
HAL Id: insu-03721936
https://insu.hal.science/insu-03721936

Submitted on 13 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Are Land-Use Change Emissions in Southeast Asia
Decreasing or Increasing?

Masayuki Kondo, Stephen Sitch, Philippe Ciais, Frédéric Achard, Etsushi
Kato, Julia Pongratz, Richard A. Houghton, Josep G. Canadell, Prabir K.

Patra, Pierre Friedlingstein, et al.

To cite this version:
Masayuki Kondo, Stephen Sitch, Philippe Ciais, Frédéric Achard, Etsushi Kato, et al.. Are Land-Use
Change Emissions in Southeast Asia Decreasing or Increasing?. Global Biogeochemical Cycles, 2022,
36 (1), pp.e2020GB006909. �10.1029/2020GB006909�. �insu-03721936�

https://insu.hal.science/insu-03721936
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Abstract  Southeast Asia is a region known for active land-use changes (LUC) over the past 60 years; yet, 
how trends in net CO2 uptake and release resulting from LUC activities (net LUC flux) have changed through 
past decades remains uncertain. The level of uncertainty in net LUC flux from process-based models is so 
high that it cannot be concluded that newer estimates are necessarily more reliable than older ones. Here, 
we examined net LUC flux estimates of Southeast Asia for the 1980s−2010s from older and newer sets of 
Dynamic Global Vegetation Model simulations (TRENDY v2 and v7, respectively), and forcing data used for 
running those simulations, along with two book-keeping estimates (H&N and BLUE). These estimates yielded 
two contrasting historical LUC transitions, such that TRENDY v2 and H&N showed a transition from increased 
emissions from the 1980s to 1990s to declining emissions in the 2000s, while TRENDY v7 and BLUE showed 
the opposite transition. We found that these contrasting transitions originated in the update of LUC forcing 
data, which reduced the loss of forest area during the 1990s. Further evaluation of remote sensing studies, 
atmospheric inversions, and the history of forestry and environmental policies in Southeast Asia supported the 
occurrence of peak emissions in the 1990s and declining thereafter. However, whether LUC emissions continue 
to decline in Southeast Asia remains uncertain as key processes in recent years, such as conversion of peat 
forest to oil-palm plantation, are yet to be represented in the forcing data, suggesting a need for further revision.
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Key Points:
•	 �Uncertainty remains in historical 

trends of CO2 fluxes from land-use 
changes (LUC) of Southeast Asia

•	 �Existing process-based models and 
book-keeping models yielded two 
contrasting historical LUC transitions 
of Southeast Asia

•	 �Independent data evaluations are 
supportive of the occurrence of peak 
emissions in the 1990s and declining 
thereafter
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1.  Introduction
Following a long debate about the contribution of tropical regions (i.e., Amazon basin, tropical Africa, and 
Southeast Asia) to the global CO2 budget (Gurney et al., 2002, 2003, 2004; Stephens et al., 2007), recent assess-
ments are converging to the agreement that the regions are nearly carbon-neutral as a whole (Gaubert et al., 2019; 
Kondo et al., 2020; Schimel et al., 2015; Stephens et al., 2007). Carbon sequestration by photosynthesis is be-
lieved to be largest in tropical regions due to a presumably strong effect of CO2 fertilization (Keenan et al., 2016; 
Kondo, Ichii, Patra, Poulter, et al., 2018; Schimel et al., 2015), in turn suggesting that a comparably large amount 
of CO2 is emitted from those regions. Severe drought caused by El Niño–Southern Oscillation (ENSO) and ex-
tensive ecosystem loss and conversion by land-use changes (LUC) are the two major factors of CO2 emissions in 
tropical regions (Brando et al., 2019; Clark, 2004; Kondo, Ichii, Patra, Canadell, et al., 2018). As evidenced by 
previous findings, Southeast Asia is particularly susceptible to those factors, such as high tree mortality rates and 
fire emissions due to droughts (Brando et al., 2019; Hooijer et al., 2010; Huijnen et al., 2016; Page et al., 2002; 
Patra, Ishizawa, et al., 2005; Qie et al., 2017; Siegert et al., 2001; Thirumalai et al., 2017) and persistent high 
deforestation rate (Achard et al., 2004, 2014).

Although both ENSO and LUC are essential factors for CO2 emissions of Southeast Asia, LUC is of utmost 
importance because of its long-term influence on CO2 fluxes. Particularly, deforestation has been active in South-
east Asia from the 1960s to the present (FAO, 2011) and has mainly affected lowlands, but recently expanded 
to mountainous highlands (Zeng et al., 2018). The integration of remote sensing and inventory data indicates 
that a net change of aboveground carbon in Southeast Asia is a loss of 28.2 Tg C yr−1 for 2003–2014 (Baccini 
et al., 2017), implying greater CO2 emissions from LUC activities than the CO2 uptake in forest regrowth (Kondo, 
Ichii, Patra, Canadell, et al., 2018; Pugh et al., 2019) and intact old-growth forest (Lewis et al., 2009). To reduce 
high CO2 emissions from deforestation in Southeast Asia and other tropical regions, an international effort to Re-
duce Emissions from Deforestation and forest Degradation (REDD+) was proposed and agreed to by the United 
Nations Framework Convention on Climate Change (UNFCCC). Yet, in estimating baselines for REDD + activ-
ities, the science community is challenged with estimating current regional LUC emissions from multiple unpre-
dictable factors, such as wood and crop harvest, deforestation, degradation, shifting cultivation, and conversion 
of peat forest to oil-palm plantation (Grassi et al., 2018; Mitchard, 2018), which cannot all be constrained by 
observations with the required reliability. To date, despite the urgent need from policymakers, high uncertainty 
remains in our understanding of the historical LUC transition and associated CO2 emissions in Southeast Asia, 
which has made it difficult to determine whether the current trend in LUC emissions is decreasing or increasing.

