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Abstract. In this study, we assess the skill of a stochastic
weather generator (SWG) to forecast precipitation in several
cities in western Europe. The SWG is based on a random
sampling of analogs of the geopotential height at 500 hPa
(Z500). The SWG is evaluated for two reanalyses (NCEP
and ERA5). We simulate 100-member ensemble forecasts on
a daily time increment. We evaluate the performance of SWG
with forecast skill scores and we compare it to ECMWF fore-
casts.

Results show significant positive skill score (continuous
rank probability skill score and correlation) compared with
persistence and climatology forecasts for lead times of 5
and 10 d for different areas in Europe. We find that the low
predictability episodes of our model are related to specific
weather regimes, depending on the European region. Com-
paring the SWG forecasts to ECMWF forecasts, we find that
the SWG shows a good performance for 5 d. This perfor-
mance varies from one region to another. This paper is a
proof of concept for a stochastic regional ensemble precip-
itation forecast. Its parameters (e.g., region for analogs) must
be tuned for each region in order to optimize its performance.

1 Introduction

Ensemble weather forecasts were designed to overcome the
issues of meteorological chaos, from which small uncertain-
ties in initial conditions can lead to a wide range of possible
trajectories (Sivillo et al., 1997; Palmer, 2000). Hence, from
a sufficiently large ensemble of initial conditions, it is in prin-

ciple possible to sample the probability distribution of future
states of the system.

Forecasts issued by meteorological centers are obtained by
computing several simulations with perturbed initial condi-
tions, in order to sample uncertainties. Those experiments
are rather costly in terms of computing resources and are
generally limited to a few tens of members (Hersbach et al.,
2020; Toth and Kalnay, 1997), which can hinder a proper es-
timate of probability distributions of trajectories. Moreover,
obtaining information at local spatial scales can be difficult
because the horizontal resolution of the atmospheric models
is around 18 km, e.g., for the European Centre for Medium-
Range Weather Forecasts (ECMWF) ensemble forecast sys-
tem.

From a mathematical point of view, computing the proba-
bility distribution of the trajectories of a (deterministic) sys-
tem makes the underlying assumption that the system be-
haves like a stochastic process, for which statistical proper-
ties are defined naturally (Ruelle, 1979; Eckmann and Ru-
elle, 1985). This has justified the development of stochastic
weather generators (SWG), which are stochastic processes
that emulate the behavior of key climate variables (Ailliot
et al., 2015). The advantages of stochastic models are a
relative simplicity of implementation and a low computing
cost. The challenge of their development is to verify that the
behavior of the simulations is realistic, according to well-
defined criteria (van den Dool, 2007; Jolliffe and Stephenson,
2012).

The first stochastic weather generators were devised to
simulate rainfall occurrence (Gabriel and Neumann, 1962)
and to simulate rainfall amounts (Todorovic and Woolhiser,

Published by Copernicus Publications on behalf of the European Geosciences Union.



4942 M. Krouma et al.: Stochastic forecast of precipitation with analogs

1975). SWGs were developed and used to estimate the prob-
ability distributions of climate variables such as temperature,
solar radiation, and precipitation through extensive simula-
tions (Richardson, 1981).

Stochastic weather generators can be useful complements
to atmospheric circulation models, in order to simulate large
ensembles of local variables, as they can be calibrated for
small spatial scales compared with numerical models (Ailliot
et al., 2015). This explains their wide applications in impact
studies.

A successful simulation with a SWG relies on the choice
of inputs. The atmospheric circulation can be chosen a pre-
dictor for other local variables. The (loose) rationale for this
choice is that the circulation is modeled by prognostic equa-
tions (Peixoto and Oort, 1992), which drive the other physi-
cal variables. Therefore, the primitive equations of the atmo-
sphere (Peixoto and Oort, 1992, Chap. 3) suggest that repro-
ducing temporal variability on daily time scales requires con-
sidering circulation variables. The influence of large-scale
circulation on local climate variables has been proven in pre-
vious studies such as the influence of atmospheric circulation
on the Mediterranean Basin (Mastrantonas et al., 2021) and
Greece’s precipitation (Xoplaki et al., 2000; Türkes et al.,
2002). Similar influences have been found on precipitation
and temperature over the North Atlantic region (Jézéquel
et al., 2018).

Analogs of circulation were initially designed to provide
“model-free” forecasts by assuming that similar situations
in atmospheric circulation may lead to similar local weather
conditions (Lorenz, 1969). The potential to simulate large en-
sembles of forecast temperature with circulation analogs was
explored by Yiou and Déandréis (2019) by considering ran-
dom resamplings ofK best analogs (rather than only consid-
ering the best analog). This has led to the development of an
SWG in “predictive” mode, which uses updates of reanalysis
datasets as input.

Alternative systems of analogs to forecast precipitation
have been proposed by Atencia and Zawadzki (2014). Those
systems are based on analogs of precipitation itself. Such sys-
tems are very efficient for nowcasting, i.e., forecasting pre-
cipitation within the next few hours. Considering the atmo-
spheric circulation analogs allows focusing on longer time
scales.

Yiou and Déandréis (2019) evaluated ensemble forecasts
of the analog SWG for temperature and the NAO index with
classical probability scores against climatology and persis-
tence. Reasonable scores were obtained up to 20 d. Through
this study, we aim to assess the skill of this SWG to forecast
precipitation in different areas of Europe and for different
lead times. The previous study on this forecasting tool was a
proof of concept for temperature. In this study, we will adapt
the parameters of the analog SWG to optimize the simulation
of European precipitations. We then analyze the performance
of this SWG for lead times of 5–20 d, with the forecast skill
scores used by Yiou and Déandréis (2019).

We will evaluate the seasonal dependence of the forecast
skills of precipitation and the conditional dependence on
weather regimes. Finally, comparisons with medium-range
precipitation forecasts from the ECMWF will be performed.

The paper is divided as follows: Section 2 is dedicated to
describing the data used for the experiments. Section 3 ex-
plains the methodology (analogs, stochastic weather gener-
ator, and forecast skill scores). Section 4 details the exper-
imental setup and justifies the choice of parameters that we
made for the forecast parameters. Section 5 details the results
of simulations and the evaluation of the ensemble forecast.
Section 6 contains the main conclusions of the analyses.

