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Abstract1

Correlated velocity models (CVMs) have proven themselves to be effective tools for describing2

a wide range of solute transport behaviors in heterogeneous porous media. In particular, spatial3

Markov models (SMMs) are a class of CVMs where subsequent Lagrangian velocities along trans-4

port trajectories depend only on the current velocity, and not on past history. Such models provide5

a powerful tool for modeling transport in terms of a limited number of flow properties, such as the6

Eulerian point distribution of (flow) velocities, tortuosity, and the spatial scale of persistence of7

velocities. However, to date, all SMM modeling frameworks and applications have assumed that8

the underlying flow is steady-state. In this work, we extend SMMs to the case of time-varying9

flows. We propose, compare, and validate alternative numerical implementations, and we deter-10

mine conditions for validity and efficiency based on standard physical quantities used to describe11

flow and transport at the Darcy scale. The models require additional information relative to a12

steady-state velocity SMM and we discuss the conditions under which this extra burden is war-13

ranted. We also provide clear, deterministic tests for the validity of the transient SMM, termed14

the “slow variation” and “fast propagation” criteria, which offer clear guidance on when transient,15

upscaled models are reasonable to employ. Our work forms the basis of a new framework allowing16

for the application of efficient upscaled models of transport to realistic transient flow conditions.17
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1 Introduction18

The general aim of upscaled models of solute transport in porous media is to capture the impacts19

of inhomogeneities without explicitly representing the mechanisms that drive transport and/or their20

spatiotemporal variability (Dentz et al., 2020; Sund et al., 2019). The philosophy behind upscaled21

methods revolves around the notion that the computational and data-support burdens imposed by22

distributed models incur significant computational costs and lend sufficient uncertainty to predictions23

such that distributed models are not necessarily practical in every circumstance. A reduced-complexity24

strategy can be advantageous in many such cases. One of the promising upscaled transport frameworks25

is that of the continuous time random walk (CTRW), where the transition times between steps are26

modeled as a random variable (Berkowitz et al., 2006; Scher and Lax, 1973; Scher and Montroll, 1975).27

The model for the spatial increments and associated transition times distinguishes different flavors of28

CTRWs. A contemporary group of methods that have demonstrated broad applicability are correlated29

velocity models (CVMs), which in particular employ a fixed-length spatial step discretization.30

In the conceptual model behind a CVM, travel times between adjacent steps in a CTRW are not31

independent and identically distributed events, due to correlations in the velocity field. Consider a32

Lagrangian particle moving through a natural system whose velocity is sampled at fixed spatial in-33

crements along its streamline. Natural media are often characterized by well-defined characteristic34

lengths, such as the mean lengths of hydrofacies (Carle and Fogg, 1996; Lee et al., 2007; Weissmann35

et al., 1999), and this means that a Lagrangian particle moving quickly along a preferential flow path is36

more likely to continue moving quickly than it is to abruptly slow down, though both options are pos-37

sibilities. As the distance between sample locations increases, the Lagrangian (i.e., particle trajectory)38

velocity correlations decay proportionate to the spatial scales of the geological formations (Sherman39

et al., 2020), and the transitions eventually become uncorrelated. Models of the transition time to40

complete the “next” step in the random walk can leverage these correlations by conditioning the41

transition time based on the most recent step. This is precisely what is done in a Spatial Markov42

Model (SMM) (Dentz et al., 2016; Le Borgne et al., 2008a,b), where transitions are conditioned on43

the “previous” step only. An SMM can be parameterized in terms of a small number of properties44

with clear physical meaning, such as Eulerian velocity statistics, tortuosity, and spatial correlation45

lengths of Lagrangian velocities, which are related to the characteristic spatial scales of the hydroge-46

ology (Aquino and Le Borgne, 2021; Dentz et al., 2016; Le Borgne et al., 2008). Although SMMs are47

Markovian in terms of the number of steps taken by a particle, and therefore in space due to the fixed48
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spatial increments, the resulting temporal dynamics may ultimately be non-Markovian as a result of49

broadly-distributed waiting times (De Anna et al., 2013; Holzner et al., 2015; Kang et al., 2014; Meyer50

and Saggini, 2016; Meyer and Tchelepi, 2010). The flexibility of the SMM allows complex transport51

phenomena to be modeled within its framework, resulting in significant conceptual and computational52

simplifications when compared to other CTRWs that otherwise require explicit modeling of nonlocal53

transport mechanisms, i.e., arbitrarily far particle jumps or dependency on long-term trajectory his-54

tory (Berkowitz et al., 2006; Klages et al., 2008; Meerschaert and Sikorskii, 2012; Metzler and Klafter,55

2004). Applications of SMMs to date have been diverse with compelling results obtained across a56

diverse spectrum of situations (Bolster et al., 2014; Comolli et al., 2019; Dentz et al., 2020; Hakoun57

et al., 2019; Kang et al., 2011; Puyguiraud et al., 2019a,b, 2021; Sherman et al., 2017, 2019; Sund58

et al., 2015a,b, 2017; Wright et al., 2019). However, one of the limitations of all SMM applications to59

date is that the transitions have been exclusively assumed to be stationary in both space and time,60

even in the case of multi-continuum formulations (Engdahl and Bolster, 2020; Kim and Kang, 2020).61

The assumption of spatial stationarity often makes sense in the context of the linkages between62

SMM transitions and hydrogeologic correlations, and many studies have shown that stationary up-63

scaled models are effective in certain heterogeneous media (Hakoun et al., 2019; Puyguiraud et al.,64

2019a). Allowing for spatial non-stationarities is not a particularly difficult issue to address, at least65

conceptually, because one could simply apply a different correlation model at different positions along66

the path of a Lagrangian particle (Aquino and Le Borgne, 2021). These correlation changes could67

be defined to coincide with known changes in the hydrogeology, so the only implementation barrier is68

developing different models of correlations for the different regions and deciding on the cutoffs for each.69

To do so may be time-consuming and require additional data, but it is not technically challenging, nor70

is it beyond the capabilities of current SMM frameworks.71

The issue of temporal non-stationarities (transience) is significantly more involved because CVM72

formulations are based on connections between geological structure and spatial correlations. All work73

on CVMs has employed steady-state velocity fields, and it is unclear if such correlations between74

structure and velocity remain when the flow field varies in time. In reality, flow paths can change75

significantly due to transience, especially when flow is driven by spatially-distributed recharge or in76

unconfined settings (Engdahl, 2017). Transience can also impart non-uniqueness when an aggregated77

transport metric like a breakthrough curve is used. For example, two particles entering the same78

point of a distributed velocity field at two different times could take two different paths (drastically79

so in the case of variably-saturated flows, Engdahl and Bolster, 2020). Similarly, different particles80
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entering at different locations may ultimately have similar travel times to reach a fixed monitoring81

point because of transient changes in the flow field. These cases, and many more, would immediately82

invalidate assumptions of even weak stationarity (i.e., stationarity of increments), which would seem83

to deal a crippling blow to the conceptual underpinnings of all the current CVMs. One option to deal84

with these issues would be to relegate CVMs to cases of strict stationarity where transient effects are85

sufficiently averaged out. However, our perspective is that doing so would be unnecessarily limiting,86

because a more careful inspection of SMMs suggests that they can be adapted to accommodate at87

least some transient velocity fields if some care is taken. At a minimum, an upscaled representation88

of these transient processes should (i) be conditional to the “clock time” at which a particle entered89

the flow field, and (ii) somehow account for the temporal changes in upscaled velocity distributions,90

correlations, or both. As with any upscaled model, some simplifying assumptions are necessary, but91

in this case we will show that conditions for validity and numerical efficiency can be posed in terms92

of the typical physical parameters used to describe flow and transport in porous media at the Darcy93

scale.94

The central questions addressed in this article are how to generalize (correlated) CTRWs to the95

case of transient velocities, and what conditions are necessary for these generalizations to be valid96

and practical. The motivation is to preserve the theoretical and computational benefits of SMMs97

when the underlying flow field is time-dependent. Several options of varying complexity are evaluated98

to accomplish this goal, and we consider their benefits and pitfalls in the context of analytic and99

numerically-defined transient velocity fields. We start by reviewing the basic concepts of the SMM and00

assessing its limitations regarding transient flow fields. Three approaches to accommodate transience01

are then developed, and we show that two of these are sufficiently robust for general applications.02

Specific criteria are developed for the validity of the transient SMM. The approach requires no further03

specific assumptions about the underlying flow field, but we focus here on flow through porous media at04

the Darcy (aquifer) scale. We validate our results against numerical simulations using both analytical05

and realistic flow fields where transience is induced by time-varying (periodic) boundary conditions. In06

the interest of compactness, the concepts and examples are demonstrated using a Bernoulli relaxation07

model for the Markov velocity process (Dentz et al., 2016), so we close with a discussion of how the08

approach can be generalized to other forms of transient CVMs. Collectively, the results advance the09

capabilities of CVMs to include transience and offer clear guidance regarding when these models would10

be appropriate and accurate.11
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2 Spatial-Markov model12