At present, process-based Dynamic Global Vegetation Models (DGVMs) are one of the key carbon accounting 
tools for estimating CO2 uptake and release induced by LUC activities (Sitch et al., 2015). Since 2013, an interna-
tional collaboration under the umbrella of the Global Carbon Project has annually assessed and reported the global 
state of the CO2 budget in the land and ocean (Global Carbon Budget [GCB]: Le Quéré et al., 2013, 2014, 2016; 
Le Quéré, Moriarty, Andrew, Peters, et al., 2015; Le Quéré, Moriarty, Andrew, Canadell, et al., 2015; Le Quéré, 
Andrew, Friedlingstein, Sitch, Hauck, et al., 2018; Le Quéré, Andrew, Friedlingstein, Sitch, Pongratz, et al., 2018) 
(Friedlingstein et al., 2019), and of associated component fluxes including net LUC flux estimated by a set of 
DGVMs assembled under the TRENDY project (Sitch et al., 2015). While most global fluxes reported in a series 
of the GCB papers (e.g., fossil-fuel emissions, net ocean flux, and natural land vegetation flux) have consistency 
in interannual variability and trend, the global net LUC flux estimates from DGVMs have undergone a drastic 
change. Up to the GCB 2014 (i.e., GCB 2013 and 2014), DGVMs estimated the largest global LUC emissions 
for the period 1960s−2010s in the 1990s (1.8–2.0 Pg C yr−1), whereas starting with the GCB 2015 (i.e., GCB 
2015–2018), this peak was largely reduced (1.2–1.3 Pg C yr−1), making the net LUC flux relatively stable through 
the past decades (Figure S1 in Supporting Information S1). Although this update may affect regional estimates 
of net LUC flux, especially for regions characterized by active LUC (e.g., tropical regions including Southeast 
Asia), it has not been dealt with or even acknowledged, leaving causes of the change unknown.

Given the high uncertainty about the net LUC flux estimates, this study attempts to identify a plausible historical 
LUC transition for Southeast Asia through a comprehensive comparison of DGVM simulations. We examined net 
LUC flux estimates for the 1980s to 2010s from the two versions of TRENDY used in the GCB 2013 (TRENDY 
v2, Le Quéré et al., 2014) and 2018 (TRENDY v7, Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, et al., 2018), 
and LUC forcing data used for running those TRENDY versions, along with two book-keeping estimates of net 
LUC flux (Hansis et al., 2015; Houghton & Nassikas, 2017). Further, we investigated a pattern of LUC transitions 
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through independent evaluations of forest area changes from remote sensing studies, atmospheric inversions to 
constrain total terrestrial CO2 fluxes, and the history of forestry and environmental policies. Lastly, we discuss 
factors and uncertainties in current LUC modeling for Southeast Asia.

2.  Methods
2.1.  Region

The Southeast Asia region of this study comprises 12 countries including the Association of Southeast Asian Na-
tions (ASEAN) countries (Brunei Darussalam, Cambodia, Indonesia, Lao PDR, Malaysia, Myanmar, Philippines, 
Singapore, Thailand, Vietnam), and non-ASEAN member countries (East Timor, and Papua New Guinea). Note 
that it is different from the United Nations geoscheme for Southeast Asia. This regional definition used National 
Identifier Grid v4.11 (https://sedac.ciesin.columbia.edu/data/set/gpw-v4-national-identifier-grid-rev11/) to iden-
tify nations of Southeast Asia. All results presented in this study are based on this definition of Southeast Asia.

2.2.  Process-Based Estimate of Net LUC Flux

2.2.1.  Dynamic Global Vegetation Models

Process-based estimates of the net LUC flux were represented by simulations of the 10 DGVMs that participated 
in both TRENDY v2 (used in Le Quéré et al., 2014) and v7 (Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, 
et al., 2018); they are CLM, ISAM, JSBACH, JULES, LPJ-wsl, LPJ-GUESS, LPX-Bern, O-CN, ORCHIDEE, 
and VISIT (Table  1). Simulations of the TRENDY models were prepared with a consistent forcing data set 
(Table S1 in Supporting Information S1): atmospheric CO2 concentrations based on ice core measurements and 
stationary observations from the National Oceanic and Atmospheric Administration (NOAA), gridded climate 
data set (CRU-NCEP for TRENDY v2 and CRU-JRA for TRENDY v7), and gridded annual land-use land-cover 
change datasets: the HistorY Database of the global Environment (HYDE: Klein Goldewijk et al., 2011, 2017) 
and Land-Use Harmonization (LUH: Hurtt et al., 2011, 2020). In between these TRENDY versions, several of the 
models have experienced major updates, including changes towards more sophisticated representations of LUC 
modeling (see Table 6 in Le Quéré et al., 2014, Table 6 in Le Quéré, Moriarty, Andrew, Canadell,et al., 2015; 
Le Quéré et al., 2016, and Table 4 in Le Quéré, Andrew, Friedlingstein, Sitch, Pongratz, et al., 2018; Le Quéré, 
Andrew, Friedlingstein, Sitch, Hauck, et al., 2018). Details and characteristics of the DGVMs are summarized in 
Le Quéré et al. (2014) for TRENDY v2 and Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, et al. (2018) for v7.

Description of land-use and land-cover change modeling method

Method 1 HYDE-based summed transitions (ST_HYD): LUC modeling method using a sum of the HYDE cropland and pasture area. Changes in summed 
cropland and pasture area correspond to those of simulated ecosystem land area (forests, grasslands, and others) in DGVMs.

Method 2 LUH-based summed transitions (ST_LUH): LUC modeling method using a sum of the LUH primary and secondary land fractions. Changes in 
primary and secondary land area fractions correspond to those of simulated ecosystem land area (forests, grasslands, and others) in DGVMs.

Method 3 LUH-based distinguished transitions (DT_LUH): LUC modeling method using the LUH land cover types distinguished (e.g., primary and 
secondary land area distinguished).

Transition of land use and land cover change modeling approach between TRENDY v2 and v7

DGVM CLM ISAM JSBACH JULES LPJ-wsl LPJ-GUESS LPX-Bern O-CN ORCHIDEE VISIT

TRENDY v2 
(GCB2013)

Method2 
(ST_

LUH1)

Method2 
(ST_

LUH1)

Method2 
(ST_

LUH1)

Method1 
(ST_

HYD31)

Method1 
(ST_

HYD31)

Method1 
(ST_

HYD31)

Method2 
(ST_

LUH1)

Method1 
(ST_

HYD31)

Method1 
(ST_

HYD31)

Method3 
(DT_

LUH1)

TRENDY v7 
(GCB2018)

Method2 
(ST_

LUH2)

Method2 
(ST_

LUH2)

Method2 
(ST_

LUH2)

Method1 
(ST_

HYD32)

Method3 
(DT_

LUH2)

Method3 
(DT_

LUH2)

Method2 
(ST_

LUH2)

Method2 
(ST_

LUH2)

Method2 
(ST_

LUH2)

Method3 
(DT_

LUH2)

Note. ST_HYD31 (summed transitions using HYDE v3.1), ST_HYD32 (summed transitions using HYDE v3.2), ST_LUH1 (summed transitions using LUH v1), 
ST_LUH2 (summed transitions using LUH v2), DT_LUH1 (distinguished transitions using LUH v1), and DT_LUH2 (distinguished transitions using LUH v2).