2 Data

Daily precipitation data were obtained from the European
Climate Assessment and Data (ECAD) project (Klein Tank
et al., 2002) for four locations in western Europe (Berlin,
Madrid, Orly, and Toulouse), which are subject to contrasted
meteorological influences (Fig. 1). The ECAD provides sta-
tion data that are available at a daily time step from 1948 to
2019. The choice of those stations was based on the availabil-
ity of a large and common period of observations with a low
rate of missing data (less than 10 %). For verification pur-
poses, we used also the E-Obs data (Haylock et al., 2008),
which are a daily gridded data available from 1979 to the
present with a horizontal resolution of 0.25◦× 0.25◦. E-Obs
data are spatial interpolations of ECAD data.

We recovered the geopotential height at 500 hPa (Z500)
and sea level pressure (SLP) fields from the reanalysis of
the National Centers for Environmental Prediction (NCEP:
Kistler et al., 2001) with a spatial resolution of 2.5◦× 2.5◦

from 1 January 1948 to 31 December 2019.
We also used the atmospheric reanalysis (version 5) of

the European Centre for Medium-Range Weather Forecasts
(ECMWF) (ERA5; Hersbach et al., 2020). ERA5 data are
available from 1950 to the present with a horizontal resolu-
tion of 0.25◦× 0.25◦. The two reanalyses have fundamental
differences in terms of atmospheric models, assimilated data,
and assimilation scheme.

We considered the daily averages ofZ500 from NCEP and
ERA5, over the region covering 30◦W–20◦ E and 40–60◦ N,
to compute circulation analogs. Daily averages of SLP were
used over the region covering 80◦W–20◦ E and 30–70◦ N to
define weather regimes.

In order to assess the predictive skill of our precipita-
tion forecast model, a comparison with another forecast was
made. Many available datasets can be used for deriving this
information. We considered the ECMWF ensemble forecast
dataset system 5 (Vitart et al., 2017). It is a daily grid-
ded dataset interpolated over Europe that provides informa-
tion covering all the domains. Data are available through
the Copernicus Climate Data Store. They include forecasts
created in real time (since 2017) and hindcast forecasts
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from 1993 to 2019 (Vitart et al., 2017). The data are pro-
vided at an hourly time step with a horizontal resolution
of 0.25◦× 0.25◦. We considered the grid points that include
Berlin, Madrid, Orly, and Toulouse, which were identified in
the ECAD database.

3 Methodology

3.1 Analogs

The first step is to build a database of analogs of the atmo-
spheric circulation. We outline the procedure of Yiou and
Déandréis (2019), summarized in Fig. 1a. For a given day
t , we determine the similarity of Z500 for all days t ′ that are
within 30 calendar days of t but in a different year from t . The
similarity is quantified by a Euclidean distance (or root mean
square error) between the daily Z500 maps. Other types of
similarity measures are possible (Blanchet et al., 2018), but
the expected impact on the results is often marginal (Toth,
1991). We believe that the simplicity of the Euclidean dis-
tance makes it more robust to changes in horizontal res-
olution (e.g., from NCEP to ERA5), compared with more
sophisticated distances that include local spatial gradients,
which would require adjustments and additional tuning. This
choice can be left open for future fine-tuning, depending on
the region.

For each day t , we consider the K best analogs, i.e., for
which the distances are the smallest. We compute the spatial
rank correlation between theZ500 best analogs and theZ500
at time t for posterior verification purposes.

As a refinement over the study of Yiou and Déandréis
(2019), a time embedding of τ days was used for the search
of the analogs dates. This means that the field X(t) for
which we compute analogs is X(t)= (Z500(t),Z500(t +
1), . . .,Z500(t + τ)). This ensures that temporal derivatives
of the atmospheric field are preserved (Yiou et al., 2013).
Hence, the distance that is optimized to find analogs of the
Z500(x, t) field is

D(t, t ′)=

[∑
x

(
τ∑
i=0

∣∣Z500(x, t + i)−Z500(x, t ′+ i)
∣∣2)] 1

2

, (1)

where x is a spatial index and τ is the embedding time.
We consider different geographic domains as shown in

Fig. 1 for the computation of analogs and weather regimes.
The computation of circulation analogs was performed with
the “blackswan” Web Processing Service (WPS; Hempel-
mann et al., 2018). The “blackswan” WPS is an online tool
that helps compute circulation analogs on various datasets
(e.g., reanalyses and climate model simulations) with a user-
friendly interface.

3.2 Configuration of stochastic weather generator

We use a stochastic weather generator (SWG) based on a ran-
dom sampling of the circulation analogs. The operation of
the SWG and its design are detailed by Yiou and Déandréis
(2019). The aim is to generate random trajectories from the
previously computed analogs. Therefore, to generate a trajec-
tory, we proceed as follows: for a given day t0 in year y0, we
generate a set ofN = 100 simulations until a time t0+T , with
a lead time T ∈ {5,10,20} d. We start at day t0 and randomly
select an analog (out of K analogs) of day t0+ 1. The ran-
dom selection of analogs of the day t0+ 1 is performed with
weights that are proportional to the calendar difference be-
tween t0 and analog dates, to ensure that time goes forward.
We also exclude analog dates with years that are equal to y0.
This rule is important for the next iterations. We then replace
t0 by the selected analog of t0+ 1 and repeat the operation
T times. Excluding analogs in year y0 from the selection en-
sures that we do not use information from the T days that
follow t0. Hence, we obtain a hindcast trajectory between t0
and t0+ T .

The procedure presented above is repeated N = 100 times
to simulate N = 100 trajectories from t0 to t0+T0. The daily
precipitation of each trajectory is time averaged between t0
and t0+ T . Hence, we obtain an ensemble of N = 100 fore-
casts of the average precipitation for day t0 and lead time T .

Then t0 is shifted by 1t ≥ 1 d, and the ensemble simula-
tion procedure is repeated. This provides a set of ensemble
forecasts with analogs.

