observation operator and is defined as

y = (x) + 𝝐, (5)

where  ∶ R
Nx → R

Ny maps the state into observation space, with y being an observation with the
observation error given by 𝝐.

Thus, for the solar wind, the kth vector of observations, yk , at radius rk is defined as

yk = k

(
vik

)
+ 𝝐k, (6)

where k is the observation operator, a function that maps the model solar wind speed vector to the obser-
vation space (i.e., what the observation would be for any given v), and 𝝐k is the random observation error,
assumed to be normally distributed, 𝝐k ∼  (0,Rk).

The numerical model, which approximates the dynamics of the system, is denoted by

xi+1 = fi

(
xi

)
+ 𝜼i, (7)

where xi is the state vector at point i, the numerical model is represented by fi (which here is the solar wind
propagation model described in section 3), and 𝜼i is an Nx-dimensional term representing the model error.
The distribution of the model error is almost always unknown and may contain biases toward particular states
(i.e. have nonzero mean) or be multimodal, and so forth.

We now adopt the Strong Constraint approach and assume that the numerical model is perfect, that is, con-
tains no model error (Di Lorenzo et al., 2007; Fisher et al., 2005). In practice, this typically produces a poorer
result than the weak constraint solution that allows for model error. But the weak constraint problem is much
more complex as it is impossible to know precisely where the model is incorrect, due to missing physics,
the effects of subgrid processes, and so forth, and hence very difficult to prescribe an accurate model error
covariance matrix. In addition, including model error can lead to coupled equations that can result in different
solutions, depending on which order the equations are solved (Evensen et al., 1998; Lang et al., 2016), leading
to additional work being done to decouple them (Bennett, 1992). Therefore, as this is an introductory study
to demonstrate the effectiveness of the variational approach, it is logical to start with the Strong Constraint
approximation. The model evolution equation can then be rewritten as

vi+1 = fi(vi) (8)

=
(

fi,1(vi), fi,2(vi),… , fi,N(vi)
)
, (9)

where

fi,j(vi) =
⎧⎪⎨⎪⎩

vi,j +
ΔrΩROT

vi,j

(
vi,j+1−vi,j

CΔ𝜙

)
+ 𝛼v0,j

(
e

ri−1
rH − e

ri
rH

)
if ri ≠ 30rS

vi,j +
ΔrΩROT

vi,j

(
vi,j+1−vi,j

CΔ𝜙

)
+ 𝛼v0,j

(
1 − e

ri
rH

)
, Otherwise

(10)

where ri is the radial distance from the Sun at radius coordinate, i = 0,… , 185. The model evolution equation
at the inner boundary, at 30rS, adds the acceleration term onto the primary calculation for the speed at the
next radial coordinate. However, for each subsequent radial coordinate, the acceleration term from the previ-
ous radial point must be removed prior to the addition of the new acceleration to avoid an accumulation of
the acceleration terms within the model.
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Use of the Strong Constraint (Howes et al., 2017) allows the observation operator to map from the speed at
the inner boundary, v0, to the observation location, such that

yk = k

[
fik−1

(
fik−2

(
… f0

(
v0

)
…
))]

+ 𝝐k, (11)

where k denotes the observation number, and the ik are a subset of the radial coordinates, i, and are the radial
coordinates where the kth observation occurs.

This allows a cost function, , to be written purely in terms of the inner-boundary solar wind speed, such that

 (v0) =
1
2

(
v0 − vb

0

)T
B−1
(

v0 − vb
0

)
+ 1

2

Ny∑
k=1

(
yk −k

[
fik−1

(
fik−2

(
… f0

(
v0

)
…
))])T

R−1
k

(
yk −k

[
fik−1

(
fik−2

(
… f0

(
v0

)
…
))])

,

(12)

where v0 is the state vector at the inner boundary (at 30rS).

The cost function is the sum of the relative contributions of the errors present within the solar wind system. Its
derivation is outlined in Appendix A. The first term in the cost function represents the prior errors,

(
v0 − vb

0

)
,

at the inner boundary weighted by the prior error covariance matrix, B−1. The second term represents the
sum of the observation errors at each observed radial coordinate,

(
yk −k

[
frk−1

(
frk−2

(
… f0

(
v0

)
…
))])

, and
is weighted by the observation error covariance matrix R−1. Therefore, the optimal state, that minimizes the
errors in the system, is the state that minimizes the cost function. The weighting by the inverse of the error
covariance matrices means that if there is a high amount of certainty in, for example, the prior state compared
to that of the observations, then B−1 will be much larger than R−1, meaning that the optimal state vector will
have to move closer to the prior state to minimize the cost function, increasing the dominance of the prior
state on the final analysis.

Obtaining the v0 that minimizes the cost function is a nontrivial task. This can be done by evaluating the finite
differences of  or by evaluating ∇v directly (Bannister, 2007). However, these methods are impractical
for higher-dimensional systems. In such situations, a more efficient method of calculating the gradient is to
use the adjoint method, a method of sensitivity analysis that efficiently computes the gradient of a function
(Errico, 1997). For the Strong Constraint approach, this involves using the method of Lagrange multipliers to
generate a set of adjoint equations.

First, we rewrite the cost function that we wish to minimize as

 (v0) =
1
2

(
v0 − vb

0

)
B−1
(

v0 − vb
0

)T + 1
2

Ny∑
k=1

(
yk −k(vik

)
)

R−1
(

yk −k(vik
)
)T

, (13)

subject to the (strong) constraint

vr+1 = fr(vr). (14)

To minimize this cost function subject to the constraint, we must minimize the Lagrangian (Arfken et al., 2011),
(vr,𝝀r), which is defined by

(vr,𝝀r) =  (v0) +
Nr∑

i=0

𝝀T
i+1(vi+1 − fr(vi)), (15)

where the 𝝀is are the Lagrange multipliers.

By differentiating with respect to the vr and the 𝜆r variables, it is possible to obtain a set of adjoint equations,
given by

vr+1 = fr(vr), (16)

𝝀Nr+1
= 0, (17)

𝝀r =
{

FT
r 𝝀r+1 + HT

kR−1
k (yk −k(vr)) if r = rk is obs. radius

FT
r 𝝀r+1, Otherwise

(18)

𝝀0 = FT
0𝝀1 + B−1

(
v0 − vb

0

)
, (19)
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Figure 2. The generation of the prior error covariance matrix from the 576-member ensemble is shown in (a). The
effects of the localization with a 15∘ localization length scale are shown in (b).

where Fr is given by the Jacobian of fr , such that

Fr =

⎛⎜⎜⎜⎜⎜⎝

𝜕fr,1

𝜕vr (𝜙1)
𝜕fr,1

𝜕vr (𝜙2)
… 𝜕fr,1

𝜕vr (𝜙N)
𝜕fr,2

𝜕vr (𝜙1)
𝜕fr,2

𝜕vr (𝜙2)
… 𝜕fr,2

𝜕vr (𝜙N)
⋮ ⋮ ⋱ ⋮
𝜕fr,Nr

𝜕vr (𝜙Nr
)

𝜕fr,Nr

𝜕vr (𝜙2)
… 𝜕fr,Nr

𝜕vr (𝜙N)

⎞⎟⎟⎟⎟⎟⎠
, (20)

and

𝜕fr,i

𝜕vr(𝜙j)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − ΔrΩROT

CΔ𝜙

(
vr (𝜙i+1)

v2
r (𝜙i)

