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Upscaled models for time-varying solute transport: Transient spatial-Markov dynamics

Correlated velocity models (CVMs) have proven themselves to be effective tools for describing 2 a wide range of solute transport behaviors in heterogeneous porous media. In particular, spatial 3 Markov models (SMMs) are a class of CVMs where subsequent Lagrangian velocities along trans-4 port trajectories depend only on the current velocity, and not on past history. Such models provide 5 a powerful tool for modeling transport in terms of a limited number of flow properties, such as the 6 Eulerian point distribution of (flow) velocities, tortuosity, and the spatial scale of persistence of 7 velocities. However, to date, all SMM modeling frameworks and applications have assumed that 8 the underlying flow is steady-state. In this work, we extend SMMs to the case of time-varying 9 flows. We propose, compare, and validate alternative numerical implementations, and we deter-10 mine conditions for validity and efficiency based on standard physical quantities used to describe 11 flow and transport at the Darcy scale. The models require additional information relative to a 12 steady-state velocity SMM and we discuss the conditions under which this extra burden is war-13 ranted. We also provide clear, deterministic tests for the validity of the transient SMM, termed 14 the "slow variation" and "fast propagation" criteria, which offer clear guidance on when transient, 15 upscaled models are reasonable to employ. Our work forms the basis of a new framework allowing 16 for the application of efficient upscaled models of transport to realistic transient flow conditions.

entering at different locations may ultimately have similar travel times to reach a fixed monitoring 81 point because of transient changes in the flow field. These cases, and many more, would immediately 82 invalidate assumptions of even weak stationarity (i.e., stationarity of increments), which would seem 83 to deal a crippling blow to the conceptual underpinnings of all the current CVMs. One option to deal 84 with these issues would be to relegate CVMs to cases of strict stationarity where transient effects are 85 sufficiently averaged out. However, our perspective is that doing so would be unnecessarily limiting, 86 because a more careful inspection of SMMs suggests that they can be adapted to accommodate at 87 least some transient velocity fields if some care is taken. At a minimum, an upscaled representation 88 of these transient processes should (i) be conditional to the "clock time" at which a particle entered 89 the flow field, and (ii) somehow account for the temporal changes in upscaled velocity distributions, 90 correlations, or both. As with any upscaled model, some simplifying assumptions are necessary, but 91 in this case we will show that conditions for validity and numerical efficiency can be posed in terms 92 of the typical physical parameters used to describe flow and transport in porous media at the Darcy 93 scale.

94

The central questions addressed in this article are how to generalize (correlated) CTRWs to the 95 case of transient velocities, and what conditions are necessary for these generalizations to be valid 96 and practical. The motivation is to preserve the theoretical and computational benefits of SMMs 97 when the underlying flow field is time-dependent. Several options of varying complexity are evaluated 98 to accomplish this goal, and we consider their benefits and pitfalls in the context of analytic and 99 numerically-defined transient velocity fields. We start by reviewing the basic concepts of the SMM and 100 assessing its limitations regarding transient flow fields. Three approaches to accommodate transience 101 are then developed, and we show that two of these are sufficiently robust for general applications.

102 Specific criteria are developed for the validity of the transient SMM. The approach requires no further 103 specific assumptions about the underlying flow field, but we focus here on flow through porous media at 104 the Darcy (aquifer) scale. We validate our results against numerical simulations using both analytical 105 and realistic flow fields where transience is induced by time-varying (periodic) boundary conditions. In 106 the interest of compactness, the concepts and examples are demonstrated using a Bernoulli relaxation 107 model for the Markov velocity process (Dentz et al., 2016), so we close with a discussion of how the 108 approach can be generalized to other forms of transient CVMs. Collectively, the results advance the 109 capabilities of CVMs to include transience and offer clear guidance regarding when these models would 110 be appropriate and accurate.

X k+1 = X k + ∆s χ , T k+1 = T k + ∆s V k , (1) 
where V k is the velocity magnitude during the kth step, which is constant throughout the step. Typ-125 ically, the tortuosity χ is approximated by the average tortuosity, which is computed as the average 126 of the Eulerian velocity magnitude divided by the average of its projection along the mean flow direc-127 tion [START_REF] Koponen | Tortuous flow in porous media[END_REF],

128 χ = v v • x . (2) 
Here, v is the Eulerian velocity vector, x is the unit vector along the mean flow direction, and • denotes 129 the average over space. The numerator represents the average of the Eulerian velocity magnitude, 130 v = |v| , so that χ 1. The initial time and position for each particle are often taken as T 0 = 0 and 131 X 0 = 0, respectively (though nonzero positions and times are permissible), and the initial velocities 132 V 0 are distributed according to the initial condition at this time.

133

The key ingredient of a spatial-Markov model is that the velocities V k , seen as a function of k, by the probabilities r ij of transitioning to class i given that the current velocity is in class j.

141

In order for the velocities to correspond to a spatial-Markov process, the probability of transitioning 142 to a different class must be proportional to the step length ∆s, so that, for a given velocity, the spatial 

). Thus, taking into account that i r ij = 1 for all classes j to conserve probability (a transition 148 from any given velocity class j must end at some velocity class i), we write, for a small spatial step 149 ∆s compared to the correlation length c [START_REF] Aquino | The diffusing-velocity random walk: a spatial-markov formula-781 tion of heterogeneous advection and diffusion[END_REF],

150 r ij = ∆s c β ij (1 -δ ij ) + 1 - ∆s c (1 -β ii ) δ ij , (3) 
where the dimensionless β ij encode the velocity-dependence of the transition probabilities and δ ij is in a well-defined spatial-Markov process in the continuum limit of fine step discretization ∆s → 0, 155 so long as the velocity class discretization associated with a given ∆s is chosen such that the time 156 increments ∆s/v i → 0 for all classes i as ∆s → 0.

157

The full transition matrix of an SMM is an N × N matrix, where N is the number of velocity bins.