SMMs are one of many CVMs that conceptualize (advective) transport in terms of Lagrangian particle13

trajectories, whereby a solute mass is discretized onto the particles (Sherman et al., 2020). Trajectories14

are usually modeled as a succession of steps of fixed length ∆s along the streamlines of a flow and15

each step has a constant velocity, but the velocities may change as the particle completes successive16

steps. The basic concept is that the transition time (i.e., the step length divided by the velocity)17

distribution accounts for the heterogeneity in a flow field without explicitly modeling it, such that18

transport follows a stochastic-convective ensemble along streamlines. The step length corresponds19

to a choice of discretization of Lagrangian particle trajectories and the description converges to a20

continuum process in the limit of small ∆s→ 0 (i.e., becomes independent of the discretization when21

it is sufficiently fine, as is expected of a properly-discretized model). Particle positions after k steps22

along a streamline (particle path) are denoted Xk with the corresponding times Tk to complete the23

kth step obey the stochastic recursion relations (Dentz et al., 2016)24

Xk+1 = Xk +
∆s

χ
, Tk+1 = Tk +

∆s

Vk
, (1)

where Vk is the velocity magnitude during the kth step, which is constant throughout the step. Typ-25

ically, the tortuosity χ is approximated by the average tortuosity, which is computed as the average26

of the Eulerian velocity magnitude divided by the average of its projection along the mean flow direc-27

tion (Koponen et al., 1996),28

χ =
v

〈v · x̂〉 . (2)

Here, v is the Eulerian velocity vector, x̂ is the unit vector along the mean flow direction, and 〈·〉 denotes29

the average over space. The numerator represents the average of the Eulerian velocity magnitude,30

v = 〈|v|〉, so that χ > 1. The initial time and position for each particle are often taken as T0 = 0 and31

X0 = 0, respectively (though nonzero positions and times are permissible), and the initial velocities32

V0 are distributed according to the initial condition at this time.33

The key ingredient of a spatial-Markov model is that the velocities Vk, seen as a function of k,34

form a Markov chain. The Markov property means that the probability of the next step having35

velocity Vk+1 is conditional only on the most recent step’s velocity Vk, and not on past history through36

earlier velocities. Under strict stationarity of the underlying flow field, the corresponding transition37

probabilities, given the current velocity, are constant in both space and time. Discretizing velocities38

5
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into classes, such that class i comprises velocities between bi and bi+1 and has width ∆vi = bi+1−bi, the39

midpoint velocity vi = (bi+1+bi)/2 is associated with class i. The velocity process is then characterized40

by the probabilities rij of transitioning to class i given that the current velocity is in class j.41

In order for the velocities to correspond to a spatial-Markov process, the probability of transitioning42

to a different class must be proportional to the step length ∆s, so that, for a given velocity, the spatial43

rate of transition (transition probability per unit distance) is constant and the transition probability44

decays exponentially with the step length (Van Kampen, 1992). The overall persistence of velocities is45

characterized by the correlation length `c of velocity magnitudes along streamlines, which at the Darcy46

scale is typically of the same order as the scale of spatial variability of permeability (Hakoun et al.,47

2019). Thus, taking into account that
∑
i rij = 1 for all classes j to conserve probability (a transition48

from any given velocity class j must end at some velocity class i), we write, for a small spatial step49

∆s compared to the correlation length `c (Aquino and Le Borgne, 2021),50

rij =
∆s

`c
βij(1− δij) +

[
1− ∆s

`c
(1− βii)

]
δij , (3)

where the dimensionless βij encode the velocity-dependence of the transition probabilities and δij is51

a Kronecker delta. Thus, the term proportional to (1 − δij) denotes the probability of changing to a52

different velocity class, whereas the term proportional to δij denotes the probability of remaining in53

the same velocity class. As shown in Aquino and Le Borgne (2021), the corresponding dynamics result54

in a well-defined spatial-Markov process in the continuum limit of fine step discretization ∆s → 0,55

so long as the velocity class discretization associated with a given ∆s is chosen such that the time56

increments ∆s/vi → 0 for all classes i as ∆s→ 0.57

The full transition matrix of an SMM is an N ×N matrix, where N is the number of velocity bins.58

This can be difficult to parameterize in practice, so we shall instead adopt an analytical model based59

on a discretized Bernoulli relaxation process for the velocities (Aquino and Le Borgne, 2021; Dentz60

et al., 2016; Sherman et al., 2020). We expect this approach to provide good results for quantities61

such as breakthrough curves at distances larger than a few correlation lengths (Hakoun et al., 2019;62

Puyguiraud et al., 2019a). Under this process, particle velocities persist on the scale of the correlation63

length `c. When a particle changes to a different velocity class in a given step, the probability of64

the new velocity being in class i is independent of the current velocity class j, and it is given by a65

prescribed equilibrium probability p∞i . In this sense, the Bernoulli process may be seen as the simplest66

Markov process that relaxes to a prescribed equilibrium distribution over a given characteristic scale.67

6
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This also provides a direct link to SMM paramaterizations based on Gaussian Copulas (Massoudieh68

and Dentz, 2020). Assuming that the probability of transition per unit length is constant and equal to69

1/`c implies that the probability of persistence is exponential (Feller, 2008; Van Kampen, 1992), and70

the transition probabilities are given by (Dentz et al., 2016)71

rij = e−∆s/`cδij +
(

1− e−∆s/`c
)
p∞i . (4)

Expanding in Taylor series for small ∆s/`c � 1 and comparing to Eq. (3), we obtain72

βij = p∞i , (5)

independent of the current velocity class j as expected.73

The probability p∞i must be defined in terms of flow properties in order for the Bernoulli process to74

relax to the correct velocity distribution for a given transport problem. To this end, we introduce the75

Eulerian velocity probability density function (PDF) pE , defined such that pE(v) dv is the probability76

of finding a velocity in the infinitesimal vicinity dv of v at a uniformly-randomly chosen spatial location.77

In other words, the Eulerian velocity PDF represents the point velocity statistics of the underlying flow78

field, in terms of the spatial probability of occurrence. Note that the Eulerian mean velocity, which79

was introduced above as a spatial average, can also be computed from the Eulerian velocity PDF as80

v =
∫∞

0
dv vpE(v). The equilibrium distribution of the Bernoulli process represents the distribution81

of velocities measured at a given downstream distance far from injection. Under the assumptions of82

flow incompressibility and ergodicity (i.e. velocity statistics sampled in time along a sufficiently long83

trajectory are the same as across the spatial domain), the corresponding equilibrium velocity PDF,84

called the s-Lagrangain velocity PDF in some works, is the flux-weighted Eulerian PDF (Dentz et al.,85

2016; Puyguiraud et al., 2019a),86

pF (v) =
vpE(v)

v
. (6)

In the discretized description, p∞i is the probability associated with the discretized velocity class i,87

p∞i =

∫ bi+1

bi

dv pF (v) ≈ ∆vipF (vi), (7)

where the approximation holds for small velocity classes, ∆vi/v � 1. The Bernoulli process is thus88

fully parameterized given knowledge of the Lagrangian (i.e., along streamlines) correlation length `c89

7
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and the Eulerian velocity PDF pE(v).90

3 Non-stationary spatial-Markov model91

Consider now how to generalize the previous description to situations where the underlying flow field92

depends on time. Specifically, we seek a spatial-Markov model that is (statistically) non-stationary93

in time, in order to reflect transience (i.e., time dependence) of the underlying flow field. In a real,94

distributed transport system, the local velocity of a Lagrangian particle depends on position and time,95

which change along particle trajectories; the particle transport paths may be changing as time passes96

and thus may not coincide with paths along instantaneous flow streamlines. A robust upscaled repre-97

sentation of general transport dynamics is hopeless, because this scenario implies that in general the98

position and transition time changes cannot be decoupled. This means that an SMM is not applicable99

unless some simplifying assumptions are made. Otherwise, the required three-dimensional random walk00

may have complexity comparable to a distributed model, defeating the purpose of upscaled modeling.01

Conceptually, particle velocities in the upscaled model could be considered to change according to02

two mechanisms that represent the changes in a physical transport system: (i) As in the classical SMM,03

a particle moves according to the local velocity and then samples a new velocity at a different, nearby04

point in space; and (ii) The local velocity at a particle’s position changes due to the time-dependent05

nature of the flow. In general, these two processes cannot be fully decoupled since they could be06

happening simultaneously, but under certain conditions an upscaled description remains possible. A07

critical evaluation reveals two criteria under which an SMM should remain valid and practical: (a)08

