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Abstract. China’s fossil-fuel CO2 (FFCO2) emissions ac-
counted for approximately 28 % of the global total FFCO2
in 2016. An accurate estimate of China’s FFCO2 emissions
is a prerequisite for global and regional carbon budget anal-
yses and the monitoring of carbon emission reduction ef-
forts. However, significant uncertainties and discrepancies
exist in estimations of China’s FFCO2 emissions due to a
lack of detailed traceable emission factors (EFs) and multiple
statistical data sources. Here, we evaluated China’s FFCO2
emissions from nine published global and regional emis-

sion datasets. These datasets show that the total emissions
increased from 3.4 (3.0–3.7) in 2000 to 9.8 (9.2–10.4) Gt
CO2 yr−1 in 2016. The variations in these estimates were
largely due to the different EF (0.491–0.746 t C per t of coal)
and activity data. The large-scale patterns of gridded emis-
sions showed a reasonable agreement, with high emissions
being concentrated in major city clusters, and the standard
deviation mostly ranged from 10 % to 40 % at the provincial
level. However, patterns beyond the provincial scale varied
significantly, with the top 5 % of the grid level accounting for
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50 %–90 % of total emissions in these datasets. Our findings
highlight the significance of using locally measured EF for
Chinese coal. To reduce uncertainty, we recommend using
physical CO2 measurements and use these values for dataset
validation, key input data sharing (e.g., point sources), and
finer-resolution validations at various levels.

1 Introduction

Anthropogenic emissions of carbon dioxide (CO2) are one
of the major accelerators of global warming (IPCC, 2007).
Global CO2 emissions from fossil-fuel combustion and in-
dustry processes increased to 36.23 Gt CO2 yr−1 in 2016,
with a mean growth rate of 0.62 Gt CO2 yr−1 over the last
decade (Le Quéré et al., 2018). In 2006, China became the
world’s largest emitter of CO2 (Jones, 2007). CO2 emissions
from fossil-fuel combustion and cement production in China
were 9.9 Gt CO2 in 2016, accounting for approximately 28 %
of all global fossil-fuel-based CO2 emissions (Le Quéré et
al., 2018; IPCC AR5, 2013). To avoid the potential adverse
effects from climate change (Zeng et al., 2008; Qin et al.,
2016), the Chinese government has pledged to peak its CO2
emissions by 2030 or earlier and to reduce CO2 emissions
per unit gross domestic product (GDP) by 60 %–65 %, less
than the 2005 levels (SCIO, 2015). Thus, an accurate quan-
tification of China’s CO2 emissions is the first step toward
understanding its carbon budget and making carbon control
policy.

The total emission estimates for China are thought to be
uncertain or biased due to the lack of reliable statistical
data and/or the use of generic emission factors (EFs) (e.g.,
Guan et al., 2012; Liu et al., 2015b). National and provin-
cial data-based inventories use activity data from different
sources. The Carbon Dioxide Information Analysis Center
(CDIAC) uses national energy statistics from the United Na-
tions (UN) (Andres et al., 2012), and both the Open-Data
Inventory for Anthropogenic Carbon Dioxide (ODIAC) and
Global Carbon Project (GCP) mainly use CDIAC total esti-
mates, and thus they are identical in time series (Le Quéré
et al., 2018; Oda et al., 2018). The Emissions Database
for Global Atmospheric Research (EDGAR) and Peking
University CO2 (PKU-CO2, hereafter named PKU) derive
emissions from the energy balance statistics of the Inter-
national Energy Agency (IEA) (Janssens-Maenhout et al.,
2019; Wang et al., 2013). In contrast, provincial data-based
inventories developed within China all use the provincial en-
ergy balance sheet from the China Energy Statistics Year-
book (CESY), National Bureau of Statistics of China (NBS)
(Cai et al., 2018; Liu et al., 2013, 2015a; Shan et al., 2018).
There are generally four sources of EFs, i.e., (1) the Inter-
governmental Panel on Climate Change (IPCC) default val-
ues, which have been adopted by ODIAC and EDGAR (An-
dres et al., 2012; Janssens-Maenhout et al., 2019; Oda et al.,

2018); (2) National Development and Reform Commission
(NDRC) (NDRC, 2012b); (3) China’s National Communi-
cation, which reports to the United Nations Framework Con-
vention on Climate Change (UNFCCC) (NDRC, 2012a); and
(4) the China Emission Accounts and Datasets (CEADs) EF,
which are locally optimized through large sample measure-
ments (Liu et al., 2015b). The existing estimates of global
total FFCO2 emissions are comparable in magnitude, with
an uncertainty that is generally within ±10% (Le Quéré et
al., 2018; Oda et al., 2018). However, there are significant
differences in these values at the national scale (Marland et
al., 2010; Olivier et al., 2014), with the uncertainty ranging
from a few percent to more than 50 % in the estimated emis-
sions for individual countries (Andres et al., 2012; Boden et
al., 2016; Oda et al., 2018).