)
if 𝜌r > 30rS and j = i

ΔrΩROT

CΔ𝜙

(
1

vr (𝜙i)

)
if 𝜌r > 30rS and j = i + 1

1 − ΔrΩROT

CΔ𝜙

(
v0(𝜙i+1)

v2
0 (𝜙i)

)
+ 𝛼

(
1 − e

𝜌r
𝜌H

)
if 𝜌r = 30rS and j = i

ΔrΩROT

CΔ𝜙

(
1

vr (𝜙i)

)
+ 𝛼

(
1 − e

𝜌r
𝜌H

)
if 𝜌r = 30rS and j = i + 1

. (21)

The Lagrange multiplier at the inner-boundary radius gives us the negative of the gradient at v0, the value we
wish to find. This implies that

∇v0
 (v0) = −𝝀0 = −FT

0𝝀1 − B−1
(

v0 − vb
0

)
. (22)

This gradient allows the use of a plethora of available gradient-based minimization algorithms, from New-
ton’s methods to the steepest descent methods (Bazaraa et al., 2013). In this study, however, we use the
Broyden-Fletcher-Goldfarb-Shanno algorithm, a quasi-Newtonian method, that is commonly used for its
speed and accuracy, even for nonlinear problems.

5. Experimental Setup
For this data assimilation method, we must provide a set of conditions in order to proceed. These include
specifying the prior error covariance matrix and the observation error covariance matrix. The specification of
these conditions is a very important part of the data assimilation process. For example, if the specified prior
error uncertainty is too small, the data assimilation analysis will have too much confidence in the quality of
the prior state, and the data assimilated analysis state will have less freedom to move away from it.

In meteorology, the prior error covariance matrix, B, is built up by operational centers studying the misfits
between forecasts and reanalysis data sets. In comparison, the space weather forecasting is a relatively young
science, and we do not have this back catalog of available forecasting and reanalysis data sets to compare
against. Therefore, a different interim approach must be taken. (Full specification of B for the solar wind will
be the study of future study, and here we make an initial estimate to permit progress at this stage.)

We here approximate the prior error covariance matrix using an ensemble of solar wind speed states gener-
ated in the same way as Owens and Riley (2017). The initial conditions to the solar wind propagation model
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are near-Sun (30rS) solar wind speeds, derived from Carrington Rotation solutions of the Magnetohydrody-
namics Around a Sphere (MAS) coronal model (Linker et al., 1999) in which the solar wind speed at 30rS is
determined using empirical relations to the coronal magnetic field configuration (Riley et al., 2012). These data
are available from http://www.predsci.com/mhdweb/home.php. Near-Earth solar wind speed is determined
using equations (1) and (2) to propagate the MAS solar wind speed at 30rS at the sub-Earth point to Earth orbit
at approximately 215rS. An ensemble of 576 members is further generated using perturbed initial conditions.
This is achieved by sampling the MAS 30rS solar wind speed at a range of latitudes about the sub-Earth point
(an example is shown in Figure 4 of Owens & Riley, 2017) and independently propagating each perturbed
set of initial conditions to 215rS. The resulting ensemble of near-Earth solar wind speeds has been shown to
provide an accurate measure of the uncertainty in the unperturbed forecast (Owens & Riley, 2017).

Here we use the 576-member ensemble created using MAS solutions to Carrington Rotation 2100, which
spans early August to early September 2010. This interval contains no interplanetary coronal mass ejections
(ICMEs) but does contain both fast and slow solar wind. The ensemble is used to approximate the B matrix,
similar to that of the ensemble Kalman filter and methods used in other studies, such as Pereira et al. (2006).
The B matrix is approximated by

B ≈ 1
M − 1

M∑
m=1

[(
v(m)

0 − vM
0

)(
v(m)

0 − vM
0

)T
]
, (23)

where vM
0 = 1

M

∑M
m=1

[
v(m)

0

]
and M = 576.

A common issue in generating the error covariance matrix using a (finite) ensemble is that spurious correla-
tions are introduced, as can be seen in Figure 2. The effect of this is that an observation may have an unrealistic
impact on a model state variable at a distant location and degrade the quality of the analysis. Indeed, Hamill
et al. (2001) showed that if the error in the covariance estimate provided by the ensemble (the noise) is greater
than the true correlation (the signal), the accuracy of an ensemble Kalman filter analysis would decrease.
Additionally, they show that the signal-to-noise ratio is a function of ensemble size, with larger ensembles rep-
resentative of the true statistics of the system, with less associated noise. Therefore, it is necessary to minimize
the effect of these spurious correlations in the estimated prior error covariance matrix, Bens. To do this, we uti-
lize a technique called localization, which is used to restrict the covariances to more realistic spatial/temporal
scales and hence reduce the effective noise to signal ratios at longer space/timescales, increasing the effective
size of the ensemble in the process.

As a first approximation, we use a standard distance-based Gaussian localization scheme (see Lang et al.
(2017) for a discussion on possible localization schemes for solar wind data assimilation) and apply it to
the ensemble-estimated covariance matrix, Bens, such that the localized prior error covariance matrix, Bloc,
becomes

Bloc = L ∘Bens, (24)

where ∘ represents the Schur product, and L is the localization matrix with entries given by

Li,j = exp− (i−j)Δ𝜙
S , (25)

and S is the localization length scale. As a starting point, we set S = 15∘, which is the approximate width of
the slow wind band and hence mimics the large-scale spatial variability in solar wind speed (e.g., Owens et al.,
2017). The choice of this value is somewhat arbitrary, and further research is required. However, a preliminary
sensitivity analysis suggests that at least within the range 10∘ to 20∘, the results presented below are not sig-
nificantly affected. A finite S is nevertheless required, as the noise present on the larger spatial scales (≥≈60∘)
can cause the adjoint calculations to become numerically unstable.

The observation error covariance matrix, R, is also an unknown quantity in solar wind modeling. Properly
addressing this is a substantial research topic in its own right, far beyond the scope of this initial study. In
addition to the measurement uncertainty, y, it also accounts for the uncertainty from the representativity error
(Janjić et al., 2017), resulting from the approximation of a continuous process in discrete space, the error result-
ing from representing an observation in the incorrect location, and the error resulting from representing a
single measurement over the (potentially large) volume of a grid cell. Additionally, there is also an implicit
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Figure 3. The speed of the solar wind in kilometers per second propagated from the 30rS to the 215rS using the solar
wind propagation model. (a) shows the speeds generated from the truth state, (b) shows the speeds generated from the
prior state, and (c) shows the posterior state after 50 iterations of the forward and adjoint model have been performed.

component of the model error within  (x) which further complicates the specification of this quantity. As
a first approximation of the observation error (to be further tested in future work), we begin with the sim-
plest approach, assuming that the observations are all independent of one another (i.e., a diagonal R matrix).
We must also specify an observational error standard deviation, which we set at 10% of the mean prior solar
wind speed at the observation radius. This is the same order as the observed variability of near-Earth solar
wind speeds. Again, this is still a somewhat arbitrary value, but it provides a starting point from which we can
progress and test such assumptions. Then together, this gives

Rkk = (0.1vb
rk
)2

= (0.1
N∑

i=1

[
vb

r (𝜙i)
]
)2.

6. Results
6.1. OSSEs
This section describes initial tests of the variational data assimilation method derived in the previous sections.
In order to perform numerical experiments in a controlled way, we perform observing system simulation
experiments (OSSEs, also known as identical twin experiments), a typical verification approach for a data
assimilation scheme. An OSSE uses the uncertainty present within the model state to generate two model
states that we refer to as the prior state and the truth state. Specifically, we draw a prior state and truth state
from the normal distribution, 

(
vM

0 ,B
)

.