Slow (temporal) variation of velocities, and (b) Fast (spatial) propagation of velocity changes. Slow09

variation means that the temporal change in the flow distribution throughout the medium is sufficiently10

slow that many spatial transitions typically occur before appreciable changes in the local velocities.11

Fast propagation means that when substantial changes in the velocity field do occur, they act quickly12

throughout the spatial domain compared to transport processes, so that all changes in the velocity13

PDF can be safely approximated as synchronous, or instantaneous, throughout the domain. The latter14

has been a common assumption in many studies of transient transport behaviors (see Engdahl et al.,15

2016), suggesting it could also be adopted for SMM applications.16

Even under these assumptions, the Eulerian velocity PDF representing spatial flow statistics still17

needs to be updated over time to reflect the transient changes. The remainder of this section is18

concerned with how, and how often, to do so, and the assumptions associated with these decisions.19

8
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In particular, the underlying Eulerian velocity PDF must be considered as transient in all of the20

specific cases analyzed below. The most practical approaches to achieving this consist in adopting21

parameterized PDFs where some or all of the parameters can be made functions of time. This important22

issue will be revisited in Section 5. For now, we merely posit that the transient Eulerian velocity PDF23

pE(v; t), describing point velocity statistics at each time t, is known, and we discuss three different24

candidates for implementing a discretized transient SMM.25

3.1 Näıve explicit26

The simplest version of a transient SMM is one where the velocity PDF is updated only at steps where27

velocity transitions occur. This “Näıve explicit” (NEX) scheme is still described by the recursion28

relations (1). The key difference is that the transition probabilities rij(t) now depend on the current29

“clock time” of the random walker through the coefficients βij(t), see Eq. (3). At each transition,30

the Eulerian velocity PDF is updated to pE(v;Tk), and the corresponding transition probabilities31

rij(Tk) are calculated before determining the new velocity. Note that in the specific case of a Bernoulli32

random walk, particle velocities only change with a probability given by exp(−∆s/`c), independent of33

the current velocity, but otherwise remain the same as in the previous step (see Eq. (4)); thus, in this34

case, the velocity PDF is only updated to accommodate transient changes when a Bernoulli-model35

change in velocity would occur. Thus, for a Bernoulli random walk, transience in-between transitions36

is effectively ignored.37

The simplicity of this approach is appealing, but it suffers from significant limitations because it38

makes no attempt to identify when it is actually necessary to account for transient changes. As we39

will see, this means that it does not converge to the same solution as the more involved discretization40

schemes proposed below in the continuum limit of fine discretization ∆s → 0. When the flow field41

changes very slowly (in the sense of the slow-variation criterion developed in detail in what follows),42

the NEX model may provide sufficient accuracy in practice, but if the timescales of transience impart43

fluctuations faster than the travel times, which should occur often at low velocities, significant errors44

will accumulate because important transient changes are ignored. The necessary conditions for this45

NEX model to provide a realistic approximation may not be practical in many real-world situations.46

We nonetheless include it here for its conceptual simplicity and to highlight the role of the more subtle47

procedures developed for the following, more involved discretization schemes.48
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3.2 Turning point explicit49

The problem with the primitive NEX model is that it is entirely oblivious to the rate at which the flow50

field changes. If the flow field changes quickly, many velocity updates are necessary in, potentially,51

a short time compared to standard SMM velocity transitions, especially for particles moving at low52

velocities. Thus, our goal is to find an approach where the time and number of velocity PDF updates53

are dictated by the magnitude of the temporal changes in the velocity PDF. Before continuing, recall54

that particle velocities in a transient SMM may change due to two mechanisms: (i) As before, a particle55

moves according to the local velocity, and samples a new velocity at a different, nearby point in space;56

and (ii) The local velocity at a particle’s position changes due to the time-dependent nature of the57

flow.58

In the context of a transient field, mechanism (i) requires a rule to determine the transition prob-59

abilities rij(t) for times t over each time range between velocity changes. In turn, mechanism (ii)60

requires a rule to determine velocity transitions due directly to the change in the underlying flow field.61

First, we determine the time range characterizing appreciable velocity changes. Knowledge of the62

time-dependent Eulerian PDF pE(v; t), as a function of velocity v for each time t, implies knowledge63

of the mean Eulerian velocity as a function of time,64

v(t) =

∫ ∞

0

dv pE(v; t)v. (8)

Over a given time interval, which we call a variation window ∆tv, the difference in the average particle65

displacement associated with the change in mean velocity can be quantified through66

∆sv = |v(t+ ∆tv)− v(t)|∆tv. (9)

The quantity ∆sv may be interpreted as the approximate error in the average particle displacement67

that would arise from not taking the mean velocity variability into account. The error in the usual68

discretized spatial-Markov description, associated with mechanism (i), is on the order of the discretiza-69

tion step length ∆s. Thus, in order to obtain an error of the same order associated with discretizing70

mechanism (ii), we choose ∆tv such that ∆sv = a∆s, where a 6 1 is a free parameter controlling the71

maximum step size under transience, and as such the magnitude of allowable errors. Note that this72

will in general correspond to a time-dependent variation window ∆tv(t).73

For given values of a and ∆s, Eq. (9) can be solved numerically for ∆tv. The procedure leads to a74

10
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series of turning points Tv,k′ where variation of the Eulerian flow field is to be taken into account; for75

this reason, we call this approach the “Turning Point Explicit” (TPE) method. Specifically, we have76

Tv,k′+1 = Tv,k′ + ∆tv,k′ , Tv,0 = T0 = 0, (10)

where ∆tv,k′ = ∆tv(Tv,k′) is the variation window associated with the last turning point. Note that77

many transition times Tk associated with mechanism-(i) transitions are expected to occur between78

two turning points when the slow-variation condition (a) is met, as discussed in more detail below. A79

straightforward numerical procedure to determine the variation windows and associated turning points80

is described in Appendix A.81

Position

T
im

e

∆s/V0

∆s/V1

T0 = Tv,0

T3 = Tv,1

T1

∆tv,0

X0 X1 X2 X3

∆s/χ∆s/χ

V2(T3 − T2)/χ

T2

∆s/χ

∆s/V2

Figure 1: Illustration of the algorithm for mechanism (i), representing spatial-Markov transitions. As
explained in detail in the text, starting at time Tv,0 = T0 and position X0, the variation window ∆tv,0 is
first computed based on mean flow velocity variability. The Markov transition times ∆s/Vi associated
with steps of length ∆s/χ are then computed, until the turning point time Tv,1 = Tv,0 + ∆tv,0 is
reached. The portion of the last step corresponding to times exceeding Tv,1, represented by the dashed
lines, is discarded, leading to the solid blue trajectory. Mechanism (ii) is then employed to find the
new velocity at the new turning point, the Markov transition probabilities are updated according to
the transient Eulerian PDF evaluated at Tv,1, and the algorithm is repeated.

We now formalize mechanism (i). Starting at the time Tv,k′ of the last flow-variation transition,82

determine the next variation window ∆tv,k′ . Then, employ Eq. (3) for the transition probabilities83

rij(t) = rij(Tv,k′), together with the transition coefficients βij(t) = βij(Tv,k′), which depend on the84

choice of spatial-Markov process. The transition probabilities remain constant throughout the variation85

window. Next, update particle positions and times according to Eq. (1). However, when during some86

step k a particle’s time would exceed the next turning point time Tv,k′+1 associated velocity variation87

11
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(Eq. (10)), the new time and position are determined according to88

Xk+1 = Xk + Vk
Tk+1 − Tk

χ
, Tk+1 = Tv,k′+1, (11)

in order to account for the partial completion of the step. Note that the remainder of the last transition89

distance and duration are discarded. Having determined that the next Markovian velocity transition90

has not occurred by time Tk+1, we know the velocity remains constant and equal to Vk during the91

partial step. The turning point corresponding to the next Markovian change in velocity can simply be92

recomputed in the next iteration without further assumptions due to the lack of memory of Markov93

processes (see, e.g., Van Kampen, 1992). The algorithm for mechanism (i) is illustrated in Fig. 1.94

This procedure is to be applied to all particles, followed by mechanism (ii), described below, and then95

repeated. Note that the NEX scheme proceeds similarly regarding the turning point times Tk and96

positions Xk, but does not require explicit variation windows. Rather, the position increments are97

always ∆s/χ, and the underlying transition probabilities are updated only when a velocity transition98

to a different class occurs.99

Next, we turn to mechanism (ii), which corresponds to determining the new velocity at the flow-00

variation turning point times Tv,k′ . Consider the transition probabilities of Eq. (3). Under a change01

in the flow field, these may change through the correlation length `c and/or through the velocity-02

dependent coefficients βij . In order to set up mechanism (ii) in a simple and physically-reasonable03

manner, we assume that the flow structure remains unchanged, maintaining the correlation length04

