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Abstract Computational requirements often impose limitations on the spatial and temporal resolutions
of atmospheric CO2 inversions, increasing aggregation and representation errors. This study enables
higher spatial and temporal resolution inversions with spatial and temporal error structures similar to
those used in other published inversions by representing the prior flux error covariances as a Kronecker
product of spatial and temporal covariances and by using spectral methods for the spatial correlations.
Compared to existing inversion systems that are forced to degrade the resolution of the problem in order to
bring the dimensionality down to computationally tractable levels, this inversion framework is able to take
advantage of mesoscale transport simulations and more of the complexity of spatial and temporal
covariances in the surface CO2 fluxes. This approach was successfully implemented over one month with an
identical‐twin observing system simulation experiment (OSSE) using a set of assumptions about the prior
flux uncertainties compatible both with continental‐scale uncertainty estimates and with comparisons of
vegetation models to flux towers. The demonstration illustrates the potential of the newly developed
inversion system to use high‐temporal‐resolution information from the North American tower network, to
extract high‐resolution information about CO2 fluxes that is inaccessible to coarser resolution inversion
systems, and to simultaneously optimize an ensemble of prior estimates. This demonstration sets the stage
for regional flux inversions that can take full advantage of the high‐resolution data available in tower CO2

records and mesoscale atmospheric transport reanalyses, include more realistic prior error structures, and
explore specifying prior fluxes with ensembles.

Plain Language Summary This paper describes a new inverse framework for deriving surface
carbon dioxide (CO2) fluxes at high spatial and temporal resolutions from atmospheric mole fraction
measurements. We demonstrate the potential of the system over North America by inverting for subdaily
biogenic CO2 fluxes while accounting for the complexity of spatio‐temporal structures in flux error
covariances in a data‐based manner.

1. Introduction

The global atmospheric carbon dioxide (CO2) concentration has been steadily increasing since the first indus-
trial revolution; the current rate is equivalent to a net positiveflux to the atmosphere of about 4.7 ± 0.1 PgC/yr
over the last decade (Le Quéré et al., 2018). Emissions from fossil fuel consumption, the main driver of this
increase, reached 9.4 ± 0.5 PgC/yr over this same decade (Andres et al., 2014; Le Quéré et al., 2018).

Tans et al. (1990) shows that half of the CO2 emitted from anthropogenic activities, instead of staying in the
atmosphere, is being absorbed by the oceans and by continental vegetation, with each responsible for roughly
half of the uptake (Battle et al., 2000). As fossil fuel emissions have grown, atmospheric accumulation has
remained fairly constant, showing that the uptake has increased at a similar pace (Le Quéré et al., 2016).
Our understanding of the underlying processes driving the uptake of CO2, especially over continental sur-
faces, remains limited (Ryu et al., 2019). This limits our ability to predict future changes in CO2mole fractions
(Friedlingstein et al., 2014; Huntzinger et al., 2017; Schimel et al., 2015) and their impact on Earth's climate.

Several methods exist for estimating the carbon uptake by land ecosystems. One common approach is to
inventory vegetation biomass reservoirs every few years (Hayes et al., 2012; Pacala et al., 2001). While direct
and powerful, this approach is labor intensive, has low temporal resolution, does not measure lateral trans-
port, may not fully account for new forests (Houghton et al., 2012), and at present undersamples the tropics
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and high latitudes (Anav et al., 2015; Zhao et al., 2006). In addition, soil carbon stocks are not typically
included in biomass inventory measurements.

Another approach uses terrestrial biogeochemical models able to simulate the processes of photosynthesis,
respiration, and decomposition. This approach enables a more mechanistic understanding of the carbon
cycle, complementary to biomass inventory data. How these processes are represented varies among models
(Table 1, Anav et al., 2015; Schwalm et al., 2010). Uncertainties in the representation of ecosystem‐level pro-
cesses (Wessman, 1992) and uncertainties in the model inputs lead to large differences in carbon fluxes
among terrestrial biosphere models (Huntzinger et al., 2012; King et al., 2015; Schwalm et al., 2010).
However, these differences between models are not large enough to include eddy covariance estimates of
the fluxes within the envelope of model‐derived estimates of the same fluxes (Anav et al., 2015; King et al.,
2015; Normile & Davis, 2017; Raczka et al., 2013).

A third approach is to quantify CO2 surface fluxes by combining atmospheric mole fractions of CO2 with a
priori information about spatially and temporally resolved estimates of biospheric, oceanic, and anthropo-
genic surface CO2 fluxes in an atmospheric inversion. The assumptions made for a particular atmospheric
inversion—whether about the transport of air from fluxes to observations (Díaz‐Isaac et al., 2014, 2018;
Gurney et al., 2002; Lauvaux & Davis, 2014; Peylin et al., 2002; Schuh et al., 2013; Seibert & Frank, 2004)
or the a priori flux information itself (Gurney et al., 2003; Lauvaux, Schuh, Uliasz, et al., 2012; Peylin et al.,
2013)—affect the results obtained. Despite increases in model resolution and atmospheric data density that
have produced convergence in the annual mean between atmospheric top‐down inversion methods and the
bottom‐up methods mentioned in previous paragraphs (Jacobson & Miller, 2018; Schuh et al., 2013; Ogle
et al., 2015), inversion studies still often disagree in the spatial and temporal attribution of the CO2 surface
flux variability (Jacobson & Miller, 2018; Peylin et al., 2013).

Inversion methods combine a priori flux estimates with atmospheric measurements, both accompanied by
estimates of their uncertainties, to form a better estimate of the surface CO2 fluxes using Bayes's theorem
(Barnard& Bayes, 1958; Bousquet et al., 2000; Ciais et al., 2010; Tarantola, 2005). As inversions are often used
to solve for large‐dimensional flux vectors using only a few atmosphericmeasurements, the problem is inher-
ently ill‐posed (Bocquet, 2005; Tarantola, 2005), requiring the addition of a priori estimates of the mean flux
and its uncertainty to bring the number of data points used to constrain the system back above the number of
unknowns (Enting &Mansbridge, 1989; Tarantola, 2005). These studies used large ecoregions or coarse grids
with the assumption that fluxes were uncorrelated between regions and perfectly correlated within them to
reduce the size of the problem; these wide‐reaching correlations are inconsistent with observations
(Chevallier et al., 2006; Lauvaux, Schuh, Bocquet, et al., 2012; Wu et al., 2013). In addition, Kaminski et al.
(2001) and Law et al. (2002) note that if the source is spatially heterogeneous over such a region and the mea-
surements are influenced much more by one part than by the others, this can significantly bias the results.

