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THE EXCEPTIONAL SUMMER HEAT WAVE  
IN SOUTHERN EUROPE 2017

Sarah F. Kew, Sjoukje Y. Philip, Geert Jan van Oldenborgh, Friederike E. L. Otto,  
Robert Vautard, and Gerard van der Schrier

Across the Euro-Mediterranean the likelihood of a heat wave at least as hot as summer 2017 is now on the order of 10%. 
 Anthropogenic climate change has increased the odds at least threefold since 1950.
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INTRODUCTION. Summer 2017 in western Eu-
rope and the Euro-Mediterranean was remarkable in 
particular for its very hot heat waves. Following an 
exceptionally warm June (Otto et al. 2017) in western 
Europe, the heat returned to southern Spain in July 
and contributed to substantial forest fires. Madrid 
(Retiro) hit 40.6°C on July 13, equaling the 2012 re-
cord. Heat episodes continued into August, extending 
to many areas in southern Europe (see Fig. 1b).

Early August saw a particularly intense heat wave 
that was described as the “worst heat wave since 2003” 
(BBC 2017) in southern Europe and became dubbed as 
“Lucifer,” with local maximum temperatures in Italy 
and the Balkans topping 40°C for several days. Sev-
eral countries issued code red alerts (Fig. 1a). Records 
were broken in southern France (4 August, Nîmes-
Courbessac, 41.6°C), for example, and in Corsica and 
Croatia, where nighttime temperatures exceeded 30°C. 
Widespread heat and lack of precipitation triggered a 
severe drought in many areas, persisting into fall.

Southern Europe is familiar with very hot sum-
mer days. However, sustained extreme temperatures 

become hazardous, particularly for the very young 
and elderly and those suffering from heart conditions, 
high blood pressure, or asthma (IFRC 2017), or tour-
ists unaccustomed to high temperatures. High energy 
and water consumption during prolonged heat waves 
also puts strain on supplies.

There were some reports of deaths associated with 
the August heat wave, but usually the full impact 
is only evident after analyzing and attributing the 
total mortality excesses (e.g., D’Ippoliti et al. 2010; 
Mitchell et al. 2016). Increased hospital admissions 
with people suffering from heat-related conditions 
were also reported. The agricultural industry bore 
the brunt of the hot and dry summer season, with 
Bosnia, Serbia, and Italy experiencing major losses 
(Zuvela and Vasovic 2017). In Italy, grape harvests 
(Horowitz 2017) were carried out weeks in advance 
to reduce risk of heat damage.

Here, we investigate the return period and chang-
ing risk of heat waves like those of summer 2017 
in the Euro-Mediterranean, seeking a spatial and 
temporal event definition related to the impacts that 
society experienced (Otto et al. 2018). We analyze 
the annual maxima of 3-day-mean area-averaged 
daily maximum temperatures (TX3X) for a box over 
southeast Europe (“SE-box”; 8°–24°E, 36°–48°N; 
Fig. 1b), using the European daily high-resolution 
gridded dataset (E-OBS; 1950–present; Haylock 
et al. 2008). This spatial event definition is closely 
linked to impacts on the national scale, as the SE-
box corresponds well with the early August 2017 
Meteoalarm red-alert regions (Fig. 1a)—warnings 
issued by national weather services and therefore 
related to how weather is nationally perceived—for 
which there is good data homogeneity (up to 48°N). 
The 3-day temporal definition is representative of 
the period of time that sustained high temperatures 
became more hazardous (D’Ippoliti et al. 2010). 
Local station data are generally more homogeneous 
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in their time series than gridded observations, which 
can suffer from varying variability (heteroscedastic-
ity) due to varying numbers of input stations per grid 
box over time: more stations can average out some of 
the noise, and no stations gives climatology. A result-
ing artificial change in variability over time could be 
incorrectly interpreted as a change in the frequency 
of extremes due to global warming. We therefore 
additionally analyze homogenized station series of 
TX3X, based on the European Climate Assessment 
and Dataset (ECA&D; Klein Tank et al. 2002), for 
four stations (see dots in Fig. 1c): Madrid-Cuatro 
Vientos Airport (Spain), Montélimar (France), 
Monte Cimone (Italy), and Gospić (Croatia). The 
record heat wave conditions were to the south of 
the stations analyzed here in Spain and France (see 
ranking of 2017 TX3X in Fig. 2d), but we could not 

find (by visual inspection of the TX3X time series) 
non-coastal stations without discontinuities in those 
regions and the models we use cannot resolve the 
required coastal effects.

To determine the return periods of TX3X, we 
fit the temperature observations to a generalized 
extreme value (GEV) distribution, with μ being the 
position parameter, σ the scale parameter, and ξ the shape 
parameter. Global warming is factored in by allow-
ing the GEV fit to shift with the (low-pass filtered) 
global mean surface temperature (Tglobal), that is, 
μ = μ0 + αTglobal, with α being the fitted trend in K K–1 
and with σ and ξ fixed. This assumption, that global 
warming influences only the mean of the distribution 
and not the variability or shape, is checked in climate 
models with enough data to analyze the distributions 
of the past and present climate in independent time 

Fig. 1. Context of the event in maps. (a) Meteoalarm weather alerts for 1420 CET 4 Aug 2017. Note that maps 
are issued every 20 min; regions experiencing an alarm varied slightly during the hea twave of 3–5 August. All 
red warnings, and also the orange and yellow warnings in southern Europe, are for extreme high temperature. 
(b) 3-day averaged Tmax anomalies (w.r.t 1981–2010) for 3–5 Aug 2017, with box illustrating the area selected 
for analysis. Also shown are annual maxima of 3-day averaged Tmax as (c) anomalies w.r.t 1981–2010 and (d) 
rank of the year 2017 in the 1950–2017 series. Locations of the stations used in Spain, France, Italy, and Croatia 
(black markers) are given in (c). Source: E-OBS data.
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slices/experiments. Confidence intervals are estimated 
using a 1000-member non-parametric bootstrap.