`c and the tortuosity χ constant, but the Eulerian velocity PDF may change in time, keeping its05

functional form but changing its mean through a rescaling. As familiar examples, this is the case at06

the pore scale when the underlying velocity field corresponds to Stokes flow, and at the Darcy scale07

when the hydraulic conductivity structure remains the same but the average head gradient driving the08

flow is rescaled. Once a transition due to velocity variation happens, at some transition time which09

we again name Tk (now with k > 1) for convenience, the local flow velocity at the particle’s position10

is likely to have changed appreciably. To take this into account, mechanism (ii) consists of rescaling11

the particle’s previous velocity according to the change in mean velocity,12

Vk+1 =
v(Tv,k′+1)

v(Tv,k′)
Vk, (12)

or the corresponding class velocity in the discretized picture. This choice corresponds to assuming13

that the change in the velocity statistics can be approximated by an overall rescaling of the point14

12
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velocities, in line with the assumptions discussed above. This mechanism is applied to all particles,15

and the procedures described for mechanisms (i) and (ii) are then repeated. Note that, at the begin of16

procedure (i), the Markov transition probabilities are recomputed according to the velocity distribution17

at the new turning point time.18

The correlation length and tortuosity are determined by the flow structure but can change in a19

given medium with an unchanging structure, for example due to the formation of preferential flow20

paths. While the mechanism (ii) rule can be applied to a case where the flow structure also varies, its21

physical significance is more difficult to justify. A more complex transition rule may be necessary in22

such cases, which we do not discuss further here.23

3.3 Fully-implicit model24

So far we have considered one method that only updates transition probabilities each time a velocity25

change takes place (and not at turning points where velocity remains the same), and one that auto-26

matically “detects” when updates are needed, which, in the process, may cause the step sizes to change27

(i.e., TPE). Another possibility is one where the spatial step size is chosen and fixed, but transient28

changes are always accommodated, no matter how big or small the transient fluctuation(s) may be.29

In practice, the concept of a variation window introduced for TPE subtly implies that, for a given30

finite step size ∆s, the changes of the velocity PDF during a step are small enough that stochastic31

variations compensate for any inaccuracies imposed by the use of a constant velocity. In other words,32

the “true” velocity might be slightly higher/lower over any given step, but the average remains repre-33

sentative. An alternative interpretation of this nuanced point is that it assumes that small changes to34

the probability associated with a given velocity are insignificant inside an appropriately-sized variation35

window. Transposing this argument, one could instead assume that small changes to a velocity have36

an insignificant impact on its probability over the time of the transition, which leads us to the third37

strategy.38

The key assumption for the following approach is that the cumulative probability associated with39

a particle velocity,40

P (v) =

∫ v

0

dv pE(v), (13)

does not change during a spatial step, or that a particular particle’s velocity rank on the cumulative41

density function (CDF) remains constant over any given step. This is similar to the assumption made42

under the TPE method, where changes in the underlying flow field were modeled as a constant rescaling43

13
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of the velocity PDF due to change in the mean velocity. For example, at t = 0, perhaps v = 0.1 has44

cumulative probability P (v) = 0.8 (20% of velocities above 0.1), but at t = 1 the overall flow increases45

such that v = 0.15 now corresponds to P (v) = 0.8 (20% of velocities above 0.15); in other words, a46

particle that begins moving with P (v) = 0.8 holds this rank throughout a step even as the velocity47

associated with this rank evolves.48

Discretizing velocities in terms of rank, and denoting the velocity of a random walker conditional49

to a particular probability value (or rank) as vp(t), where p denotes the associated rank class, we can50

consider the trajectory of a particle along the SMM path as an equation of motion for each step. Since51

within a transition the particle velocity is allowed to change but the rank remains fixed, each step in52

the 1d random walk is described by the ordinary differential equation (ODE)53

dXp(t)

dt
=
vp(t)

χ
, (14)

where Xp(t) is the downstream position, and vp(t) is a time-dependent function that describes the54

transient velocity as a function of clock time for a given probability rank class, p. For a step of known55

length ∆s, this separable ODE has the general solution56

∆s =

∫ Tk+1

Tk

dt vp(t), (15)

where ∆s = χ[Xp(Tk+1) −Xp(Tk)] is the imposed displacement along particle paths, Tk is the clock57

time at the beginning of the step, and Tk+1 is the unknown final time. Thus, particle positions in58

terms of step number k remain given by Xk+1 = Xk + ∆s/χ, but transition times are determined59

according to an implicit equation.60

Given a function for vp(t), the left-hand side of (15) is known and the right-hand side will be a61

function of Tk+1 only, the unknown time when the step is finished, to be found via an implicit solution.62

The resulting equation will likely be nonlinear, but the solution of (15) for the final time, Tk+1, gives an63

exact solution when vp(t) may be approximated analytically, subject to the simplifying assumptions.64

We term this approach the “Fully-implicit model”, since it requires the solution of an implicit (possibly65

nonlinear) equation for every particle in the random walk at every step. Note that this approach is66

an exact expression for the travel time when vp(t) is known analytically, with the single assumption67

that the probability associated with the velocities is constant for the duration of the step. Once a68

step k is completed, a new probability rank class may be determined analogously to before, according69

to the transition probabilities (3) associated with the step (i.e., via a transition matrix or analytical70

14
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Markov process). The Eulerian velocity PDF is made a function of clock time, and the transitions71

probabilities are computed according to its form at the beginning of the step, pE(v;Tk), as for the72

previous methods.73

Consider Fig. 1 for the turning points and variation windows of the TPE scheme. Like the NEX74

scheme, the fully-implicit method, as well as the approximations developed below, does not require75

the computation of variation windows, and the position increments are always ∆s/χ. Unlike NEX,76

however, transient changes are reflected in the transition probabilities at every step, and not only77

when velocity changes occur. Furthermore, as already discussed, velocity variability of a particle due78

to the transient changes within a transition can be captured, in which case the time increments are79

obtained implicitly via Eq. (15) rather than given directly by ∆s/Vk. The stationary SMM case80

is easily recovered by defining, within step k, vp(t) = Vp,k, where Vp,k is constant within the step.81

Then, ∆s = Vp,k(Tk+1 − Tk), and we conclude that the transition time is Tk+1 − Tk = ∆s/Vp,k, as82

expected. Next, consider a simple example of transience by assuming a linear increase in velocity83

over time: vp(t) = Vp,k + α(t − Tk), where α is a constant growth rate. This gives the quadratic84

∆s = α(Tk+1 − Tk)2/2 + Vp,k(Tk+1 − Tk), which has one real-valued, positive solution for the transit85

time, Tk+1 − Tk = (
√

1 + 2α∆s/V 2
p,k − 1)Vp,k/α. Note that this reduces to the previous case when86

the growth rate or step size are sufficiently small such that 2α∆s/V 2
p,k � 1. A similar technique can87

in principle be employed for any integrable function that defines vp(t), but we reiterate that solutions88

will likely need to be approximated using a nonlinear solver.89

3.3.1 Fully-Transient explicit approximation90

The fully-implicit scheme has the advantage of accounting for all the changes in vp(t) when the latter91

is known, but it should be evident that an implicit nonlinear solution for every particle at every step92

will be computationally demanding. The most obvious simplification is to use the velocity from the93

beginning of the time step in an explicit, first-order scheme that always updates the PDF for transience,94

so we abbreviate this Fully-Transient Explicit approximation as FTE.95

A single evaluation of the velocity is used for every step, so that transient changes during the step96

are strictly ignored. The FTE then proceeds according to the recursion relations (1), with the velocities97

Vk selected according to (3), computed according to an Eulerian velocity PDF that is a function of98

clock time, updated as pE(v;Tk) at each particle step as before. The advantage of this approach is99

speed and simplicity but, like the NEX scheme, the cost is that it makes no attempt to account for00

transient changes during a spatial step. However, the velocity associated with each rank is updated at01