Table 1 
Methodologies of the Net LUC Flux Estimation by 10 DGVMs From TRENDY v2 and v7

https://sedac.ciesin.columbia.edu/data/set/gpw-v4-national-identifier-grid-rev11/


Global Biogeochemical Cycles

KONDO ET AL.

10.1029/2020GB006909

4 of 19

The TRENDY models provided three types of simulations: (a) one that considers the variability in atmospheric 
CO2 (S1), (b) one that considers the variability in CO2 and climate (S2), and (c) one that considers the variabil-
ity in CO2, climate, and historical land use and land cover changes (S3). The net CO2 flux of the S3 simulation 
represented the most realistic estimate, including attributes of CO2 fertilization, climate variability, and LUC on 
the net CO2 flux. Those from the S1 and S2 simulations represented the partial contributions to net CO2 flux, 
signifying the CO2 fertilization in S1 and CO2 fertilization and climate variability in S2. The net LUC flux was 
extracted via isolating the contribution of LUC variability on the net CO2 flux, specifically by subtracting a net 
CO2 flux estimate of the S2 simulation (accounting for CO2 fertilization and climate variability) from that of the 
S3 simulation (accounting for CO2 fertilization, climate, and LUC variability).

2.2.2.  LUC Forcing and Modeling

The LUC forcing for the TRENDY models (i.e., HYDE and LUH) provides gridded historical transitions of 
land-use and land-cover changes, based on annual cropland and pasture area and wood harvest from the U.N. 
Food and Agricultural Organization (FAO) national statistics. Historical changes in annual area of cropland and 
pasture were determined by HYDE, which takes the FAO national statistics for cropland (the FAO categories of 
“arable land” and “cropland”) and pasture (the FAO category of “permanent meadow and pastures”) as the main 
input source. HYDE spatializes the FAO statistics using allocation algorithms and time-dependent weighting 
maps based on global historical population density, soil suitability, distance to rivers, lakes, slopes, and biome 
distributions. HYDE maintains FAO cropland and pasture total area and relative fraction in each country while 
spatially distributing the area within national borders. In between TRENDY v2 and v7, HYDE was updated from 
v3.1 (Klein Goldewijk et al., 2011) to v3.2 (Klein Goldewijk et al., 2017). In the v3.1, cropland and pasture areas 
were allocated with predefined rules, such as that land with the highest soil suitability for crops is colonized 
first, coastal areas and river plains are more favorable for early settlement, and no allocation is allowed in urban 
built-up areas or high population density. In the v3.2, the allocation algorithm was changed from the predefined 
rules-based methods to more statistical methods (i.e., probability-based allocations) using the high-resolution 
ESA Land Cover maps from the ESA Climate Change Initiative (ESA, 2017). In addition, in the v3.2, cropland 
was further categorized into irrigated and rain-fed crops, and pasture (termed grazing land in HYDE v3.2) was 
categorized into intensively used pasture and less intensively used rangeland. Note that this study evaluates the 
HYDE v3.1 and v3.2 data prepared for the GCB 2013 and GCB 2018, which may reflect minor changes from the 
publicly available HYDE data (https://www.pbl.nl/en/image/about-image).

LUH further combined the HYDE cropland and pasture status with the wood harvest status based on the FAO 
national wood harvest statistics to extend global LUC patterns, including transitions of cropland, pasture, and 
primary and secondary forest, and primary and secondary non-forest (including grassland and shrub). A sum of 
primary forest and primary non-forest is referred to as primary land and a sum of secondary forest and secondary 
non-forest is secondary land, hereafter. First, the original 5՜ × 5՜ resolution cropland and pasture areas of HYDE 
were aggregated to coarser resolutions (0.5° × 0.5° in the older version and 0.25° × 0.25° in the newer version 
of LUH), and fractions occupied by those lands were calculated for each rescaled grid cell. By subtracting frac-
tions of cropland and pasture (and water/ice, if any) from each grid cell, fractions of natural vegetation (primary 
and secondary forest and non-forest) were also determined for each grid cell. Distinction between primary and 
secondary forest, and primary and secondary non-forest, and fractions of these land types occupied in each grid 
cell were determined based on the spatialized FAO wood harvest data with empirically estimated biomass density 
maps produced from Miami-LU model (Hurtt et al., 2011). In between TRENDY v2 and v7, LUH was updated 
from v1 (Hurtt et al., 2011) to v2 (Hurtt et al., 2020), which includes new features, such as an increase in cropland 
sub-categories (annual and perennial C3 and C4, etc.), and finer spatial resolutions of grid-cell from 0.5° to 0.25° 
degrees. Additionally, in the v2, the algorithm for estimating the spatial pattern of forest transitions due to wood 
harvesting was constrained by a gridded forest loss estimate based on Landsat from Hansen et al., (2013). Also, 
a base global map for the shifting cultivation algorithm was changed from the pioneer global shifting cultivation 
map known as Butler map (Butler, 1980), to Heinimann map: an improved Butler map with a few modifications 
reflecting high-resolution satellite imagery and extensive expert survey (Heinimann et al., 2017). As in HYDE, 
note that this study evaluates the LUH v1 and v2 data prepared for the GCB 2013 and GCB 2018, which may 
reflect minor changes from the publicly available LUH data (https://luh.umd.edu/index.shtml).

The choice and use of the LUC forcing data differ among DGVMs (Table 1). The net LUC flux of DGVMs 
accounts for the net effect of LUC on the terrestrial carbon cycle, including instantaneous and legacy emissions, 