Along with total emissions estimates, the spatial distribu-
tion of emissions is important for several reasons: (1) spatial
gridded products enhance our basic understanding of CO2
emissions; (2) spatial distributions are key inputs (as priors)
for transport and data assimilation models, which influence
the carbon budget (Bao et al., 2020); and (3) spatial dis-
tributions can be used for policy making toward emissions
reductions and can provide useful information for the de-
ployment of instruments in emissions monitoring for high-
emissions areas recognized by multiple inventories (Han et
al., 2020). At the global level, gridded emissions datasets
are often based on the disaggregation of country-scale emis-
sions (Janssens-Maenhout et al., 2019; Wang et al., 2013).
Thus, gridded emissions data are subjected to errors and
uncertainties due to total emissions calculations and emis-
sions’ spatial disaggregation (Andres et al., 2016; Oda et al.,
2018; Oda and Maksyutov, 2011). For example, the Carbon
Dioxide Information Analysis Center (CDIAC) distributes
national energy statistics at a resolution of 1◦×1◦ using pop-
ulation density as a proxy (Andres et al., 2011, 2016). Fur-
ther, to improve the spatial resolution of the emissions in-
ventory, the Open-Data Inventory for Anthropogenic Carbon
dioxide (ODIAC) distributes national emissions based on
CDIAC and BP statistics with satellite nighttime lights and
power plant emissions (Oda et al., 2018; Oda and Maksyu-
tov, 2011). EDGAR derives emissions from the energy bal-
ance statistics of the International Energy Agency (IEA) and
obtains country-specific activity datasets from BP plc, the
United States Geological Survey (USGS), the World Steel
Association, the Global Gas Flaring Reduction Partnership
(GGFR)/US National Oceanic and Atmospheric Adminis-
tration (NOAA), and the International Fertilizer Association
(IFA). Gridded emissions maps at a resolution of 0.1◦×0.1◦

are produced using spatial proxy data based on population
density, traffic networks, nighttime lights, and point sources,
as described in Janssens-Maenhout et al. (2019). Based on
subnational fuel, population, and other geographically re-
solved data, a high-resolution inventory of global CO2 emis-
sions was developed at Peking University (Wang et al.,
2013).
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To accurately calculate emissions, a series of efforts have
been made to quantitatively evaluate China’s CO2 emissions
using national or provincial activity data, local EF, and de-
tailed datasets of point sources (Cai et al., 2018; Li et al.,
2017; Wang et al., 2013). The China High Resolution Emis-
sion Database (CHRED) was developed by Cai et al. (2018)
and Wang et al. (2014) based on provincial statistics, traf-
fic networks, point sources, and industrial and fuel-specific
EF. CHRED was featured based on its exclusive point source
data from 1.58 million industrial enterprises from the First
China Pollution Source Census. The Multiresolution Emis-
sion Inventory for China (MEIC) was developed by Zhang
et al. (2007), Lei et al. (2011), and Liu et al. (2015a) at Ts-
inghua University through the integration of provincial statis-
tics, unit-based power plant emissions, population density,
traffic networks, and EF (Li et al., 2017; Zheng et al., 2018a,
b). The MEIC uses the China Power Emissions Database
(CPED), in which the unit-based approach is used to calcu-
late emissions for each coal-fired power plant in China with
detailed unit-level information (e.g., coal use, geographical
coordinates). Regarding mobile emissions sources, a high-
resolution mapping approach is adopted to constrain vehi-
cle emissions using a county-level activity database. CEADs
was constructed by Shan et al. (2016, 2018) and Guan et
al. (2018) based on different levels of inventories to provide
emissions at the national and provincial scales. CEADs uses
coal EF from large-sample measurements (602 coal samples
and samples from 4243 coal mines), which are assumed to
be more accurate than the IPCC default EFs.

However, regardless of these efforts, China’s CO2 emis-
sions remain uncertain due to the large discrepancy among
current estimates, of which the difference ranges from 8 %
to 24 % of total estimates (Shan et al., 2016, 2018). Several
studies have undertaken efforts to quantify the possible un-
certainty in China’s FFCO2, such as differences due to es-
timation approaches (Berezin et al., 2013), energy statistics
(Hong et al., 2017; Han et al., 2020), spatial scales (Wang
and Cai, 2017), and point source data. Importantly, the au-
thors note that the lack of a comprehensive understanding
and comparison of the potential uncertainty in estimates of
China’s FFCO2, including spatial, temporal, proxy, and mag-
nitude components, cause Chinese emissions data to be more
uncertain, and thus it is important to present, analyze, and
explain such differences among inventories.

Here, we evaluated the uncertainty in China’s FFCO2 es-
timates by synthesizing global gridded emissions datasets
(ODIAC, EDGAR, and PKU) and China-specific emission
maps (CHRED, MEIC, and the Nanjing University CO2
(NJU) emission inventory). Moreover, several other invento-
ries were used in the evaluation analysis, such as the Global
Carbon Budget from the Global Carbon Project and the Na-
tional Communication on Climate Change of China (NCCC).

The aims of this study were to (1) quantify the magni-
tude and the uncertainty in China’s FFCO2 estimates using
the spread of values from state-of-the-art inventories and to

(2) identify the spatiotemporal differences of China’s FFCO2
emissions among the existing emission inventories and ex-
plore the underlying reasons for such differences. To our
knowledge, this is the first comprehensive evaluation of the
most up-to-date and predominantly publicly available carbon
emission inventories for China.