15



Journal Pre-proof

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

every step, whereas the NEX scheme only accounts for changes in the transition probabilities when a02

transition leads to a change in velocity class, so TPE will naturally have advantages from an accuracy03

standpoint. Note that NEX and FTE can differ significantly under the Bernoulli relaxation model,04

because the probability of remaining in the same velocity class may be significant. Unlike the NEX05

scheme, for which velocity changes occur on the order of the correlation length `c, FTE accounts for06

velocity changes within a step length ∆s. Thus, the accuracy in capturing the transient field increases07

when the spatial discretization is refined, leading to appropriate convergence of FTE. For a given ∆s,08

the accuracy will be dependent on the nature of the transient signal, and significant errors should be09

expected anytime the velocity changes are large relative to the magnitude of the transition time and/or10

spatial steps.11

3.3.2 Runge-Kutta 3 integration12

Additional accuracy for an explicit approximation of the fully-implicit scheme can be obtained by13

adding more evaluations of the velocity distribution to create a Runge-Kutta predictor-corrector14

scheme. The velocity rank (cumulative probability) is required to be constant during each spatial15

step, since the velocity will be evaluated at multiple times for the “predictor” steps, but the associated16

velocity distributions being evaluated may be any arbitrary transient PDF that is defined as a function17

of time. This goes beyond the NEX and FTE schemes by accounting for transient changes during each18

step of the SMM, but avoids solving a nonlinear equation as is typically required for the fully-implicit19

scheme.20

A good balance of accuracy and numerical cost is provided by the standard 3rd-order Runge-Kutta21

(RK3) scheme (Pozrikidis et al., 1998). For the trajectory of a temporally non-stationary random22

walker during step k and for a given rank p, the time at the end of the step, Tk+1, is computed23

according to24

t∗ = Tk +
∆s

2vp(Tk)
, (16a)

t∗∗ = Tk + ∆s

[
2

vp(t∗)
− 1

vp(Tk)

]
, (16b)

Tk+1 = Tk +
∆s

6

[
1

vp(Tk)
+

4

v(t∗)
+

1

v(t∗∗)

]
, (16c)

where t∗ and t∗∗ are the first and second predictor estimates of the time to complete the step. As before,25
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the new velocity at the end of each step k is computed according to the transition probabilities (3)26

associated with the step, obtained based on the time-dependent Eulerian PDF pE(v;Tk) updated at27

the beginning of the step.28

We reiterate that the rank (probability) of the velocity is assumed constant throughout the spatial29

step but that the value associated with each predicted transition time can change; note that the30

assumption of constant rank is also necessary in other stochastic Runge-Kutta schemes (Engdahl and31

Aquino, 2018; Honeycutt, 1992). The three evaluations of the transient velocity lead to an accuracy of32

the scheme scaling as O(∆s3); note that this is the accuracy of the estimated transition time Tk+1−Tk,33

and not the overall accuracy of a simulated breakthrough curve. We found that this RK3 scheme gives34

accuracy comparable to a direct, implicit solution of (15), while providing a computationally-efficient35

approach (but note that this may not hold when the velocity changes are not smooth and slowly-36

varying). As such, the fully-implicit solution is omitted below for the sake of brevity.37

4 Applicability conditions38

The four different explicit methods described above (NEX, TPE, FTE, and RK3) each have slightly39

different assumptions and conceptual models, but some general criteria must be met by the flow field40

for these methods to provide reasonable approximations of transport in a computationally-efficient41

manner. We posited in Section 3 that a transient SMM should be valid and efficient under (a) slow42

variation of the velocity, and/or (b) fast propagation of transient changes to the velocity field. Each43

of these merits some additional discussion in the context of Darcy-scale flow in aquifers.44

4.1 Physical mechanics of the flow45

Consider a section of a confined aquifer that has a well defined mean flow direction along which46

the head decreases. As long as the source of any transience is imposed outside the section under47

consideration (i.e. changes in recharge are applied some distance upstream of the section in question),48

we may quantify the impacts of those changes simply in terms of time-varying heads observed at each49

end (longitudinally) of the section and ignore the specific cause(s) of the transience. The impacts50

of the head changes at the boundaries on the velocity distribution within the aquifer depend on the51

heterogeneity of the various properties in the domain, but generally what matters is how much of the52

field is affected and how quickly.53

Consider what happens in the case where a pressure pulse rapidly propagates through the aquifer.54

17



Journal Pre-proof

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

Assuming the hydraulic conductivity structure of the medium remains unchanged, and no source/sink55

terms, changes in flow velocity across the medium are due to variations in head the reflect the under-56

lying hydraulic conductivity field. The piezometric head, h, obeys57

Ss
∂h

∂t
= ∇ ·K∇h, (17)

where Ss [1/L] is the specific storage and K is the hydraulic conductivity tensor [L/T ], subject58

to appropriate boundary and initial conditions (Charbeneau, 2006). Assuming constant Ss (spatial59

variation produces an advective-type term), this is a diffusion equation for h, with the role of the60

diffusion coefficent played by the hydraulic diffusivity [L2/T ]61

DH =
K

Ss
. (18)

Hereafter, we assume for simplicity a locally-isotropic K field, so that it is sufficient to consider the62

scalar (diagonal) values K and DH . The conductivity K can vary spatially, so it is convenient to63

consider an average value for DH that realistically homogenizes spatial heterogeneities, D∗H , which64

could be computed, e.g., as a geometric (power) mean over K(x, y, z) (Charbeneau, 2006). The65

timescale associated with the propagation of head perturbations across a distance `, and associated66

flow variations, is then the diffusive timescale τH = `2/(2D∗H).67

Over a given longitudinal length scale of interest, `, the timescale associated with (advective)68

transport can be estimated as τA = `/v. The fast-propagation condition (b) can now be translated69

as the requirement that flow variations must propagate much faster than solute transport, τH � τA,70

corresponding to71

`� 2D∗H
v

. (19)

We have assumed that the main limiting factor is the propagation along the longitudinal direction,72

but a similar criterion could be developed that includes any propagation speed contributions from the73

lateral components.74

We take ` equal to the length of the domain of interest. In that case, if condition (19) holds,75

the perturbation may be assumed to travel instantaneously across the domain, or that all velocities76

change instantly when a head change is applied at the boundaries. For large domains, this criterion77

could be relaxed by estimating ` according to the characteristic size of the solute plume through its78

longitudinal dispersion σ2
x, such that ` ∼ σx. In this case, the perturbation can be assumed to cross the79
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entire plume instantaneously, but it may be necessary to delay the change in transition probabilities80

according to the time it takes the perturbation to reach the plume.81

Finally, note that the Darcy equation itself does not dictate the velocity and it is assumed that82

the average local flow velocity is proportional to the local hydraulic conductivity K and the porosity.83

Since K typically exhibits much broader variability than specific storage, low hydraulic diffusivity DH84

is commonly associated with low flow velocities, so that velocity in the lower-DH regions is expected85

to be slower than the mean value, and conversely for the higher-DH regions. Thus, we expect that86

employing an appropriate average, such as D∗H , in Eq. (19) will usually lead to a reasonable estimate87

of the applicability of the fast propagation criteria, but factors like connectivity and extreme degrees88

of heterogeneity could impact this criterion.89

4.2 Slow-variation criterion90

As long as the velocity changes propagate across the domain sufficiently fast, the TPE and RK391

methods will provide good approximations of the transient PDF. However, it is advantageous from a92

computational standpoint if Eulerian velocities across the domain change sufficiently slowly in time93

that many transitions occur within a variation window ∆tv. In order to estimate ∆tv in terms of the94

variability in the mean velocity, consider the limit of small ∆s, under which ∆tv is expected to be95

small. Then, Taylor expansion of Eq. (9) yields96

∆sv ≈
∣∣∣∣
dv

dt

∣∣∣∣∆t2v, (20)

and, solving for ∆tv,97

∆tv ≈
√

a∆s

|dv/dt| . (21)

Note that the Taylor expansion leading to this result is inaccurate near local temporal extrema of98

the mean velocity, where |dv/dt| = 0, which is why we employ the more robust numerical procedure99

described in Appendix A to compute ∆tv. However, this approximation provides a useful estimate of00

the role of flow variability. The number of mechanism (i) transitions within ∆tv is of order v∆tv/∆s,01

which we wish to be large. We thus obtain for the slow-variation condition (a):02

∣∣∣∣
dv

dt

∣∣∣∣�
a2v2

∆s
. (22)
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In particular, for the spatial-Markov description to adequately resolve transport, we need ∆s . `c,03

and we must have a 6 1. Thus, the minimal requirement for condition (a) to be met may be expressed04

as05 ∣∣∣∣
dv

dt

∣∣∣∣�
v2

`c
. (23)

This is a time-dependent criterion, and the procedure may remain practical even if it does not hold06

for certain times. If this constraint holds, Eq. (22) may be used to choose07

a2v2

|dv/dt| < ∆s < `c, (24)

in order to ensure the method is both accurate and efficient. In practice, ∆s can be chosen as the mini-08

mum of given multiples of the left and right terms in the inequality, e.g., ∆s = min{5v2/(|dv/dt|), `c/10}.09

Note also that ∆s may be chosen adaptively, according to the temporal variation of the mean velocity,10

or constant according to a specific value such as the maximum or average of v2/|dv/dt| over the times11

of interest.12

Combining the slow-variation condition, Eq. (23), and the fast-propagation condition, Eq. (19), we13

obtain14 √
`c

∣∣∣∣
dv

dt

∣∣∣∣� v � 2D∗H
`

. (25)