158

This can be difficult to parameterize in practice, so we shall instead adopt an analytical model based 159 on a discretized Bernoulli relaxation process for the velocities [START_REF] Aquino | The diffusing-velocity random walk: a spatial-markov formula-781 tion of heterogeneous advection and diffusion[END_REF]Dentz 160 et al., 2016;[START_REF] Sherman | A review of spatial Markov models 870 for predicting pre-asymptotic and anomalous transport in porous and fractured media[END_REF]. We expect this approach to provide good results for quantities 161 such as breakthrough curves at distances larger than a few correlation lengths (Hakoun et al., 2019; 162 Puyguiraud et al., 2019a). Under this process, particle velocities persist on the scale of the correlation 163 length c . When a particle changes to a different velocity class in a given step, the probability of 164 the new velocity being in class i is independent of the current velocity class j, and it is given by a 165 prescribed equilibrium probability p ∞ i . In this sense, the Bernoulli process may be seen as the simplest J o u r n a l P r e -p r o o f
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This also provides a direct link to SMM paramaterizations based on Gaussian Copulas (Massoudieh 168 and Dentz, 2020). Assuming that the probability of transition per unit length is constant and equal to 169 1/ c implies that the probability of persistence is exponential (Feller, 2008;Van Kampen, 1992), and 170 the transition probabilities are given by (Dentz et al., 2016) 171

r ij = e -∆s/ c δ ij + 1 -e -∆s/ c p ∞ i . (4) 
Expanding in Taylor series for small ∆s/ c 1 and comparing to Eq. ( 3), we obtain

172 β ij = p ∞ i , (5) 
independent of the current velocity class j as expected.

173

The probability p ∞ i must be defined in terms of flow properties in order for the Bernoulli process to 

186 p F (v) = vp E (v) v . (6) 
In the discretized description, p ∞ i is the probability associated with the discretized velocity class i,

187 p ∞ i = bi+1 bi dv p F (v) ≈ ∆v i p F (v i ), (7) 
where the approximation holds for small velocity classes, ∆v i /v 1. The Bernoulli process is thus 

237

The simplicity of this approach is appealing, but it suffers from significant limitations because it NEX model to provide a realistic approximation may not be practical in many real-world situations.

246

We nonetheless include it here for its conceptual simplicity and to highlight the role of the more subtle 247 procedures developed for the following, more involved discretization schemes. 

v(t) = ∞ 0 dv p E (v; t)v. (8) 
Over a given time interval, which we call a variation window ∆t v , the difference in the average particle 265 displacement associated with the change in mean velocity can be quantified through

266 ∆s v = |v(t + ∆t v ) -v(t)|∆t v . (9) 
The quantity ∆s v may be interpreted as the approximate error in the average particle displacement 267 that would arise from not taking the mean velocity variability into account. The error in the usual 268 discretized spatial-Markov description, associated with mechanism (i), is on the order of the discretiza-269 tion step length ∆s. Thus, in order to obtain an error of the same order associated with discretizing 270 mechanism (ii), we choose ∆t v such that ∆s v = a∆s, where a 1 is a free parameter controlling the 271 maximum step size under transience, and as such the magnitude of allowable errors. Note that this 272 will in general correspond to a time-dependent variation window ∆t v (t).

273

For given values of a and ∆s, Eq. ( 9) can be solved numerically for ∆t v . The procedure leads to a

274

J o u r n a l P r e -p r o o f

Journal Pre-proof series of turning points T v,k where variation of the Eulerian flow field is to be taken into account; for 275 this reason, we call this approach the "Turning Point Explicit" (TPE) method. Specifically, we have

276 T v,k +1 = T v,k + ∆t v,k , T v,0 = T 0 = 0, ( 10 
)
where ∆t v,k = ∆t v (T v,k ) is the variation window associated with the last turning point. Note that T 0 = T v,0

T 3 = T v,1 T 1 ∆tv,0 X 0 X 1 X 2 X 3 ∆s/χ ∆s/χ V2(T3 -T2)/χ T 2 ∆s/χ ∆s/V2
Figure 1: Illustration of the algorithm for mechanism (i), representing spatial-Markov transitions. As explained in detail in the text, starting at time T v,0 = T 0 and position X 0 , the variation window ∆t v,0 is first computed based on mean flow velocity variability. The Markov transition times ∆s/V i associated with steps of length ∆s/χ are then computed, until the turning point time T v,1 = T v,0 + ∆t v,0 is reached. The portion of the last step corresponding to times exceeding T v,1 , represented by the dashed lines, is discarded, leading to the solid blue trajectory. Mechanism (ii) is then employed to find the new velocity at the new turning point, the Markov transition probabilities are updated according to the transient Eulerian PDF evaluated at T v,1 , and the algorithm is repeated. We now formalize mechanism (i). Starting at the time T v,k of the last flow-variation transition, 282 determine the next variation window ∆t v,k . Then, employ Eq. ( 3) for the transition probabilities 10)), the new time and position are determined according to 288

283 r ij (t) = r ij (T v,k ), together with the transition coefficients β ij (t) = β ij (T v,k ),
X k+1 = X k + V k T k+1 -T k χ , T k+1 = T v,k +1 , (11) 
in order to account for the partial completion of the step. Note that the remainder of the last transition processes (see, e.g., Van Kampen, 1992). The algorithm for mechanism (i) is illustrated in Fig. 1.

294
This procedure is to be applied to all particles, followed by mechanism (ii), described below, and then 295 repeated. Note that the NEX scheme proceeds similarly regarding the turning point times T k and 296 positions X k , but does not require explicit variation windows. Rather, the position increments are 

V k+1 = v(T v,k +1 ) v(T v,k ) V k , (12) 
or the corresponding class velocity in the discretized picture. This choice corresponds to assuming 313 that the change in the velocity statistics can be approximated by an overall rescaling of the point Journal Pre-proof velocities, in line with the assumptions discussed above. This mechanism is applied to all particles, 315 and the procedures described for mechanisms (i) and (ii) are then repeated. Note that, at the begin of 316 procedure (i), the Markov transition probabilities are recomputed according to the velocity distribution 317 at the new turning point time.

318

The correlation length and tortuosity are determined by the flow structure but can change in a 319

given medium with an unchanging structure, for example due to the formation of preferential flow 320 paths. While the mechanism (ii) rule can be applied to a case where the flow structure also varies, its

321
physical significance is more difficult to justify. A more complex transition rule may be necessary in 322 such cases, which we do not discuss further here. 