2 Emissions data

An evaluation analysis was conducted from nine inventories
including six gridded datasets (listed in Table 1, ODIAC,
EDGAR, PKU, CHRED, MEIC, and NJU) and three other
datasets (GCP/CDIAC, CEADs, and NCCC) containing sta-
tistical data. We selected the year 2012 for spatial analysis
because this is the most recent year available for all the grid-
ded datasets and also because 2012 was a peak year of emis-
sions due to the strong reductions following the impact of the
12th Five-Year Plan. Specifically, the global fossil-fuel CO2
emissions datasets included the year 2017 version of ODIAC
(ODIAC2017), version 4.3.2 of EDGAR (EDGARv4.3.2),
and PKU-CO2, all of which use the Carbon Monitoring for
Action (CARMA) as the point source. The China-specific
emissions data used were from 2007 from CHRED, MEIC
v1.3, and NJU-CO2 v2017, all of which use China En-
ergy Statistical Yearbook (CESY) activity data. Moreover,
three inventories were used as references, i.e., GCP/CDIAC,
CEADs, and NCCC, because GCP and ODIAC use CDIAC
for the majority of the years, except the most recent 2 years,
which were extrapolated using BP data. These three inven-
tories were treated as an inventory in a time-series com-
parison. Data were collected from the official websites of
ODIAC, EDGAR, PKU, and six tabular statistical datasets
and were also acquired from the authors who developed
CHRED, MEIC, and NJU. See the supporting information
for more details on the data sources and the methodology
used for each dataset.

3 Methodology for the evaluation of multiple datasets

We evaluated the abovementioned datasets from three
aspects: data sources, boundary (emission sectors), and
methodology (Fig. 1, Tables 1 and S1 and S2 in the Sup-
plement). In regard to the data source, there are two levels:
national data, such as UN or IEA statistics, and provincial-
level data, such as CESY. The emission sectors mainly in-
clude fossil-fuel production, industry production and pro-
cesses, households, transportation, aviation/shipping, agri-
culture, natural biomass burning from wildfires, and the
waste from these datasets; Table S1 in the Supplement
lists the sectors included in each inventory. In addition, for
methodology, the analysis of the inventories includes the to-
tal estimates (activity data and EF) aspect and the spatial dis-
aggregation of point, line, and area sources. Figure 1 shows
the conceptual procedure followed for the total emissions es-
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timates and how the gridded maps were produced for all the
inventories, and thus it is important to know the differences
in the activity data, EF and spatial proxy data, and spatial
disaggregation methods used by previous scholars to under-
stand the differences among the inventories in regard to total
emissions estimates and spatial characteristics.

The preprocessing of six gridded CO2 emission datasets
included several steps, which are described as follows. First,
global maps of CO2 emissions (i.e., ODIAC, EDGAR, and
PKU) were reprojected using the Albers Conical Equal Area
projection (that of CHRED). Next, the nearest neighbor al-
gorithm was used to resample different spatial resolutions
into a pixel size of 10km× 10km, and this method takes the
value from the cell closest to the transformed cell as the new
value. Second, the national total emissions were derived us-
ing the ArcGIS zonal statistics tool from CHRED, while the
other emissions were from tabular data provided by the data
owners. Finally, the grids for each inventory were sorted in
ascending order and then plotted on a logarithmic scale to
represent the distribution of emissions. To identify the con-
tribution of high-emission grids, emissions at the grid level
that exceeded 50 kt CO2 yr−1 km−2 and the top 5 % emitting
grids were selected for analysis.

4 Results

4.1 Total emissions and recent trends

The interannual variations of China’s CO2 emissions from
2000 to 2016 were evaluated from six gridded emission maps
and three national total inventories (Fig. 2). All the datasets
show a significant increasing trend in the period of 2000 to
2013 from 3.4 to 9.9 Gt CO2. The range of the nine esti-
mates increased simultaneously from 0.7 to 2.1 Gt CO2 (both
are 21 % of the corresponding years’ total emissions). In
the second period (from 2013 to 2016), the temporal vari-
ations mostly levelled off or even decreased. Specifically, the
emissions estimated from PKU and CEADs showed a slight
downward trend, even though they used independent activity
data from IEA (2014) and the National Bureau of Statistics
(2016), and this downward trend was attributed to changes
in the industrial structure, improved combustion efficiency,
emissions control, and slowing economic growth (Guan et
al., 2018; Zheng et al., 2018a).

There is a large discrepancy among the current estimates,
ranging from 8.0 to 10.7 Gt CO2 in 2012. NJU had the high-
est emissions during the periods of 2005–2015, followed by
EDGAR, MEIC, and CDIAC/GCP/ODIAC, while CEADs
(National) and PKU were significantly lower (Fig. 2). These
discrepancies are mainly because of three reasons: (1) the EF
for raw coal was greater for EDGAR and ODIAC than the
other databases. The EFs were different for different fossil-
fuel types and cement production (Table S2 in the Supple-
ment). Because coal consumption constituted 70 %–80 % of