We made a hindcast exercise, where the forecasts of
precipitations based on analogs of atmospheric circula-
tion (Z500), are started every 1t ≈ T/2 d between 1 Jan-
uary 1948 and 31 December 2019. This yields a stochastic
ensemble hindcast of precipitation and atmospheric circula-
tion (Z500). In this paper, therefore, we analyze the proper-
ties of an ensemble forecast of mean precipitation between
t0 and t0+T . To evaluate our forecasts, the predictions made
with the SWG are compared with the persistence and clima-
tological forecasts. The persistence forecast consists of using
the average value between t0− T and t0 for a given year.
The climatological forecast takes the climatological mean
between t0 and t0+T . The two “reference” forecasts are ran-
domized by adding a small Gaussian noise, whose standard
deviation is estimated by bootstrapping over T long inter-
vals. We thus generate sets of persistence forecasts and cli-
matological forecasts that are consistent with the observa-
tions (Yiou and Déandréis, 2019).

The simulations of this stochastic model will be called
“SWG forecasts”, as opposed to ECMWF forecasts.

3.3 Forecast verification

Forecast verification is the process of determining the statis-
tical quality of forecasts. A wide variety of ensemble forecast
verification procedures exists (Jolliffe and Stephenson, 2012;
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Figure 1. Parameters of the analog computation. (a) For each day t in year y, we chose an analog day t ′ with a similar sequence of τ
consecutive day Z500 patterns. t0 is selected within 30 calendar days of t and in a year y′ 6= y. (b) Domains of computation of analogs. We
computed analogs over different domains, each one including a part of the Atlantic and focusing on a part of western Europe, in order to test
the sensitivity of our model to different geographic areas. The optimizing area was [30◦W–20◦ E; 40–60◦ N], indicated by the red rectangle.

Wilks, 1995). They involve measures of the relationship be-
tween a set of forecasts and corresponding observations. To
assess the quality of precipitation forecasts, we compute in-
dicators such as the correlation and continuous rank proba-
bility skill score (CRPSS) for each lead time T , for different
seasons and months.

The temporal rank correlation (referred to as correlation
skill) is calculated between the precipitation observations
and the median of 100 simulations. This simple diagnostic
is often used to assess forecast skills of indices (Scaife et al.,
2014).

The continuous ranked probability score (CRPS) is widely
used for probabilistic forecast verification (Ferro, 2007). It
is sensitive to the distance between forecast and observation
probability distributions.

If the ensemble forecast x yields a probability distribution
P(x) for a value xa , the CRPS measures how the probability
distribution of x compares with xa (Hersbach, 2000).

The CRPS is computed as

CRPS(P,xa)=

+∞∫
−∞

(P (x)−H(x− xa))2dx, (2)

where xa is the observation and H is the Heaviside function
of the occurrence of xa (H(y)= 1 if y ≥ 0, and H(y)= 0
otherwise). The decomposition and properties of the CRPS
have been investigated by Ferro (2007), Hersbach (2000),
and Zamo and Naveau (2018). A perfect forecast would have
a CRPS equal to 0, but the CRPS value obviously depends
on the units of the variable to forecast, so quantifying what
is a “good” forecast requires a normalization. It is hence dif-
ficult to compare CRPS values for temperature and precipi-
tation, within the same ensemble forecast. This issue is also
acute for non-Gaussian variables with heavy tails (Zamo and
Naveau, 2018) so that the interpretation of a given CRPS
value might not be informative.

One way of circumventing this difficulty is to compare
CRPS values to reference forecasts, such as persistence
or climatology. The continuous rank probability skill score
(CRPSS) is a normalization of Eq. (2) with respect to such a
reference.

The CRPSS is hence computed by

CRPSS= 1−
CRPS

CRPSref
, (3)

Geosci. Model Dev., 15, 4941–4958, 2022 https://doi.org/10.5194/gmd-15-4941-2022
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Figure 2. Weather regimes over Europe from SLP fields. Upper panels (a)–(d) contain winter (December–January–February: DJF) regimes:
negative phase of the North Atlantic oscillation (NAO−), Atlantic Ridge (AR), Scandinavian blocking (BLO), and Zonal regime (ZO). Lower
panels (e)–(h) contain summer (June–July–August: JJA) weather regimes: negative phase of the North Atlantic oscillation (NAO−), Zonal
(ZO), Scandinavian blocking (BLO) and Atlantic low (AL). The isolines show seasonal anomalies with respect to a DJF and JJA, in hPa with
2 hPa increments.

where CRPS is the time average of the CRPS of the SWG
forecast and CRPSref is the time average of the CRPS of
the reference (either climatology or persistence). The CRPSS
is interpreted as a fraction of improvement over a reference
forecast.

The values of the CRPSS vary between −∞ and 1. The
forecast is considered to be an improvement over the refer-
ence when the CRPSS value is positive. Values of CRPSS
equal to 0 indicate no improvement over the reference. Val-
ues inferior to 0 mean that the forecast is worse than the ref-
erence.

We use the CRPSS values to determine the maximum lead
time T for which the SWG forecast is better than references.
Then the SWG assessments will use the CRPS and directly
compare the probability distributions of precipitation ensem-
ble forecasts.

3.4 Dependence of forecast on weather regimes

We investigated the role of North Atlantic weather patterns
on the forecast quality by attributing CRPS values of the
SWG precipitation simulations to weather regimes. Weather
regimes are defined as large-scale quasi-stationary atmo-
spheric states. They are characterized by their recurrence,
persistence, and stationarity (Michelangeli et al., 1995). They
help in describing the features of the atmospheric circula-
tion. Surface variables like temperature and precipitation are

largely correlated with weather regimes (van der Wiel et al.,
2019).

The North Atlantic weather regimes were computed with
the procedure of Yiou et al. (2008), with the NCEP reanaly-
sis. The first 10 principal components of SLP (large region in
Fig. 1b) were classified with a k-means algorithm onto four
classes over a reference period between 1970 and 2010. The
procedure was repeated 100 times with random k-means ini-
tialization. Then we classified the resulting 100× 4 k-means
weather regimes in order to determine the most probable
classification. This heuristic procedure increases the robust-
ness of the obtained weather regimes. Figure 2 shows four
weather regimes for each season (winter and summer) that
are coherent with the literature (Cassou et al., 2011; Ghil
et al., 2008; Kimoto, 2001; Michelangeli et al., 1995).