The primary difficulty in continental‐scale inversions at mesoscale resolutions lies in representing the uncer-
tainty as a covariance matrix. One approach to reduce the size of this matrix, mentioned above, is to assume
that errors in the fluxes are perfectly correlated within large regions and uncorrelated between them
(Gurney et al., 2002, 2003; Peters et al., 2007). Given these assumptions, all values off the main diagonal
of the a priori uncertaintymatrix are zero and no storage need be allocated for them. Another method, which
does not require the specification of regions in advance, instead uses empirical orthogonal functions
(Hotelling, 1933; Lorenz, 1956; Pearson, 1901) to represent the fluxes, which again allows the covariance
to be made diagonal (Zhuravlev et al., 2011, 2013). Ray et al. (2013) presents another method for reducing
the memory and computational requirements for an inversion: use a wavelet transform (Daubechies,
1988; Mallat, 1989; Torrence & Compo, 1998) to decorrelate the fluxes, thereby changing to a basis where
the covariance is again diagonal (Ray et al., 2014, 2015). A contrasting method, Yadav and Michalak
(2013), assumes that the dependencies of the prior error correlations on time and space were separable
and showed that this assumption allows a reduction in the memory and computational requirements of
the inversion (Gourdji et al., 2012; Hu et al., 2019).

While the methods of Ray et al. (2013, 2014, 2015) are a promising avenue of investigation, those papers
apply the method to anthropogenic carbon dioxide fluxes and do not suggest how to apply wavelet methods
to the existing body of research on biogenic flux error correlations (e.g., Chevallier et al., 2006, 2012; Hilton
et al., 2013; Kountouris et al., 2015). Given the result of Ray et al. (2013, 2015) that the assumed correlation
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structure is more important to the quality of the final result than even the prior mean estimate, this study
opted to use spectral methods (Dietrich & Newsam, 1993; Nowak et al., 2003) to represent the spatial corre-
lations, which are much simpler to use with a specified correlation function (section 3.1), and themethods of
Yadav and Michalak (2013) to produce the full spatio‐temporal error correlation matrix.

Inversion systems able to more fully describe the spatio‐temporal error structures, when combined with
higher‐resolution atmospheric models, enable us to use additional information content available within
high‐frequency, continental measurement systems (Law et al., 2002, 2003; Ogle et al., 2015; Patra et al.,
2008; Schuh et al., 2013) and significantly increase our confidence in inversion results (Kaminski et al.,
2001; Law et al., 2002, 2003; Schuh et al., 2013). Gourdji et al. (2012), Hu et al. (2019), Schuh et al. (2013),
and Kountouris et al. (2018a, 2018b) make steps in this direction, with the first two solving for the daily cycle
of a week at a time at 1° spatial resolution, the third at roughly weekly temporal resolution and 30 and 10 km
spatial resolution, and the last two at 0.5° spatial resolution and 3‐hourly temporal resolution.
Higher‐resolution atmospheric data can be complemented by a more rigorous description of the uncertainty
in the prior mean fluxes to be optimized by the inversion.

Given the relative sparsity of atmospheric mole fraction measurements, many features of the prior are often
retained in the posterior flux estimate, especially at smaller scales. Previous studies have accounted for the
potential for bias due to this adherence to the prior by running the inversion multiple times with different
vegetation models used as estimates for the prior mean and noting in what ways the posterior mean esti-
mates agree and disagree with each other (Lauvaux et al., 2018b).

The posterior covariance, representing the uncertainty in the fluxes after the inversion, is a large matrix and
computationally prohibitive to compute in full. Yadav and Michalak (2013) proposed calculating the poster-
ior covariance at a lower resolution than the prior mean, as did Bennett (2002). Bocquet et al. (2011) and
Bousserez and Henze (2018) proposed optimal methods to reduce resolution. Michalak et al. (2004) and
Bousserez et al. (2015) approximate the posterior uncertainty by generating samples from the assumed dis-
tributions for the prior fluxes and the observations, performing a series of inversions using those samples,
and treating the results of those inversions as samples from the posterior distribution for the fluxes. This
study applies the approaches of both Yadav and Michalak (2013) and Michalak et al. (2004) in parallel to
investigate the differences between the two. Bousserez et al. (2015) provides an earlier comparison of deter-
ministic and stochastic low‐rank approximations of the posterior covariance. Their deterministic approxi-
mation is based on a BFGS minimization rather than the coarse‐resolution approximation of Bennett
(2002) and Yadav and Michalak (2013), and it is the latter that is used here.

Most previous studies have used low spatial (Peters et al., 2007) or temporal (Gourdji et al., 2012; Hu et al.,
2019; Lauvaux et al., 2012; Ray et al., 2014) resolution, unless limited in scope to a small region (Schuh et al.,
2013), as a means to get around computational limitations on the inversion procedure. Even those studies
using ensembles to explore the uncertainty (Bousserez et al., 2015; Lauvaux et al., 2012; Michalak et al.,
2004) use only a few members due to those same computational limitations.

This paper presents a mesoscale inversion system able to assimilate high‐frequency atmospheric CO2 mole
fractionmeasurements to optimize surface CO2 fluxes at high spatial and temporal resolutions by combining
the Kronecker product representation of Yadav and Michalak (2013) with the spatial correlation representa-
tion of Nowak et al. (2003) and Dietrich and Newsam (1993). The prior flux error covariance matrix is
described temporally using separate hyperparameters for weekly and subdaily time scales, while using a
spectral description of the spatial covariances in CO2 fluxes. The algorithm used to solve the problem was
chosen to allow the optimization of several estimates of the prior mean at once, assuming a single prior cov-
ariance and transport, requiring only slightly more resources than the optimization of a single prior mean
estimate. While the individual parts of this framework have appeared separately elsewhere, the authors
are aware of no other study applying all of these at once.

This software is similar to the CarbonTracker‐Lagrange code (ESRL, 2017) maintained by the National
Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division (GMD) and used in Hu et al.
(2019), which also provides a python implementation of Yadav andMichalak (2013) and can also avoid most
of the work when performing a multiple inversions where only the prior mean estimates differ.
CarbonTracker‐Lagrange additionally applies sparse matrix methods to reduce the memory requirements.
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The inversion framework presented here is tested in a series of
pseudo‐data experiments over North America, demonstrating the poten-
tial of this approach to solve for subdaily surface CO2 fluxes at 27 km reso-
lution, similar to the resolution of the mesoscale atmospheric simulations
used to drive the transport. The present framework is a step toward
ensembles of multiyear inversions at subdaily temporal resolution with
limited memory requirements.

2. Methods

The inversion framework described here combines a linearized adjoint
model represented by explicit influence functions stored as a dense
matrix, a priori surface fluxes, and continuous high‐frequency atmo-
spheric CO2 mole fractions. Only the biogenic component of the surface
flux is optimized in this inversion; extending this to estimate total surface
flux in a real‐data inversion would require a treatment of CO2 inflow at
the domain boundaries, but is otherwise straightforward.