329

In practice, the concept of a variation window introduced for TPE subtly implies that, for a given 330 finite step size ∆s, the changes of the velocity PDF during a step are small enough that stochastic 331 variations compensate for any inaccuracies imposed by the use of a constant velocity. In other words,

332

the "true" velocity might be slightly higher/lower over any given step, but the average remains repre-

333

sentative. An alternative interpretation of this nuanced point is that it assumes that small changes to 334 the probability associated with a given velocity are insignificant inside an appropriately-sized variation 335 window. Transposing this argument, one could instead assume that small changes to a velocity have 336 an insignificant impact on its probability over the time of the transition, which leads us to the third 337 strategy.

338

The key assumption for the following approach is that the cumulative probability associated with 339 a particle velocity, 340

P (v) = v 0 dv p E (v), (13) 
does not change during a spatial step, or that a particular particle's velocity rank on the cumulative 341 density function (CDF) remains constant over any given step. This is similar to the assumption made 342 under the TPE method, where changes in the underlying flow field were modeled as a constant rescaling 

353 dX p (t) dt = v p (t) χ , (14) 
where X p (t) is the downstream position, and v p (t) is a time-dependent function that describes the 

where ∆s = χ[X p (T k+1 ) -X p (T k )] is the imposed displacement along particle paths, T k is the clock 357 time at the beginning of the step, and T k+1 is the unknown final time. Thus, particle positions in 358 terms of step number k remain given by X k+1 = X k + ∆s/χ, but transition times are determined 359 according to an implicit equation.

360

Given a function for v p (t), the left-hand side of ( 15) is known and the right-hand side will be a 361 function of T k+1 only, the unknown time when the step is finished, to be found via an implicit solution.

362

The resulting equation will likely be nonlinear, but the solution of (15) for the final time, T k+1 , gives an 363 exact solution when v p (t) may be approximated analytically, subject to the simplifying assumptions.

364

We term this approach the "Fully-implicit model", since it requires the solution of an implicit (possibly 365 nonlinear) equation for every particle in the random walk at every step. Note that this approach is 366 an exact expression for the travel time when v p (t) is known analytically, with the single assumption 367 that the probability associated with the velocities is constant for the duration of the step. Once a 15) rather than given directly by ∆s/V k . The stationary SMM case 380 is easily recovered by defining, within step k, v p (t) = V p,k , where V p,k is constant within the step.

381

Then, ∆s = V p,k (T k+1 -T k ), and we conclude that the transition time is T k+1 -T k = ∆s/V p,k , as 382 expected. Next, consider a simple example of transience by assuming a linear increase in velocity

383 over time: v p (t) = V p,k + α(t -T k )
, where α is a constant growth rate. This gives the quadratic

384 ∆s = α(T k+1 -T k ) 2 /2 + V p,k (T k+1 -T k
), which has one real-valued, positive solution for the transit The fully-implicit scheme has the advantage of accounting for all the changes in v p (t) when the latter 391 is known, but it should be evident that an implicit nonlinear solution for every particle at every step 392 will be computationally demanding. The most obvious simplification is to use the velocity from the 393 beginning of the time step in an explicit, first-order scheme that always updates the PDF for transience, 394 so we abbreviate this Fully-Transient Explicit approximation as FTE.

385 time, T k+1 -T k = ( 1 + 2α∆s/V 2 p,k -1)V p,k /α.

395

A single evaluation of the velocity is used for every step, so that transient changes during the step 396 are strictly ignored. The FTE then proceeds according to the recursion relations (1), with the velocities 397 V k selected according to (3), computed according to an Eulerian velocity PDF that is a function of 398 clock time, updated as p E (v; T k ) at each particle step as before. The advantage of this approach is 399 speed and simplicity but, like the NEX scheme, the cost is that it makes no attempt to account for 400 transient changes during a spatial step. However, the velocity associated with each rank is updated at 

420

A good balance of accuracy and numerical cost is provided by the standard 3rd-order Runge-Kutta 421 (RK3) scheme [START_REF] Pozrikidis | Numerical computation in science and engineering[END_REF]. For the trajectory of a temporally non-stationary random 422 walker during step k and for a given rank p, the time at the end of the step, T k+1 , is computed 423 according to

424 t * = T k + ∆s 2v p (T k ) , (16a) 
t * * = T k + ∆s 2 v p (t * ) - 1 v p (T k ) , (16b) 
T k+1 = T k + ∆s 6 1 v p (T k ) + 4 v(t * ) + 1 v(t * * ) , ( 16c 
)
where t * and t * * are the first and second predictor estimates of the time to complete the step. As before, 

where S s [1/L] is the specific storage and K is the hydraulic conductivity tensor [L/T ], subject 458 to appropriate boundary and initial conditions [START_REF] Charbeneau | Groundwater hydraulics and pollutant transport[END_REF]. Assuming constant S s (spatial 459 variation produces an advective-type term), this is a diffusion equation for h, with the role of the 461

D H = K S s . ( 18 
)
Hereafter, we assume for simplicity a locally-isotropic K field, so that it is sufficient to consider the 462 scalar (diagonal) values K and D H . The conductivity K can vary spatially, so it is convenient to 463 consider an average value for D H that realistically homogenizes spatial heterogeneities, D * H , which 464 could be computed, e.g., as a geometric (power) mean over K(x, y, z) [START_REF] Charbeneau | Groundwater hydraulics and pollutant transport[END_REF]. The 

We have assumed that the main limiting factor is the propagation along the longitudinal direction, 472 but a similar criterion could be developed that includes any propagation speed contributions from the 473 lateral components.

474

We take equal to the length of the domain of interest. In that case, if condition (19) holds, 475 the perturbation may be assumed to travel instantaneously across the domain, or that all velocities 476 change instantly when a head change is applied at the boundaries. For large domains, this criterion 477 could be relaxed by estimating according to the characteristic size of the solute plume through its 478 longitudinal dispersion σ 2 x , such that ∼ σ x . In this case, the perturbation can be assumed to cross the

J o u r n a l P r e -p r o o f

Journal Pre-proof entire plume instantaneously, but it may be necessary to delay the change in transition probabilities 480 according to the time it takes the perturbation to reach the plume.