Given the spatial mean v(t) of the underlying flow field as a function of time, this result represents the15

conditions for practical applicability (accuracy and efficiency) of the transient spatial-Markov model,16

in terms of the velocity correlation length `c, the longitudinal scale of interest `, and the (average)17

hydraulic diffusivity D∗H .18

5 Examples and cross-comparison19

Existing analytical models for transport under transient velocities assume spatially-uniform flow fields (see20

Engdahl et al., 2016), and there are no closed-form analytical solutions for the transient, hetero-21

geneous velocity fields that would lead to correlated transport. Accordingly, this section provides22

cross-comparison of the different transient SMM models under varying degrees of transience. We23

first compare the behavior of the four methods using a simplified analytical flow field, before mov-24

ing on to numerical validation against direct simulations based on numerically-computed, spatially-25

heterogeneous velocity fields. We exclusively consider the Bernoulli process SMM hereafter. Recall26

that the Bernoulli SMM admits a minimal parameterization in terms of the Eulerian velocity PDF27
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and a velocity correlation length, providing a simple and parsimonious model. Nonetheless, any SMM28

transition mechanisms could be employed with minor modifications involving only the model’s param-29

eterization (see Sherman et al., 2020). Under the present choice, the coefficients βij(t), which fully30

characterize the transition probabilities rij(t) through Eq. (3), are obtained from the Eulerian PDF of31

point velocity magnitude statistics at a given time through Eq. (7). To further simplify the demon-32

strations, we also adopt a gamma PDF of Eulerian velocities with various prescribed time-dependent33

mean velocities v(t),34

pE(v; t) =

[
θv

v(t)

]θ
e−θv/v(t)

vΓ(θ)
, (26)

where Γ(·) is the gamma function. This type of PDF combines low-velocity power-law behavior (with35

scaling vθ−1, θ > 0) with an exponential cutoff at high velocities. These features control long-term36

tailing of the resulting transit time distributions due to retention in low velocity zones as well as37

mean transit times, which in turn control key transport features such as mean plume displacement38

and longitudinal dispersion (Aquino and Le Borgne, 2021; Dentz et al., 2016). The gamma PDF has39

been employed to model Eulerian velocity PDFs in porous media both at the pore and the Darcy40

scales (Alim et al., 2017; Aquino and Le Borgne, 2021; Dentz et al., 2016; Holzner et al., 2015). The41

corresponding flux-weighted Eulerian (or s-Lagrangian) PDF, Eq. (6), is again gamma,42

pF (v; t) =

[
θv

v(t)

]θ
e−θv/v(t)

v(t)Γ(θ)
, (27)

with the same exponential cutoff and a low-velocity dependency ∝ vθ. Alternative parameterizations43

of the gamma PDF, along with fitting procedures, are discussed in Appendix B.44

5.1 Analytically-defined velocities45

The analytical cross-validation exercise assumes that i) a gamma distribution of velocities exists within46

the domain, and ii) the Eulerian mean velocity is described by a periodic function of the form47

v(t) = v0

[
1 + η sin

(
2π(t+ t0)

τ

)]
, (28)

where v0 [L/T ] is a long-term mean velocity, η [−] scales the magnitude of the velocity fluctuation48

(subject to 0 < η < 1 so velocities remain positive), τ [T ] is the period of the transient cycle, and t049

[T ] is a temporal shift. The corresponding transient gamma distribution for the SMM is then given50

by (27).51

21



Journal Pre-proof

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

The example problem is defined by a domain length L = 100 [L], tortuosity χ = 1 for simplicity,52

velocity correlation length `c = 10 [L], gamma PDF exponent θ = 5, long-term average velocity53

v0 = 0.04 [L/T ], and temporal shift t0 = 0. The four approaches (NEX, TPE, FTE, and RK3)54

are assessed under different τ and η combinations (Figure 2), and then at different discretizations to55

demonstrate convergence (Figure 3). Any number of parameter combinations could be used, but our56

goal is to demonstrate how transience impacts the model relative to a steady-state approximation. In57

each case, we provide comparison to a stationary SMM, which is obtained by setting v(t) = v0 and58

η = 0. We choose ∆s = 1, so a random walker crosses a velocity correlation length in `c/∆s = 10 steps59

and the full domain in L/∆s = 100 steps. We use 5000 random walkers; higher particle numbers did not60

have a significant impact on the results since we focus on mean behaviors, not on capturing tailing. The61

(cumulative) breakthrough curves (BTCs) at the downstream domain boundary for different parameter62

combinations of low/high magnitude (η) and small/large period (τ) of transience are shown in Fig. 2,63

with specific values shown in each panel. The time scales of transience were defined in terms of the64

average velocity (v0) and domain length (L), corresponding to the typical time for a particle to cross65

the domain. In all of these plots, the FTE curve is under the RK3 curve at this scale, and both are66

usually close to the TPE curve. Only the NEX and SS (steady-state) curves are visibly distinct from67

the other transient models at all times.68

An observation that can be made from Fig. 2 is that there are some cases where TPE differs from69

RK3. The reason for this is the parameter ∆sv = a∆s in the TPE model; a value of a must be specified,70

which controls the magnitude of the “allowable” errors. Fig. 2 used a = 0.5, and this can be reduced71

to increase accuracy, at the cost of requiring more steps. Given sufficiently small a, and thus ∆sv,72

the TPE and RK3 results are essentially identical if the spatial discretization ∆s/`c is also sufficiently73

small. This is shown via a convergence analysis in Fig. 3 with a = 0.1, where TPE, FTE, and RK374

all exhibit nearly identical mean travel times as ∆s/`c is decreased (i.e., the number of steps needed75

to cross a correlation length is increased, so that all relevant structure in the flow field is resolved).76

Similar behaviors can be found for any fixed level of the BTC, but we only show convergence of the77

median arrival time for brevity.78

5.2 Spatially-heterogeneous flow field79

Our final example considers flow in a 2d, heterogeneous flow field subjected to transient boundary80

conditions. Here we simulate transport explicitly using fully-resolved Lagrangian random walk particle81

tracking (RWPT), and then compare the result to the proposed, upscaled, transient SMM schemes.82
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Figure 2: Comparison of the transient SMM models to a steady-state (SS) approximation for different
magnitudes and periods of transient velocity changes. Small fluctuations with long periods may not
require transient corrections, but it should be clear that as the frequency and magnitude of transient
deviations increase the transient models depart significantly from the SS curve. Note also that three
of the methods (TPE, FTE, RK3) generally agree with each other, whereas NEX is only reasonable
under low-magnitude transience (small η).

The flow domain was defined to have a length L = 100 along the mean flow direction [L] and an83

aspect ratio of 2 : 1 (length to width). The hydraulic conductivity tensor was locally isotropic, and the84

scalar conductivity K in the domain was a log-normal multi-Gaussian random field with major and85

minor correlation length scales of λ1 = 10 [L] and λ2 = 6 [L], a geometric mean of K∗ = 0.2 [L/T ],86

and unit variance of the log-K field. The specific storage and porosity were taken to be spatially87

constant and given by Ss = 1.0 × 10−5 [1/L] and φ = 0.3. A longitudinal spreading scenario was88

created by assigning zero-flux boundaries at the extents of the minor axes and Dirichlet boundaries89

at the ends of the major axes. The transient head changes were applied at the upstream boundary90

according to a periodic sine function that varied the gradient across the domain from 2% to 4% with91

a period of τ = 4000 [T ]. This fluctuation and parameter definitions satisfy the fast propagation and92

slow variation criteria, and are also representative of the kinds of fluctuations one can expect in real,93
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Figure 3: Convergence test of the proposed methods. As ∆s is decreased, all but the NEX scheme
approach the same mean behavior showing that they are solving the same system. TPE, FTE, and
RK3 all converge to the same result for sufficiently refined discretizations, though they have different
computational costs and assumptions.

undeveloped aquifers (Engdahl, 2017; McCallum and Shanafield, 2016).94

The transient groundwater flow equation was solved using 2nd-order implicit finite differences and95

the domain was uniformly discretized into square cells of size ∆x = ∆y = 1 [L]. A snapshot of the96

velocity field, head contours, and streamlines is shown in Fig. 4. The time step of the transient model97

was ∆t = 1 [T ] and flow and transport were solved sequentially at each time step using an operator-98

splitting scheme. The reference, fully-resolved, RWPT transport simulation used a flux-weighted initial99

condition of 105 particles released at x = 5 and tracked forward over time to x = 95 (corresponding to00

a length L = 90 for transport) to avoid any potential boundary impacts. Standard advective particle01

tracking methods were used, integrated in time with a 2nd-order Runge-Kutta scheme.02