total emissions, the coal EF was more significant than the
others. The EFs were different for the three major fossil-
fuel types (raw coal, oil, and natural gas) and cement pro-
duction (Tables 1 and S2 in the Supplement). In addition,
the EFs were obtained from either the IPCC default values
or local optimized values from different sources. The EFs
do not change over time in these inventories, although they
should, due to the unavailability of EFs over time; (2) differ-
ences in activity data; i.e., NJU, MEIC, and CEADs (Provin-
cial) use provincial data from National Bureau of Statistics
(2016), while CEADs (National) and PKU use national data
from CESY (2016) and IEA (2014), respectively (Tables 1
and S1 in the Supplement), such that the sum of provincial
emissions is higher than the national total; and (3) differ-
ences in emission definitions (Tables 1 and S1 in the Supple-
ment, emissions sectors). Although we tried to ensure that
these datasets would be as comparable as possible, minor
differences in emissions sources (sectors) remained. For ex-
ample, EDGAR contains abundant industry process-related
emissions, whereas CEADs only considers cement produc-
tion (Janssens-Maenhout et al., 2019). EDGAR and MEIC
have similar trends, except for their magnitudes, and MEIC
is usually greater than EDGAR. This is a combined effect
of the above three reasons. Moreover, MEIC uses provin-
cial energy data from CESY (2016), whereas EDGAR uses
national-level data from IEA (2014). However, MEIC’s EF
is lower than that of EDGAR. These opposing effects bring
the datasets closer in magnitude. Both the gridded products
(ODIAC, EDGAR, MEIC, and NJU) and national inven-
tory (GCP/CDIAC) show small differences in the magnitude
of total emissions estimates and trends from 2000 to 2007,
where the differences in magnitude increase gradually from
2008 onward. Although the range increases with time, the
relative difference remains at approximately 21 % of the cor-
responding years’ total estimates, indicating potentially sys-
tematic differences, such as the fact that EFs remain stable.

4.2 Spatial distribution of FFCO2 emissions

The evaluation of spatially explicit FFCO2 emissions is fun-
damentally limited by the lack of direct physical measure-
ments at the grid scale (e.g., Oda et al., 2018). Thus, we
attempted to characterize the spatial patterns of China’s
carbon emissions by presenting the available emissions
estimates. We compared six gridded products, including
ODIAC, EDGAR, PKU, CHRED, MEIC, and NJU, for the
year 2012, which was the most recent year for which all
six datasets were available. Spatially, the CO2 emissions
from the different datasets are concentrated in eastern China
(Fig. 3). The high-emission areas were mostly distributed in
city clusters (e.g., Beijing–Tianjin–Hebei (Jing–Jin–Ji), the
Yangtze River Delta, and the Pearl River Delta) and densely
populated areas (e.g., the North China Plain, the Northeast
China Plain, and the Sichuan Basin). These major spatial pat-
terns are primarily due to the use of spatial proxy data and are
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Figure 1. Conceptual diagram for data evaluation based on data sources, emission sectors, and methodologies.

also in accordance with previous studies (Guan et al., 2018;
Shan et al., 2018). However, there were notable differences
among the different estimates at finer spatial scales. Large
carbon emissions regions were found in the North China
Plain and the Northeast China Plain for ODIAC (Fig. 3a),
PKU (Fig. 3c), MEIC (Fig. 3e), and NJU (Fig. 3f), which
ranged from 1000 to 10 000 t CO2 km−2. However, high lev-
els of emissions located in the Sichuan Basin were found
from PKU, MEIC, and NJU but not from ODIAC. This dis-
crepancy in identifying significant CO2 emissions was prob-
ably due to emissions from rural settlements with high pop-
ulation densities (e.g., Sichuan Basin), which did not ap-
pear strongly in satellite nighttime lights or on the ODIAC
map (Wang et al., 2013). The more diffusive distributions of
MEIC and NJU were attributed to the abundance of point
sources, with or without line source and area source prox-
ies. Moreover, EDGAR, PKU, CHRED, MEIC, and NJU all
showed relatively low emissions in western China, but the
emissions from ODIAC were zero due to the lack of night-
time light in that region, which tended to distribute more
emissions toward strongly lit (at night) urban regions (Wang
et al., 2013).

EDGAR, CHRED, and MEIC all showed traffic line
source emissions by inducing traffic networks in the spatial
disaggregation. The line emissions (such as expressways or
arterial highways) depicted a more detailed spatial distribu-
tion in CHRED than in either EDGAR or MEIC. This dis-
crepancy could be attributed to the different road networks
and corresponding weighting factors used by each. CHRED

disaggregated emissions from the transport sector based on
traffic networks and traffic flows (Cai et al., 2018). MEIC
applied the traffic network from the China Digital Road-
network Map (CDRM) (Zheng et al., 2017), and EDGAR
traffic networks were obtained from OpenStreetMap and
OpenRailwayMap (Geofabrik, 2015). ODIAC considered
point and area sources while lacking line source emissions
in the spatial disaggregation, which places more emissions in
populated areas than in suburbs (Oda et al., 2018). Oda and
Maksyutov (2011) noted the possible utility of street lights
to represent line source spatial distributions even without the
associated specific traffic spatial data. The spatial distribu-
tions of traffic emissions are highly uncertain, with biases of
100 % or more (Gately et al., 2015), which is largely due to
mismatches between the downscaling proxies and the actual
vehicle activity distribution.

4.3 CO2 emissions at the provincial level

The provincial-level results showed more consistency than
the grid-level results in terms of spatial distribution. All the
products agreed that the eastern and southern provinces were
high emitters (> 400 Mt CO2 yr−1, Figs. 4 and S3 in the
Supplement), while the western provinces were low emit-
ters (< 200 Mt CO2 yr−1, Figs. 4 and S3 in the Supple-
ment). The five most emitting provinces were Shandong,
Jiangsu, Hebei, Henan, and Inner Mongolia, with emis-
sions values ranging from 577± 48 to 820± 102 Mt CO2 in
2012 (Fig. 4). Meanwhile, the provinces located in the west-
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Table 1. General information of the emissions datasets∗.