We use our numerical model to propagate this truth state to get a complete truth trajectory. We then take syn-
thetic observations from a fixed point in space from this truth trajectory. These “observations” are perturbed
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Figure 4. (a) The differences between the prior and the true solar wind speed and (b) the differences between the
posterior and the true solar wind speed, in kilometers per second.

by measurement noise to mimic a real data assimilation experiment. The goal is to generate a posterior state
that represents the best estimate of the truth run, using the limited information from the observations and
uncertain prior information on the boundary conditions. This posterior state is then compared to the prior
state to evaluate the performance of the data assimilation scheme used.

In our experiments, the true state, vt, is generated as a random sample from the normal distribution of the

MAS ensemble for CR2100, 
(

vM
0 ,Bloc

)
. This true state is propagated out to 215rS by the solar propagation

model detailed in section 3 and is shown in Figure 3a. The prior state, vb
0 , is also randomly drawn from the same

distribution and is shown mapped by the solar wind propagation model to 215rS in Figure 3b. In this case, the
prior state is reasonably close to the true state, with the most obvious difference being the fast stream around
150–200∘ Carrington longitude is larger in the prior state than in the true state. This is seen as a positive band
in the prior error shown in Figure 4a.

Direct observations of the true state were taken at 215rS every Δ𝜙, mimicking a time series of near-Earth
spacecraft observations every∼5 hr, which is a lower frequency than that of real observational data. A random
perturbation, 𝝐, drawn from the distribution  (0,R) is added to mimic the effects of observation error. The
prior state is used as an initial estimate for the optimal state that minimizes the cost function (equation (12)).
The gradient of the cost function at this point is calculated by the adjoint equations (equations (17)–(22)).
This gradient is then input into the Broyden-Fletcher-Goldfarb-Shanno minimization algorithm to obtain an
estimate for the minimum of the cost function, and the procedure is iterated, using the new estimate as the
optimal state, until the cost function converges to a minimal state, within a tolerance of 10−5 (i.e., such that
the algorithm is repeated as long as the gradient norm of the cost function, from one iteration to the next, is
greater than 10−5).

The posterior state generated by the data assimilation method (i.e., the state that minimizes the cost func-
tion) is shown in Figure 3c. An improvement over the prior state (in Figure 3b) can be seen in the form of
the high-speed stream more closely matching that of the true state. Figure 4 shows that the posterior error
does not suffer from the large positive error band of the prior. In addition, there are smaller structures present
within the true speed that are recreated in the posterior at around Carrington Longitudes 50∘, 100∘, 300∘, and

Table 1
Table Showing Prior/Posterior Cost Function Values, the Number of Iterations Required for Convergence, and Prior/Posterior RMSEs for the OSSE Experiments, Described in
Section 6.1, using a “Good” Prior State Generated From the Same Distribution as the True State, a Prior State Shifted by 62Δ𝜙 ≈ 174∘, and a Uniform Prior Speed of 500 km/s

OSSE exp. Init.  (v0) Final  (v0) No. of iter. Prior RMSEs (km/s) Post. RMSEs (km/s)

Optimal prior, unshifted 760.879 156.364 458 94.075 26.222

Prior shifted 62Δ𝜙 3,677.218 843.463 448 217.109 87.582

Uniform prior 1,661.161 684.787 456 182.486 104.320

Note. OSSE = observing system simulation experiment; RMSE = root mean square errors.
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Figure 5. Solar wind in kilometers per second propagated from the 30rS to the 215rS using the solar wind propagation
model. (a) Speeds generated from the truth state, (b) speeds generated from the prior state that is shifted by 62Δ𝜙, and
(c) shows the posterior state after the data assimilation has been performed.

350∘. Conversely, the finer structures between 200∘ and 250∘ cannot be recreated by the data assimilation
due to insufficient observational information to overcome the large prior errors in this region.

The root mean square error for the OSSEs are calculated over the whole domain, calculated as

RMSEOSSE = 1
Nr

1
N

Nr∑
i=1

N∑
j=1

[(
vi,j − vt

i,j

)2
]
, (26)

where vi,j represent the prior or posterior state, dependent upon whether the prior or posterior RMSEs are
being generated. Table 1 shows that there is a reduction of approximately 72% in RMSE as a result of the
variational data assimilation analysis.

6.2. The Effect of Prior State
In this section, we consider the effects of different prior states when using data assimilation. These prior states
will be generated such that they are no longer random perturbations of the true state (as is commonly the
case in all applications, especially as we rarely have a true state to compare to in the first place). This will cause
the data assimilation to perform suboptimally as the assumption regarding the prior state will no longer be
valid. Hence, the purpose of this section is to show that while the data assimilation may be compromised by
poorly specified priors, it can still provide significant improvements in the estimation of the true state.

In this section, the true state, prior error covariance matrix, observations, and observation error covariance
matrix are all specified in the same way as the previous section.

The first “poor” prior state we use is the prior state generated in the previous section but shifted arbitrarily. We
use an angular shift of 62Δ𝜙 ≈ 174∘ around the Sun, as this results in a very large difference between the prior
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Figure 6. (a) The differences between the prior and the true solar wind speeds and (b) the differences between the
posterior and the true solar wind speeds, in kilometers per second, when the prior state is shifted by 62Δ𝜙.

and true states. The prior is shown in Figure 5b. The fast wind band is now clearly in the incorrect position in
the prior state. This implies that there are far larger errors in our prior state, reflected by the much higher prior
cost functions and prior RMSE values in Table 1 when compared to the unshifted case in the previous section.

After the variational data assimilation method is performed, the RMSEs over the whole domain have been
greatly reduced (by approximately 50%). The posterior state obtained from the variational data assimilation
scheme is shown in Figure 5c and detailed in Table 1. We can see that a new fast wind band (between ≈145∘
and 190∘) has been included in the posterior state in the correct location but is slightly narrower than the true
state’s fast wind band. This results in the reduction of most of the negative prior error in this area. The reason
the full band is not generated at the inner boundary may be due to the presence of a small fast wind region
centered at 200∘ in the prior state, which is still present and enhanced by the variational data assimilation
scheme. This small region yielded low prior error at the observation location in near-Earth space; therefore,
the data assimilation scheme will not have removed it. A more noticeable error in the posterior speed is the
remains of the prior’s fast wind band, which the data assimilation has not been able to fully remove. This results
in a large positive wind bias in the posterior error in this region (although greatly reduced from the initial prior
error in this region, as can be clearly seen in Figure 6). Nevertheless, the near-Earth observations have clearly
been able to update the inner-boundary conditions for the model and result in a persistent change in the
model state, something which was not possible with the ensemble-based Kalman filter approach attempted
previously (Lang et al., 2017).

The second "poor” prior state is a constant solar wind speed of 500 km/s at all points on the inner boundary
(see Figure 7), which mimics having no near-Sun information about the solar wind speed structures. It can
be seen from Figure 8 that this estimate contains a large positive bias from the true state at all points, except
the fast wind band, which is negatively biased. In this case, the data assimilation still reduces the RMSE over
the whole domain (by ≈43%, as shown in Table 1) but has not been able to fully correct for the large positive
biases that were present within the prior error. There are still large positive errors over most regions in the
posterior state, albeit reduced compared to the prior state. The posterior state can be seen to recreate the fast
wind band in the correct location with low errors present in that region. In addition, some of the slower wind
regions present in the true state (at ≈40∘, 130∘, 200∘, and at 300∘) have been recreated, albeit still with large
errors present.