481

Finally, note that the Darcy equation itself does not dictate the velocity and it is assumed that 482 the average local flow velocity is proportional to the local hydraulic conductivity K and the porosity. that many transitions occur within a variation window ∆t v . In order to estimate ∆t v in terms of the 494 variability in the mean velocity, consider the limit of small ∆s, under which ∆t v is expected to be 495 small. Then, Taylor expansion of Eq. ( 9) yields

496 ∆s v ≈ dv dt ∆t 2 v , (20) 
and, solving for ∆t v ,

497 ∆t v ≈ a∆s |dv/dt| . ( 21 
)
Note that the Taylor expansion leading to this result is inaccurate near local temporal extrema of 498 the mean velocity, where |dv/dt| = 0, which is why we employ the more robust numerical procedure 499 described in Appendix A to compute ∆t v . However, this approximation provides a useful estimate of 500 the role of flow variability. The number of mechanism (i) transitions within ∆t v is of order v∆t v /∆s, 501 which we wish to be large. We thus obtain for the slow-variation condition (a):

502 dv dt a 2 v 2 ∆s . ( 22 
)
In particular, for the spatial-Markov description to adequately resolve transport, we need ∆s c ,

503

and we must have a 1. Thus, the minimal requirement for condition (a) to be met may be expressed

504 as 505 dv dt v 2 c . ( 23 
)
This is a time-dependent criterion, and the procedure may remain practical even if it does not hold 506 for certain times. If this constraint holds, Eq. ( 22) may be used to choose

507 a 2 v 2 |dv/dt| < ∆s < c , (24) 
in order to ensure the method is both accurate and efficient. In practice, ∆s can be chosen as the mini-508 mum of given multiples of the left and right terms in the inequality, e.g., ∆s = min{5v 2 /(|dv/dt|), c /10}.

509

Note also that ∆s may be chosen adaptively, according to the temporal variation of the mean velocity,

510
or constant according to a specific value such as the maximum or average of v 2 /|dv/dt| over the times 511 of interest.

512

Combining the slow-variation condition, Eq. ( 23), and the fast-propagation condition, Eq. ( 19), we

513 obtain 514 c dv dt v 2D * H . (25) 
Given the spatial mean v(t) of the underlying flow field as a function of time, this result represents the eterization (see [START_REF] Sherman | A review of spatial Markov models 870 for predicting pre-asymptotic and anomalous transport in porous and fractured media[END_REF]. Under the present choice, the coefficients β ij (t), which fully 530 characterize the transition probabilities r ij (t) through Eq. ( 3), are obtained from the Eulerian PDF of 531 point velocity magnitude statistics at a given time through Eq. ( 7). To further simplify the demon-532 strations, we also adopt a gamma PDF of Eulerian velocities with various prescribed time-dependent

533 mean velocities v(t), 534 p E (v; t) = θv v(t) θ e -θv/v(t) vΓ(θ) , (26) 
where Γ(•) is the gamma function. This type of PDF combines low-velocity power-law behavior (with 535 scaling v θ-1 , θ > 0) with an exponential cutoff at high velocities. These features control long-term 536 tailing of the resulting transit time distributions due to retention in low velocity zones as well as 537 mean transit times, which in turn control key transport features such as mean plume displacement 538 and longitudinal dispersion [START_REF] Aquino | The diffusing-velocity random walk: a spatial-markov formula-781 tion of heterogeneous advection and diffusion[END_REF]Dentz et al., 2016). The gamma PDF has 539 been employed to model Eulerian velocity PDFs in porous media both at the pore and the Darcy 540 scales [START_REF] Alim | Local pore size correlations determine 779 flow distributions in porous media[END_REF][START_REF] Aquino | The diffusing-velocity random walk: a spatial-markov formula-781 tion of heterogeneous advection and diffusion[END_REF]Dentz et al., 2016;Holzner et al., 2015). The 541 corresponding flux-weighted Eulerian (or s-Lagrangian) PDF, Eq. ( 6), is again gamma,

542 p F (v; t) = θv v(t) θ e -θv/v(t) v(t)Γ(θ) , (27) 
with the same exponential cutoff and a low-velocity dependency ∝ v θ . Alternative parameterizations 543 of the gamma PDF, along with fitting procedures, are discussed in Appendix B. The analytical cross-validation exercise assumes that i ) a gamma distribution of velocities exists within 546 the domain, and ii ) the Eulerian mean velocity is described by a periodic function of the form 

547 v(t) = v 0 1 + η sin 2π(t + t 0 ) τ , (28) 

568

An observation that can be made from Fig. 2 is that there are some cases where TPE differs from 569 RK3. The reason for this is the parameter ∆s v = a∆s in the TPE model; a value of a must be specified, 570 which controls the magnitude of the "allowable" errors. Fig. 2 used a = 0.5, and this can be reduced 571 to increase accuracy, at the cost of requiring more steps. Given sufficiently small a, and thus ∆s v , 572 the TPE and RK3 results are essentially identical if the spatial discretization ∆s/ c is also sufficiently 573 small. This is shown via a convergence analysis in Fig. 3 with a = 0.1, where TPE, FTE, and RK3 574 all exhibit nearly identical mean travel times as ∆s/ c is decreased (i.e., the number of steps needed 575 to cross a correlation length is increased, so that all relevant structure in the flow field is resolved).

576

Similar behaviors can be found for any fixed level of the BTC, but we only show convergence of the 577 median arrival time for brevity. As ∆s is decreased, all but the NEX scheme approach the same mean behavior showing that they are solving the same system. TPE, FTE, and RK3 all converge to the same result for sufficiently refined discretizations, though they have different computational costs and assumptions.

undeveloped aquifers (Engdahl, 2017;[START_REF] Mccallum | Residence times of stream-groundwater exchanges due to 847 transient stream stage fluctuations[END_REF].

594

The transient groundwater flow equation was solved using 2nd-order implicit finite differences and 1.01 × 10 -1 9.63 × 10 -2 7.94 × 10 -2 5.50 × 10 -2 5.52 × 10 -2 RMSE 1.53 × 10 -2 1.20 × 10 -2 1.21 × 10 -2 6.46 × 10 -3 6.81 × 10 -3 and FTE converge to the same answer as RK3 when the spatial step is sufficiently refined (see Fig. 3).