Data ODIAC2017 EDGARv432 PKU CHRED MEIC NJU CEADs GCP/CDIAC NCCC

Domain Global Global Global China China China China Global China

Temporal
coverage

2000–2016 1970–2012 1960–2014 2007, 2012 2000–2016 2000–2015 1997–2015 1959–2018 2005, 2012, 2014

Temporal
resolution

Monthly Annual Monthly Biennially or
triennially

Monthly Annual Annual Annual Annual

Spatial
resolution

1 km 0.1◦ 0.1◦ 10 km 0.25◦ 0.25◦ NA NA NA

Emission
estimates

Global and
national

Global and
national

Global and
national

National and
provincial

National and
provincial

National and
provincial

National and
provincial

Global and
national

National

Emission factor
for raw coal (tC
per t of coal)

0.746 0.713 0.518 0.518 0.491 0.518 0.499 0.746 0.491

Uncertainty 17.5 %
(95 % CI)

±15 % ±19 %
(95 % CI)

±8 % ±15 % 7 %–10 %
(90 % CI)

−15 %–25 %
(95 % CI)

17.5 %
(95 % CI)

5.40 %

Point source CARMA2.0 CARMA3.0 CARMA2.0 FCPSC CPED CEC; ACC;
CCTEN

NA NA NA

Line source NA OpenStreetMap and
OpenRailwayMap,
int. aviation and
bunker

NA The na-
tional road,
railway,
navigation
network,
traffic flows

Transport
networks

NA NA NA NA

Area source Nighttime light Population density,
nighttime light

Vegetation
and popula-
tion density,
nighttime
light

Population
density, land
use, human
activity

Population
density, land
use

Population
density, GDP

NA NA NA

Version name ODIAC2017 EDGARv4.3.2_
FT2016,
EDGARv4.3.2

PKU-CO2-
v2

CHRED MEIC v.1.3 NJU-
CO2v2017

CEADs NA NA

Year
published/
updated

2018 2017 2016 2017 2018 2017 2017 2019 2018

Data sources http://db.cger.
nies.go.jp/
dataset/ODIAC/
(last access:
6 Novem-
ber 2018)

http://edgar.jrc.ec.
europa.eu/overview.
php?v=432_GHG&
SECURE=123 (last
access: 6 Novem-
ber 2018)

http:
//inventory.
pku.edu.cn/
download/
download.
html (last
access:
6 Novem-
ber 2018)

Data
developer

Data
developer

Data
developer

http://www.
ceads.net/
(last access:
6 Novem-
ber 2018)(reg-
istration
required)

https://www.
globalcarbonproject.
org/carbonbudget/
19/data.htm (last
access: 6 Novem-
ber 2019)

https://unfccc.
int/sites/default/
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ern area with low economic activity and population den-
sity showed low carbon emissions (< 200 Mt CO2, Figs. 4
and S3 in the Supplement). There is a clear discrepancy in
the provincial-level emissions among the different estimates,
and the mean standard deviation (SD) for the 31 provinces’
emissions was 62 Mt CO2 (or 20 %) in 2012. A large SD
(> 100 Mt CO2) occurred in high-emitting provinces, such
as Shandong, Jiangsu, Inner Mongolia, Shanxi, Hebei, and
Liaoning. For Shandong Province, the inventories varied
from 675 to 965 Mt CO2 yr−1, with a relative SD of 12 %
(Figs. 4 and 5), and for the other high-emitting provinces,
the relative SD ranged from 12 % to 48%, which implied that
the uncertainty could be further reduced.

Because estimates based on provincial energy statistics are
assumed to be more accurate than those derived from the dis-
aggregation of national totals using spatial proxies, we eval-
uated the provincial emissions of each inventory using the
provincial-based inventory mean (CHRED, MEIC, and NJU)
(Fig. 5). The results showed that emissions derived from
the provincial energy statistics are highly correlated, with R

values ranging from 0.99 to 1.00 and slopes ranging from
0.96 to 1.04. In contrast, the estimates for ODIAC, EDGAR,
and PKU, which used IEA national energy statistics, showed
an obvious disparity, especially in the five most emitting
provinces, suggesting the significant impact of spatially dis-
aggregated approaches in the allocation of total emissions.
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Figure 2. China’s total FFCO2 emissions from 2000 to 2016. The emissions are from the combustion of fossil fuels and cement production
from different sources (EDGARv4.3.2_FT2016 includes international aviation and marine bunker emissions). To maintain comparability and
avoid differences resulting from emission disaggregation (e.g., Oda et al., 2018), the values of the six gridded emission inventories are tabular
data provided by the data developers before spatial disaggregation. Prior to 2014, GCP data were taken from CDIAC, and those from 2015
to 2016 were calculated based on BP data and the fraction of cement production emissions in 2014. The shaded area (error bar for CHRED)
indicates uncertainties from the coauthors’ previous studies (see Table 1).

The potential implication is that when performing spatial dis-
aggregation, national-data-based inventories can use provin-
cial fractions as constraints.