The experiments in this section show while the data assimilation is capable of reducing the errors in a prior
state, specifying an accurate prior state is nevertheless essential to obtain an optimal analysis. We further
note that in the future, when such data assimilation is to be used in conjunction with a more costly numerical
model, it may not be possible to perform enough iterations for the cost function to converge, and specifying
an accurate prior state will be even more vital.

6.3. Using Real In Situ Observations
In this section, the data assimilation scheme described in section 4 is applied to real STEREO (Kaiser et al., 2008)
observations during Carrington Rotation 2100. This Carrington Rotation was chosen because the two STEREO
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Figure 7. Solar wind speed in kilometers per second propagated from the 30rS to the 215rS using the solar wind
propagation model. (a) Solar wind speeds generated from the truth state, (b) the uniform prior state of 500 km/s, and
(c) the posterior state after the data assimilation has been performed.

spacecraft have a large separation on either side of the Earth, shown in Figure 9, with STEREO A 80.5∘ ahead
of the Earth and STEREO B located 72.5∘ behind. For the purposes of the data assimilation run with the simple
solar wind propagation model, the STEREO spacecraft are assumed to be stationary during the Carrington
Rotation and located at the same heliographic latitude as Earth. Observations are sampled every 5 hr, as this
corresponds to the approximate amount of time for the Sun to rotate Δ𝜙 degrees and hence matches the
implicit time resolution of our solar wind model. We assimilate only the solar wind speed, as that is the only
parameter contained within the solar wind model.

The prior error covariance matrix is produced using an ensemble for Carrington Rotation 2100 via the same
methodology as in the OSSE experiments. Similarly, the observation error covariance matrix, R, is generated
using equation (5), as in the OSSE experiments.

The prior inner-boundary initial condition is drawn from the normal distribution of the MAS ensemble for
CR2100,  (0,Bloc) as before (and is not further perturbed in any way). Unlike the OSSE experiments, how-
ever, we have no truth state to compare, so we test the skill of our data assimilated analysis state against
an independent set of observations that are taken from the ACE spacecraft positioned at 1, approximately
0.99 AU ∼ 213rS from the Sun on the Earth-Sun line, which are sampled every 5 hr from OMNI-hourly averages,
as for the STEREO A and B spacecraft data.

Figure 10 shows the prior (i.e., model with no data assimilation) and posterior (i.e., model with STEREO A and B
observations assimilated) states in comparison to solar wind speed observed at the ACE spacecraft. The band
of fast wind, approximately 600 km/s, in the prior state is slower than is observed. But in general, the prior is in
relatively good agreement with observations and thus improving on this forecast provides a challenge for the
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Figure 8. (a) The differences between the prior and the true solar wind speeds and (b) the differences between the
posterior and the true solar wind speeds, in kilometers per second, when the prior state is specified as a uniform speed
of 500 km/s.

data assimilation scheme. After the data assimilation scheme is used, the posterior state still underestimates
the peak speed of the fast wind stream. The greatest improvements achieved by the data assimilation are
at the beginning of the Carrington Rotation (between 315∘ and 200∘), where the posterior is in much better
agreement with the observed ACE data. The smoothness of the prior and posterior states is a reflection of
simplicity of the numerical model used to represent the solar wind. The relatively shallow gradient of the fast
wind onset in the posterior solution also suggests numerical diffusion may be an issue.

In addition, from the first row of Table 2, we see that the overall errors in the system, as denoted by the cost
function, have been reduced by ≈52%. The RMSE is computed between the model and ACE solar wind speed,
such that

RMSE =

√√√√ 1
NACE

NACE∑
i=1

[(
yi − xi

)2]
, (27)

where the yi and xi correspond to the ACE observations and state, at their observation time/location.

It can be seen that assimilating the STEREO A and B observations has resulted in a reduction in the
near-Earth solar wind speed RMSE of ≈25% over the whole Carrington Rotation. While the prior state is a

Figure 9. The average Solar-Terrestrial Relations Observatory locations for
Carrington Rotation 2100, used for the generation of the observation
operator, defining the location of the observations. Figure generated from
https://stereo-ssc.nascom.nasa.gov/where.shtml.

good representation of the true state in this instance, the variational
scheme was still able to produce a lasting change in the model state
by correctly updating the inner-boundary condition and improving the
near-Earth solar wind speed. For this particular Carrington Rotation, the
MAS ensemble mean (without STEREO data assimilation) provides a very
good match to the observed near-Earth solar wind. In particular, the peak
of the fast wind band (between 160∘ and 90∘) is better reproduced by the
MAS ensemble mean than by the posterior. The posterior does better cap-
ture the structures present in the observed solar wind speed between 360∘
and 210∘ and 90∘ and 0∘. However, the overall RMSE of the ensemble mean
is lower than for the posterior. Thus, in this instance, the improvements
to the prior state provided by the assimilation of STEREO data are not as
great as considering the full ensemble, suggesting the prior error covari-
ance matrix for this Carrington Rotation is underestimated, perhaps due
to overaggressive localization.

We now expand the analysis to 12 further Carrington Rotations span-
ning the period October 2010 to October 2011. For each Carrington
Rotation, the STEREO spacecraft positions are updated (see second and
third columns of Table 2), as are the B matrices using a new MAS solar
wind speed ensemble as described in section 5. The observation error
covariance matrices, R, are also updated for each Carrington Rotation and
are dependent upon the prior states that are generated as a random
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perturbation (distributed by the normal distribution  (0,B)) from the
MAS ensemble mean.

Figure 10. Solar wind speed at 213rS (1) for Carrington Rotation 2100. The
observed solar wind from the ACE spacecraft in near-Earth space is shown in
black. The solar wind speeds from the model without any data assimilation
(the prior) and after assimilation of Solar-Terrestrial Relations Observatory A
and B observations (the posterior) are shown in blue and green, respectively.
The MAS ensemble mean solar wind speed is shown in magenta. Carrington
longitude is shown decreasing to the right, to mimic a time series observed
at a fixed point in the heliosphere (e.g., in near-Earth space), assuming the
solar wind perfectly corotates with the Sun. ACE = Advanced Composition
Explorer; MAS = Magnetohydrodynamics Around a Sphere.

The results are shown in Figures 11 and 12. The cost function values
and RMSEs for the MAS ensemble mean, posterior, and prior are listed in
Table 2. For 12 of the 13 Carrington Rotations, the use of data assimila-
tion leads to an improvement in the estimate of the near-Earth solar wind
speed compared to the no data assimilation model state. The reduction
in RMSE is in the range 2–41%; hence, we are seeing a significant bene-
fit to applying data assimilation in the majority of cases. In particular, we
note that for CRs 2105 and 2110, false alarm high-speed streams have been
removed by the data assimilation, whereas for CRs 2110, 2111, and 2112,
missed high-speed streams have been captured, albeit a little later than
observed. For CR 2111, the lateness of the fast stream may be explained
by the extremely fast CME observed by STEREO A at this time, which may
significantly influence the data assimilation. For CRs 2111 and CR 2112, a
significant systematic offset has also been removed.

In Carrington Rotation 2103, however, the data assimilated near-Earth
solar wind is worse than the prior state, with the posterior state hav-
ing a 26% higher RMSE compared to the prior state. There are no ICMEs
observed in near-Earth space (Cane & Richardson, 2003) or at the STEREO
spacecraft during this period.