656

However, there is one major concern that cannot be overlooked, which is not unique to this study. In the absence of a strong transient boundary, our view is that a "shock" to the system would be 676 necessary to invalidate the assumption of stable velocity ranks, such as abruptly turning on a large 677 pumping well. If this were the case, the slow variation criterion would clearly be violated, negating Figure 7: Illustration of the algorithm to determine the variation windows ∆t v,k associated with temporal variation of the Eulerian mean velocity. The variation windows ∆t v,k = T v,k +1 -T v,k determine the turning point times T v,k , starting at T v,0 = T 0 , at which flow velocity variations are taken into account. Each ∆t v,k is determined so that the mean velocity variation ∆v k = |v(T v,k + ∆t v,k )v(T v,k )| is such that ∆v k ∆t v,k = ∆s v , where ∆s v is related to the spatial-Markov step size by a factor a 1, ∆s v = a∆s. In order to determine these variation windows numerically, we consider a step-dependent maximum resolution ∆t k = ∆s v /v(T v,k ), as illustrated for ∆t v,3 . Then, ∆t v,k is approximated the smallest integer multiple of ∆t k such that ∆v k ∆t v,k exceeds ∆s v . ∆s v . Numerically, n k can be computed as the smallest integer n such that

738 |v(T v,k + n∆t k ) -v(T v,k )|n∆t k > ∆s v . (30) 
In the simplest implementation, the value of the mean velocity over time is scanned sequentially, 739 at a temporal resolution of ∆t k , until the prescribed tolerance ∆s v is exceeded. This procedure is 740 illustrated in Fig. 7.

741

B Parameterization and fitting of the gamma velocity PDF

742

The gamma PDF is typically parameterized in terms of a shape parameter α and a rate parameter ξ, 743 defined such that

744 p Γ (x; α, ξ) = ξ α Γ(α) x α-1 e -ξx , (31) 
where, for a random variable with this distribution, p Γ (x; α, ξ) dx is the probability of a value in the 745 infiniteseimal vicinity dx of x. This PDF can be fit to velocity data directly by applying a standard 746 minimum-square criterion to determine α and ξ.

747

In the present application, where the Eulerian velocities are taken to be gamma-distributed, it is 748 convenient to choose a parameterization that emphasizes features that are key to solute transport. 

134 form a

 a Markov chain. The Markov property means that the probability of the next step having 135 velocity V k+1 is conditional only on the most recent step's velocity V k , and not on past history through 136 earlier velocities. Under strict stationarity of the underlying flow field, the corresponding transition 137 probabilities, given the current velocity, are constant in both space and time. Discretizing velocities 138 J o u r n a l P r e -p r o o f Journal Pre-proof into classes, such that class i comprises velocities between b i and b i+1 and has width ∆v i = b i+1 -b i , the 139 midpoint velocity v i = (b i+1 +b i )/2 is associated with class i. The velocity process is then characterized 140

143

  rate of transition (transition probability per unit distance) is constant and the transition probability 144 decays exponentially with the step length(Van Kampen, 1992). The overall persistence of velocities is 145 characterized by the correlation length c of velocity magnitudes along streamlines, which at the Darcy 146 scale is typically of the same order as the scale of spatial variability of permeability(Hakoun et al., 147 

151a

  Kronecker delta. Thus, the term proportional to (1δ ij ) denotes the probability of changing to a 152 different velocity class, whereas the term proportional to δ ij denotes the probability of remaining in 153 the same velocity class. As shown in Aquino and Le Borgne (2021), the corresponding dynamics result 154

  174relax to the correct velocity distribution for a given transport problem. To this end, we introduce the 175 Eulerian velocity probability density function (PDF) p E , defined such that p E (v) dv is the probability 176 of finding a velocity in the infinitesimal vicinity dv of v at a uniformly-randomly chosen spatial location. 177 In other words, the Eulerian velocity PDF represents the point velocity statistics of the underlying flow 178 field, in terms of the spatial probability of occurrence. Note that the Eulerian mean velocity, which 179 was introduced above as a spatial average, can also be computed from the Eulerian velocity PDF as 180 v = ∞ 0 dv vp E (v). The equilibrium distribution of the Bernoulli process represents the distribution 181 of velocities measured at a given downstream distance far from injection. Under the assumptions of 182 flow incompressibility and ergodicity (i.e. velocity statistics sampled in time along a sufficiently long 183 trajectory are the same as across the spatial domain), the corresponding equilibrium velocity PDF, 184 called the s-Lagrangain velocity PDF in some works, is the flux-weighted Eulerian PDF (Dentz et al., 185 2016; Puyguiraud et al., 2019a),

188

  fully parameterized given knowledge of the Lagrangian (i.e., along streamlines) correlation length c J o u r n a l P r e -p r o o f
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  schemes proposed below in the continuum limit of fine discretization ∆s → 0. When the flow field 241

  the primitive NEX model is that it is entirely oblivious to the rate at which the flow 250 field changes. If the flow field changes quickly, many velocity updates are necessary in, potentially, 251 a short time compared to standard SMM velocity transitions, especially for particles moving at low 252 velocities. Thus, our goal is to find an approach where the time and number of velocity PDF updates 253 are dictated by the magnitude of the temporal changes in the velocity PDF. Before continuing, recall 254 that particle velocities in a transient SMM may change due to two mechanisms: (i) As before, a particle 255 moves according to the local velocity, and samples a new velocity at a different, nearby point in space; 256 and (ii) The local velocity at a particle's position changes due to the time-dependent nature of the 257 flow. 258 In the context of a transient field, mechanism (i) requires a rule to determine the transition prob-259 abilities r ij (t) for times t over each time range between velocity changes. In turn, mechanism (ii) 260 requires a rule to determine velocity transitions due directly to the change in the underlying flow field. 261 First, we determine the time range characterizing appreciable velocity changes. Knowledge of the 262 time-dependent Eulerian PDF p E (v; t), as a function of velocity v for each time t, implies knowledge 263 of the mean Eulerian velocity as a function of time, 264

277

  many transition times T k associated with mechanism-(i) transitions are expected to occur between 278 two turning points when the slow-variation condition (a) is met, as discussed in more detail below. A 279 straightforward numerical procedure to determine the variation windows and associated turning points 280 is described in Appendix A.

  which depend on the 284 choice of spatial-Markov process. The transition probabilities remain constant throughout the variation 285 window. Next, update particle positions and times according to Eq. (1). However, when during some 286 step k a particle's time would exceed the next turning point time T v,k +1 associated velocity variation 287 J o u r n a l P r e -p r o o f Journal Pre-proof (Eq. (

  289 distance and duration are discarded. Having determined that the next Markovian velocity transition 290 has not occurred by time T k+1 , we know the velocity remains constant and equal to V k during the 291 partial step. The turning point corresponding to the next Markovian change in velocity can simply be 292 recomputed in the next iteration without further assumptions due to the lack of memory of Markov 293