https://www.pbl.nl/en/image/about-image
https://luh.umd.edu/index.shtml
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and regrowth flux, but specific schemes for LUC modeling were left to the discretion of each modeling group, 
which means that fundamental assumptions and levels of complexity in LUC modeling vary among the DGVMs. 
Particularly, major differences in the method of LUC modeling include whether to use HYDE or LUH as forcing 
data, and the extent to which the information provided by those LUC forcing data are used. The differences are 
overall as follows. DGVMs that use HYDE as the LUC forcing update simulated forest and non-forest (including 
grassland and shrub) cover in response to a sum of annual changes in prescribed cropland and pasture area. Thus, 
in those DGVMs, an increase in cropland and pasture areas corresponds to a decrease in simulated forest and 
non-forest area, and vice versa. We refer to this method of LUC modeling as method 1: HYDE-based summed 
(cropland and pasture area) transitions (Table 1). DGVMs that used LUH as the LUC forcing make transitions 
of simulated forest and non-forest cover in response to annual changes in prescribed primary and secondary land 
area fractions (here, "land" refers to a sum of forest and non-forest). Thus, in those DGVMs, changes in primary 
and secondary land areas directly correspond to those in simulated forest and non-forest areas. Yet, this approach 
differs in using the prescribed information as a sum (primary and secondary land area combined) or separate 
components (primary and secondary land area distinguished). We refer to the former method as method 2: LUC-
based summed transitions and the latter method as method 3: LUC-based distinguished transitions (Table 1). In 
TRENDY v2 and v7, one out of 10 DGVMs used method 1 (i.e., JULES), four used method 2 (i.e., CLM, ISAM, 
JSBACH, and LPX-Bern), and one used method 3 (i.e., VISIT). For the other four DGVMs (i.e., LPJ-wsl, LPJ-
GUESS, O-CN, and ORCHIDEE), the LUC modeling based on method 1 in TRENDY v2 was changed to method 
2 or method 3 in TRENDY v7 (Table 1).

2.3.  Book-Keeping Models

In addition to the DGVMs, two book-keeping models, H&N (Houghton & Nassikas, 2017) and BLUE (Hansis 
et al., 2015), were evaluated. Based on national statistics, the book-keeping method tracks changes in the carbon 
stored in vegetation and soil due to LUC, such as deforestation, wood harvest, crop cultivation, and shifting culti-
vation. H&N estimates national-level net LUC flux based directly on the national statistics of five-year changes in 
forest area and management from the Forest Resources Assessment (FRA) 2015 report (FAO, 2015) and annual 
changes in cropland and pasture area from FAOSTAT (http://www.fao.org/faostat/en/#data), while BLUE (as 
used in Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, et al., 2018) estimates spatially explicit net LUC flux us-
ing annual changes in primary and secondary forest, cropland, pasture, and rangeland fractions from the LUH v2 
(method 3 of the DGVMs' LUC modeling with forest, non-forest, and other ecosystem types treated separately) 
In addition, BLUE was rerun here using LUH v1 with the same model configurations. In the comparison of this 
study, we did not add LUC-related fire emissions (e.g., deforestation fire and peat burning) to those book-keeping 
estimates as this kind of land use is not well represented in most DGVMs. Further details and characteristics of 
these methods are provided in the original publications and summarized in Le Quéré, Andrew, Friedlingstein, 
Sitch, Hauck, et al. (2018) and Friedlingstein et al. (2019).

2.4.  Atmospheric CO2 Inversions Constrained by Regional Aircraft CO2 Observations

Emissions of CO2 from LUC activities are a major component of the net CO2 flux in Southeast Asia (Kondo, 
Ichii, Patra, Canadell, et al., 2018); therefore, the temporal variability in the net CO2 flux should closely follow 
that of the net LUC flux. To evaluate LUC transitions in this study, the net CO2 flux from TRENDY v2 and v7 (S3 
simulation) were compared with independent estimates of three inversion systems: ACTM (Saeki & Patra, 2017), 
JMA2018 (Maki et al., 2010), and NICAM-TM (Niwa et al., 2012). These inversions estimate the net land and 
ocean CO2 fluxes by fitting modeled CO2 concentrations against continuous and discrete atmospheric CO2 meas-
urements from global networks (e.g., NOAA Earth System Research Laboratory, World Data Centre for Green-
house Gases, and Comprehensive Observation Network for TRace gases by AIrLiner: CONTRAIL) with prior in-
formation (e.g., land and ocean fluxes and fossil fuel emissions). One may question the reliability of atmospheric 
inversions for Southeast Asian CO2 flux estimation as there are no in-situ atmospheric CO2 measurements for that 
region (only in nearby regions). In this circumstance, aircraft CO2 measurements (e.g., the CONTRAIL Japan 
Airlines Narita-Sydney line) are the key data for capturing the signals of CO2 fluxes over Southeast Asia (Niwa 
et al., 2012; Patra, Ishizawa, et al., 2005; Patra, Maksyutov, et al., 2005). For this reason, we limited atmospheric 
inversions to the three that used the aircraft CO2 measurements over Southeast Asia for assimilation and that fully 

http://www.fao.org/faostat/en/#data
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covered the 1990s. Further details and characteristics of these models are provided in the corresponding literature 
and summarized in Kondo, Ichii, Patra, Canadell, et al. (2018) and Kondo et al. (2020).

3.  Results
3.1.  Contrasting Transitions of Net LUC Flux

First, we need to understand whether the existing estimates of the net LUC flux (− for a net sink on land and + 
for a net source) agree in having a consistent pattern of spatiotemporal variability. Spatial patterns of decadal 
mean net LUC flux by the TRENDY v2 ensemble, v7 ensemble, H&N, and BLUE consistently showed that most 
parts of insular and continental Southeast Asia were a net source of CO2 for the period 1980s−2000s (Figure 1a). 
However, their temporal variability was found to differ among estimates (Figures 1b and 1c). According to the 
TRENDY v2 ensemble, the net LUC flux gradually increased from the 1980s to 1990s, then decreased in the 
2000s, while the net LUC flux of the TRENDY v7 ensemble decreased from the 1980s to 1990s, then increased 
through the 2000s and 2010s (Figure 1b). H&N showed temporal variability of the net LUC flux resembling 
the pattern of the TRENDY v2 models, but with a more notable emission increase in the 1990s and an emission 
decrease in the 2000s (Figure 1c). Conversely, BLUE showed a pattern of the net LUC flux consistent with the 
TRENDY v7 ensemble.

We further investigated individual patterns of the 10 DGVMs from TRENDY v2 and v7. Visually, the degree of 
similarity and dissimilarity in temporal variability of the net LUC flux between TRENDY v2 and v7 largely var-
ied depending on DGVMs (Figure 2). For instance, a difference between the two versions was notable in CLM, 
LPJ-wsl, O-CN, and VISIT, particularly for the 1990s, while it appears insignificant in JULES, and LPX-Bern. 
These could be caused by differences in forest distributions, biomass estimates, emissions factors, and schemes of 
LUC models among DGVMs (Arneth et al., 2017; Calle et al., 2016). However, when the difference in interannu-
al variability between TRENDY v2 and v7 was normalized (i.e., normalized[v2-v7]i = ([v2-v7]i – mean[v2-v7])/
standard deviation[v2-v7], i = 1980–2012, positive values representing greater LUC emissions in v2 than v7, 
and vice versa), it became evident that the pattern of v2 having greater LUC emissions for the 1990s than v7 is 
common within all the DGVMs (Figure 2).