2.1. Transport Adjoint Model

The adjoint model representing the physical relationship between the observation space (here atmospheric
mole fractions) and the state space (here surface fluxes) is computed using the Lagrangian Particle
Dispersion Model (LPDM) of Uliasz (1993, 1994). To produce this relationship, LPDM releases mass‐free
particles backward in time from the location of each observation and tracks them for up to 3 weeks or until
they exit the domain. The configuration used in this study releases 35 particles from each tower location dur-
ing each 20‐s time step, that is, about 6,300 particles for a single hourly observation. Once released, the par-
ticle motion is described by the mean horizontal and vertical winds, the potential temperature, and the
turbulent kinetic energy (TKE) variables of the 27 km Weather Research and Forecast (WRF) simulation
described in Butler et al. (2020). The turbulent motion in the atmospheric boundary layer (ABL) is repre-
sented by random vertical displacements to simulate convective conditions, following the Mellor‐Yamada
ABL scheme (Mellor & Yamada, 1982), calculating the Lagrangian time scale from the TKE fields (Chen,
2006; Uliasz, 1993, 1994). LPDM does not redistribute particles to account for subgrid‐scale deep convection.

Positions of the particles are stored to disk every 20min while the wind fields are updated every hour. The
particle fields are then postprocessed to produce gridded influence functions for each observation time at
each tower at 27 km resolution following Equation 13 in Seibert and Frank (2004). These influence functions
describe the relationship between the flux at each surface grid cell and the mole fraction at the observation
locations (i.e., LPDM particle release locations). Fluxes are aggregated over 6‐hr periods to reduce memory
requirements while still representing the diurnal cycle. Inspection of the influence functions indicates that
most of the particles for a given observation time have left the domain by 2 weeks before release. The 3‐week
simulation window used here will track the particles until they reach the domain boundaries, which is cri-
tical for producing complete estimates of what portions of the surface impacted the observations.

Influence functions for nine selected tower locations (available fromWesloh & Lauvaux, 2019) are presented
in Figure 1; a description of that network is given in section 2.5. The inversion provides themost potential for
improvement where the fluxes have the greatest influence on the measurement towers. For this combina-
tion of month and tower network, much of the Rockies, Mexico, and southeastern Canada do not strongly
influence the observations and so cannot be effectively constrained by the inversion. Most corrections in
these regions will be due to correlations with corrections in regions better constrained by the tower network.

LPDM gridding software was written to keep computational demands low while postprocessing
continental‐scale simulations. Details on where to find this code are available in Appendix A.

LPDM has been used in multiple previous inversion studies (Lauvaux et al., 2012; Lauvaux & Davis, 2014;
Lauvaux, Miles, et al., 2016; Schuh et al., 2013; Wu et al., 2013).

A recent comparison of WRF‐ and LPDM‐calculated mole fractions is presented in Karion et al. (2019), an
older comparison of Lagrangian dispersion models is presented in Potempski et al. (2008), and both

Figure 1. Model domain and tower locations for this study. The borders
of the map are the edges of the WRF domain. The red circles denote
tower locations. The background is influence functions summed over flux
time and averaged over observations.
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studies additionally compare both WRF and LPDM to observations. A similar comparison of
WRF‐calculated to LPDM‐calculated mole fractions for the towers used in this study showed
model‐model agreement within a few ppm and good correlation when there were strong signals in the data.

2.2. Inversion Methodology

The inversionmethodology presented here uses the Bayesianmatrix formulation described in Bousquet et al.
(2000) and Ciais et al. (2010), which is similar inmany respects to the four‐dimensional optimal interpolation
described in Ide et al. (1997). The prior for the fluxes x is given by x ∼ Nðxb; BÞ, where xb is our prior mean
estimate of the flux, B is the uncertainty around that mean flux expressed as the prior covariance
estimate, and Nð · ; · Þ is the multivariate normal distribution. We also generated pseudo‐observations y ∼
NðHxb; RÞ, whereH is the transport operator (i.e., the influence functions presented in the previous section),
and R describes the uncertainty in the instrument measurement procedure as well as in the transport
mapping H. We can combine these using Bayes's theorem, producing a posterior flux estimate given by x ∼
Nðxa; AÞ, where

xa ¼ xb þ K y −Hxbð Þ; (1)

A ¼ ðI − KHÞB; and (2)

K ¼ BHTðHBHT þ RÞ−1: (3)

A is the uncertainty in the final estimate expressed as the posterior covariance, and K denotes the
Kalman gain.

2.3. Observing System Simulation Experiments

To demonstrate the capabilities of this system, a realistic inversion configuration was prepared as an
identical‐twin observing system simulation experiment (OSSE) (Errico & Privé, 2018), based on a priori
fluxes for July from real‐data inversions (here Carbon Monitoring System [CMS]‐Flux developed at
NASA; NASA Carbon Monitoring System, 2013) and transport from January.

A full OSSE is designed to simulate all components of a real inversion (Errico & Privé, 2018), including flux
error, background or initial condition error, transport error, and observation error. One way to simulate rea-
listic transport and flux errors is to use different models and driver data for the “truth” than for the prior for
the inversion, preferably also using higher resolution for the “truth” runs. Obtaining quantitative results
from an OSSE comparable to those obtained from a similar observing system experiment require an exten-
sive validation process (Errico et al., 2013). An identical‐twin OSSE does not simulate as many of the errors
that would be seen in the real world or a full OSSE (Privé & Errico, 2013), thereby eliminating the time
required for validation; in this case, it is assumed that the transport and background error covariance are
known perfectly. This provides a best‐case scenario to test whether a given inversion methodology could
work with real data (e.g., Lorenc, 1988). This paper also performs a fraternal‐twin OSSE; in this case, the
assumed covariance structure is correct but the parameters are incorrect. Fraternal‐twin experiments are
useful for looking at the impact of the parameters changed between the generation of the prior and the inver-
sion on the results of the OSSE. This study additionally uses the fraternal‐twin OSSE to investigate the rela-
tionship between the uncertainty reported by the inversion in this scenario and the knownmagnitude of the
difference between the posterior mean flux estimate and the “truth.”

Fluxes from July 2010 are used to ensure a large biospheric signal. For a real‐data inversion or a
fully‐validated OSSE, it is important to use the transport corresponding to the fluxes used to obtain sensible
results. However, this study is a proof‐of‐concept intending to show the viability of an approach, and so the
choice of using fluxes not matched to the transport is made on practical grounds due to the limited availabil-
ity of LPDM influence functions. The results presented in this study should not be sensitive to this mismatch.

Noise structures with covariances described in section 2.4 were added to a “true” flux map to generate prior
mean flux estimates. Similarly, noise structures with covariances described in section 2.6 were added to
observations simulated using the “true” flux map to generate pseudo‐observations. These perturbed flux
maps and observations were used as the prior mean estimates and observations, respectively, for an inver-
sion to show the potential of the newly developed inversion system; this is close to the procedure for
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generating conditional realizations in Michalak et al. (2004); however, in
this study, the same set of prior mean estimates are used for the identical‐
and fraternal‐twin OSSEs to measure the effect of assumptions. We eval-
uate the ability of the inversion to recover the underlying, unperturbed
“true” flux map for 80 noise realizations for both the prior and the obser-
vations. An overview of the various parts of the OSSE is given in Figure 2.