4.4 Statistics of CO2 emissions at the grid level

To further characterize the spatial pattern of China’s CO2
emissions, the probability density function (PDF), cumu-
lative emissions, and top 5 % emitting grids were ana-
lyzed to identify the spatial differences from the distri-
bution of grid cell emissions (Fig. 6). As illustrated in
Fig. 4a, ODIAC showed a significant number of cells with
zero emissions (62 %) (Fig. 6a), with medium-emitting
grids (500–50 000 t CO2 km−2) constituting 30 % and high-
emitting grids (> 50000 t CO2 km−2) constituting 3 %. Al-
though the low-emissions cells (1–500 t CO2 km−2) were
mainly located in EDGAR (58 %) and CHRED (69 %)
(Fig. 6b and d) and the medium-emitting grids constituted
30 %–40%, the high-emitting grids only amounted to 2 %–
3%. This situation could have a significant impact on the cu-
mulative national total emissions (Fig. 6g). The frequency
distribution of high-emissions grids revealed differences in
the point source data. MEIC showed the largest number of
high-emitting cells (500–500 000 t CO2 km−2, 5 % in com-

parison with the others, which were at 2 %–3%, Fig. 6e) by
using a high-resolution emissions database (CPED) that in-
cluded more power plant information (Li et al., 2017; Liu
et al., 2015a). Furthermore, ODIAC and EDGAR agreed
well regarding the high emissions (> 100000 t CO2 km−2)
because their point source emissions were both from the
CARMA database (Table 1). Moreover, CARMA is the only
global database that tracks CO2 that gathers and presents the
best available estimates of CO2 emissions for 50 000 power
plants around the world, of which approximately 15 000 have
latitude and longitude information with emissions greater
than 0. The database includes approximately one-quarter
of all greenhouse gas emissions. However, CARMA is no
longer active (the last update was 28 November 2012), and
the geolocations of power plants are not sufficiently accu-
rate, especially in China (Byers et al., 2019; Liu et al., 2013,
2015a; Wang et al., 2013). Therefore, users must perform
corrections themselves (Liu et al., 2013, 2015a; Oda et al.,
2018; Wang et al., 2013; Janssens-Maenhout et al., 2019).

As shown in the cumulative emissions plot (Fig. 6g), PKU
and NJU showed very similar cumulative curves, and the sit-
uation was similar for EDGAR and CHRED. Moreover, the
total emissions for EDGAR and CHRED were largely de-
termined by a small proportion of high-emitting grids that
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Figure 3. Spatial distributions of ODIAC (a), EDGAR (b), PKU (c), CHRED (d), MEIC (e), and NJU (f) at a 10 km resolution for 2012.
ODIAC was aggregated from 1 km data, such that MEIC, PKU, and EDGAR were resampled from 0.25, 0.1, and 0.1◦.

Figure 4. Provincial mean total emissions for ODIAC, EDGAR, PKU, CHRED, MEIC, and NJU in 2012. The numbers beneath the green
bars are the provincial total CO2 emissions in Mt.
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Figure 5. Scatter plots of the provincial total emissions for ODIAC, EDGAR, PKU, CHRED, MEIC, and NJU in 2012 with the five most
emitting provinces highlighted, and the x axis is the mean of provincial-data-based products (CHRED, MEIC, and NJU).

showed a steep increase at the last stage of the cumulative
curves (Fig. 6g), and the top 5 % emitting grids accounted for
approximately 90 % of the total emissions (Fig. 6e), which
is greater than the comparable values of 82 %, 71 %, 58 %,
and 51 % for ODIAC, MEIC, NJU, and PKU, respectively.
The emissions from PKU, MEIC, and NJU were relatively
evenly distributed because CHRED was mainly derived from
enterprise-level point sources (Cai et al., 2018). In contrast,
the emissions of PKU were the most evenly distributed, and
the emissions from the top 5 % emitting grids only accounted
for 51 % (Fig. 6g) because PKU incorporated special area
source survey data for Chinese rural areas from a 34 489-
household energy-mix survey and a 1670-household fuel-
weighing campaign (Tao et al., 2018). Moreover, the use of
a spatial disaggregation proxy based on population density
also contributed to this spatial pattern. Similarly, MEIC and
NJU were evenly distributed because of the same activity
data from CESY, National Bureau of Statistics (Table 1).

To identify the locations of hotspots, bubble plots
(Fig. S2 in the Supplement) demonstrated the spatial dis-
tribution of high-emitting grid cells that were greater than
50 kt CO2 km−2. CHRED, EDGAR, and ODIAC showed
similar patterns, with high-emitting grids concentrated in

city clusters (e.g., Jing–Jin–Ji, the Yangtze River Delta, and
the Pearl River Delta) and the eastern coast (Fig. S2 in the
Supplement). EDGAR and ODIAC both derived their power
plant emissions from CARMA, but ODIAC was likely to
place more emissions than EDGAR over urbanized regions
with lights, especially in the North China Plain. The emis-
sions of CPED and CARMA were similar in China, with a
minor difference of 2 %, although the number of power plants
varied significantly (2320 vs. 945) (Liu et al., 2015a), which
implied that CARMA tended to allocate similar emissions to
fewer plants than CPED.

5 Discussion

5.1 Activity data differences in the datasets and their
effects

The activity data sources, data level, and sectors are the sig-
nificant determinants of total emissions. As seen in Fig. 1,
activity data and EF determine the total emission estimates
and affect the spatial distributions by using disaggregation
proxies for point, line, and area sources. It has been well-
discussed that the sum of provincial data is greater than the
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Figure 6. Frequency counts (a–f), cumulative emissions (g) (grids are sorted from low to high), and the top 5 % emitting grid plots (h) for
ODIAC, EDGAR, PKU, CHRED, MEIC, and NJU in 2012 at a 10 km resolution.