  297 always ∆s/χ, and the underlying transition probabilities are updated only when a velocity transition 298 to a different class occurs. 299 Next, we turn to mechanism (ii), which corresponds to determining the new velocity at the flow-300 variation turning point times T v,k . Consider the transition probabilities of Eq. (3). Under a change 301 in the flow field, these may change through the correlation length c and/or through the velocity-302 dependent coefficients β ij . In order to set up mechanism (ii) in a simple and physically-reasonable 303 manner, we assume that the flow structure remains unchanged, maintaining the correlation length 304 c and the tortuosity χ constant, but the Eulerian velocity PDF may change in time, keeping its 305 functional form but changing its mean through a rescaling. As familiar examples, this is the case at 306 the pore scale when the underlying velocity field corresponds to Stokes flow, and at the Darcy scale 307 when the hydraulic conductivity structure remains the same but the average head gradient driving the 308 flow is rescaled. Once a transition due to velocity variation happens, at some transition time which 309 we again name T k (now with k 1) for convenience, the local flow velocity at the particle's position 310 is likely to have changed appreciably. To take this into account, mechanism (ii) consists of rescaling 311 the particle's previous velocity according to the change in mean velocity, 312

  314J o u r n a l P r e -p r o o f

  3233.3 Fully-implicit model 324 So far we have considered one method that only updates transition probabilities each time a velocity 325 change takes place (and not at turning points where velocity remains the same), and one that auto-326 matically "detects" when updates are needed, which, in the process, may cause the step sizes to change 327 (i.e., TPE). Another possibility is one where the spatial step size is chosen and fixed, but transient 328 changes are always accommodated, no matter how big or small the transient fluctuation(s) may be.

  of the velocity PDF due to change in the mean velocity. For example, at t = 0, perhaps v = 0.1 has 344 cumulative probability P (v) = 0.8 (20% of velocities above 0.1), but at t = 1 the overall flow increases 345 such that v = 0.15 now corresponds to P (v) = 0.8 (20% of velocities above 0.15); in other words, a 346 particle that begins moving with P (v) = 0.8 holds this rank throughout a step even as the velocity 347 associated with this rank evolves.348Discretizing velocities in terms of rank, and denoting the velocity of a random walker conditional 349 to a particular probability value (or rank) as v p (t), where p denotes the associated rank class, we can 350 consider the trajectory of a particle along the SMM path as an equation of motion for each step. Since 351 within a transition the particle velocity is allowed to change but the rank remains fixed, each step in 352 the 1d random walk is described by the ordinary differential equation (ODE)

354

  transient velocity as a function of clock time for a given probability rank class, p. For a step of known 355 length ∆s, this separable ODE has the general solution

368

  scheme, the fully-implicit method, as well as the approximations developed below, does not require 375

  scheme, for which velocity changes occur on the order of the correlation length c , FTE accounts for 406

  Assuming the hydraulic conductivity structure of the medium remains unchanged, and no source/sink 455 terms, changes in flow velocity across the medium are due to variations in head the reflect the under-456 lying hydraulic conductivity field. The piezometric head, h,

460

  diffusion coefficent played by the hydraulic diffusivity [L 2 /T ]

465

  timescale associated with the propagation of head perturbations across a distance , and associated 466 flow variations, is then the diffusive timescale τ H = 2 /(2D * H ). 467 Over a given longitudinal length scale of interest, , the timescale associated with (advective) 468 transport can be estimated as τ A = /v. The fast-propagation condition (b) can now be translated 469 as the requirement that flow variations must propagate much faster than solute transport, τ H τ A ,

515 518 5

 518 conditions for practical applicability (accuracy and efficiency) of the transient spatial-Markov model, 516 in terms of the velocity correlation length c , the longitudinal scale of interest , and the (average) 517 hydraulic diffusivity D * H . Examples and cross-comparison 519 Existing analytical models for transport under transient velocities assume spatially-uniform flow fields (see 520 Engdahl et al., 2016), and there are no closed-form analytical solutions for the transient, hetero-521 geneous velocity fields that would lead to correlated transport. Accordingly, this section provides 522 cross-comparison of the different transient SMM models under varying degrees of transience. We 523 first compare the behavior of the four methods using a simplified analytical flow field, before mov-524 ing on to numerical validation against direct simulations based on numerically-computed, spatially-525 heterogeneous velocity fields. We exclusively consider the Bernoulli process SMM hereafter. Recall 526 that the Bernoulli SMM admits a minimal parameterization in terms of the Eulerian velocity PDF 527 J o u r n a l P r e -p r o o f Journal Pre-proof and a velocity correlation length, providing a simple and parsimonious model. Nonetheless, any SMM 528 transition mechanisms could be employed with minor modifications involving only the model's param-529

where v 0

 0 [L/T ] is a long-term mean velocity, η [-] scales the magnitude of the velocity fluctuation 548 (subject to 0 < η < 1 so velocities remain positive), τ [T ] is the period of the transient cycle, and t 0 549 [T ] is a temporal shift. The corresponding transient gamma distribution for the SMM is then given The example problem is defined by a domain length L = 100 [L], tortuosity χ = 1 for simplicity, 552 velocity correlation length c = 10 [L], gamma PDF exponent θ = 5, long-term average velocity 553 v 0 = 0.04 [L/T ], and temporal shift t 0 = 0. The four approaches (NEX, TPE, FTE, and RK3) 554 are assessed under different τ and η combinations (Figure 2), and then at different discretizations to 555 demonstrate convergence (Figure3). Any number of parameter combinations could be used, but our 556 goal is to demonstrate how transience impacts the model relative to a steady-state approximation. In 557 each case, we provide comparison to a stationary SMM, which is obtained by setting v(t) = v 0 and 558 η = 0. We choose ∆s = 1, so a random walker crosses a velocity correlation length in c /∆s = 10 steps 559 and the full domain in L/∆s = 100 steps. We use 5000 random walkers; higher particle numbers did not 560 have a significant impact on the results since we focus on mean behaviors, not on capturing tailing. The 561 (cumulative) breakthrough curves (BTCs) at the downstream domain boundary for different parameter 562 combinations of low/high magnitude (η) and small/large period (τ ) of transience are shown in Fig. 2, 563 with specific values shown in each panel. The time scales of transience were defined in terms of the 564 average velocity (v 0 ) and domain length (L), corresponding to the typical time for a particle to cross 565 the domain. In all of these plots, the FTE curve is under the RK3 curve at this scale, and both are 566 usually close to the TPE curve. Only the NEX and SS (steady-state) curves are visibly distinct from 567 the other transient models at all times.