The winter weather regimes are the negative phase of the
North Atlantic oscillation (NAO−), Atlantic Ridge (AR),
Scandinavian blocking (BLO), and Zonal (ZO). The summer
weather regimes are the negative phase of the NAO (NAO−),
Zonal (ZO), Scandinavian blocking (BLO), and Atlantic low
(AL). The regimes are not the same in both seasons due to
the seasonality of the large-scale atmospheric circulation.

For each day (in winter and summer) between 1948 and
2019, we classified the SLP by minimizing the root mean
square to four reference (1970–2010) weather regimes.

For each day t (within a given season), we considered the
analog dates of all N = 100 simulations between t and t +

https://doi.org/10.5194/gmd-15-4941-2022 Geosci. Model Dev., 15, 4941–4958, 2022
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Figure 3. Time series of analog ensemble forecasts for 2002, for lead times of 5 d (a, b) and 10 d (c, d) for summer (June to August) (a) and
(c) and winter (December to February) (b) and (d) for Orly. The median of 100 simulations is represented by the red line. The black line
represents observation values. Dashed lines represent the 5th and 95th quantiles. The blue line represents the persistence forecasts and the
orange line represents the climatology forecasts. The y-axis represents the average precipitation over T = 5, 10 d.

T and the corresponding classification into weather regimes.
Then we determined the most frequent weather regime of the
N member ensemble forecast between t and t+T . We hence
obtained time series on the most likely weather pattern that
dominates in the ensemble forecast between t and t + T .

We evaluated the influence of the dominating weather
regimes on the SWG forecast quality by plotting the proba-
bility distribution of CRPS values conditioned on the weather
regimes. This is done separately for “good” forecasts (low
CRPS values) and “poor” forecasts (high CRPS values).

We identified two classes of predictability from CRPS val-
ues:

– Low predictability is related to high values of CRPS that
exceed the 75th quantile.

– High predictability is linked to low values of CRPS, be-
low the 25th quantile.

Then we associated the dominating weather regimes com-
puted above with classes of high or low predictability. This

procedure helps in identifying atmospheric patterns that
could lead to low or high predictability with the SWG model.

4 Stochastic weather generator parameter
optimization

We started by verifying the relationship between Z500 over
the Euro-Atlantic region and the precipitation in the four
studied areas to ensure that Z500 analogs would be reason-
able predictors of precipitation. We show the maps of the
temporal rank correlation between the daily average of Z500
and the precipitation in Appendix B1. We found a significant
negative correlation between Z500 and the precipitation with
p values≤ 0.05.

Then we empirically adjusted the parameters of the SWG
simulations to optimize the forecast scores. The first param-
eter is the geographic area. We computed sample trajectories
of the SWG for the four domains outlined in Fig. 1b. We
used different domains in order to find an optimal region that

Geosci. Model Dev., 15, 4941–4958, 2022 https://doi.org/10.5194/gmd-15-4941-2022
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Figure 4. Skill scores for the precipitation of Orly, Madrid, Berlin, and Toulouse for lead times of 5, 10, 20 d for January (blue) and July (red)
for analogs computed from reanalyses of NCEP. Squares indicate CRPSS where the persistence is the baseline, triangles indicate CRPSS
where the climatology is the reference, and boxplots indicate the probability distribution of correlation between observation and the median
of 100 simulations for all days. The boxplot upper whisker is: min{1.5(q75− q50)+ q50,max(CRPSS)}. The boxplot lower whisker is:
max {q50− 1.5(q75− q50),min(CRPSS)}.

allows verifying the relationship between precipitation and
Z500 for the four studied areas. Each domain included a part
of the Atlantic and a part of western Europe. We chose the
widest domain with the coordinates 80◦W–20◦ E and 30–
70◦ N in order to catch the variability in the whole Euro-
Atlantic region; however, this large domain gave the poorest
skill scores for precipitation forecasting for the studied areas
as shown in Table 1. Then we focused on two smaller do-
mains (outlined in blue in Fig. 1b): one centered over north-
ern Europe and the other centered over southern Europe. We
found better forecast skills for specific locations. The same
level of performance was found for the domain (outlined in
red in Fig. 1b) with coordinates 30◦W–20◦ E and 40–60◦ N.
Therefore, we kept this domain for the subsequent analyses,
because it allows optimizing the correlations between Z500
and precipitation for the four studied areas and the time of
computation of analogs at the same time. We compared the
skill scores over the geographic domain with the coordinates
[80◦W–20◦ E; 30–70◦ N] and [30◦W–20◦ E; 40–60◦ N]. We
determined that the SWG simulations showed a better skill
for the geographic domain (outlined in red in Fig. 1b) and

the skill scores remained the highest ones as represented in
Table 1.

The second parameter is the numberK of the best analogs
that we use to simulate the precipitation. Our choice was
based on numerical experiments. We performed different
SWG simulations where we varied the number of analogs
(K = 5, 10, 20). We noticed an improvement in the skill
scores by increasing the number of analogs as shown in Ta-
ble 2. Therefore, we considered K = 20 analogs to ensure
that we had enough analog dates for the simulations. It ap-
pears that the Euclidean distance of analogs grows rather
slowly after K = 20. Our choice was also supported by a
theoretical study by (Platzer et al., 2021) who showed that,
for complex systems, the use of a large number of analogs
(K > 30 analogs) does not change the prediction properties
with analogs. Thus, we kept K = 20 best analogs for the rest
of the analyses.