national total (Guan et al., 2012; Hong et al., 2017; Liu et
al., 2013; Z. Liu et al., 2015; Shan et al., 2018). CEADs
(provincial) is 8 %–18 % greater than CEADs (national) af-
ter year 2008 (Fig. 2). Thus, the province-based estimates
(e.g., NJU and MEIC) are greater than CEADs (national).
This difference could be attributed to the differences in na-
tional and provincial statistical systems and artificial factors,
such as the fact that some provincial energy balance sheets
were adjusted to achieve an exact match between supply and
consumption (Hong et al., 2017). For example, provincial
statistics suffer from data inconsistency and double counting
problems (Zhang et al., 2007; Guan et al., 2012). One pos-
sible way to improve these statistics is to use the provincial
consumption fractions to rescale the national total consump-
tion when distributing emissions to grids. Hong et al. (2017)
found that the ratio of the maximum discrepancy to the mean
value was 16 % due to the use of different versions of na-
tional and provincial data in CESY. Ranges of 32 %–47%

of CO2 emissions from the power sector (mainly coal use)
were found among the inventories, while for the transport
sector (mainly liquid fuels), the fractions ranged from 7 % to
9%. Apart from such differences, one peak of FFCO2 emis-
sions was identified by most datasets in 2013, which were
largely found to be due to slowing economic growth (Na-
tional Bureau of Statistics, 1998–2017), changes in the in-
dustrial structure (Mi et al., 2017; Guan et al., 2018), and a
decline in the share of coal used for energy (Qi et al., 2016).
Strategies for reducing emissions could be based on such uni-
formed trends, while making reduction policies for provinces
requires the support of provincial energy-based datasets in-
stead of national energy-based datasets.

Estimates with more sectors are usually higher than those
with fewer sectors. In regard to the incorporation of differ-
ent emissions sectors, EDGAR includes international avia-
tion and bunkers (Janssens-Maenhout et al., 2019) and NJU
incorporates waste (Liu et al., 2013) (Table S1 in the Supple-
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ment), and thus both were higher than the others. Moreover,
for MEIC v.1.3 downloaded from the official website, biofuel
combustion (which accounted for approximately 5.7 % of the
total) was included; however, the version used here was spe-
cially prepared to exclude biofuel to increase the comparabil-
ity of the database. In addition, CEADs industry processes
only include cement production and were thus lower than
those (e.g., NJU and EDGAR) that include more processes
(iron and steel, etc.) (Janssens-Maenhout et al., 2019; Shan et
al., 2018; Liu et al., 2013). The PKU dataset used IEA energy
statistics with more detailed energy subtypes. The emissions
factors were based on more detailed energy subtypes with
lower EFs, while other inventories used the averages of large
groups (Table 1), such that the sum of more detailed sub-
types might not equal the total of large groups due to the in-
completeness of the statistics. These factors could explain the
reasons for the lower emissions estimate (Wang et al., 2013).
A further comparison with IEA, EIA, and BP estimates with
only energy-related emissions also confirmed that estimates
with more sectors would be greater than those with fewer
(Fig. S1 in the Supplement).

5.2 Effects of emission factors on the total emissions

Carbon emissions are calculated from activity data and EFs,
and the uncertainty in estimates is typically reported as 5 %–
10%, while the maximum difference in this study reached
33.8 % (or 2.7 PgC) in 2012. One major reason for this differ-
ence is the EF used by these inventories (Table 1). The EF for
raw coal ranged from 0.491 to 0.746. For example, CEADs
used 0.499 tC per t of coal based on large-sample measure-
ments, while EDGAR used 0.713 from the default values rec-
ommended by IPCC (Janssens-Maenhout et al., 2019; Z. Liu
et al., 2015; Shan et al., 2018), and the differences were
largely due to the low quality and high ash content of Chinese
coal. The variability of lignite and coal quality is quite sig-
nificant. In Z. Liu et al. (2015), the carbon content of lignite
ranged from 11 % to 51%, with a mean±SD of 28%± 13
(n= 61). Furthermore, another study showed that the uncer-
tainty from EFs (−16% to 24 %) was significantly greater
than that from activity data (−1% to 9 %) (Shan et al., 2018).
We recommended substituting the IPCC default coal EF with
the CEADs EF. Regarding plant-level emissions from coal
consumption, the collection of EFs measured at fields repre-
senting the quality and type of various coals is much needed
to calibrate the large point source emissions, and we call for
the inclusion of physical measurements for the calibration
and validation of existing datasets (Bai et al., 2007; Dai et
al., 2012; Kittner et al., 2018; Yao et al., 2019). Different fuel
types contribute differently to emissions factors; i.e., for the
same net heating value, natural gas emitted the least amount
of carbon dioxide (61.7 kgCO2 TJ−1 energy), followed by oil
(65.3 kgCO2 TJ−1 energy) and coal (94.6 kgCO2 TJ−1 en-
ergy). Similarly, one successful example of the reduction of
air pollutants and CO2 was that the Chinese government ini-

tiated the “project of replacement of coal with natural gas
and electricity in North China” in 2016 (Zheng et al., 2018a).
Moreover, the nonoxidation fraction of 8 % used in Z. Liu et
al. (2015) for coal was attributable to the differences when
compared with a default nonoxidation fraction of 0 %, as rec-
ommended by IPCC (2006) in EDGAR (Janssens-Maenhout
et al., 2019). Moreover, the average qualities of coal vary
with time, yet we lacked such time-series quality data on raw
coal. Bottom-up inventories typically use time-invariant EFs
for CO2 due to the lack of information on coal heating val-
ues over time; similarly, the MEIC model also uses constant
EFs of CO2 (Zheng et al., 2018). Teng and Zhu (2015) rec-
ommended time-varied conversion factors from raw coal to
standard coal as well as changing the raw coal to commodity
coal in energy balance statistics because the latter has rela-
tively efficient statistics on EF.