Summarizing the comparison of the independent estimates of the net LUC flux leads to two different scenarios 
of historical LUC transition for Southeast Asia.

Scenario 1 (TRENDY v2 and H&N): Southeast Asia experienced an active period of LUC during the 1980s−1990s, 
and after having a peak in the 1990s, LUC emissions were stabilized or even decreased in the 2000s, more so in 
the 2010s.

Scenario 2 (TRENDY v7 and BLUE): Southeast Asia experienced declining LUC emissions from the 1980s to 
the 1990s, and intensifying LUC emissions through the 2000s and 2010s.

To identify which of these scenarios is more likely, we need to identify a plausible trend in LUC transitions fo-
cusing on the 1990s.

3.2.  Causes Behind the Contrasting LUC Transitions

We investigated whether the updates of the LUC forcing (HYDE and LUH) are related to contrasting estimates of 
the net LUC flux for Southeast Asia. In both the v3.1 and v3.2 of HYDE, the sum of cropland and pasture area 
continuously increased for the 1980s−2010s (Figure 3a), of which cropland accounts most (Figures 3b and 3c). 
HYDE v3.1 and v3.2 closely resemble each other in the pattern of temporal variability where cropland and pas-
ture areas increased from 1980 to 1990. Between those periods, the net area increase was greater in the v3.1 than 
the v3.2 by approximately 1 million ha (Figure 3a). This implies that, when used to force DGVMs, HYDE v3.1 
induces a slightly greater loss of ecosystem land cover (including forest, grass, and shrub) for the 1990s than the 
v3.2.

The sum of primary and secondary land areas (comprised of forest and non-forest) of LUH v1 and v2 commonly 
showed a continued decrease for the 1980s−2010s, with a slightly greater rate of area loss in the v1 than v2 during 
the 1990s (approximately 3 million ha, Figure 3d). Despite the similarity in their sum, primary and secondary 
land areas were largely different between the two versions. In LUH v1, primary land area showed 18 million 
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Figure 1.  Spatiotemporal variability in the net land-use changes (LUC) flux of the TRENDY v2 and v7 ensembles and book-keeping models. (a) Spatial variability 
in mean net LUC flux for the 1980s−2000s estimated by the TRENDY v2 model ensemble, v7 model ensemble, H&N, and BLUE for Southeast Asia. Interannual and 
decadal variability in the net LUC flux by (b) the TRENDY v2 and v7 ensembles, and (c) H&N and BLUE. Shades and error bars in (b) represent 1σ spread from the 
mean value of the TRENDY ensemble.
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ha loss between 1990 and 2000 (Figure 3e) and a corresponding 12 million ha gain in secondary land area for 
the same period (Figure 3f). In contrast, in LUH v2, both the loss of primary land area and gain of secondary 
land area in the 1990s reduced from those in LUH v1 by 33%–39%, making the LUC transition from primary to 
secondary land in the 1990s less significant (Figures 3e and 3f). Isolating components of primary and secondary 
lands further, we found that the major difference between LUH v1 and v2 was in forest area (Figures 3g–3i). A 
17 million ha loss of primary forest area between 1990 and 2000 in LUH v1 reduced to a 10 million ha loss in 

Figure 2.  Temporal variability in the net land-use changes (LUC) flux by individual TRENDY v2 and v7 models. Interannual variability in the net LUC flux of the 
10 Dynamic Global Vegetation Models (CLM, ISAM, JSBACH, JULES, LPJ-wsl, LPJ-GUESS, LPX-Bern, O-CN, ORCHIDEE, and VISIT) is shown along with a 
normalized difference between TRENDY v2 and v7.

Figure 3.  Temporal variability in cropland, pasture, primary and secondary lands, and primary and secondary forests defined in the land-use changes forcing 
data (HYDE and LUH). Interannual variability in the older and newer versions of HYDE (HYDE v3.1 and v3.2) and LUH (LUH v1 and v2) is shown for (a) 
cropland + pasture, (b) cropland, (c) pasture, (d) primary + secondary land, (e) primary land, (f) secondary land, (g) primary + secondary forest, (h) primary forest, and 
(i) secondary forest, for 1980–2017.
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LUH v2 (Figure 3h). For the same period, secondary forest area was almost 
unchanged in LUH v1 (the change affects secondary non-forest area instead; 
Figure S2 in Supporting Information S1), while it increased by 7 million ha in 
LUH v2 (Figure 3i). As a result, a loss of total forest area (a sum of primary 
and secondary forest area) between 1990 and 2000 was four-fold greater in 
LUH v1 than v2 (Figure 3g).

Our evaluation of the LUC forcing data revealed that the older forcing data 
(HYDE v3.1 and LUH v1) yielded a greater ecosystem loss for the 1990s 
than the newer ones (HYDE v3.2 and LUH v2), and it is expected to impact 
the net LUC flux simulations of DGVMs. For DGVMs that based their LUC 
modeling on the distinguished transition approach (the method 3: VISIT) or 
changed the modeling base from the summed transitions to the distinguished 
transitions (from the method 1 to method 3: LPJ-GUESS and LPJ-wsl), dec-
adal transitions of the net LUC flux tended to produce greater emissions for 
the 1990s in TRENDY v2 than v7 (Figure 2). A similar pattern was found 
for those that changed the modeling base from method 1 to method 2 (O-CN, 
and ORCHIDEE) or explicitly based on method 2 (CLM, ISAM, JSBACH, 
and LPX-Bern), although it stood out less in LPX-BERN (Figure  2). For 
the DGVM that based the LUC modeling on method 1 (JULES), differences 
were even smaller, but a similar pattern was found through normalization 
(Figure 2).

The difference in the net LUC flux between the two book-keeping models 
may also be related to the data they used. H&N based its estimate directly on 
the FAO and FRA national statistics, which indicates a notable peak of forest 

loss in the 1990s for Southeast Asia (FAO, 2015; FAO, 2020). On the other hand, BLUE based its estimation on 
the distinguished transition approach using LUH v2, in which a forest loss peak did not stand out in the 1990s, 
as shown in Figures 3g–3i. To elaborate on the influence of forcing data on the net LUC flux, we compared two 
BLUE simulations forced by LUH v1 (BLUE_LUH1) and v2 (BLUE_LUH2) with the same model configura-
tion. Although the magnitude of decadal changes is still different, the net LUC flux by BLUE_LUH1 showed an 
increase in LUC emissions from the 1980s to 1990s and a decrease in the 2000s as in H&N (Figure 4), indicating 
that the update of forcing data is responsible for the emissions difference between the older and newer estimates 
of net LUC flux.