In comparison with the MAS ensemble mean (the best estimate of
the truth from the MAS ensemble prior to data assimilation), the

posterior has greater RMSE for Carrington Rotations 2103–2107. These RMSE increases are rela-
tively small in magnitude compared to the improvements from data assimilation in other CRs, par-

Table 2
Table Showing Prior and Posterior Cost Function Values, the RMSEs of the MAS Mean, Prior, and Posterior States for Each Carrington Rotation, and the Percentage
Reductions in RMSE Between the MAS Mean/Prior State and the Posterior States

Post./

STEREO STEREO MAS Post./

A loc. B loc. MAS mean prior

(∘ (∘ mean Prior Post. red. in red. in

Carr. from from Init. Final RMSE RMSE RMSE RMSE RMSE

Rot Earth) Earth)  (v0)  (v0) (km/s) (km/s) (km/s) (%) (%)

2100 80.6 −72.84 799.54 381.07 70.60 99.19 74.81 −5.96 24.57

2101 82.1 −76.0 918.91 570.15 82.69 79.46 71.88 13.07 9.54

2102 83.2 −79.6 1,704.32 768.73 82.41 94.64 65.89 20.05 30.38

2103 84.1 −83.6 2,866.68 496.45 83.50 79.36 99.89 −19.63 −26.87

2104 85.2 −87.1 1,435.50 444.03 93.12 122.96 101.60 −9.09 17.39

2105 86.0 −90.3 2,036.20 515.61 61.76 91.54 67.44 −9.20 26.32

2106 86.8 −92.9 2,429.19 598.49 81.06 106.95 88.67 −9.39 17.09

2107 87.5 −94.6 1,616.64 1,030.86 119.06 127.67 125.43 −5.35 1.75

2108 88.7 −95.3 3,086.53 1,384.29 78.78 74.09 68.47 13.09 7.59

2109 90.6 −95.0 1,585.78 684.77 92.75 93.14 85.63 7.68 8.06

2110 93.3 −93.7 2,756.18 740.25 112.91 119.32 65.84 41.69 44.83

2111 96.3 −92.5 4,563.84 1,461.13 121.141 125.05 79.23 34.60 36.64

2112 99.1 −92.0 2,353.79 1,028.48 164.82 154.00 91.65 44.39 40.49

Average 87.96 −88.11 2,165.62 777.25 95.74 105.18 83.57 8.92 18.37

Note. The bottom row shows the average values across all 13 Carrington rotations. STEREO = Solar-Terrestrial Relations Observatory; MAS = Magnetohydrodynamics
Around a Sphere; RMSE = root mean square errors.
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Figure 11. Near-Earth solar wind speed (at 1) for 12 Carrington Rotations (a–l) spanning October 2010 to October
2011. The black line shows observed solar wind speed in near-Earth space by the ACE spacecraft. The blue lines show
the prior state, generated using the MAS ensemble, as specified in Owens and Riley (2017). The green lines show the
posterior state, resulting from assimilation of Solar-Terrestrial Relations Observatory A and B observations. The magenta
lines show the mean of the MAS ensemble. ACE = Advanced Composition Explorer; MAS = Magnetohydrodynamics
Around a Sphere.

ticularly Carrington Rotations 2108 through 2112. The high RMSEs relative to the MAS ensemble
mean could be a result of the latitudinal difference in the STEREO and ACE spacecraft (which
the 2-dimensional model assumes all lie in the equatorial plane), which could lead to sampling of
different solar wind structures. If so, this could be at least partly mitigated by the use of a fully 3-dimensional
solar wind model, though heliospheric latitudinal localization may need to be treated in a different manner
to the heliospheric longitudinal localization considered here. The MAS ensemble mean seems to perform
better when there are no transients in the solar wind and when the solar wind is relatively steady state. The
data assimilated solar wind speed performs increasingly better than the MAS ensemble mean when there is
increased Carrington Rotation-to-Carrington Rotation variability, as the solar cycle increases toward the end
of the period considered.
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Figure 12. The RMSE in near-Earth (at 1) solar wind speed as a function of
Carrington Rotation. Blue line shows the prior state, generated using the
MAS ensemble, and the green lines shows the RMSEs of the posterior state,
resulting from assimilation of Solar-Terrestrial Relations Observatory A and B
observations. The magenta line shows the mean of the MAS ensemble.
MAS = Magnetohydrodynamics Around a Sphere; RMSE = root mean
square errors.

Averaged across all 13 Carrington Rotations considered here, data assim-
ilation of STEREO data results in 18.4% reduction in near-Earth solar wind
RMSE compared to the prior state and an 8.9% reduction in RMSE com-
pared to the MAS ensemble mean. In Figures B1 and B2 and Tables B1 and
B2, we show that at the observation locations themselves, the gains from
data assimilation are greater still. For STEREO A, there is a 42.7% reduction
in the prior RMSE and a 35.0% reduction in the MAS mean RMSE as a result
of the data assimilation. For STEREO B, there is a 38.1% reduction in the
prior RMSE and a 29.8% reduction in the MAS mean RMSE as a result of the
data assimilation.

7. Limitations to the Variational Approach
While this study shows there is a great deal of potential available in the
use of variational data assimilation when applied to the solar wind, there
are many hurdles that still need to be overcome. It is also noted that the
adjoint method is an extremely powerful method once generated, though
this is a substantially simpler task for the solar wind propagation tool used
here than for a full MHD model of the solar wind, as discussed below.

Variational data assimilation methods require the generation of an accu-
rate B matrix, which may be the reason for the lesser improvements noted
in CR2107–2109. The prior covariance matrix, B, may not fully represent
the errors present in the prior state due to the linear dependence of the
ensemble members. This may lead to a prior covariance matrix that is

of too low rank for the gradient to be calculated accurately by the adjoint method. As an alternative to
using a different covariance matrix for each Carrington Rotation, a climatological covariance matrix could
be generated using MAS ensembles from multiple Carrington Rotations. This will increase the amount of
information contained within the B matrix and will negate the need for localization. However, this solution
negates the advantage of having a flow-dependent covariance matrix that is specific to each Carrington Rota-
tion. It may be the case that this flow dependency is necessary for effective B matrix generation and that
a Carrington-Rotation-specific prior error uncertainty matrix may need to be created for optimal assimila-
tion. This mirrors the “hybrid” data assimilation schemes currently being investigated in NWP (Bonavita et al.,
2016; Goodliff et al., 2015). In both cases, the accuracy of the B matrix relies both on the accuracy of the
coronal model for defining the near-Sun solar wind and the method of sampling the near-Sun solar wind
to produce the ensemble. Further research is required to quantify the potential improvements from using
Carrington-rotation specific B matrices, climatological B matrices, and the sensitivity to the accuracy of the
coronal model used.