Figure 2 :Figure 3 :

 23 Figure 2: Comparison of the transient SMM models to a steady-state (SS) approximation for different magnitudes and periods of transient velocity changes. Small fluctuations with long periods may not require transient corrections, but it should be clear that as the frequency and magnitude of transient deviations increase the transient models depart significantly from the SS curve. Note also that three of the methods (TPE, FTE, RK3) generally agree with each other, whereas NEX is only reasonable under low-magnitude transience (small η).

595

  the domain was uniformly discretized into square cells of size ∆x = ∆y = 1 [L]. A snapshot of the 596 velocity field, head contours, and streamlines is shown in Fig. 4. The time step of the transient model 597 was ∆t = 1 [T ] and flow and transport were solved sequentially at each time step using an operator-598 splitting scheme. The reference, fully-resolved, RWPT transport simulation used a flux-weighted initial 599 condition of 10 5 particles released at x = 5 and tracked forward over time to x = 95 (corresponding to 600 a length L = 90 for transport) to avoid any potential boundary impacts. Standard advective particle 601 tracking methods were used, integrated in time with a 2nd-order Runge-Kutta scheme. 602 A gamma distribution was fit to the Eulerian velocity PDF at each time step of the transient 603 flow simulation to simplify the parameterization of the SMM. The error of the fitted to the simulated 604 distribution was computed to confirm that the simplified model was reasonable. Root mean squared 605relative errors of the fitted CDFs were small (≈ 0.011 over all times) and the worst linear correlation 606 coefficient across all fits in time was ρ = 0.991; this shows the gamma PDF is a good approximation 607 for this flow field, although it is not exact. Further, the Eulerian PDF was well described by Eq. (26) 608 with fixed θ = 4.14, and the effect of transient changes at the boundary on the transient mean velocity 609 were modeled well by (28), with v 0 = 2.06 × 10 -2 [L/T ], η = 0.33, τ = 4000 [T ], and t 0 = -τ /2. A 610 comparison of the simulated and fitted transient velocity PDFs for 4 times is shown in Fig. 5

Table 1 :

 1 Hellinger distance (HD) metric and RMSE for the different SMM approximations of the simulated BTC. All transient SMM models show better performance than the steady-state model. are clear departures from the steady-state model. This flow field is weakly heterogeneous due to its 644 low log-K variance, so a higher degree of heterogeneity and greater contrast in the K field would likely 645 lead to more significant departures. Whether or not these departures are significant enough to justify 646 a fully-transient upscaled model leads directly into our discussion.

  647

Figure 4 :

 4 Figure 4: Heterogeneous, 2d flow field used for the transient model evaluation. White solid lines are contours of the potential field, black lines are the streamlines from the steady-state simulation, and the colors represent the base-10 logarithm of the velocity magnitude. The hydraulic conductivity field was generated using a hierarchical combination of transition probability geostatistics and stochastic multi-Gaussian fields.
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657A

  key question regarding practical application of any upscaled model is, can the model parameters 658 be inferred reliably? In this case, the bare-minimum required elements for the transient SMMs are: 659 i) the correlation length scale for the Bernoulli relaxation process, ii) a reference Lagrangian velocity 660 distribution, and iii) a model for how that distribution changes over time. Each of these is considered 661 independently in the following paragraphs.

  662

Figure 6 :

 6 Figure 6: Comparison of the BTCs computed from the (fully-resolved) RWPT-based and (upscaled) transient SMM simulations. This example uses a small, but realistic, transient forcing that might be expected in natural aquifers. The advantage of the transient model is evident in the PDF plot, where the small secondary peak in the RWPT-BTC is captured by the RK3 scheme but completely missed by the steady-state (SS) approximation. As discussed in detail in the text, better results for the different transient methods can be obtained by further refining the discretization.
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749

  where γ(•, •) is the lower incomplete gamma function. Recalling that ξ = α/v, we obtain771 P L (v; t) = P Γ [v, α, α/v(t)] = γ[α + 1, αv/v(t)] v(t)Γ(α) . (35)This form of the flux-weighted CDF allows standard, well-known functions to be used to approximate 772 the SMM numerically.
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  the Eulerian velocity PDF p E (v).
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	190 220	In particular, the underlying Eulerian velocity PDF must be considered as transient in all of the
	221	specific cases analyzed below. The most practical approaches to achieving this consist in adopting
	191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236	3 Non-stationary spatial-Markov model Consider now how to generalize the previous description to situations where the underlying flow field depends on time. Specifically, we seek a spatial-Markov model that is (statistically) non-stationary in time, in order to reflect transience (i.e., time dependence) of the underlying flow field. In a real, distributed transport system, the local velocity of a Lagrangian particle depends on position and time, which change along particle trajectories; the particle transport paths may be changing as time passes and thus may not coincide with paths along instantaneous flow streamlines. A robust upscaled repre-sentation of general transport dynamics is hopeless, because this scenario implies that in general the position and transition time changes cannot be decoupled. This means that an SMM is not applicable unless some simplifying assumptions are made. Otherwise, the required three-dimensional random walk may have complexity comparable to a distributed model, defeating the purpose of upscaled modeling. Conceptually, particle velocities in the upscaled model could be considered to change according to two mechanisms that represent the changes in a physical transport system: (i) As in the classical SMM, a particle moves according to the local velocity and then samples a new velocity at a different, nearby point in space; and (ii) The local velocity at a particle's position changes due to the time-dependent nature of the flow. In general, these two processes cannot be fully decoupled since they could be happening simultaneously, but under certain conditions an upscaled description remains possible. A critical evaluation reveals two criteria under which an SMM should remain valid and practical: (a) Slow (temporal) variation of velocities, and (b) Fast (spatial) propagation of velocity changes. Slow variation means that the temporal change in the flow distribution throughout the medium is sufficiently slow that many spatial transitions typically occur before appreciable changes in the local velocities. Fast propagation means that when substantial changes in the velocity field do occur, they act quickly throughout the spatial domain compared to transport processes, so that all changes in the velocity PDF can be safely approximated as synchronous, or instantaneous, throughout the domain. The latter has been a common assumption in many studies of transient transport behaviors (see Engdahl et al., 2016), suggesting it could also be adopted for SMM applications. Even under these assumptions, the Eulerian velocity PDF representing spatial flow statistics still needs to be updated over time to reflect the transient changes. The remainder of this section is concerned with how, and how often, to do so, and the assumptions associated with these decisions. parameterized PDFs where some or all of the parameters can be made functions of time. This important issue will be revisited in Section 5. For now, we merely posit that the transient Eulerian velocity PDF p E (v; t), describing point velocity statistics at each time t, is known, and we discuss three different candidates for implementing a discretized transient SMM. 3.1 Naïve explicit The simplest version of a transient SMM is one where the velocity PDF is updated only at steps where velocity transitions occur. This "Naïve explicit" (NEX) scheme is still described by the recursion relations (1). The key difference is that the transition probabilities r ij (t) now depend on the current "clock time" of the random walker through the coefficients β ij (t), see Eq. (3). At each transition, the Eulerian velocity PDF is updated to p E (v; T k ), and the corresponding transition probabilities r ij (T k ) are calculated before determining the new velocity. Note that in the specific case of a Bernoulli random walk, particle velocities only change with a probability given by exp(-∆s/ c ), independent of the current velocity, but otherwise remain the same as in the previous step (see Eq. (4)); thus, in this case, the velocity PDF is only updated to accommodate transient changes when a Bernoulli-model change in velocity would occur. Thus, for a Bernoulli random walk, transience in-between transitions J o u r n a l P r e -p r o o f is effectively ignored.