The a priori 4° × 5° biospheric surface CO2 fluxes from the global
CMS‐Flux inversion system (Liu et al., 2014), developed at the NASA Jet
Propulsion Laboratory and downscaled as described in Butler et al.
(2020) were used as the “truth” for the OSSE.

2.4. Prior Uncertainties

Given the importance of the uncertainty estimates B and R to the final
result, specifying them is an important step in any inversion (e.g., Wu
et al., 2013): Many studies use multiple values for these parameters as a
check on the robustness of their results (Gurney et al., 2003; Hu et al.,
2019; Lauvaux et al., 2012). These are commonly given in terms of the var-
iances and correlations of the deviations of the prior estimate from the
truth. The relative magnitudes of the uncertainty estimates indicate how
much one trusts the prior estimate compared to the information one can
extract from the observations and reliably apply to specific fluxes.

2.4.1. Prior Flux Variances
In this pseudo‐data inversion, prior flux variances at each point are assumed equal to a constant times the
MsTMIP model‐model mismatch (Fisher et al., 2016); these variances represent the uncertainty in the prior
mean flux estimate for each point. These values are shown in Figure 3. This choice of variances allows for
greater changes in the fluxes from prior to posterior in areas where vegetationmodels disagree while keeping
areas where they agree closer to the prior mean estimate.

The constant factor multiplying the MsTMIP model‐model variance, when combined with the assumptions
about correlations from section 2.4.2 and aggregated to continental scales, should produce an uncertainty
similar to those obtained for North America from other studies. A factor of 10 for the identical‐twin experi-
ment and 4 for the fraternal‐twin experiment were determined to reproduce the Raczka et al. (2013)
model‐model differences for July reasonably well when used in combination with the correlations described
in section 2.4.2, giving an uncertainty for the flux averaged over the whole spatio‐temporal domain of 0.62
and 0.64 μmol/(m/2s), respectively, compared to 20 gC/(m2 mo) ¼ 0.6 μmol/(m/2s) from Raczka et al.

(2013). Changing the correlations would require changing the con-
stant factor to stay close to accepted values for the continental‐scale
uncertainty.
2.4.2. Prior Flux Correlations
We assume here that the correlations are the same at all points and in
all directions, with specified functional forms for the correlations in
space and time (for other examples, see Lauvaux et al., 2012;Wu et al.,
2013; Yadav & Michalak, 2013). The functional forms require a
length parameter, which describes the distance within which the cor-
relations of required corrections are high, usually due to errors in
plant type, soil properties, precipitation, radiation, and similar quan-
tities being correlated over this distance. This method for specifying
the correlations allows for greater flexibility in matching the observa-
tions than solving for large blocks (Ciais et al., 2010; Law et al., 2002;
Schuh et al., 2013) as was done in, for example, Gurney et al. (2002,
2003) and Peters et al. (2007).

This paper assumes the spatial and temporal correlations are separ-
able, that is, that the full prior spatio‐temporal error correlation func-
tion is the product of a temporal correlation function and a spatial

Figure 2. Flow chart describing the use of various variables for the
experiments described in this section. Doubled lines denote parts with
multiple realizations forming an ensemble. The noise realizations are the
products of a pseudo‐random number generator. The posterior means are
generated from each pair of noisy observation and prior mean in turn. The
“truth,” noise, and noise covariance are unknown for real‐data
applications. The flux noise and prior covariances are identical for this
experiment.

Figure 3. Ten times the standard deviation of the MsTMIP ensemble during July
2010, used as the standard deviation of the added noise and as the standard
deviation assumed for the identical‐twin inversion.
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correlation function (for past examples, see Hu et al., 2019; Lauvaux et al.,
2012). Some previous studies have found indications that the flux correla-
tion length varies with time and the correlation function is therefore not
separable (Huntzinger et al., 2011), but other studies on the subject have
not found such evidence (Hilton et al., 2013; Kountouris et al., 2015).
The assumption of separability allows the use of the methods of Yadav
and Michalak (2013) to reduce the memory and time requirements for
products of the full matrix with arbitrary vectors: The details of that calcu-
lation are described in the supporting information.

Since we assume the correlation functions depended only on distance and
are independent of the location and orientation of the points, we can addi-
tionally make use of spectral methods in calculating and representing the
spatial portion of the calculations. This representation of the correlations
is described in greater detail in section 3.1. Past inversions have also

accounted for shared plant types in the land cover (Lauvaux et al., 2012). Hilton et al. (2013) and
Kountouris et al. (2015) do not support the usefulness of plant type in predicting correlations in the differ-
ences between a vegetation model and a flux tower at different locations, so the adjustment of correlations
using plant types is not performed in this study.

The correlation function used in this paper is the exponential with length parameter r0:

cðr; r0Þ ¼ e−r=r0 ; (4)

as used in previous CO2 flux inversion studies (e.g., Hu et al., 2019; Lauvaux et al., 2012). The length para-
meter r0 is here taken to be 200 km, which is larger than the 100 km results from Chevallier et al. (2012), Wu
et al. (2013), and Lauvaux et al. (2012) but smaller than the 400 km estimate obtained by Hilton et al. (2013)
for annual fluxes fromVPRM and on the low end of the 200 to 600 km range reported by Hu et al. (2019). The
plots in Chevallier et al. (2006) do not allow a detailed comparison of correlation lengths beyond stating that
there is no correlation at many hundreds of kilometers. Kountouris et al. (2015) suggests a correlation length
of roughly 40 km for Europe but notes that the greater heterogeneity in Europe would likely decrease this
value relative to similar values for North America. Since Hilton et al. (2013), Lauvaux et al. (2012), Wu et al.
(2013), and Hu et al. (2019) focus on flux error structures in North America, this study placed more weight
on those studies in the determination of the aforementioned 200 km correlation length.

This paper further splits the temporal correlation into two parts: the correlation between parts of the daily
cycle and the correlation across days, with the overall correlation between two times defined as the product
of these subcorrelations. Each part uses an exponential correlation function, the intradiel correlations with a
time scale of 3 hours and the correlations between days with a time scale of 3 weeks; this is in contrast to
Gourdji et al. (2012) and Hu et al. (2019), which assumed no correlations between parts of the daily cycle
and a between‐day correlation scale of 3 to 7 weeks. The correlations are plotted as a function of temporal
separation in Figure 4. With this structure, the morning, afternoon, evening, and nighttime fluxes can vary
somewhat independently of each other, but changes in any given time of day are closely tied to the changes
in previous and subsequent days at the same time of day. This allows for the long correlation time scales sug-
gested by Chevallier et al. (2006, 2012), Kountouris et al. (2015), and Hu et al. (2019) while acknowledging
that photosynthesis and respiration are largely independent processes.