The adjoint model is unique to each numerical model and can be extremely difficult to compute efficiently for
high-dimensional models. Furthermore, as mentioned in section 4, the variational data assimilation methods
rely upon the linearization of the numerical model. The simple numerical model in this study is reasonably
linear, and therefore, long assimilation windows of one full Carrington Rotation (27 days) are possible. For
more complex, higher-dimensional models that are more nonlinear, the assimilation window will need to be
much shorter to avoid computational issues. For NWP, the typical window length is 6–12 hr, but it is unclear
how long the assimilation window can and should be for complex MHD models, such as Enlil (e.g., (Odstrcil,
2003; Odstrcil & Pizzo, 1999; Odstrcil et al., 2004) or EUHFORIA (Poedts & Pomoell, 2017). This depends on
the spatial resolution of the model, as higher resolutions typically lead to stronger nonlinearities with shorter
error growth timescales, and also how close the model is to the true solution. NWP owes much of its forecast
accuracy to the enormous amount of observations in each 6-hr window (approximately 107 observations).
This also means that the initial boundary condition is accurate as well, such that the linearizations work well
for longer. Unfortunately, the sparsity of observations for space weather means it cannot readily adopt this
solution.
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8. Discussion and Conclusions
The experiments shown in this study are the first, to the authors’ knowledge, application of a variational data
assimilation method applied to the solar wind using in situ spacecraft observations. This data assimilation
method maps observational information from 215rS back toward the Sun, to the inner boundary of the solar
wind model at 30rS. Twin experiments showed that this variational data assimilation is able to reduce the error
in the dynamical model using 5-hourly observations in the near-Earth space. By improving the inner-boundary
conditions of the solar wind speed, it is possible to retrieve the structure of the solar wind speed produced by
the numerical model in the entire domain between the Sun and Earth (at least within the spacecraft orbital
plane). This allows solar wind structures, such as bands of fast and slow solar wind, to be reconstructed by the
data assimilation method.

This variational data assimilation scheme requires an estimate of the prior error uncertainty matrix, B. In
meteorological applications, there are many decades of forecasts and reanalysis data sets that enable a more
accurate representation of the prior error uncertainty matrix. In this study, we have used an ensemble of
inner-boundary conditions to estimate the B matrix, over a single Carrington Rotation. It may be more use-
ful to generate a B matrix with more ensemble members, over multiple Carrington rotations, to incorporate
more information about possible error structures in the solar wind. This has the benefit of incorporating addi-
tional information from the coronal model solutions, which generally capture the overall solar wind structure
but suffer from relatively small positional errors. Further research is also required in order to better deter-
mine how to accurately generate the observation error covariance matrix, R, and how to properly incorporate
representivity errors into this matrix.

By applying the same data assimilation to three different prior states, we have demonstrated the importance
of a “good” prior solution from the coronal models. Thus, forecast skill gained from assimilation of solar wind
observations will further increase with developments in coronal modeling and initialization, such as from
improved photospheric magnetic field characterization (Arge et al., 2010). In this study, we focussed on using
synthetic and real in situ spacecraft observations, though in principle, the same data assimilation framework
can be applied to remote measurements of the solar wind, such as interplanetary scintillation and white-light
heliospheric imager observations. The difficulty, however, lies in accurately representing the observational
error, both in the solar wind speed measurement and in the generation of the observation operator,  (as
both techniques involve some degree of line-of-sight integration). The latter uncertainty could possibly be
approximated within a data assimilation approach by weak-but-widespread localization, but such techniques
will form part of a future study.

The data assimilation scheme was also used to make hindcasts of near-Earth solar wind speed by assimilating
approximately 1 year of in situ observations from the STEREO spacecraft, when they were approximately 80∘
ahead and behind the Earth in its orbit with respect to the Sun. The prior state has been generated from the
MAS ensemble; thus, the information contained within the STEREO A and B observations is not carried on to
subsequent Carrington Rotations. The data assimilation analysis can, however, be used to forecast the inner
boundary for the subsequent Carrington Rotation. This means that there are two possible estimates of the
inner boundary for the subsequent Carrington Rotation, one using information from within the inner bound-
ary (from the MAS model) and one estimate using information at heliocentric distances beyond the inner
boundary (from the assimilation of in situ solar wind data). How we consolidate these disparate estimates is a
question for future research. Nevertheless, even with the approach used here, the root mean square error in
the near-Earth solar wind speed hindcasts was reduced by 18% by the use of STEREO data assimilation.

The interval considered in this study (August 2010 to August 2011) is close to solar minimum; thus, the coro-
nal mass ejection rate is much reduced compared to solar maximum. This interval, however, still features
nine ICMEs observed in near-Earth space (though none with speeds above 600 km/s; Cane & Richardson,
2003). Given the large angular separation of the STEREO spacecraft from Earth, it is unlikely these same ICMEs
would be present in the assimilated data. The localization required for such transient structures will be signifi-
cantly different (in both space and time) than for the ambient, steady-state solar wind. For example, assuming
the fast solar wind from an ICME persists at the same Carrington longitude for a whole solar rotation will
significantly degrade a forecast. Fast ICMEs could result in missed high-speed streams in the posterior solu-
tion. Conversely, ICMEs seen by the STEREO spacecraft, which did not encounter Earth, could result in false
high-speed streams in the posterior solution. With very limited spatial sampling from in situ spacecraft, such
transient events of limited spatial extent will be problematic for any data assimilation scheme. The solution to
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Figure B1. Near-Earth solar wind speed for 12 Carrington Rotations (a–l) spanning October 2010 to October 2011. The
black line shows observed solar wind speed at the STEREO A satellite location. The blue lines show the prior state,
generated using the MAS ensemble, as specified in Owens and Riley (2017), and the magenta line is the MAS ensemble
mean. The green lines show the posterior state. MAS = Magnetohydrodynamics Around a Sphere;
STEREO = Solar-Terrestrial Relations Observatory.

dealing with transient structures will likely be greater observational sampling (both in space and time), such
as with the remotely sensed observations discussed above. But weighting the relative merits of the two data
types, namely, precision point measurements and nonlocalized synoptic measurements, will require careful
attention in the observation error matrix. In practice, however, the importance of in situ observations, partic-
ularly in terms of the magnetic field observations, may mean automated ICME detection algorithms also need
to be applied in real time.

The major outstanding issue with using a variational data assimilation scheme in an operational setting is that
the adjoint method is not scalable to higher-dimensional or more complex models. The tangent linear and
adjoint models are unique to each numerical model and can be extremely difficult and require many human
years to create an efficient scheme (however, once created, the adjoint method is an extremely powerful and
efficient tool, as shown in this paper). This means that without substantial investment, it will not be possible to
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Figure B2. The RMSE in near-Earth solar wind speed as a function of Carrington Rotation. Blue line shows the prior state,
generated using the MAS ensemble, and the green lines shows the RMSEs of the posterior state, resulting from
assimilation of STEREO A and B observations. MAS = Magnetohydrodynamics Around a Sphere; RMSE = root mean
square errors; STEREO = Solar-Terrestrial Relations Observatory.

utilize an adjoint model in a full MHD model, such as Enlil or EUHFORIA. This issue indicates that it is perhaps
more useful to use the adjoint-based data assimilation methods with smaller, simpler solar wind/MHD models.
This approach could be define an optimum set of boundary condition using solar wind observations which
can then be used to drive more complex models. For data assimilation within more complex MHD models,
in order to map observational information from near-Earth space to the inner boundary, it is perhaps more
informative/useful to use a hybrid data assimilation method, such as Ensemble-4DVar (Amezcua et al., 2017;
Goodliff et al., 2017), or a smoother-based data assimilation method, such as the Iterative Ensemble Kalman
Smoother (Bocquet & Sakov, 2014). These will be tested in future studies.