Figure 5 shows a summary of decadal changes in the net LUC flux between the TRENDY v2 and v7 simulations, 
and in ecosystem gain and loss due to changes in the LUC modeling approaches. It is evident that the older set of 
LUC forcing data and TRENDY simulations yields a greater ecosystem loss and corresponding higher emissions 
for the 1990s than the newer one, and this result is supported by similar trends using LUH v1 versus LUH v2 
in BLUE. The key finding here is that the difference in the net LUC flux between the two TRENDY versions 
consistently occurred in the 1990s regardless of choice (HYDE or LUH) and model implementation of LUC 
forcing data (summed or distinguished approach) among the DGVMs (Figure 5). These results indicate that the 
underlying LUC forcing data are more important in reproducing the trend in flux than the type of model used to 
calculate it. The climate forcing was also changed between TRENDY v2 and v7 (from CRU-NCEP to CRU-JRA). 
Still, their difference is unlikely responsible for contrasting net LUC flux estimates. Spatiotemporal variability 
in air temperature, precipitation, and short-wave radiation for Southeast Asia is similar between CRU-NCEP 
and CRU-JRA without a notable difference between decades, in contrast to the LUC forcing data (Figure S3 in 
Supporting Information S1).

4.  Discussion
4.1.  Evaluation of the Two Scenarios

We considered sources of modeled difference behind the two different scenarios about the historical LUC transi-
tion of Southeast Asia. To identify which scenario better reflects a realistic transition, we discuss the plausibility 

Figure 4.  Reassessment of temporal variability in the net land-use changes 
(LUC) flux of the book-keeping models. Interannual and decadal variability 
in the net LUC flux by H&N and the two BLUE simulations forced by LUH 
v1 and LUH v2 (BLUE_LUH1 and BLUE_LUH2, respectively). Other 
configurations are the same as in Figure 1c.
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Figure 5.  Summary of decadal patterns of the net land-use changes (LUC) flux by TRENDY v2 and v7 and forcing data 
used for the TRENDY simulations. Differences in the net LUC flux anomaly between TRENDY v2 and v7 and in area change 
anomaly between the LUC forcing data used for running those simulations (HYDE v3.1, v3.2, LUH v1, and v2) for (a) the 
1980s, (b) 1990s, and (c) 2000s. The base period for anomaly is 1980–2009. Differences in area change anomaly between the 
older and newer forcing data are set as follows: method1 to method1 (differences in ecosystem area change anomaly between 
HYDE v3.1 and v3.2), method2 to method2 (differences in primary + secondary land area change anomaly between LUH 
v1 and v2), method3 to method3 (differences in primary land area change anomaly between LUH v1 and v2), method1 and 
method2 (differences between ecosystem area change anomaly from HYDE v3.1 and primary + secondary land area change 
anomaly from LUH v2), and method1 and method3 (differences between ecosystem area change anomaly from HYDE v3.1 
and primary land area change anomaly from LUH v2). Ecosystem area represents an area that inversely corresponds to 
cropland + pasture area change from HYDE (e.g., gain of cropland + pasture area corresponds loss of ecosystem area, and 
vice versa).
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of historical LUC transition through independent data and analyses based on 
forest area changes from remote sensing studies, atmospheric inversions, and 
the history of forestry and environmental policies, respectively.

4.1.1.  Forest Area

Forest area is the key proxy for LUC transitions in tropical regions. Sev-
eral studies have assessed spatially explicit forest area over the Southeast 
Asian region using various remote sensing sensors, such as AVHRR, Land-
sat series, RapidEye, AVNIR, Kompsat, Demos, and MODIS (e.g., Achard 
et al., 2002, 2004, 2014; DeFries et al., 2002; Hansen et al., 2008, 2009, 2013; 
Kim et al., 2015; Mayaux et al., 2005; Stibig et al., 2014). Evaluating estimates 
that extend over two decades (Figure 6a), we found that forest loss in South-
east Asia increased from 1980–1990 to 1990–2000 (DeFries et  al.,  2002) 
and decreased from 1990–2000 to 2000–2010 (Achard et  al., 2014; Stibig 
et  al.,  2014). These studies indicate that forest loss peaked in 1990–2000 
over the past decades. At finer scales, the LUH forest area is not directly 
comparable with forest cover products such as those from remote sensing 
data due to differences in the underlying definition of forest cover. However, 
in Southeast Asia as a whole, the consistency in decadal forest area changes 
among LUH v1, remote sensing studies, and national statistics (FRA 2015 
and 2020: FAO, 2015; FAO, 2020) supports the scenario in which there was 
the significant forest loss from the region in 1990–2000 (Figure 6b).

An exception to these results is a study based on Landsat Global Land Survey 
(Figure 6a), which indicated an increase in forest loss from 1990–2000 to 
2000–2010 (Kim et al., 2015). Achard et al. (2014), Stibig et al. (2014), and 
Kim et al. (2015) all based their estimates on the Landsat series, but they re-
sulted in contrasting decadal forest area changes. Differences in data process-
ing likely contribute to those contrasting results. Kim et al. (2015) estimated 
forest cover between 2000 and 2005. Then, they used stable pixels identified 
in 2000 and 2005 to extent forest cover estimates for the years 1990 and 2010. 
In this approach, forest area changes are biased with higher estimates for the 
2000s compared to the 1990s because using the two sub-periods of six-year 
duration (i.e., 2000–2005 and 2005–2010) captures parts of the short-time 
visible removals of tree cover in 2005. In contrast, although methodology de-
tails differ, Achard et al. (2014) and Stibig et al. (2014) commonly processed 
data of the two decades with consistent temporal approaches.

It should be noted that a transition of forest area estimated by remote sensing account for the effect of both anthro-
pogenic and natural disturbances. However, despite a relatively large amount of CO2 emissions, natural distur-
bances, such as biomass burning tend to be localized events in Southeast Asia. For instance, even the phenomenal 
biomass burning in the 1997/1998 El Niño episode resulted in a burnt area of 0.75 million ha over Southeast Asia, 
amounting to 36% of the 2.11 million ha forest loss between 1990 and 2000 (FAO, 2015). Therefore, it is rea-
sonable to assume that a major part of decadal forest area changes in Southeast Asia observed by remote sensing 
originated in LUC activities as suggested by previous studies that assessed land cover changes in Southeast Asia 
(e.g., Achard et al., 2014; DeFries et al., 2002; Hansen et al., 2013; Stibig et al., 2014).