The alternate parameter values for the fraternal‐twin OSSE are 1,000 km for the correlation length and 7
days for the correlation time.

2.5. Observation Network

This paper considers a network of pseudo‐observations corresponding to permanent tall towers from the
NOAA network. The GMD has deployed and maintained a network of eight towers over the last 15 years
offering a continuous and high‐accuracy measurement network to perform continental‐scale inversions of
greenhouse gases (Andrews et al., 2014). Seven of the eight towers were selected for our experiments cover-
ing different regions of North America: the Great Lakes (LEF), the upper Midwest (WBI), the southeastern

Figure 4. Temporal correlation function symmetric about zero lag. The
corresponding correlations for other times can be obtained by shifting this
one.
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US (SCT), the southern Great Plains (WKT), New England (AMT), the mid‐Atlantic (SNP), and the Rocky
Mountains (BAO). The selected tower locations are marked by circles in Figure 1. These seven towers are
enough to demonstrate the system and would be expanded to include more of the North American network
of calibrated CO2 mole fraction observations in a real‐data inversion.

This study used only those observations that occurred between noon and 4 pm local solar time, when tower
measurements are representative of the entire convective boundary layer (Bakwin et al., 1998; Davis et al.,
2003) and modeling of the ABL is less uncertain (Agustí‐Panareda et al., 2019; Chen et al., 2019; Geels et al.,
2007).

2.6. Observation Error Covariances

The “observation error” covariance matrix R includes both the instrument error and errors in the represen-
tation of the influence functions H, that is, transport errors. The former tend to be independent for the
hourly measurements used here (Andrews et al., 2014), while the latter tend to be correlated over several
hours to a day and 1 to 400 km (Díaz Isaac et al., 2014; Lauvaux et al., 2009). This paper assumes towers
are far enough apart to be uncorrelated in space, while temporal correlations in the transport errors fall
off exponentially, with a 3‐hr time scale.

Andrews et al. (2014) suggest values of 0.1 ppm for the uncertainty in the instrument readings. Gerbig et al.
(2003; Figure 4) suggest 0.4 ppm is the approximate magnitude of errors of representativeness associated
with comparing 27 km model grid‐cell variables with point measurements. Lauvaux et al. (2009) suggest 2
ppm for the transport uncertainty based on a mesoscale ensemble, and Chen et al. (2019) suggest 3 ppm,
while Díaz Isaac et al. (2014) imply values around 5 ppm might be more appropriate for this quantity.

This experiment assumes the standard deviation of the transport error for each observation to be 2 ppm in
order to account for inaccuracies in the simulated atmospheric transport. The instrument errors and errors
of representativeness are accounted for by means of an additional uncorrelated observation error covariance
term with a standard deviation of 0.4 ppm. The pseudo‐observations are calculated by finding the observa-
tions predicted by the influence functions using the “true” fluxes, then adding correlated noise with the
characteristics described above.

2.7. Evaluation

Since this experiment is an OSSE, we can compute the error in the domain‐average flux by subtracting the
“true” flux from the prior and posterior mean estimates for each realization.

The setup of this experiment allows a comparison of two different measures of the uncertainty in the flux
estimates: the analytic uncertainty from the calculated covariance matrices B and A and a Monte Carlo esti-
mate from the spread among the individual mean estimates. For the identical‐twin OSSE, these measures
should be identical. For the fraternal‐twin OSSE, these measures are expected to be different, with the dif-
ference indicating the degree to which the use of incorrect assumptions affects the uncertainty reported
by the analytic approximation as compared to the expected model‐“truth” discrepancy.

The analytic versions of B and A are stored at reduced resolution, and A is also calculated at reduced resolu-
tion, as discussed at the end of section 3. The Monte Carlo estimates of these matrices derived from the
ensemble are subject to sampling error. Either of these sets of approximations may lead to disagreements
between the analytic and Monte Carlo estimates of the covariance matrices.

To simplify presentation, these measures are shown only for the domain‐average flux estimates.

3. Implementation

Spatial and temporal correlations at this relatively high resolution (27 km, producing a 184 × 249 spatial
domain) required two main technical developments to efficiently represent and compute quantities using
the background error correlation matrices: one class representing the Kronecker product representation of
Yadav andMichalak (2013), described in the supporting information, and one providing a spectral represen-
tation of the spatial correlations as suggested by Nowak et al. (2003) and Dietrich and Newsam (1993) and as
used in operational numerical weather prediction (Bannister, 2008), described in section 3.1.
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These classes reduce the storage required for the background error covariance matrix from 330 TB to under
1MB. The largest component left is then H. Since it is stored as a dense matrix, this inversion system is at
present limited to about a month of observations. A description of how to get the code is available in
Appendix A.

The above calculations consider only the requirements to produce an estimate of the posterior mean:
Specifying the full posterior distribution requires also the posterior covariance. Storing the posterior covar-
iance requires the same prohibitive amount of storage as the prior covariance, so approximations are needed.
The method chosen here is to aggregate the fluxes to a coarser resolution in time and in space, specifically
7‐day temporal resolution and 108 km spatial resolution and represent the covariances only on that reduced
grid. Similar methods are suggested by Yadav and Michalak (2013) and Bennett (2002). The inversion pack-
age described in this paper provides functions to calculate reduction and prolongation operators able to mod-
ify the spatial parts of the background error covariance matrix B and observation operatorH for lower spatial
resolution but relies on the capabilities of the python package XArray for reducing the temporal resolution
(Hoyer & Hamman, 2017) for ease of implementation and to avoid duplication of effort. The calculated
reduction operator is a simple arithmetic mean within each of the coarser‐resolution grid cells. The prolon-
gation operator used here fills the whole of an averaged region with the average of that region.

The inversion functions in this framework can take the lower‐resolution observation operator and back-
ground error covariance matrix as extra arguments and will use them to produce the posterior covariance

estimate at the reduced resolution. The particular function used in this study uses the value of HBHT þ R
already calculated at full resolution while producing the posterior mean estimate, so that the full posterior
covariance estimate is calculated as

Ared ¼ Bred − BredH
T
redðHBHT þ RÞ−1HredBred; (5)

rather than at full resolution as in Equation 2. The subscript red indicates that the subscripted quantity
uses a coarse‐resolution representation of the flux space, rather than the full‐resolution representation
of that same quantity used in the calculations for the posterior mean.

Note that the quality of the coarse‐resolution inversion will depend on how much coarser its resolution is
than the full resolution: Applying this method to find the covariance of the weekly fluxes averaged over
the whole of the spatial domain will produce an invalid covariance matrix with entirely negative entries.
In order to consistently have positive variance estimates available, this study calculated the posterior cov-
ariance twice, once without attempting to account for the aggregation error, using Bred andHred directly in
Equation 2:

Ared; no agg ¼ Bred − BredH
T
redðHredBredH

T
red þ RÞ−1HredBred; (6)

which always produces a valid covariance. The quality of this second approximation for the posterior cov-
ariance will also depend on the resolution chosen. Several resolutions were chosen for the posterior cov-
ariance matrix, with the inversion run separately for each, saving both approximations each time, to
provide information on how the posterior covariance matrix depends on resolution at which it is calcu-
lated and saved.