Appendix A: Deriving Strong Constraint Cost Function

In order to combine the observational information within y with the state vector, x, we appeal to Bayes’
Theorem (Bayes & Price, 1763), which states that

p (x|y) = p (y|x) p (x)
p (y)

, (A1)

where p (x|y) is the posterior probability distribution function, the probability of the state, x, occurring given
the observation, y, and is the distribution we wish to estimate in data assimilation; p(y|x) is the likelihood
distribution, which is the probability of the observation occurring for any given state; p (x) is the prior distri-
bution, the probability of the state occurring, and p (y) is the probability of the observation occurring and is
a constant, normalizing factor for any given observation.

The posterior distribution gives the full picture of the probability of the state space, given the observational
data and is what we wish to estimate. Typically, however, the state dimension is extremely large, for example,
for NWP, the state vector is of the order 109-dimensional vector. This makes it impossible for the full posterior
distribution to be computed explicitly. Therefore, assumptions about the prior distributions, the likelihood
distributions, and the numerical model must be made to simplify the problem. Furthermore, we must define
precisely what we mean by the optimal estimate.

In the variational framework, optimal state is defined as the state which maximizes the posterior probability
distribution (the mode of the posterior distribution; Dimet & Talagrand, 1986). In addition, the prior, observa-
tion, and model errors are all assumed to be unbiased Gaussian distributions. This means that the probability
distributions of the prior error, 𝝃0, the observation error, 𝝐k , and the model error, 𝜼i, probability distributions
can be fully defined by their mean and respective error covariance matrices, such that

p(𝝃0) =
(√

2𝜋|B|)−Nx
exp
(
−1

2
𝝃T

0B−1𝝃0

)
, (A2)
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Figure B3. Near-Earth solar wind speed for 12 Carrington Rotations (a–l) spanning October 2010 to October 2011. The
black line shows observed solar wind speed at the STEREO B satellite location. The blue lines show the prior state,
generated using the MAS ensemble, as specified in Owens and Riley (2017), and the magenta line is the MAS ensemble
mean. The green lines show the posterior state. MAS = Magnetohydrodynamics Around a Sphere;
STEREO = Solar-Terrestrial Relations Observatory.

p(𝜼i) =
(√

2𝜋|Qi|)−Nx
exp
(
−1

2
𝜼T

i Q−1
i 𝜼i

)
, (A3)

p(𝝐k) =
(√

2𝜋|Rk|)−Ny
exp
(
−1

2
𝝐T

kR−1
k 𝝐k

)
, (A4)

where B is the prior error covariance matrix, Qi is the model error covariance matrix for each point i, and Rk is
the observation error covariance matrix for the kth observation.

In this study, as we are performing initial data assimilation experiments in the solar wind, we shall make the
further assumption that the model error is 0, that is, the perfect model assumption. This is known as the Strong
Constraint. While it is possible to define the variational problem with model error (Lang et al., 2016; Scheichl
et al., 2013), the so-called Weak-Constraint approach, it is beyond the scope of this paper and will not be
discussed here.
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Figure B4. The RMSE in near-Earth solar wind speed as a function of Carrington Rotation. Blue line shows the prior state,
generated using the MAS ensemble, and the green lines shows the RMSE of the posterior state, resulting from
assimilation of STEREO A and B observations. MAS = Magnetohydrodynamics Around a Sphere; RMSE = root mean
square errors; STEREO = Solar-Terrestrial Relations Observatory.

As the model error is assumed equal to 0, xi can be written explicitly in terms of the initial condition,
x0, such that xi = fi−1

(
fi−2

(
… f0

(
x0

)
…
))

. Using the probability distribution functions described by
equations (A2)–(A4), it is possible to write the likelihood and prior distributions as

p(y0,… , yNy
|x0) =

Ny∏
k=0

[(√
2𝜋|Rk|)−Ny

exp
(
−1

2

(
yk −k(x0)

)
R−1

k

(
yk −k(x0)

))]
, (A5)

Table B1
Table Showing the RMSEs of the MAS Mean, Prior, and Posterior States for Each Carrington
Rotation, and the Percentage Reductions in RMSE Between the MAS Mean/Prior State and
the Posterior States at STEREO A’s Locations

MAS/ Post./

MAS Prior Post. prior prior

Carr. STEREO RMSE RMSE RMSE RMSE RMSE

Rot. A pos. (km/s) (km/s) (km/s) red. (%) red. (%)

2100 80.6 81.12 77.85 50.68 37.52 34.90

2101 82.1 75.66 77.72 63.25 16.40 18.62

2102 83.2 67.11 99.11 65.22 2.82 34.19

2103 84.1 103.26 149.86 52.94 48.73 64.67

2104 85.2 70.86 89.17 44.88 36.66 49.67

2105 86 76.61 98.73 51.37 32.95 47.97

2106 86.8 102.77 130.98 69.08 32.78 47.26

2107 87.5 95.75 96.69 75.11 21.56 22.32

2108 88.7 112.13 120.24 81.45 27.36 32.26

2109 90.6 88.42 95.56 52.15 41.02 45.43

2110 93.3 120.96 126.39 51.97 57.04 58.88

2111 96.3 175.45 177.94 81.23 53.70 54.35

2112 99.1 124.77 120.27 67.46 45.93 43.91

Average 87.96 99.61 112.35 62.06 34.96 42.65

Note. The bottom row shows the average values across all 12 Carrington Rotations.
STEREO = Solar-Terrestrial Relations Observatory; MAS = Magnetohydrodynamics
Around a Sphere; RMSE = root mean square errors.
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Table B2
Near-Earth Solar Wind Speed for 12 Carrington Rotations Spanning October 2010 to
October 2011

MAS/ Post./

MAS Prior Post. prior prior

Carr. STEREO RMSE RMSE RMSE RMSE RMSE

Rot. B pos. (km/s) (km/s) (km/s) red (%) red (%)

2100 −72.8 63.02 44.34 37.92 39.83 14.48

2101 −76.0 59.48 65.56 45.23 23.96 31.01

2102 −79.6 88.71 101.49 68.43 22.86 32.57

2103 −83.6 74.33 108.31 53.32 28.27 50.77

2104 −87.1 69.04 96.43 52.06 24.59 46.01

2105 −90.3 73.83 114.12 79.71 −7.96 30.15

2106 −92.9 64.47 111.36 39.33 38.99 64.68

2107 −94.6 102.80 103.28 82.28 19.96 20.33

2108 −95.3 115.54 137.30 67.63 41.47 50.74

2109 −95.0 103.43 102.80 69.33 32.97 32.56

2110 −93.7 125.33 136.90 69.97 44.17 48.89

2111 −92.5 114.96 122.44 68.35 40.54 44.18

2112 −92.0 134.54 119.16 84.47 37.22 29.11

Average −88.11 91.50 104.88 62.93 29.76 38.11

Note. The black line shows observed solar wind speed at the STEREO B satellite location.
The blue lines show the prior state, generated using the MAS ensemble, as specified
in Owens and Riley (2017), and the magenta line is the MAS ensemble mean. The
green lines show the posterior state. MAS = Magnetohydrodynamics Around a Sphere;
RMSE = root mean square error; STEREO = Solar-Terrestrial Relations Observatory.

p(x0) =
(√

2𝜋|B|)−Nx
exp
(
−1

2

((
x0 − xb

)T
B−1
(

x0 − xb
)))

, (A6)

where k now implicitly contains the numerical model fi.

As p(y) is constant, this implies that the posterior probability can be written as

p(x0|y0,… , yNy
) ∝ exp

(
−
(

x0

))
, (A7)

where


(

x0

)
= 1

2

(
x0 − xb

)T
B−1
(

x0 − xb
)
+ 1

2

Ny∑
k=0

[(
yk −k(x0)

)
R−1

k

(
yk −k(x0)

)]
(A8)

is the cost function. It can be seen that by minimizing 
(

x0

)
, we maximize the posterior probability

distribution, which is what we wish to find.