4.1.2.  Net Terrestrial CO2 Flux

Next, we compared decadal variability in the net CO2 flux (total CO2 balance accounting for the effects of CO2 
fertilization, climate, and LUC) of the TRENDY v2 and v7 models with the atmospheric inversions. We found 
that for the TRENDY v2 models, the net CO2 fluxes are overall a net source of CO2 for the 1980s−1990s, having 
the peak net emissions in the 1990s driven by LUC (Figure 7). In turn, the net source in the 1990s shifted towards 
a net sink in the 2000s, as an increased CO2 uptake by the effects of CO2 fertilization and climate variability (CO2 
+ climate effect) reduced LUC emissions. On the other hand, the net CO2 fluxes of the TRENDY v7 models show 
decadal changes that are stable or slightly increased towards a net sink between the 1980s and 1990s, reflecting 

Figure 6.  Decadal forest area changes in Southeast Asia. Decadal changes in 
forest area estimates by (a) literature values from four remote sensing studies 
(Achard et al., 2014; DeFries et al., 2002; Kim et al., 2015; Stibig et al., 2014) 
and (b) by LUH v1 and v2 (a sum of primary and secondary forest), and 
FRA2015 and 2020.
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Figure 7.  Decadal variability in the net CO2 flux and component fluxes for Southeast Asia estimated by the TRENDY v2 simulations. Decadal variability in the net 
CO2 flux (gray bars), the CO2 + climate effect (cyan bars) and land-use changes (LUC) effect (net LUC flux: orange bars) on the net CO2 flux. Results are shown for 
individual models from TRENDY 2. Arrows indicates decadal changes in the net CO2 flux.
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the change in the net LUC flux (Figure 8). Then, they shifted towards a net source in the 2000s or 2010s, de-
pending on models. These results indicate that the net LUC flux significantly controls decadal variability in the 
net CO2 flux for Southeast Asia revolving around the 1990s, as previously suggested by Kondo, Ichii, Patra, 
Canadell, et al. (2018). In addition, as in the case of the net LUC flux (Figure 2), the normalized difference in 
the net CO2 flux between TRENDY v2 and v7 showed that the pattern of v2 having greater net emissions for the 
1990s than v7 is common within all the DGVMs (Figure S4 in Supporting Information S1). These results indicate 
that examining independent estimates of the net CO2 flux serves as an indirect evaluation of the historical LUC 
transition.

The three atmospheric inversions (ACTM, JMA, and NICAM-TM) exhibited a decadal shift from a strong to 
reduced net source between the 1990s and 2000s (Figure 9), similar to the pattern shown by TRENDY v2. This 
result held even when the 1997/1998 period, where the phenomenal biomass burning occurred due to the 1997/98 
El Niño event, was excluded from the decadal mean. Thus, it indicates that biomass burning associated with the 
1997/98 El Niño episode alone is not responsible for the peak of net CO2 emissions found in the 1990s. Instead, 
it suggests that the contribution of LUC to the more positive CO2 flux anomaly during the 1990s compared with 
the 2000s is driving the trend.

4.1.3.  History of Forestry and Environmental Policy

Our evaluation of remote sensing studies and atmospheric inversions suggested the occurrence of peak LUC ac-
tivities and emissions in the 1990s instead of the 2000s or 2010s, favoring the historical LUC transition of scenar-
io 1. The history of forestry and environmental policy making in Southeast Asian countries supports this result. 
Since the 1960s, natural forests in Southeast Asian countries have been a major resource for timber production, 
especially in Philippines, Thailand, and Viet Nam during the 1960s−1980s, and in Malaysia and Indonesia dur-
ing the 1980s−1990s (FAO, 2011, 2015). According to “the FAO Southeast Asian forests and forestry to 2020” 
(FAO, 2011), Southeast Asia's period of active forestry reversed mainly due to the following factors; (a) several 
countries (e.g., Philippines, Thailand, and Viet Nam) commenced the regulation of timber production and na-
tional-level afforestation and reforestation programs in parallel (FAO, 2011), (b) the 1997/1998 Asian economy 
crisis caused a significant decrease in wood products production (Broadhead, 2006), and most importantly (c) the 
economic focus of Southeast Asian countries has shifted from timber production to plantation including sawlogs, 
pulpwood, bioenergy, and rubber productions (wood production market began to shift from Indonesia and Ma-
laysia to Southern countries, e.g., New Zealand, Australia, Chile, and South Africa: FAO, 2011). These events 
in conjunction most likely led to the recovery of forest area (including an increase in conservation and protected 
forests and plantations) in the 2000s and are thus responsible for the LUC transition between the 1990s and 2000s.

In contrast, the LUC transition suggested by scenario 2 is not in line with the past and current historical events. To 
the best of our knowledge, there is no historical event or ratified government and international policies supporting 
the decrease in LUC emissions over Southeast Asia from the 1980s to the 1990s. Also, a persistent increase in 
LUC emissions after 2000, another feature of scenario 2, runs counter to the 2000s being a decade that forest 
protection awareness has increased, leading to the ratification of REDD+ and establishment of more than 50 
REDD + type projects in Southeast Asian countries (Ziegler et al., 2012).

4.2.  Uncertainty in LUC Forcing and Modeling

Our results support the plausibility of scenario 1: the decadal LUC transition characterized by the peak LUC 
emissions in the 1990s as indicated by the older simulations (ran with the older forcing data). The two versions 
of HYDE are closely consistent in transitions of cropland and pasture areas, and correspondingly the influences 
on the net LUC flux are small (as illustrated by the result of JULES: Figure 2). However, differences in the two 
versions of LUH, particularly forest transitions, are notable; thus, they are largely responsible for the contrasting 
net LUC flux transitions between TRENDY v2 and v7.

In the scheme of LUH v1, primary land was used as a priority for wood harvest and land conversion demanded by 
agriculture, both based on the FAO statistics (Hurtt et al., 2006). Therefore, in LUH v1, the decrease in primary 
land in the 1990s, of which primary forest accounts most, corresponds to the increased cropland (agricultural 
demand) and secondary non-forest vegetation (due to wood harvest) (Figures 3a and 3e, and Figure S2e in Sup-
porting Information S1). However, in LUH v2, these patterns changed primarily due to the difference in forest 
transitions between LUH v1 and v2. The decrease in primary forest is less pronounced (Figure 3h), and secondary 



Global Biogeochemical Cycles

KONDO ET AL.