We quantified the dependence of the forecast on the time
embedding for the analogs τ by calculating the analogs based
on different embedding values from τ = 1– 4 d. We found
that an embedding of 4 d helped to better catch the persis-
tence and improve the skill scores for the forecast compared

https://doi.org/10.5194/gmd-15-4941-2022 Geosci. Model Dev., 15, 4941–4958, 2022
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Table 1. Correlation between observations and the median of 100 simulations for the winter (DJF) for the different studied domains rep-
resented in Fig. 1b, with the coordinates [80◦W–20◦ E; 30–70◦ N] for the largest one (blue) and [30◦W–20◦ E; 40◦–60◦ N] for the red
rectangle for a lead time of 5 d.

Location
[80◦W–20◦ E; 30–70◦ N] domain [30◦W–20◦ E; 40–60◦ N] domain

Correlation 95 % confidence interval Correlation 95 % confidence interval

Berlin 0.32 0.30–0.35 0.50 0.48–0.56
Madrid 0.35 0.33–0.39 0.53 0.51–0.55
Orly 0.39 0.37–0.41 0.58 0.56–0.59
Toulouse 0.34 0.31–0.36 0.40 0.39–0.44

Table 2. CRPSS versus persistence and climatology for SWG simulations with 5, 10, and 20 analogs for the [30◦W–20◦ E; 40–60◦ N]
domain and for a lead time of 5 d.

Location
K = 5 analogs K = 10 analogs K = 20 analogs

Persistence Climatology Persistence Climatology Persistence Climatology

Berlin 0.29 0.20 0.39 0.31 0.56 0.50
Madrid 0.32 0.31 0. 40 0.39 0.57 0.57
Orly 0.34 0.12 0. 40 0.23 0.60 0.53
Toulouse 0.34 0.24 0.38 0.45 0.41 0.48

with 1 d, as shown in Table 3. Therefore, we kept the fore-
cast based on a 4 d embedding. This choice was based on the
numerical experiments performed for the studied locations.
This is also supported by the study of Yiou et al. (2013),
where the analog computation with time embedding was ar-
gued to improve the temporal smoothness of simulations.
With such an embedding, forecasts for lead times of T = 5 d
yield at least two time increments.

For comparison purposes, SWG simulations are obtained
using analogs computed from reanalyses on the NCEP and
ERA5 reanalyses. By comparing their skill scores, we found
that CRPSS and correlations between observations and simu-
lations are positive in both cases, and show positive improve-
ment compared with persistence and climatology forecasts.
The CRPSS and correlation for simulations with analogs of
NCEP are almost identical to those with ERA5, as shown in
Table 4. Therefore, we focused on SWG simulations with
analogs from the NCEP reanalysis in the sequel as both
NCEP and ERA5 (1950–2019) have the same skill, as shown
in Table 4, and because NCEP is easier to handle due to its
lower horizontal resolution. The computations were made us-
ing observations of precipitation from the ECAD (Klein Tank
et al., 2002) and E-Obs (Haylock et al., 2008) databases. We
found the same results because the ECAD and E-Obs are
highly correlated (by the construction of E-Obs).

In summary, we made the forecast of the precipitation us-
ing K = 20 analogs computed from Z500 over the [30◦W–
20◦ E; 40–60◦ N] domain (red rectangle in Fig. 1b). To com-
pute analogs, we used NCEP reanalyses and an embedding
of τ = 4 d. The computations were based on ECAD observa-
tions (Klein Tank et al., 2002).

5 Results

5.1 Sample forecast

As an example, we illustrate the behavior of the trajectories
in Orly for the summer and winter of 2002. Figure 3 shows
the observed and simulated values of precipitation for lead
times of 5 and 10 d for summer (June–July–August: JJA) and
winter (December–January–February: DJF), for Orly precip-
itation data. We observe significantly positive correlations
between observed values and the median of the forecasts for
the four data sets as represented in Table 5. The correlation is
generally smaller in the summer than in the winter. The cor-
relation skill is low for some extreme values of precipitation.
For a lead time of 10 d, SWG simulation still shows a ca-
pacity to predict precipitation, in particular for winter with a
correlation equal to 0.23 (Orly), 0.30 (Berlin), 0.43 (Madrid),
and 0.31 (Toulouse).

We observe that the 5th and 95th quantiles of the sim-
ulations include the different values of observations. This
heuristically confirms the good skill of SWG to forecast pre-
cipitation from Z500 for various seasons (winter and sum-
mer) in several locations for T = 5 and T = 10 d lead times.

The difference in the forecast correlation skills between
the four studied locations may be related to the variation of
the local climate from one region to another. The studied ar-
eas are in different climate types according to the Köppen–
Geiger climate classification (Peel et al., 2007). From the
southwestern side of Europe, Madrid is in the arid zone of
the classification (Peel et al., 2007), which indicates that con-
vective rains are less frequent, and the origin of precipitation
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Table 3. Correlation between observations and the median of 100 simulations for the winter (DJF) based on analogs computed with an
embedding of 1 and 4 d for the geographic domain with the coordinates [30◦W–20◦ E; 40–60◦ N] for a lead time of 5 d.

Location
τ = 1 d time embedding τ = 4 d time embedding

Correlation 95 % confidence interval Correlation 95 % confidence interval

Berlin 0.39 0.37–0.43 0.50 0.48–0.56
Madrid 0.40 0.38–0.42 0.53 0.51–0.55
Orly 0.42 0.39–0.45 0.58 0.56–0.59
Toulouse 0.35 0.34–0.37 0.40 0.39–0.44

Table 4. Comparison between the values of the CRPSS of SWG
computed using different reanalysis datasets for NCEP and ERA5
from 1979 to 2019 for a lead time of T = 5 d for winter (DJF).

Location CRPSS DJF (ERA5) CRPSS DJF (NCEP)

Berlin 0.50 0.50
Madrid 0.55 0.57
Orly 0.53 0.53
Toulouse 0.41 0.41

might be the result of humidity coming from the Atlantic.
Conversely, Berlin is located in a cold zone characterized by
warm summer and the absence of a dry season (Peel et al.,
2007); the precipitation could be the result of both, convec-
tive rains and Atlantic humidity.

In this paper, we decided (for simplicity) to use the same
analogs to forecast precipitation for those four stations as dis-
cussed in Sect. 4. A refinement of the analog regions would
be necessary when focusing on Madrid vs. Berlin.