After validations on several model ensembles 
(weather@home, the European Consortium Earth 
System Model (EC-Earth), the Hadley Centre Global 
Environment Model, version 3a, (HadGEM-3A), and 
the European branch of the Coordinated Regional 
Downscaling Experiment (EURO-CORDEX)] we 
perform a standard analysis to attribute changes in 
the return period to climate change, and synthesize 
the results. Similar methods, including the GEV ap-
proach described above, have been applied in van 
Oldenborgh et al. (2015), Uhe et al. (2016), Philip 
et al. (2018), and van Oldenborgh et al. (2018).

RESULTS. Our observational analysis shows that 
the 2017 SE-box TX3X peaked for 3–5 August at 
34.4°C (3.4°C higher than the average 3-day heat wave 
in 1981–2010) in the E-OBS dataset. The return period 
in 2017 is about 20 years [95% confidence interval 
(CI): 7–130 yr], whereas in 1950 the (extrapolated) 
return period is about 3000 years (97.5% CI: at least 
160 yr); see Fig. 2. The ratio of these return periods 
gives a best estimate of the risk ratio (RR) between 
1950 and 2017 of roughly 140 (97.5% CI: at least 5), 
and a change in magnitude of about 2.1°C (95% CI: 
0.9°–3.7°C).

In this particular study, model validation (see 
the online supplemental information) revealed that 
the models overestimate the variability found in 
the SE-box-averaged TX3X observations. Therefore 
we cannot provide RRs for models or a synthesis 

combining observations and models for the SE-box. 
It is nevertheless clear that there is an increase in the 
occurrence of heat waves like those of summer 2017. 
Observations revealed that, since 1950, the risk at least 
quintupled, but probably increased much more. We 
emphasize communication of the conservative lower 
limit of “at least 5” to avoid results dependent on large 
extrapolations. A formal attribution to anthropogenic 
climate change is therefore not possible but is very 
plausible given the attributed rise in seasonal mean 
temperatures (Stott et al. 2004).

The results for the station analysis are listed in 
Table 1. As expected, the return periods for Madrid-
Cuatro Vientos and Montélimar are not extreme, but 
in Monte Cimone and Gospić the 2017 heat wave was 
the highest on record. All stations show a significant 
trend toward more frequent extremes (p < 0.025). 
We also include model results (Table 1) for models 
evaluated (see the supplement) to perform adequately 
at the individual station locations. Three out of the 
four stations are located outside of the SE-box, which 
explains part of the different outcome in the models’ 
performance. Note that the signal-to-noise ratio of 
the observations will be smaller for individual stations 
than for an area average. Model systematic errors may 
therefore fall within uncertainty ranges of the obser-
vations more easily at single locations. A synthesized 
(weighted average) result for each station combining 
observed and available validated model results is 
given in the final column of Table 1. This provides 
estimates of the lower and upper bounds (95% CI) of 
the risk ratio between 1950 and 2017. In general, the 

Fig. 2. An example of the results for the observed TX3X for the SE-box. (a) The fit applied to observations, where 
asterisks mark the observations, the thick line denotes the time-varying mean (fitted position parameter), the 
thin lines mark 1σ and 2σ (with σ the fitted scale parameter) above the mean, and the two vertical red whiskers 
show the 95% confidence interval of the fitted position parameter for the climates of 1950 (leftmost) and 2017 
(rightmost). (b) Return period distributions shifted to the climates of 2017 (red lines and crosses) and the past 
(1950; blue lines and asterisks), including error margins (red and blue bounding curves). The purple square in 
(a) and horizontal line in (b) indicate the 2017 value (not included in the fits).
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lower bounds of the observations and model results 
are of the same order of magnitude but the upper 
bounds and best estimates differ with large differences 
in sample sizes and higher variability in the models. 
Besides providing a formal attribution, the effect of the 
model results in the synthesis is to confine the large 
uncertainty range on the upper bound.

In general, observations and models agree on a 
tendency toward more frequent 3-day summer tem-
perature extremes like in summer 2017, at the selected 
individual station locations. Accounting also for the 
observed increase in risk in the SE-box, we estimate 
that probabilities in 2017 are at least 3.5 times higher 
compared to 1950 (and at least 4 times higher com-
pared to 1900).

DISCUSSION. Our impact-based approach to at-
tribution for last summer’s Euro-Mediterranean heat 
waves yielded a return time in the current climate of 
around 20 years for southeastern Europe, the region 
suffering the greatest impacts. This is similar to King 
(2017), indicative that results are insensitive to minor 
differences in event definition. Significant trends in 
the likelihood of 3-day heat waves can be seen not only 
in area-averaged observations but also in individual 
station series. Foundational attribution work on Eu-
ropean seasonal temperature extremes (e.g., Stott et al. 
2004; Schär et al. 2004; Christidis et al. 2015) has led to 
a general view that the “heat wave attribution problem” 
is largely solved. On the daily time scale however, this 
is not the case: Models confirm an increase in likeli-

hood with global warming but fail to reproduce some 
key features of the observed distribution of heat waves 
[variability in southeastern Europe (this study) and 
trends and variability in northern Europe (Sippel et al. 
2016; Min et al. 2013)]. Future research is necessary to 
reveal the mechanisms. Possible hypotheses are over-
efficient model moisture recycling leading to spatial, 
and over time, temporal, temperature heterogeneity, 
insufficient moisture transport, or an incorrect vari-
ability in boundary layer height.
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