10.1029/2020GB006909

14 of 19

Figure 8.  Decadal variability in the net CO2 flux and component fluxes for Southeast Asia estimated by the TRENDY v7 simulations. Decadal variability in the net 
CO2 flux (gray bars), the CO2 + climate effect (cyan bars) and land-use changes (LUC) effect (net LUC flux: orange bars) on the net CO2 flux. Results are shown for 
individual models from TRENDY 7. Arrows indicates decadal changes in the net CO2 flux.
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forest increased instead of secondary non-forest vegetation (Figure  3i). 
Considering the changes between the LUH versions, a newly implemented 
satellite-based constraint on the spatial patterns of forest transitions may be 
responsible for the difference in forest transitions between the LUH versions 
(Figures 3g and 6b). Because of a relatively simple design, forest transitions 
in LUH v1 more directly reflect the FAO statistics used as a basis, whereas 
those in LUH v2 possibly reflect the FAO statistics less due to increased 
constraints, including forest transitions.

Yet, it does not necessarily imply that the older versions of LUC forcing are 
more reliable than the newer versions. Examining spatial variability in the 
LUC forcing data, decadal changes in cropland of HYDE v3.1 and secondary 
land in LUH v1 for the period 1990–2000 are rather heterogeneous to be 
realistically compared with those of HYDE v 3.2 and LUH v2 (Figure 10). 
The spatialization method using remote sensing data successfully smoothed 
out spatial variability in the newer forcing data (Figure 10). In sum, although 
our results support the plausibility of scenario 1, both the older and newer 
versions of LUC forcing have issues of their own, and both smoothed spatial 
patterns and preservation of the regional FAO value need to be realized in 
future forcing data. Lastly, we emphasize that our results on the LUC forcing 
data are only valid for Southeast Asia and the period analyzed. It should not 
be extended to other regions without detailed analyses as done in this study.

To understand whether LUC emissions continue to decline after the 2000s, 
we need to address the uncertainty associated with incomplete processes in 
the LUC forcing data and modeling for Southeast Asia. A land-cover con-
version of peatland to oil-palm plantation is the key process relevant to the 
recent net LUC flux for Southeast Asia, but not represented in the LUC forc-
ing data. CO2 emissions following clear-cutting peat forests and drainage of 
peat swamps contribute significantly to the carbon budget in Southeast Asia 
and the global total (Uryu, 2008). It is known that oil-palm plantation is di-
rectly responsible for 40% to 62% of those peatland disturbances (Carlson 
et al., 2012, 2018; Murdiyarso et al., 2010). Today, information on peatland 
is yet to be a part of the FAO data and LUH, and oil-palm plantation is not 
explicitly categorized in neither the FAO data nor HYDE (they are implicitly 
included in cropland of those data). Likewise, biogeochemical modeling for 

this LUC type is still under development. To our knowledge, CLM is the only model that attempted to model fire 
emissions from peatland (Li et al., 2013; 2014) and the carbon cycle in oil-palm ecosystems (Fan et al., 2015; 
Meijide et al., 2017). However, many issues remain in its modeling, such as not considering the temporal changes 
of peatland cover, a lack of CO2 emissions from peat oxidation, and incomplete parameterization for the carbon 
cycle of the oil-palm ecosystem. Under the circumstance where the increase in oil-palm plantation at the expense 
of peat forest does not seem to stop today, the implementation of peatland to oil-palm land-cover change in LUC 
forcing and sophisticated modeling for this LUC transition in DGVMs are expected to play a critical role in the 
net LUC flux estimation for today and future.

Furthermore, despite progress towards more sophisticated representations of LUC modeling, further efforts to 
reduce differences in LUC modeling are strongly needed. In addition to the LUC modeling approach (summed 
or distinguished transition), implementation of wood and crop harvests, consideration of residue carbon after 
deforestation, and turnover rates of a product pool are still largely different among DGVMs (Le Quéré, Andrew, 
Friedlingstein, Sitch, Pongratz, et al., 2018; Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, et al., 2018). These 
various schemes of LUC modeling induce non-negligible differences in estimates of the net LUC flux, not only 
for Southeast Asia (Figure 2, Calle et al., 2016), but also for the global land (Arneth et al., 2017). A comparison 
of LUC modeling is currently in progress as part of the Coupled Model Intercomparison Project (CMIP): namely 
the Land Use Model Intercomparison Project: LUMIP (Lawrence et al., 2016). However, LUMIP is an experi-
ment dedicated to identifying long-term effects and projections of LUC based on climate scenarios. We need an 

Figure 9.  Decadal variability in the net CO2 flux from three atmospheric 
inversions for Southeast Asia. Decadal variability in the net CO2 flux by 
ACTM, JMA, and NICAM-TM. Decadal CO2 budget of these atmospheric 
inversions for the 1990s are shown with and without the 1997/1998 value.
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Figure 10.  Spatial patterns of decadal ecosystem area changes in Southeast Asia. Spatial variability in changes of (a) cropland, (b) pasture, (c) primary land, and (d) 
secondary land, between 1990 and 2000. Estimates of HYDE v3.1, HYDE v3.2, LUH v1, and LUH v2 are shown. In each plot, an inset shows a histogram of area 
change distribution.
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experiment aimed explicitly at the contemporary period (e.g., 1980−current) to develop a more realistic LUC 
modeling reflecting information from available observations and national statistics.

5.  Conclusions
This study detailed the net LUC flux estimates to identify a plausible historical LUC transition for Southeast 
Asia. The key message from this study is that there is a substantial amount of uncertainty in our assessments of 
net LUC flux primarily rooted in forcing data. There is no guarantee that the newer data are of a better quality 
than the older ones. One should carefully evaluate available methods and estimates when assessing historical 
regional net LUC flux transitions because any assessment relying on a specific method or forcing data may lead 
to unrealistic results.

For Southeast Asia, the multiple independent evidence supports the plausibility of scenario 1: the LUC transition 
of the peak emissions in the 1990s to the declining emissions in the 2000s and beyond. Although the older forcing 
data have issues of their own (i.e., heterogeneous spatial variability), this scenario itself should be regarded as 
most realistic as supported by the independent analyses and data. Thus, it should be reproduced in a new estimate 
and be the base for future improvements of net LUC flux (e.g., land cover change from peatland to oil-palm 
plantation), which is anticipated in the on-going project of carbon budget assessment for Southeast Asia under 
REgional Carbon Cycle Assessment and Processes phase 2 (RECCAP2). A complete synthesis of carbon budget 
assessment supported by a new net LUC flux estimate is expected to shed light on the role of Southeast Asia in 
the global carbon cycle and the effectiveness of local and international policies on deforestation prevention for 
that region.
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