5.2 Forecast probability skill

The CRPSS and correlation skill scores are computed for the
four studied stations (Berlin, Madrid, Orly, and Toulouse), as
shown in Fig. 4 and for lead times from 5 to 20 d.

In this paper, we chose to present the results for summer
and winter to highlight the capacity of the SWG to forecast
the precipitation in extreme seasons. We focus on January
and July in order to show the skill of the SWG in predicting
precipitation in different conditions.

The CRPSS against the persistence and climatology ref-
erences show positive values for lead times of up to 20 d
(Fig. 4). The values of CRPSS against the persistence ref-
erence (represented by squares) decrease with lead times in
winter for the different studied areas, showing high values
over 5 d. However, for summer, we notice that the values
of CRPSS against persistence increase with lead time, with
high values over 20 d except for Berlin. This indicates that
the SWG forecast is still better than the persistence forecast
(the average of the CRPS of SWG is smaller than the aver-
age of the CRPS of the persistence) for lead times of 20 d in
the summer. This could be explained by the fact that summer

precipitation in Orly (51 % of the time, on average) comes in
clusters contrary to precipitation in Berlin. Indeed, we com-
puted the seasonal frequency of precipitation (defined as the
number of days when precipitation exceeds 0.5 mm d−1). We
found that for Berlin, precipitation exceeding 0.5 mm d−1 is
more frequent than in the other stations (close to 50 % of the
time for both seasons).

This means that a persistence forecast for Orly is likely
to be skillful, even for longer lead times, especially in the
summer. Therefore, the trends in CRPSS values for different
lead times are probably due to the intrinsic time persistence
of local precipitation.

The CRPSS against the climatology reference (triangles in
Fig. 4) shows lower values compared with the CRPSS against
persistence reference, although they are positive for all lead
times and for both seasons. However, we notice that for a
short lead time the SWG is better than the climatology.

The correlation skill is positive for both seasons but higher
in winter (January) than in summer (July). For a lead time
of 5 d, the correlation is equal to 0.59 for Madrid, 0.50 for
Berlin, and 0.40 for Toulouse. For a lead time of 10 d, it
is equal to 0.42 for Madrid, 0.30 for Berlin, and 0.41 for
Toulouse.

The SWG was tested by Yiou and Déandréis (2019) to
forecast temperature in western Europe. Comparing the per-
formance of the SWG to forecast those different meteoro-
logic variables, we noticed that the model shows good per-
formance to forecast the temperature in the winter; also the
best performance of the model is at a lead time of 5 d. We find
that the skill scores (CRPSS and correlation) decrease with
lead times. The forecast skill of the SWG shows variability
from one location to another. However, the model was able to
forecast temperature until 40 d in Berlin, Orly, and Toulouse
with positive skill scores.

From a visual inspection of the CRPSS and correlations,
we chose to focus on lead times of T = 5 d, for which the
correlation exceeds 0.5 in the winter. It is rather low in the
summer, due to convective events leading to a high precipi-
tation variability (from no rain to very high values). Correla-
tion scores become barely significant for lead times of 20 d,
so that, like temperature, the SWG should not be used beyond
that horizon.
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Table 5. Correlation between observations and the median of 100 simulations for both seasons, winter (DJF) and summer (JJA), for a lead
time of 5 d.

Location Correlation DJF 95 % confidence interval Correlation JJA 95 % confidence interval

Berlin 0.50 0.48–0.56 0.22 0.21–0.23
Madrid 0.53 0.51–0.55 0.29 0.27–0.30
Orly 0.58 0.56–0.59 0.23 0.20–0.24
Toulouse 0.40 0.39–0.44 0.18 0.15–0.19

Figure 5. Percentage of each weather regime for observations dates (Obs) and the most frequent weather regime from SWG simulations
between t0 and t0+T = 5 d (Analog) over the period from 1948 to 2019 for summer (JJA: a) and winter (DJF: b). The percentage of weather
regime is the same in Obs and Analog.

5.3 Relation between weather regimes and CRPS

We investigated the role of North Atlantic weather patterns
defined in Sect. 3.4 (Fig. 2) on the forecast skill of the SWG
precipitation simulations.

We started by comparing the frequencies of the weather
regimes from the observations and the most frequent weather
regime found in SWG simulations for a given lead time T =
5 d. We found that the percentages are very similar (Fig. 5).
This means that the weather regimes of the simulated tra-
jectories do not yield major biases for the summer or winter
seasons.

Then we looked at the relation between weather regimes
and CRPS values by using the most frequent weather regime
within T days and the two classes of quantiles of the CRPS
that related to good quality of forecast (attributed to low val-

ues of CRPS ≤ q25) and poor quality of forecast (attributed
to high values of CRPS ≥ q75). This relation is represented
in Fig. 6 for Orly and for the rest of the studied stations
in Fig. A1. We found a small influence of specific weather
regimes on the CRPS distribution for summer.

The weather regime signal for “good” forecasts depends
on the season and the considered station. When the forecast
has a low CRPS value (for Orly), we find that the Scan-
dinavian blocking regime slightly dominates (green bar in
Fig. 6a, b). This is also the case for Berlin (in winter) and
Toulouse (Fig. A1b, j). The low CRPS values in Madrid are
obtained for the Atlantic Ridge regime (Fig. A1f).

The weather regime signal for “poor” forecasts also yields
a dependence on the season and station. Higher CRPS values
are obtained with the Zonal regime in the summer for Orly
(red line in Fig. 6c) and Toulouse. The Atlantic Ridge regime
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Figure 6. Relation between CRPS and weather regimes for Orly, for SWG forecasts with lead time T = 5 d. Panels (a) and (b) show
CRPS value distribution conditioned on four weather regimes, when CRPS is lower than q25. Panels (c) and (d) show that CRPS is
higher than q75. The boxplots indicate the median (q50) of the distribution (thick bar). The 25th (q25) and 75th (q75) quartiles (lower
and upper segments of each boxplot). The boxplot upper whisker is min{1.5(q75− q50)+ q50,max(CRPS)}. The boxplot lower whisker is
max {q50− 1.5(q75− q50),min(CRPS)}.

favors high CRPS values (i.e., poor forecasts) for Madrid
in winter Fig. A1h. The Scandinavian blocking favors high
CRPS values for Berlin in winter and summer (green line in
Fig. A1c and d). The different impacts of the weather regimes
on the studied areas are related to the position of the high-
and low-pressure regions of each weather regime in the stud-
ied areas.