483

  Since K typically exhibits much broader variability than specific storage, low hydraulic diffusivity D H 484 is commonly associated with low flow velocities, so that velocity in the lower-D H regions is expected 485 to be slower than the mean value, and conversely for the higher-D H regions. Thus, we expect that

	486	
	487	employing an appropriate average, such as D * H , in Eq. (19) will usually lead to a reasonable estimate
	488	of the applicability of the fast propagation criteria, but factors like connectivity and extreme degrees
	489	of heterogeneity could impact this criterion.
		4.2 Slow-variation criterion

490

As long as the velocity changes propagate across the domain sufficiently fast, the TPE and RK3 491 methods will provide good approximations of the transient PDF. However, it is advantageous from a 492 computational standpoint if Eulerian velocities across the domain change sufficiently slowly in time 493

Markov process that relaxes to a prescribed equilibrium distribution over a given characteristic scale.
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Journal Pre-proof the new velocity at the end of each step k is computed according to the transition probabilities (3) 426 associated with the step, obtained based on the time-dependent Eulerian PDF p E (v; T k ) updated at 427 the beginning of the step.

428

We reiterate that the rank (probability) of the velocity is assumed constant throughout the spatial 429 step but that the value associated with each predicted transition time can change; note that the 430 assumption of constant rank is also necessary in other stochastic Runge-Kutta schemes (Engdahl and 431 Aquino, 2018;[START_REF] Honeycutt | Stochastic runge-kutta algorithms. i. white noise[END_REF]. The three evaluations of the transient velocity lead to an accuracy of 432 the scheme scaling as O(∆s 3 ); note that this is the accuracy of the estimated transition time T k+1 -T k , 433 and not the overall accuracy of a simulated breakthrough curve. We found that this RK3 scheme gives 434 accuracy comparable to a direct, implicit solution of (15), while providing a computationally-efficient 435 approach (but note that this may not hold when the velocity changes are not smooth and slowly-436 varying). As such, the fully-implicit solution is omitted below for the sake of brevity. Consider what happens in the case where a pressure pulse rapidly propagates through the aquifer.
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J o u r n a l P r e -p r o o f Journal Pre-proof scale of the transient changes, τ , was identical to that of the prescribed head changes, providing more 612 evidence that the fast propagation assumption is valid in this case. In addition, the average gradient 613 was 3%, so the η = 0.33 factor represents a fluctuation of ±1%. This value matches the specified range and the reference RWPT model; the main difference is that RK3 captures some of the secondary peak 626 in the falling limb of the BTC. Note that, for the TPE method, ∆s v = a∆s with a = 1 was used as for 627 the analytical examples. As before, use of sufficiently small a and ∆s would lead to similar results for 628 TPE and RK3, at the cost of increased computational expense, but either of these schemes provides a 629 good upscaled approximation of the simulated BTC.

630

The similarity of the different SMM approximations to the simulated BTC was assessed using root The second item to consider is how to obtain the reference Lagrangian velocity distribution. This In this appendix, we describe a straightforward numerical approach to obtain the variation window 729 ∆t v according to Eq. ( 9). Note that more sophisticated root-finding techniques could also be employed.

730

In order to sequentially determine the ∆t v,k associated with each of the turning point times T v,k , 731 see Eq. ( 10), we consider a time resolution for step k given by

This resolution represents the time necessary to cross the spatial variation threshold ∆s v = a∆s of 733 Eq. ( 9) at the current mean velocity. We expect this choice to provide a good compromise between 

which corresponds to Eq. ( 26). To fit this form to velocity data at a given time, we fit α to the 756 low-velocity behavior of the data PDF, and set v(t) to the spatial mean of the data.

757

Alternatively, we could enforce the correct average velocity v(t) = α/ξ and velocity variance σ 2 v = 758 α/ξ 2 , which can be achieved by setting

To fit this form, we would simply set the mean and variance according to the data.

760

These three parameterizations are formally equivalent. If the true Eulerian velocity distribution 761 were gamma, the three fitting procedures would also be equivalent. However, if the latter are applied 762 to arbitrary data, they may produce different results, as they focus on constraining different quantities

763

given the two degrees of freedom (independent parameters) that characterize a gamma distribution.

764

The first aims to provide the "overall best" fit for the PDF itself, while the second enforces the correct 765 mean velocity and large transit time (low velocity) tailing, and in turn the third captures mean velocity 766 and velocity variance exactly.

767

C Implementing the flux-weighted CDF

768

Flux-weighting of the gamma PDF in Eq. ( 31) corresponds to multiplication by v/v, from which we 769 can obtain the associated cumulative distribution function by integration: 
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