A gamma distribution was fit to the Eulerian velocity PDF at each time step of the transient03

flow simulation to simplify the parameterization of the SMM. The error of the fitted to the simulated04

distribution was computed to confirm that the simplified model was reasonable. Root mean squared05

relative errors of the fitted CDFs were small (≈ 0.011 over all times) and the worst linear correlation06

coefficient across all fits in time was ρ = 0.991; this shows the gamma PDF is a good approximation07

for this flow field, although it is not exact. Further, the Eulerian PDF was well described by Eq. (26)08

with fixed θ = 4.14, and the effect of transient changes at the boundary on the transient mean velocity09

were modeled well by (28), with v0 = 2.06 × 10−2 [L/T ], η = 0.33, τ = 4000 [T ], and t0 = −τ/2. A10

comparison of the simulated and fitted transient velocity PDFs for 4 times is shown in Fig. 5. The time11
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scale of the transient changes, τ , was identical to that of the prescribed head changes, providing more12

evidence that the fast propagation assumption is valid in this case. In addition, the average gradient13

was 3%, so the η = 0.33 factor represents a fluctuation of ±1%. This value matches the specified range14

of a 2% to 4% gradient and shows that the transient velocity model can be inferred from the transient15

boundaries.16

The correlation length was estimated based on the multi-Gaussian field as `c = λ1 = 10 [L]. The17

upscaled Bernoulli SMM uses ∆s = 1 [L], corresponding to `c/∆s = 10 and 90 steps to traverse18

the domain of transport, and tortuosity χ = 1.12, which was computed directly from the flow field.19

An ensemble of 5000 random walkers were used for the SMM and the resulting BTCs for all four20

proposed transient SMM explicit schemes are shown in Fig. 6a, along with a steady-state SMM and21

the simulated BTC for comparison. The blue bars represent the (distributed, 2d) reference simulation.22

All data is binned according to the bars shown for the resolved simulations to make the comparison23

clearer; the value of each bar applies at its mid-point along the horizontal axis. The PDFs for the two24

best methods (TPE and RK3) are also shown in Fig. 6b, along with the steady-state simulation SS25

and the reference RWPT model; the main difference is that RK3 captures some of the secondary peak26

in the falling limb of the BTC. Note that, for the TPE method, ∆sv = a∆s with a = 1 was used as for27

the analytical examples. As before, use of sufficiently small a and ∆s would lead to similar results for28

TPE and RK3, at the cost of increased computational expense, but either of these schemes provides a29

good upscaled approximation of the simulated BTC.30

The similarity of the different SMM approximations to the simulated BTC was assessed using root31

mean square error (RMSE) and the Hellinger distance (HD) metric (Hellinger, 1909), both applied to32

the PDF of travel times for the upscaled SMM simulations. The HD metric quantifies the overlap or33

similarity between the different PDFs, relative to the RWPT simulation. Values close to zero indicate34

strong similarity and values near one indicate high degrees of difference; smaller values mean better35

reproduction of the target distribution. Bianchi Janetti et al. (2020) used the HD metric to assess36

the performance of a trajectory-based SMM, demonstrating its utility in assessing SMMs. The RMSE37

and HD values are shown in Table 1 and demonstrate quantitatively that the transient versions all38

out-perform the steady-state SMM. The approximations of the fully-implicit model (see Section 3.3,39

FTE and RK3) offer a slight advantage but smaller values of ∆sv = a∆s (through using smaller values40

of the free parameter a) would increase the accuracy of TPE to a similar extent. In any case, all the41

transient SMMs are considered overall good approximations. It is worth noting that the magnitude of42

the transient changes in this example are not as severe as some of those seen in Section 5.1, but there43
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Model SS NEX TPE FTE RK3
HD 1.01× 10−1 9.63× 10−2 7.94× 10−2 5.50× 10−2 5.52× 10−2

RMSE 1.53× 10−2 1.20× 10−2 1.21× 10−2 6.46× 10−3 6.81× 10−3

Table 1: Hellinger distance (HD) metric and RMSE for the different SMM approximations of the
simulated BTC. All transient SMM models show better performance than the steady-state model.

are clear departures from the steady-state model. This flow field is weakly heterogeneous due to its44

low log-K variance, so a higher degree of heterogeneity and greater contrast in the K field would likely45

lead to more significant departures. Whether or not these departures are significant enough to justify46

a fully-transient upscaled model leads directly into our discussion.47

Figure 4: Heterogeneous, 2d flow field used for the transient model evaluation. White solid lines are
contours of the potential field, black lines are the streamlines from the steady-state simulation, and
the colors represent the base-10 logarithm of the velocity magnitude. The hydraulic conductivity field
was generated using a hierarchical combination of transition probability geostatistics and stochastic
multi-Gaussian fields.

6 Discussion and conclusions48

The main purpose of this manuscript has been to determine if transient versions of spatial Markov49

models can be developed, and in this we have been successful. The heterogeneous velocity field example50

(Figure 4) with a time-dependent Dirichlet boundary condition verifies that transient SMM schemes51

can offer good upscaled approximations of key quantities such as breakthrough curves. As clearly seen52

in Fig. 6b, the proposed RK3 scheme most accurately captured the BTC, in particular regarding both53

26
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Figure 5: a. Simulated (bars) and fitted (lines) transient velocity PDFs in the 2d simulation domain for
four times spanning the range of the transient cycle. HD denotes the Hellinger distance. b. Point-wise
comparison of the fitted transient gamma distributions in panel (a) versus their simulated values. c.
Comparison of the simulated and fitted mean velocity for the example flow field for one period of the
transient cycle. Root mean squared (RMSE), normalized root mean squared errors (NRMSE), R2,
and HD confirm the accuracy and effectiveness of this functional approximation.

the maximum and transient-induced secondary peak. Nonetheless, both the TPE and RK3 methods54

offer accuracy for a reasonable increase in computational cost over stationary SMMs, and both TPE55

and FTE converge to the same answer as RK3 when the spatial step is sufficiently refined (see Fig. 3).56

However, there is one major concern that cannot be overlooked, which is not unique to this study.57

A key question regarding practical application of any upscaled model is, can the model parameters58

be inferred reliably? In this case, the bare-minimum required elements for the transient SMMs are:59

i) the correlation length scale for the Bernoulli relaxation process, ii) a reference Lagrangian velocity60

distribution, and iii) a model for how that distribution changes over time. Each of these is considered61

independently in the following paragraphs.62
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Figure 6: Comparison of the BTCs computed from the (fully-resolved) RWPT-based and (upscaled)
transient SMM simulations. This example uses a small, but realistic, transient forcing that might be
expected in natural aquifers. The advantage of the transient model is evident in the PDF plot, where
the small secondary peak in the RWPT-BTC is captured by the RK3 scheme but completely missed by
the steady-state (SS) approximation. As discussed in detail in the text, better results for the different
transient methods can be obtained by further refining the discretization.

The first item is the model for the SMM transitions. We have assumed the spatial Markov correla-63

tions do not vary over time. There are strong connections between geological structure and the spatial64

correlations (Sherman et al., 2020), and geological structures generally change on time scales orders65

of magnitude larger than solute transport, so modeling the correlations does not represent a unique66

or undue burden to the transient random walk. Furthermore, if a full SMM transition matrix (e.g67

Engdahl and Bolster, 2020) was used instead of a Bernoulli relaxation process there are only a few68

more operational issues to consider. One is whether the initial and final bins change simultaneously69

as the Lagrangian velocity PDF evolves; we see no reason they would not evolve jointly, particularly70

since the model would become intractable if they did not. Another concern is whether the bounds71

on the individual velocity bins should evolve over time. The development of the fully-implicit scheme72

(Section 3.3) required that small changes in velocity cannot significantly impact the velocity rank, so73

the extension of this for broader validity is that slow changes to the velocity field cannot change the74

ranks of the distribution; this is merely another way of looking at the slow-variation criterion (23).75

In the absence of a strong transient boundary, our view is that a “shock” to the system would be76

necessary to invalidate the assumption of stable velocity ranks, such as abruptly turning on a large77

pumping well. If this were the case, the slow variation criterion would clearly be violated, negating78
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the benefits of application of the upscaled model in the first place. Aside from these, we see no obvi-79

ous additional considerations necessary to adopt a full SMM transition matrix instead of a Bernoulli80

relaxation process.81

The second item to consider is how to obtain the reference Lagrangian velocity distribution. This82

is arguably the most important yet difficult component to obtain. The best one could be expected to83

do is to use a data-driven, geostatistical description of the expected hydraulic conductivity field that84

is subjected to the anticipated boundary conditions for flow and transport. Evaluating this expected85

distribution might require methods like a stochastic Monte-Carlo ensemble, but each realization would86

be steady-state and so the ensemble should run quite fast. From these, the expected behaviors of the87

reference velocity distribution can be obtained, or any other threshold value (such as percentiles) to88

assess the uncertainty range, and the slow variation and fast propagation criteria (25) could easily be89

assessed at the same time. The resulting velocity distributions could then be used in a transient SMM90

in lieu of a large ensemble of transient Monte-Carlo simulations, which would surely offer large compu-91

tational savings. We consider this a reasonable compromise, but it must be noted that uncertainties in92

the geostatistical description, including unresolved heterogeneities or non-stationarities, will propagate93

into the upscaled model as will uncertainties in the boundary conditions. It is also possible to estimate94