This relation between predictability (or the CRPS distri-
bution) and weather regimes, albeit weak, is consistent with
previous work of Faranda et al. (2017). Similar relations were
found between weather regimes over Europe and the temper-
ature in a recent study by Ardilouze et al. (2021). We found
that the sensitivity of the forecast to weather regime is larger
for low values of CRPS and in winter. The sensitivity of fore-
cast skill to weather regimes is rather small on average, even
for small lead times (T = 5 d).

5.4 Comparison with ECMWF forecast

We first compared the CRPSS of SWG forecasts for winter
and summer with the CRPSS of ECMWF forecasts.

The CRPSS of the ECMWF forecast is computed for
different lead times going from 1 to 10 d for precipitation
(Haiden et al., 2018) over the region 12.5◦W–42.5◦ E; 35.0–
75.0◦ N (ECMWF, 2020). It uses the climatology as a refer-
ence (Haiden et al., 2018). The values of CRPSS for Europe

for 2020 decrease in accordance with lead times (Haiden
et al., 2018). The CRPSS of ECMWF is about 0.16 in sum-
mer (JJA) and 0.25 in winter (DJF) for a lead time of T = 5 d
(ECMWF, 2020). The CRPSS of SWG simulations for a
lead time of T = 5 d is shown in Table 4. The values sug-
gest that the predictive skill of SWG is qualitatively promis-
ing for short lead times, compared with ECMWF forecasts.
However, we have to mention that the values of CRPSS for
ECMWF are computed over all of Europe for both seasons
(Haiden et al., 2018), while with the SWG we are doing a
forecast for local stations.

We made a quantitative comparison between the two fore-
casts for the different lead times. We computed the CRPS
for the ECMWF forecast. Then we used the Kolmogorov–
Smirnov (KS) test (von Storch and Zwiers, 2001, chap. 1) to
compare the probability distributions of the CRPS of SWG
and ECMWF forecasts. The null hypothesis supposes that the
CRPS of ECMWF and SWG forecasts have the same distri-
bution. The null hypothesis of the KS test was rejected; this
means that the two time series do not have the same distri-
bution, with a p value= 0.11. A similar result was found by
Ardilouze et al. (2021), where they compared the efficiency
between ECMWF and CNRM forecasts.

We found that 80 %, 39 %, 50 %, and 40 % of the CRPS
of SWG forecast are equal to zero for, respectively, Orly,
Berlin, Madrid, and Toulouse, for a lead time of T = 5 d
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Table 6. CRPSS of ECMWF forecasts using as a reference the CRPS of SWG, for lead times of T = 5, 10, and 20 d. The forecasts show that
the SWG has a positive improvement compared with the ECMWF forecast as the CRPSS scores are above zero, except for that of Toulouse.

Location Orly Berlin Madrid Toulouse

CRPSS T = 5 d −0.09 −0.02 −0.2 0.25
CRPSS T = 10 d −0.17 −0.54 −0.33 0.23
CRPSS T = 20 d −0.50 −0.36 −0.1 −0.08

Figure 7. Empirical cumulative distribution function of the CRPS
of ECMWF (blue) and SWG (red) forecasts for 5 d, for Orly (a),
Berlin (b), Madrid (c), and Toulouse (d). D is the maximum dis-
tance between both ECDFs (value of Kolmogorov–Smirnov test).
m1 is the value of the time average of CRPS of SWG and m2 is the
value of the time average of CRPS of ECMWF. The dashed vertical
lines represent the median of CRPS of ECMWF (blue) and SWG
(red).

Fig. 7, which shows the capacity of the SWG to simulate
rain events well. One notable difference between SWG and
ECMWF forecasts is that although the proportion of CRPS
values close to zero is higher for ECMWF, the CRPS for
the worst forecasts is much higher than those of SWG. In-
deed, we noticed that the time average of CRPS of ECMWF
(vertical blue lines) and SWG (red vertical lines) for T = 5 d
are close, with higher values for ECMWF (Fig. 7). However,
the median CRPS of ECMWF is smaller compared with the
SWG (dashed vertical lines in Fig. 7). Finally, we computed
the CRPSS for ECMWF forecasts taking as a reference the
CRPS of SWG (Table 6). We hence computed the CRPSS of
ECMWF forecast by normalizing the CRPS by the CRPS of
the SWG forecast in Eq. (C1).

This new ECMWF CRPSS evaluates the added value of
the ECMWF forecast over the SWG forecast. We found that
the ECMWF forecast has no improvement over the SWG
forecast for the different lead times because the CRPSS val-
ues are negative. At T = 5 d, we noticed that the improve-
ment is negligible for Orly and Berlin, while it is much bet-
ter for Madrid. However, for Toulouse, the ECMWF forecast
still has better skills for lead times of T = 5 and 10 d. For
a lead time of T = 10 d, the improvement of the SWG fore-
cast over the ECMWF is significant, particularly for Berlin
and Madrid. There is a major improvement for a lead time of
T = 20 d for Orly and Berlin.

This confirms the relatively good skill of the SWG to fore-
cast precipitation, compared with ECMWF. This could be ex-
plained by the difference in the average of the CRPS of the
two forecasts. Indeed, as we mentioned before, the ECMWF
forecast yields the best skill scores for small values of pre-
cipitations (< 2 mm d−1). We further illustrate those compar-
isons in Fig. C1 and Table C1.

6 Conclusions

In this work, we have shown the performance of a stochas-
tic weather generator (SWG) to simulate precipitation over
different locations in western Europe and for various time
scales from 5 to 20 d. The input of our model was analogs of
geopotential heights at 500 hPa (Z500). The choice of such
input was made in order to evaluate the impact of large-scale
circulation on local weather variables. The SWG showed a
good skill in predicting precipitation for a lead time of 5 and
10 d from analogs of Z500.