An effort was made during the development of this code to allow multiple prior mean estimates to be opti-

mized at once, performing only a single calculation of HBHT þ R and of the posterior covariance matrix A
orAred in the process; a similar procedure was proposed by Houtekamer et al. (1996) as a means to reduce the
calculation required by an ensemble Kalman filter. Note that, when using this ability to approximate the pos-
terior covariance using Monte Carlo methods following Michalak et al. (2004) and Bousserez et al. (2015),
the quality of the approximation will depend on the number of realizations used.

3.1. Spectral Correlations

For correlations that are a function only of the distance between two points on a regular grid, the effect of the
correlation is a convolution of the correlation with the fluxes, that is,

10.1029/2019MS001818Journal of Advances in Modeling Earth Systems

WESLOH ET AL. 9 of 20



∑
i; j

FðxjÞCðxj; yiÞFðyiÞ (7)

∑
j
FðxjÞ∑

i
Cðxj − yiÞFðyiÞ: (8)

This convolution can be represented in terms of the Fourier transforms of the correlation function C(h) and
the fluxes F(x):

GðxÞ ¼
Z
y
Cðx − yÞFðyÞdy ⇔ ĜðkÞ ¼ ĈðkÞF̂ðkÞ; (9)

where the hat denotes the Fourier transform of the symbol (Equation 1.14.5 NIST Digital Library of
Mathematical Functions, 2019). Using this approach, the correlation operator can be represented using
only the spectral coefficients of the correlation function, which take up about the same space as the fluxes,
and matrix‐vector products can be calculated using the fast Fourier transform (FFT), which is much faster
than the matrix multiplication (Cooley & Tukey, 1965; Gentleman & Sande, 1966; Stockham, 1966): The
code for this paper uses the pyFFTW interface to the implementations in the Fastest Fourier Transform
in the West (FFTW) library (Frigo & Johnson, 2005; Gomersall, 2016). This method uses the projected
map coordinates to compute distances rather than using the proper great‐circle distances. The assumption
that the domain is doubly periodic in space, required by the FFT, is avoided by embedding the physical
domain in a computational domain at least twice as large as the physical domain (Nowak et al., 2003).
The elements of the computational domain that do not correspond to points in the underlying physical
domain are set to zero, so that the correlations with those points do not affect the physical results.

Similar methods have been used in global meteorological data assimilation (Bannister, 2008), and a similar
method was proposed by Nowak et al. (2003) for use in geostatistical problems. This is the first application
the authors know of to the estimation of CO2 flux inversions. Nowak and Litvinenko (2013) suggests com-
bining spectral methods withmethods for Kronecker products for further speedups, treating x and y as separ-
able, in addition to space and time as is done here, and using a different algorithm for the Kronecker product.

4. Results and Discussion

Results for a single realization will be shown first, showing the structure implied by the prior covariance and
the ability of the inversion to produce corrections to the daily cycle, followed by a summary of the 80 realiza-
tions together.

One realization of the noisy flux, that is, the true fluxes plus a perturbation generated with an exponential
correlation function with this 200 km length scale, is shown in the second column of Figure 5 together with
the “truth” from which it was generated in the first column. The estimate of the prior mean, shown in the
middle column of Figure 5, does not look like the output of a modern vegetation model, with magnitudes
much larger than expected and the sign varying widely across the domain. Since the prior covariance used
to generate that prior mean estimate is intended to capture the spread of vegetation model outputs around
the truth, the mismatch between the prior shown in Figure 5 and what would be expected from a vegetation
model suggests that some of the assumptions going into the prior covariance are incorrect.

The changes from the prior to the posterior mean estimates in the two experiments are shown in the third
and fourth columns of Figure 5. These changes appear smaller in magnitude than the prior mean estimate,
indicating that the seven‐tower network used here does not strongly constrain the gridpoint estimates. In
addition, the smoothness of the changes indicates that the prior mean estimate is still relied upon for the
fine‐scale features. The changes in the fraternal‐twin experiment are roughly the same magnitude but are
smoother in space and change muchmore rapidly in time, showing the influence of the different parameters
used in that experiment.

The average of the flux increment over the spatial domain for the first realization of the ensemble, that is, the
change from the prior mean to the posterior mean, is shown in the middle plot in Figure 6. The
high‐frequency fluctuations in the blue line have a period of 1 day and show the inversion is able to adjust
the daily cycle in addition to the larger‐scale signals. Comparing the spatial average of the increment to the
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spatial average of the prior and posterior mean estimates, shown in the top plot of Figure 6, indicates that the
inversion improves both the net fluxes over several weeks and the magnitude of the daily cycle in those
fluxes.

The bottom plot in Figure 6 shows the influence of the fluxes on the observations at any given time, repre-
sented as the sum of the influence functions corresponding to that flux time over the spatial domain and
averaged over all observations. A larger influence means a given change in the fluxes can produce a larger
change in mole fractions or, equivalently, that a given change in mole fractions would produce a relatively
finer adjustment to the fluxes. All else equal, a larger influence allows for a larger change in the surface
fluxes for a given observational mismatch.

The structure of the corrections shown in Figure 6 for the identical‐twin experiment closely mirrors the tem-
poral correlations shown in Figure 4: There are substantial variations within the daily cycle, but the varia-
tions from one day to the next are much smaller. By the same token, the fraternal‐twin posterior changes
much more from day to day, in accordance with the shorter correlation time scale. Both parts are exactly
as allowed by the prior error correlations; this underscores the importance of the prior covariance in deter-
mining the output of the inversion and the need for data‐driven error covariance structures.

The inversion of the 80 prior mean estimates was accomplished with a single run of the inversion code for

each experiment, which shared the value ofHBHT þ R among the calculations required for the 80 posterior
mean estimates and the reduced‐resolution posterior covariance matrix. As a note, the updates to each prior
mean estimate are independent of the other members of the ensemble. The posterior covariance matrix Ared

Figure 5. The left column shows the CMS posterior biological fluxes used as “truth” for these experiments. The second column shows a realization of the flux
noise with an exponential spatial correlation function and a correlation length of 200 km, while the third column shows the mean of the posterior from the
inversion performed with this prior mean estimate. The rows show the fluxes at different days, spaced 10 days apart, with each row showing the fluxes for
midnight UTC.

10.1029/2019MS001818Journal of Advances in Modeling Earth Systems

WESLOH ET AL. 11 of 20



depends only on B, H, and R, and so is the same for all the realizations, and was only calculated twice: once
with an attempt to account for aggregation error and once without. This demonstrates the potential for
efficiently optimizing an ensemble of prior flux estimates. As with the assumptions concerning the
temporal structure of the prior flux estimates, the creation of data‐driven prior flux ensembles is a high
priority for future research (Zhou et al., 2020).