There are many minimization algorithms available to do this. The majority of the efficient methods to do this
require the gradient/Hessian to be computed, which are often the most difficult parts to obtain estimates for,
especially in higher dimensions.

Appendix B: Plots/Tables of Solar Wind Speeds at STEREO A and B, Over Carrington
Rotations 2101–2112
In this section, the observations, MAS ensemble mean, prior and posterior solar wind speeds are shown at
STEREO A and B for the experiments in Section 6.3. In addition, the RMSEs for each Carrington Rotation are
presented in Tables B1 and B2 and Figures B2 and B4.
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Linker, J. A., Mikić, Z., Biesecker, D. A., Forsyth, R. J., Gibson, S. E., Lazarus, A. J., et al. (1999). Magnetohydrodynamic modeling of the solar
corona during Whole Sun Month. Journal of Geophysical Research, 104(A5), 9809–9830. https://doi.org/10.1029/1998JA900159

Lorenc, A. C. (1986). Analysis methods for numerical weather prediction. Quarterly Journal of the Royal Meteorological Society, 112(474),
1177–1194.

Macbean, N., Peylin, P., Chevallier, F., Scholze, M., & Schürmann, G. (2016). Consistent assimilation of multiple data streams in a carbon cycle
data assimilation system. Geoscientific Model Development, 9, 3569–3588. https://doi.org/10.5194/gmd-9-3569-2016

Mackay, D., & Yeates, A. (2012). The Sun’s global photospheric and coronal magnetic fields: Observations and models. Living Reviews in Solar
Physics, 9(1), 6. https://doi.org/10.12942/lrsp-2012-6

McGregor, S. L., Hughes, W. J., Arge, C. N., Owens, M. J., & Odstrcil, D. (2011). The distribution of solar wind speeds during solar minimum:
Calibration for numerical solar wind modeling constraints on the source of the slow solar wind. Journal of Geophysical Research, 116,
A03101. https://doi.org/10.1029/2010JA015881

Nerger, L., Hiller, W., & Schröter, J. (2005). PDAF—The Parallel Data Assimilation Framework: Experiences with Kalman filtering.
World Scientific.

Odstrcil, D. (2003). Modeling 3-D solar wind structure. Advances in Space Research, 32(4), 497–506.
Odstrcil, D., & Pizzo, V. J. (1999). Distortion of the interplanetary magnetic field by three-dimensional propagation of coronal mass ejections

in a structured solar wind. Journal of Geophysical Research, 104(A12), 28225–28239.
Odstrcil, D., Riley, P., & Zhao, X. P. (2004). Numerical simulation of the 12 May 1997 interplanetary CME event. Journal of Geophysical Research,

109, A02116. https://doi.org/10.1029/2003JA010135
Owens, M. J., & Forsyth, R. J. (2013). The heliospheric magnetic field. Living Reviews in Solar Physics, 10(5), 5. https://doi.org/10.12942/

lrsp-2013-5
Owens, M. J., Lockwood, M., & Riley, P. (2017). Global solar wind variations over the last four centuries. Scientific Reports, 7(41), 548.

https://doi.org/10.1038/srep41548
Owens, M. J., & Riley, P. (2017). Probabilistic solar wind forecasting using large ensembles of near-Sun conditions with a simple

one-dimensional upwind scheme. Space Weather, 15, 1461–1474. https://doi.org/10.1002/2017SW001679
Pereira, M. B., Berre, L., Pereira, M. B., & Berre, L. (2006). The use of an ensemble approach to study the background error covariances in a

Global NWP model. Monthly Weather Review, 134(9), 2466–2489. https://doi.org/10.1175/MWR3189.1
Poedts, S., & Pomoell, J. (2017). EUHFORIA: A solar wind and CME evolution model. In 19th EGU General Assembly, EGU2017, proceedings from

the conference held 23-28 April, 2017 in Vienna Austria, pp. 7396.
Riley, P., Linker, J. A., & Arge, C. N. (2015). On the role played by magnetic expansion factor in the prediction of solar wind speed. Space

Weather, 13, 154–169. https://doi.org/10.1002/2014SW001144
Riley, P., Linker, J. A., Lionello, R., & Mikic, Z. (2012). Corotating interaction regions during the recent solar minimum: The power and limita-

tions of global MHD modeling. Journal of Atmospheric and Solar-Terrestrial Physics, 83, 1–10. https://doi.org/10.1016/J.JASTP.2011.12.013
Riley, P., & Lionello, R. (2011). Mapping solar wind streams from the Sun to 1 AU: A comparison of techniques. Solar Physics, 270(2), 575–592.

https://doi.org/10.1007/s11207-011-9766-x
Sasaki, Y. (1970). Numerical variational analysis formulated under the constraints as determined by longwave equations and a low-pass

filter. Monthly Weather Review, 98(12), 884–898. https://doi.org/10.1175/1520-0493(1970)098<0884:NVAFUT>2.3.CO;2
Scheichl, R., Cullen, M., Freitag, M. A., & Kindermann, S. (2013). Large scale inverse problems: Computational methods and applications in

the Earth Sciences, 216 pp., De Gruyter.
Stone, E. C., Frandsen, A. M., Mewaldt, R. A., Christian, E. R., Margolies, D., Ormes, J. F., & Snow, F. (1998). The Advanced Composition Explorer.

In C. T. Russell, R. A. Mewaldt, & T. T. Von Rosenvinge (Eds.), The Advanced Composition Explorer Mission (Vol. 86, pp. 1–22). Dordrecht:
Springer. https://doi.org/10.1023/A:1005082526237

Trémolet, Y. (2006). Accounting for an imperfect model in 4D-Var. Quarterly Journal of the Royal Meteorological Society, 132(621),
2483–2504.

van Leeuwen, P. J. (2014). Particle filters for the geosciences, Advanced data assimilation for geosciences: Lecture notes of the Les Houches
School of Physics: Special Issue June 2012, 291.

Wang, C., Hajj, G., Pi, X., Rosen, I. G., & Wilson, B. (2004). Development of the global assimilative ionospheric model. Radio Science, 39,
RS1S06. https://doi.org/10.1029/2002RS002854

Zhu, M., van Leeuwen, P. J., & Amezcua, J. (2016). Implicit equal-weights particle filter. Quarterly Journal of the Royal Meteorological Society,
142(698), 1904–1919.

LANG AND OWENS 83

https://doi.org/10.1029/1998JA900159
https://doi.org/10.5194/gmd-9-3569-2016
https://doi.org/10.12942/lrsp-2012-6
https://doi.org/10.1029/2010JA015881
https://doi.org/10.1029/2003JA010135
https://doi.org/10.12942/lrsp-2013-5
https://doi.org/10.12942/lrsp-2013-5
https://doi.org/10.1038/srep41548
https://doi.org/10.1002/2017SW001679
https://doi.org/10.1175/MWR3189.1
https://doi.org/10.1002/2014SW001144
https://doi.org/10.1016/J.JASTP.2011.12.013
https://doi.org/10.1007/s11207-011-9766-x
https://doi.org/10.1175/1520-0493(1970)098%3C0884:NVAFUT%3E2.3.CO;2
https://doi.org/10.1023/A:1005082526237
https://doi.org/10.1029/2002RS002854

	Abstract
	Plain Language Summary
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