This study of precipitation forecast complements the work
of Yiou and Déandréis (2019) initially made to forecast tem-
perature and the NAO index. We explored the sensitivity of
the SWG model on analogs computed from different ge-
ographic areas and from different reanalyses (ERA5 and
NCEP). We found that both NCEP and ERA5 reanalyses per-
form well for simulations.

We evaluated the relation between the quality of the fore-
cast and weather regimes over Europe. We found that low and
high predictability were related to specific weather regimes.
This dependence is more significant in winter than in sum-
mer. We found that good predictability is mainly related to
blocking.
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A comparison with the ECMWF forecast system over
western Europe confirmed quantitatively and qualitatively
the skill forecast of the SWG , for lead times of T ≤ 10 d. Of
course, the SWG model cannot replace a numerical weather
prediction, as the SWG parameters (e.g., region of analogs)
need to be tuned to local variables and rely on the existence of
a fairly large database to compute analogs. Here we used the
same domain of circulation analogs for stations from Madrid
to Berlin. Obviously, this region should be optimized for each
individual station. Therefore, the main utility of the SWG
forecast system is to make local ensemble simulations, where
its performances can challenge a numerical weather predic-
tion if the parameters are well tuned.

This paper hence confirms the proof of concept to gener-
ate ensembles of (local) precipitation forecasts from analogs
of circulation. The SWG ensemble forecast performance re-
lies on the relation between precipitation and the synoptic at-
mospheric circulation, which is verified for western Europe.
Transposing this SWG to other regions of the globe requires
observations covering several decades. Numerical weather
models obviously do not yield this constraint.
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Appendix A: CRPS and weather regimes

To avoid a tedious redundancy we deferred the figures of
evaluation of the forecast quality by weather regimes to this
appendix section.

Figure A1. Relation between CRPS and weather regimes for Berlin (a–d), Madrid (e–h), and Toulouse (i–l), for SWG forecasts with lead
time T = 5 d. Panels (a), (b), (e), (f), (i), and (j) correspond to CRPS value distribution conditioned on four weather regimes, when CRPS
is lower than q25. Panels (c), (d), (g), (h), (k), and (l) correspond to a higher CRPS value (CRPS≥ q75). The boxplots indicate the median
(q50) of the distribution (thick bar).

Geosci. Model Dev., 15, 4941–4958, 2022 https://doi.org/10.5194/gmd-15-4941-2022



M. Krouma et al.: Stochastic forecast of precipitation with analogs 4955

Appendix B: Relation between Z500 and precipitation

In order to justify the use of the Z500 as a driver of precipi-
tation, we computed the rank spatial correlation between the
daily average of Z500 over the Euro-Atlantic region and the
precipitation in each studied station (Berlin, Madrid, Orly,
and Toulouse). We did the analysis for different seasons (DJF
and JJA). We found a maximum correlation amplitude of
−0.5 for Madrid and Orly, and a correlation of −0.4 and
−0.3, respectively, for Toulouse and Berlin. The correlation
is significant as we have a p value < 0.05 for the different
grid points. This indicates the relation between Z500 pat-
terns and precipitation, in particular in western Europe, and
that a decrease in Z500 is linked with precipitation.

Figure B1. Maps of correlation between Z500 and precipitation in Berlin, Madrid, Orly, and Toulouse for the period from 1948 to 2019 over
the Euro-Atlantic region. The rectangles represent the domains of computation of analogs. The optimized area [30◦W–20◦ E; 40–60◦ N] is
highlighted by the red rectangle.

Appendix C: CRPSS of ECMWF vs. SWG

We explain further the comparison that we made between
the ECMWF forecast and the SWG forecast. As mentioned
we found that the SWG has improved compared with the
ECMWF forecast. This is related to the difference in the time
average of the CRPS of the two forecasts. We computed the
CRPSS as follows:

CRPSS= 1−
CRPSECMWF

CRPSSWG
, (C1)

where CRPSECMWF is the time average of the CRPS of the
ECMWF forecast and CRPSSWG is the time average of the
CRPS of the SWG.
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Table C1. Average and median values of CRPS, average CRPSS (in bold) of the ECMWF and SWG forecasts for lead times of T = 5, 10,
and 20 d. The table shows that the CRPS of the SWG forecast has a smaller average than the CRPS of the ECMWF forecast, which explains
the values of CRPSS for the different studied areas and the positive improvement of the SWG compared with the ECMWF.

Location Orly Berlin Madrid Toulouse

CRPSECMWF; median 1.87; 0.04 16.56; 0.05 18.73; 0.003 12.76; 0.01
CRPSSWG; median 1.70; 0.67 16.10; 10.37 15.49; 5.45 17.16; 8.39
CRPSS for T = 5 d −0.09 −0.02 −0.2 0.25

CRPSECMWF 1.70; 0.05 18.1; 0.06 20.03; 0.1 14.87; 0.09
CRPSSWG 1.44; 0.78 11.67; 5.45 15.04; 6.13 19.45; 7.89
CRPSS for T = 10 d −0.17 −0.54 −0.33 0.23

CRPSECMWF 1.67; 0.1 13.54; 0.09 17.89; 0.1 17.8; 0.08
CRPSSWG 1.11; 0.9 9.91; 6.3 16.23; 5.89 16.41; 8.34
CRPSS for T = 20 d −0.50 −0.36 −0.1 −0.08

Figure C1. Boxplots of CRPS of ECMWF and CRPS of SWG for Orly, with lead time T = 5, 10, and 20 d. The boxplots indicate the median
(q50) of the distribution (thick blue bar for ECMWF and red for SWG). The 25th (q25) and 75th (q75) quartiles are, respectively, the lower
and upper segments of each boxes. The upper whisker is min{max(X),q50+ 1.5(q75−q25)}. The average CRPS of the ECMWF and SWG
forecasts are indicated with dashed horizontal lines. Note that the distribution is asymmetric as the median and the average are unequal. The
average CRPS for the SWG forecast is lower than the average CRPS for the ECMWF forecast. The outliers that are above the upper whiskers
are not shown.
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