In this inversion system, the ensemble of posterior fluxes can be used to estimate the uncertainty in the pos-
terior fluxes in the manner of Michalak et al. (2004) and Bousserez et al. (2015). This system also allows for
an approximate calculation of the analytic posterior uncertainty.

Figure 6. The top graph shows the magnitude of the difference between the prior and posterior estimates of the mean
flux and the “true” flux the inversion was attempting to recover averaged over the spatial domain, both for the first
ensemble member. The middle graph shows the change from the prior to the posterior mean flux estimates, again for the
first ensemble member and averaged over the spatial domain. The bottom graph shows the influence of the fluxes at a
given time on the average observation, also averaged over the spatial domain. The vertical line in each graph marks 1
July, the day of the first observation used in the inversion.

Table 1a
Standard Deviations for Domain‐average Fluxes, in μmol/(m2 s), Calculated Using Monte Carlo Methods

Monte Carlo

Prior Identical‐twin posterior Fraternal‐twin posterior

N Estimate 95 % CI Estimate 95 % CI Estimate 95% CI

5 samples 0.90 0.43 2.05 0.53 0.22 1.22 0.53 0.25 1.22
10 samples 0.66 0.41 1.10 0.49 0.31 0.81 0.63 0.40 1.05
20 samples 0.61 0.45 0.86 0.37 0.27 0.52 0.51 0.37 0.72
40 samples 0.55 0.44 0.70 0.32 0.26 0.40 0.40 0.32 0.51
80 samples 0.62 0.53 0.72 0.30 0.26 0.36 0.38 0.33 0.45
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For the identical‐twin experiment, comparing the approximate analytic and Monte Carlo estimates of the
standard deviation for the domain‐average flux indicates the approximations used to compute and store
the posterior covariance matrix at a computationally tractable resolution tend to make the narrowing of
the posterior distribution relative to the prior around ten percent too large at the resolutions used here.

To be specific, the deterministic posterior estimates for the standard deviation of the domain‐average flux in
Table 1 lie below the 95% confidence intervals calculated for the stochastic estimates of the standard devia-
tion in the same table (Oliphant, 2006a), so long as the confidence interval is based on more than five reali-
zations of the prior noise. This mismatch is not simply an artifact of the different approaches used: The
deterministic approximation for the prior variance, given in the same table, is well within the confidence
interval for the stochastic approximation of that quantity. The deterministic approximations to both the
prior and posterior standard deviation for the domain‐average flux decrease with increasing resolution,
becoming more confident in the average flux across the domain as the resolution of the uncertainty becomes
coarser. This underestimate of the analytic covariance matrix is a potential concern for future inversion stu-
dies, though compared to the other assumptions made in an inversion, this may not be the dominant source
of uncertainty in the posterior covariance estimates, especially when the resolution of the posterior covar-
iance (Yadav & Michalak, 2013) is not much lower than that of the posterior mean estimates.

For the fraternal‐twin experiment, attempting to account for the aggregation error produced a negative pos-
terior error variance for the domain‐average flux, but the posterior error variance for the domain‐average
flux calculated without an attempt to account for aggregation error is positive and is shown in Table 1.
Note that the fraternal‐twin OSSE uses the same 80 ensemble members for its ensemble mean estimates
as the identical‐twin OSSE, so the Monte Carlo estimates of the posterior uncertainty reflect the distribution
of the posterior around the “truth,” while the deterministic estimates of the posterior uncertainty are calcu-
lated using the assumptions of the fraternal‐twin inversion, one of those assumptions being that the correla-
tion length and time in the prior covariance of the fraternal‐twin experiment are correct. The Monte Carlo
estimates, on the other hand, use information outside of those assumptions, the 80 flux ensemble members
generated a without using the prior covariance, to provide a more complete picture of the uncertainty and
the difference between the fraternal‐twin posteriors and the “truth.” The factor‐of‐two discrepancy between
the analytic and Monte‐Carlo estimates of the uncertainty is rather larger than that in the identical‐twin
experiment, affirming that the correlation parameters are important to the posterior covariance and to the
relationship between the posterior covariance and the difference between the posterior and the “truth.”

Table 1b
Standard Deviations for Domain‐average Fluxes, in μmol/(m2 s), Calculated Using Two Different Deterministic Approaches. Missing Values Are Due to
Negative Variances

Deterministic

Identical‐twin experiment Fraternal‐twin experiment

Resolution Prior Posterior (no agg.) Posterior (attempt agg.) Prior Posterior (no agg.) Posterior (attempt agg.)

108km 0.59 0.21 0.24 0.60 0.15 —

162km 0.59 0.20 0.20 0.60 0.15 —

216km 0.59 0.19 0.09 0.59 0.14 —

432km 0.58 0.18 — 0.59 0.14 —

Note. These standard deviations correspond to an uncertainty estimate for the average flux over the portion of the continent shown in Figure 1 and the roughly
6‐week temporal domain. The top table shows Monte Carlo estimates, which use the 80 ensemble members as independent samples and estimate the standard
deviation from that. Each of the twin experiments uses the same 80 ensemble members as their prior means. The “Estimate” column is the expected value of the
standard deviation given the sample, and the “95% CI” columns give uncertainty bounds on that uncertainty estimate. The point estimates should be the same
down columns, with some deviations from sampling variability, and the confidence intervals should get narrower. The deterministic calculations use the
reduced‐resolution analysis covariance matrix, calculated in two different ways. The first does not attempt to account for aggregation error and uses
Equation 5 to calculate the posterior variance, and the second attempts to do so using Equation 6 for the posterior variance. All of the reduced‐resolution
covariance matrices used to produce the results shown here have a temporal resolution of 7 days. The standard deviations reported in the “prior” column
should be the same, with differences from sampling variability and from saving a coarser‐resolution version of the full prior covariance matrix. The identi-
cal‐twin posterior standard deviation estimates are estimating the same thing and are expected to be equal. The Monte Carlo and deterministic estimates of
the posterior uncertainty in the fraternal‐twin experiment measure different quantities and are not expected to be identical. In particular, the deterministic
approximations to the prior and posterior uncertainties reflect only the assumptions of the inversion and would be the value reported by an inversion. The
Monte Carlo estimate of the posterior uncertainty for the fraternal‐twin experiment uses the same prior ensemble as the identical‐twin experiment, which
means the Monte Carlo estimate is related to the difference between the fraternal‐twin posterior and the “truth”.
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The quality of the lower‐resolution approximation to the posterior uncertainty does not appear to be very
dependent on the resolution at which the posterior covariance is calculated if no attempt is made to account
for aggregation error. If such an attempt is made following Equation 5, the quality of the approximation var-
ies greatly depending on the spatial resolution, performing better than the direct approach when the resolu-
tion is higher than the correlation length chosen for the prior and worse when the resolution is coarser than
the correlation length.