5.3 Spatial distribution of point, line and area sources

5.3.1 Point sources in datasets and their effects on
spatial distribution

Point source emissions account for a large proportion of to-
tal emissions (Hutchins et al., 2017). Power plants consumed
approximately half of the total coal production in the past
decade (F. Liu et al., 2015). Thus, the accuracy of point
sources was extremely important for improving emission es-
timates. ODIAC, EDGAR, and PKU all distributed power
plant emissions from the CARMA dataset. However, the ge-
olocation errors in China are relatively large, and only 45 %
of power plants are located in the same 0.1◦× 0.1◦ grid in
CARMA v2.0 according to the real power plant locations
that were identified by visual inspection in Google Maps
(Wang et al., 2013). This discrepancy is because CARMA
generally treats city-center latitudes and longitudes as the ap-
proximate coordinates of power plants (Wheeler and Ummel,
2008; Ummel, 2012).

F. Liu et al. (2015) found that CARMA neglected approx-
imately 1300 small power plants in China. Thus, CARMA
allocated similar emissions to a more limited number of
plants than CPED (Table S2 in the Supplement, 720, 1706,
and 2320 point sources for ODIAC, EDGAR, and MEIC,
respectively), and ODIAC had fewer point sources due to
the elimination of incorrect geolocations. The high-emitting
grids in CHRED were attributed to the 1.58 million indus-
trial enterprises from the First China Pollution Source Cen-
sus (FCPSC) that were used as point sources (Wang et al.,
2014). Following the CARMA example, we call on the open
source of large point sources for datasets and reinforce the
importance of Chinese scientists adjusting the locations of
point sources from CARMA.
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5.3.2 Effects of spatial disaggregation methods on line
and area sources

Downscaling methods are widely used because of their uni-
formity and simplicity due to the lack of detailed spatial
data. The disaggregation methods used (e.g., nighttime light,
population) by inventories significantly affect the resulting
spatial pattern. For example, ODIAC mainly uses nighttime
light from satellite images to distribute emissions. Thus, the
hotspots concentrate more strongly in high nighttime light
regions. However, the use of remote sensing data tends to un-
derestimate industrial and transportation emissions (Ghosh et
al., 2010). For instance, coal-fired power plants do not emit
strong lights and may be far from cities because transmission
lines are used. Electricity generation and use usually occur in
different locations, and stronger nighttime light does not al-
ways indicate higher CO2 emissions (Cai et al., 2018; Doll et
al., 2000). Furthermore, nighttime lights ignore some other
main fossil-fuel emissions, such as household cooking with
coal. The good correlation between nighttime light and CO2
emissions is usually on a larger-scale basis (national or con-
tinental) (Oda et al., 2010; Raupach et al., 2010), while this
relationship fails in populated or industrialized rural areas.

Transport networks are also used in several invento-
ries for spatial disaggregation. EDGAR and CHRED both
showed clear transport emissions, especially in western
China. EDGAR uses three road types and their correspond-
ing weighting factors to disaggregate line source emissions.
CHRED uses national traffic networks and their flows to dis-
tribute traffic emissions (Cai et al., 2012, 2018). It is easier
to obtain traffic networks but rather difficult to obtain traffic
flows and vehicle kilometer travelled (VKT) data, and thus
the weighting factors method is significantly easier to apply.

Population is widely used in spatial disaggregation (An-
dres et al., 2014, 2016; Janssens-Maenhout et al., 2019).
CDIAC emissions maps originally used static population
data to distribute emissions but have recently changed to a
temporally varying population proxy, which has largely re-
duced uncertainty. However, the unified algorithm for spatial
disaggregation, such as the population density approach, en-
counters difficulties in depicting the uneven development of
rural and urban areas, and instead, it usually uses interpola-
tion for a limited number of base years and does not truly
vary across years at high spatial resolution (Andres et al.,
2014). Furthermore, downscaling approaches may introduce
approximately 50 % error per pixel, which are spatially cor-
related (Rayner et al., 2010), a problem that must be consid-
ered in future studies.

Moreover, big cities have virtually eliminated the use of
coal (Guan et al., 2018; Zheng et al., 2018a), while in ru-
ral areas, the use of coal has often increased (Meng et al.,
2019). For example, a national survey showed that China’s
rural residential coal consumption fractions for heating in-
creased from 19.2 % to 27.2 % (Tao et al., 2018). These tran-
sitions have impacts on the spatial distribution of both CO2

and air pollutants. In addition, the high-resolution CO2 emis-
sions can serve as a potential proxy for fossil-fuel emissions
(Wang et al., 2013); thus, further improvements to spatial dis-
aggregation should consider these transitions and the survey
data.

Data availability. The datasets of ODIAC, EDGAR, PKU, and
CEADs are freely available from http://db.cger.nies.go.jp/dataset/
ODIAC/ (Oda, 2018), http://edgar.jrc.ec.europa.eu/overview.php?
v=432_GHG&SECURE=123 (Janssens-Maenhout, 2018), http:
//inventory.pku.edu.cn/download/download.html (Wang and Tao,
2018), and http://www.ceads.net/ (Shan and Guan, 2018), respec-
tively. CHRED, MEIC, and NJU are available from the data devel-
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