SMM model parameters from breakthrough curves alone (see Sherman et al., 2017), though doing so95

in aquifers would be hampered by incomplete sampling or recovery of a tracer. Estimating the velocity96

PDF remains challenging but methods exist by which it can be reasonably approximated, which is all97

one should expect when using an upscaled model.98

The third item is the model for how the reference velocity distribution changes over time. The99

model for changes is at least “plausibly obtainable” because of the fast propagation criteria. The00

key point is that if (19) is satisfied then the relative changes at the boundaries of the flow field01

can be used to approximate the changes in the velocity PDF. Engdahl (2017) considered a system02

where combinations of transient Dirichlet boundaries were used at the ends of a confined, longitudinal03

domain where transport was simulated using the fully transient velocity fields. The results showed04

strong correlation between the transient forcing and the velocity fluctuations, meaning that relative05

changes in the mean can be inferred, hence our definition of (28). Long-term shifts in the mean may06

also be accommodated (e.g Massoudieh, 2013), which can quickly overwhelm higher frequency impacts07

on the mean. So, depending on the time scales of transport, it may be more important to capture08

long-term trends, which can be accurately inferred from observation well data, though models would09

be needed for forecasting. Some inaccuracies are inevitable, but as long as the estimated transient10
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signal is representative of a system’s overall changes, reasonable results can be expected. Our example11

from Section 5.2 illustrates this idea: the fitted model for the velocity transience was based solely on12

the transience at the boundaries, and the model performed well.13

Upscaled models should not strive to be perfect reproductions of transport behaviors, as this14

would invalidate their purpose of being large-scale approximations through over-fitting. The goal15

of the transient Spatial Markov models proposed herein is to balance the complexities of transient16

velocity fields with the simplicity of upscaled models using a framework that leverages recent advances17

in correlated velocity models. The main point of this discussion is that our definitions of the slow18

variation and fast propagation criteria (25) provide all the necessary evaluation criteria to assess the19

validity and usefulness of the proposed models for a given scenario. There is a need for site-specific20

data in order to evaluate those criteria, and the decision to use transient upscaled models likely comes21

down to the subjective question of sufficient data abundance: is there enough data to confidently build22

the desired model? To this we can offer no new insights because every case is unique. We can say23

that the data requirements for transient SMMs falls between those of steady-state SMMs and spatially24

explicit, distributed models. There are benefits to accuracy (Section 5) relative to the former, and25

clear advantages of speed relative to the latter, but ultimately the data dictate which models should26

be used for a given purpose.27

A Numerical determination of the flow variation window28

In this appendix, we describe a straightforward numerical approach to obtain the variation window29

∆tv according to Eq. (9). Note that more sophisticated root-finding techniques could also be employed.30

In order to sequentially determine the ∆tv,k′ associated with each of the turning point times Tv,k′ ,31

see Eq. (10), we consider a time resolution for step k′ given by32

∆tk′ =
∆sv

v(Tv,k′)
=

a∆s

v(Tv,k′)
. (29)

This resolution represents the time necessary to cross the spatial variation threshold ∆sv = a∆s of33

Eq. (9) at the current mean velocity. We expect this choice to provide a good compromise between34

speed and accuracy, especially when the slow-variation condition (a) is met (see Section 3), but note35

that a finer or coarser resolution could be employed. The variation window ∆tv,k′ = nk′∆tk′ is then36

determined in terms of the number nk′ of time-resolution steps required to exceed the allowed variation37
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Figure 7: Illustration of the algorithm to determine the variation windows ∆tv,k′ associated with
temporal variation of the Eulerian mean velocity. The variation windows ∆tv,k′ = Tv,k′+1 − Tv,k′
determine the turning point times Tv,k′ , starting at Tv,0 = T0, at which flow velocity variations are
taken into account. Each ∆tv,k′ is determined so that the mean velocity variation ∆vk′ = |v(Tv,k′ +
∆tv,k′)− v(Tv,k′)| is such that ∆vk′∆tv,k′ = ∆sv, where ∆sv is related to the spatial-Markov step size
by a factor a 6 1, ∆sv = a∆s. In order to determine these variation windows numerically, we consider
a step-dependent maximum resolution ∆tk′ = ∆sv/v(Tv,k′), as illustrated for ∆tv,3. Then, ∆tv,k′ is
approximated the smallest integer multiple of ∆tk′ such that ∆vk′∆tv,k′ exceeds ∆sv.

∆sv. Numerically, nk′ can be computed as the smallest integer n such that38

|v(Tv,k′ + n∆tk′)− v(Tv,k′)|n∆tk′ > ∆sv. (30)

In the simplest implementation, the value of the mean velocity over time is scanned sequentially,39

at a temporal resolution of ∆tk′ , until the prescribed tolerance ∆sv is exceeded. This procedure is40

illustrated in Fig. 7.41

B Parameterization and fitting of the gamma velocity PDF42

The gamma PDF is typically parameterized in terms of a shape parameter α and a rate parameter ξ,43

defined such that44

pΓ(x;α, ξ) =
ξα

Γ(α)
xα−1e−ξx, (31)

where, for a random variable with this distribution, pΓ(x;α, ξ) dx is the probability of a value in the45

infiniteseimal vicinity dx of x. This PDF can be fit to velocity data directly by applying a standard46

minimum-square criterion to determine α and ξ.47

In the present application, where the Eulerian velocities are taken to be gamma-distributed, it is48

convenient to choose a parameterization that emphasizes features that are key to solute transport.49
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The scale parameter α controls the tailing properties at low velocities, which control the large-time50

tailing of transit times and thus the late-time dispersion behavior (Aquino and Le Borgne, 2021; Dentz51

et al., 2016). Thus, we choose to keep θ = α as a parameter. On the other hand, the mean α/ξ of the52

gamma distribution has a clear physical meaning in our context: it represents the spatial average of53

the velocity at a given time. Thus, we parameterize our Eulerian velocity PDF by setting ξ = α/v(t),54

i.e.,55

pE(v; t) = pΓ

[
v;α,

α

v(t)

]
, (32)

which corresponds to Eq. (26). To fit this form to velocity data at a given time, we fit α to the56

low-velocity behavior of the data PDF, and set v(t) to the spatial mean of the data.57

Alternatively, we could enforce the correct average velocity v(t) = α/ξ and velocity variance σ2
v =58

α/ξ2, which can be achieved by setting59

pE(v; t) = pΓ

[
v;
v2(t)

σ2
v(t)

,
v(t)

σ2
v(t)

]
. (33)

To fit this form, we would simply set the mean and variance according to the data.60

These three parameterizations are formally equivalent. If the true Eulerian velocity distribution61

were gamma, the three fitting procedures would also be equivalent. However, if the latter are applied62

to arbitrary data, they may produce different results, as they focus on constraining different quantities63

given the two degrees of freedom (independent parameters) that characterize a gamma distribution.64

The first aims to provide the “overall best” fit for the PDF itself, while the second enforces the correct65

mean velocity and large transit time (low velocity) tailing, and in turn the third captures mean velocity66

and velocity variance exactly.67

C Implementing the flux-weighted CDF68

Flux-weighting of the gamma PDF in Eq. (31) corresponds to multiplication by v/v̄, from which we69

can obtain the associated cumulative distribution function by integration:70

PΓ(v;α, ξ) =
1

v̄Γ(α)

∫ v

0

(ξv′)αe−ξv
′
dv′,

=
γ(α+ 1, ξv)

v̄Γ(α)
, (34)
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where γ(·, ·) is the lower incomplete gamma function. Recalling that ξ = α/v̄, we obtain71

PL(v; t) = PΓ[v, α, α/v̄(t)] =
γ[α+ 1, αv/v̄(t)]

v̄(t)Γ(α)
. (35)

This form of the flux-weighted CDF allows standard, well-known functions to be used to approximate72

the SMM numerically.73
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Highlights 
 
Transient versions of the spatial Markov model are developed 
 
Each flavor has tradeoffs in simplicity and robustness suited to different cases 
 
Robust validity criteria to asses model applicability are derived  
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