5. Conclusions

This study demonstrates a newly developed, high‐resolution (27 km× 27 km in space, 6 hourly in time),
continental‐scale CO2 surface flux inversion framework. The methodology presented here combines spatial
and temporal error structures in an efficient mesoscale inversion system, allowing the system to solve for
fluxes at these relatively high spatial and temporal resolutions, and avoiding the potential degradation in
the accuracy of the inversion that can result from solving for fluxes at coarser resolution. When applied to
real observations collected from 30 tower locations across North America, the combination of the
Kronecker product implementation of Yadav and Michalak (2013) and spectral methods for the prior error
correlations should significantly improve the resolution of inverse fluxes, which previous studies have indi-
cated is important for the accuracy of inversion results (Ogle et al., 2015; Schuh et al., 2013). In addition, the
ability to optimize multiple prior mean estimates at once will allow for uncertainty assessments using the
Monte‐Carlo approach of Michalak et al. (2004) and Bousserez et al. (2015), or the prior sensitivity approach
of Lauvaux et al. (2012) using ensembles of prior mean estimates designed to reflect the full range of uncer-
tainty in the fluxes, such as those provided by MsTMIP (Huntzinger et al., 2018) or the ACT‐America CASA
ensemble (Zhou et al., 2020).

The improved representation of the posterior uncertainty in the fraternal‐twin OSSE using Monte Carlo
methods rather than deterministic ones suggests that the generation of prior mean estimates using only
noise realizations based upon the assumptions in the prior covariance limits the quality of the posterior flux
estimates. The fraternal‐twin OSSE results suggest that using ensemble members incorporating different
vegetation models, different inputs for the vegetation models, and different downscaling of the models from
monthly to hourly outputs would result in amore robust understanding of the the range of the uncertainty in
the posterior fluxes.

The largest limitation of this approach is the assumption that the correlation length does not change over the
domain. Previous studies have not found definite changes across a continent (Hilton et al., 2013; Kountouris
et al., 2015) but have noted that there are differences between continents (Kountouris et al., 2015).
Representing this variation in correlation length over space is not possible using spectral methods but can
be done using wavelets (Deckmyn & Berre, 2005). Such an approach has been implemented for ffCO2 inver-
sions in Ray et al. (2013, 2014, 2015), but these methods have not yet been extended to biogenic CO2

inversions.

The prior flux errors used in this paper confront the same problem described by Kountouris et al. (2015),
which found that using correlation length and time scales taken from comparisons of eddy‐covariance flux
tower data to vegetation‐model‐predicted fluxes produced uncertainty estimates for continental‐scale fluxes
that were much lower than top‐down uncertainty estimates from other studies. This study achieves
continental‐scale flux uncertainties in line with previous work at the cost of grid‐point‐level flux errors much
higher than expected—for example, standard deviations in excess of 40 μmol/(m2s) for much of the
corn‐growing regions of the Midwest (Figure 3). In contrast, Lokupitiya et al. (2009a) and DesJardins et al.
(1984) indicate that around 40 μmol/(m2s) is a good value for net ecosystem exchange (NEE) over growing
corn during the day, while the standard deviation of the model‐data difference under the same conditions
is closer to 10 to 20 μmol/(m2s) for a comparison of half‐hourly fluxes from SiBcrop to AmeriFlux
eddy‐covariance data (Lokupitiya et al., 2009b). This inability to match both grid point variances and
top‐down continental uncertainty estimates seems to indicate the assumed correlation model is oversimpli-
fied and should be examined more carefully.
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Appendix A: Code Location
The code used for the inversion is available under a three‐clause BSD license (Morin et al., 2012) on GitHub
(Blischak et al., 2016) through the PSU‐inversion organization at https://github.com/psu-inversion/atmo-
spheric-inverse-methods-for-flux-optimization and has also been archived at Zenodo (Wesloh, 2020). In par-
ticular, the scripts used are in the “paper2020” sub‐directory: “make_noisy_fluxes.py” to generate the
different realizations of the prior distribution for use as prior mean estimates in the OSSE, “month_inver-
sion_magic_dask.py” to run the OSSE, “results_analysis.py” to generate the OSSE plots, and “plot_temporal
covariances.py” to make Figure 4. Documentation for the inversion software described in this paper is avail-
able at https://psu-inversion.github.io/atmospheric-inverse-methods-for-flux-optimization. Wilson et al.
(2014) note the importance of tests to ensure the reliability of software (Heroux & Willenbring, 2009;
Heaton & Carver, 2015; Wilson, 2006); the tests for this package can be run from the root directory using
tox or “python setup.py test”.

The new LPDM postprocessing software, written in IDL and python, is available on GitHub through the
PSU‐Inversion organization at https://github.com/psu-inversion/LPDM-postprocessing or Wesloh &
Lauvaux (2020) under a three‐clause BSD license (Morin et al., 2012). The influence functions used in this
study are made available through the PSU DataCommons (Wesloh & Lauvaux, 2019).

Acronyms

ABL atmospheric boundary layer
ACT‐America Atmospheric Carbon and Transport–America
CMS Carbon Monitoring System
FFT fast Fourier transform (Cooley & Tukey, 1965)
FFTW Fastest Fourier Transform in the West (Frigo & Johnson, 2005)
GMD Global Monitoring Division
JPL Jet Propulsion Laboratory
LPDM Lagrangian particle dispersion model of Uliasz (1993, 1994).
NASA National Aeronautics and Space Administration
NOAA National Oceanic and Atmospheric Administration
OSSE observing system simulation experiment (Errico & Privé, 2018)
TKE turbulent kinetic energy
WRF Weather Research and Forecast model (Skamarock et al., 2008)
WRF‐Chem Weather Research and Forecast–Chemistry (Grell et al., 2005)

Notation

A analysis error covariance: uncertainty estimate in our posterior
B background error covariance: uncertainty estimate in our prior
CO2 carbon dioxide
H influence function: derivative of observations with respect to sources
K Kalman gain matrix: K ¼ BHT HBHT þ R

� �−1

N μ;Σð Þ the multivariate normal distribution with mean μ and covariance Σ
ppm parts per million
R observation error covariance: combines instrument uncertainty in observations and

transport uncertainty in modeling how the fluxes impact the observations
xa analysis estimate of the fluxes; taken from the mean of the posterior distribution
xb background estimate of the fluxes; serves as the mean of the prior distribution
xt the true fluxes; known for OSSE
y observed mole fractions
CT the transpose of the real matrix C
C−1 the inverse of the non‐singular square matrix C
ĈðνÞ the Fourier transform of the function C(t)
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Data Availability Statement

The WRF simulation is available at Lauvaux & Butler (2016). The baseline fluxes were obtained from the
prior biological fluxes of CMS‐Flux (Liu et al., 2014) and are available as NASA Carbon Monitoring
System (2013).
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