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Statistical models for families of evolutionary related proteins have recently gained interest: In particular,
pairwise Potts models as those inferred by the direct-coupling analysis have been able to extract information
about the three-dimensional structure of folded proteins and about the effect of amino acid substitutions in
proteins. These models are typically requested to reproduce the one- and two-point statistics of the amino acid
usage in a protein family, i.e., to capture the so-called residue conservation and covariation statistics of proteins of
common evolutionary origin. Pairwise Potts models are the maximum-entropy models achieving this. Although
being successful, these models depend on huge numbers of ad hoc introduced parameters, which have to be
estimated from finite amounts of data and whose biophysical interpretation remains unclear. Here, we propose
an approach to parameter reduction, which is based on selecting collective sequence motifs. It naturally leads to
the formulation of statistical sequence models in terms of Hopfield-Potts models. These models can be accurately
inferred using a mapping to restricted Boltzmann machines and persistent contrastive divergence. We show that,
when applied to protein data, even 20–40 patterns are sufficient to obtain statistically close-to-generative models.
The Hopfield patterns form interpretable sequence motifs and may be used to clusterize amino acid sequences
into functional subfamilies. However, the distributed collective nature of these motifs intrinsically limits the
ability of Hopfield-Potts models in predicting contact maps, showing the necessity of developing models going
beyond the Hopfield-Potts models discussed here.

DOI: 10.1103/PhysRevE.100.032128

I. INTRODUCTION

Thanks to important technological advances, exemplified,
in particular, by next-generation sequencing, biology is cur-
rently undergoing a deep transformation towards a data-rich
science. As an example, the number of available protein
sequences deposited in the UNIPROT database was about 106

in 2004, crossed 10 × 106 in 2010, and 100 × 106 in 2018,
despite an important reorganization of the database in 2015
to reduce redundancies and, thus, limit the database size [1].
On the contrary, proteins with detailed experimental knowl-
edge are contained in the manually annotated SWISSPROT

subdatabase of UNIPROT. Although their number remained
almost constant and close to 500 000 over the past decade,
the knowledge about these selected proteins has been contin-
uously extended and updated.

This rapidly growing wealth of data is presenting both
a challenge and an opportunity for data-driven modeling
approaches. It is a challenge because for less than 0.5%
of all known protein sequences, at least, some knowledge
going beyond sequence is available. Applicability of standard
supervised machine-learning approaches is, thus, frequently
limited. However, more importantly, it is an opportunity since
protein-sequence databases, such as UNIPROT, are not large
sets of unrelated random sequences but contain structured
functional proteins resulting from natural evolution.

In particular, protein sequences can be classified into so-
called homologous protein families [2]. Each family contains
protein sequences, which are believed to share common an-
cestry in evolution. Such homologous sequences typically
show very similar three-dimensional folded structures and

closely related biological functions. Put simply, they can be
seen as equivalent proteins in different species or in different
pathways of the same species. Despite this high level of struc-
tural and functional conservation, homologous proteins may
differ in more than 70–80% of their amino acids. Detecting
homology between a currently uncharacterized protein and a
well-studied one [3,4] is, therefore, the most important means
for computational sequence annotation, including protein-
structure prediction by homology modeling [5,6].

To go beyond such knowledge transfer, we can explore the
observable sequence variability between homologous proteins
since it contains its own important information about the evo-
lutionary constraints acting on proteins to conserve their struc-
ture and function [7]. Typically, very few random mutations
do actually destabilize proteins or interrupt their function.
Some positions need to be highly conserved, whereas others
are permissive for multiple mutations. Observing sequence
variability across entire homologous protein families, and
relating them to protein structure, function, and evolution, is,
therefore, an important task [8].

Over the past years, inverse statistical physics [9] has
played an increasing role in solving this task. Methods,
such as direct-coupling analysis (DCA) [10,11] or re-
lated approaches [12,13] allow for predicting protein struc-
ture [14,15], mutational effects [16–18], and protein-protein
interactions [19]. However, many of these methods depend
on huge numbers of typically ad hoc introduced parameters,
making these methods data hungry and susceptible to overfit-
ting effects.

In this paper, we describe an attempt to substantially reduce
the amount of parameters and to select them systematically
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using sequence data. Despite this parameter reduction, we
aim at so-called generative statistical models: Samples drawn
from these models should be statistically similar to the real
data, even if similarity is evaluated using statistical measures,
which were not used to infer the model from data.

To this aim, we first review in Sec. II some important points
about protein-sequence data, maximum-entropy (MaxEnt)
models of these data, in general, profile, and DCA models, in
particular. In Sec. III, we introduce a way for rational selection
of so-called sequence motifs, which generalizes maximum-
entropy modeling. The resulting Hopfield-Potts models are
mapped to restricted Boltzmann machines (RBMs) (recently
introduced independently for proteins in Ref. [20]) in Sec. IV
to enable efficient model inference and interpretation of the
model parameters. Section V is dedicated to the application
of this scheme to some exemplary protein families. The con-
clusion and outlook in Sec. VI are followed by some technical
Appendices.

II. A SHORT SUMMARY: SEQUENCE FAMILIES,
MAXENT MODELS, AND DCA

To put our work into the right context, we need to review
shortly some published results about the statistical models
of protein families. After introducing the data format, we
summarize the maximum-entropy approach typically used
to justify the use of Boltzmann distributions for protein
families together with some important shortcomings of this
approach. Next, we give a concise overview over two dif-
ferent types of maximum-entropy models—profile models
and direct-coupling analysis—which are currently used for
protein sequences. For all cases, we discuss the strengths and
limitations, which have motivated our current paper.

A. Sequence data

Before discussing modeling strategies, we need to properly
define what type of data is used. Sequences of homologous
proteins are used in the form of multiple-sequence alignments
(MSAs), i.e., rectangular matrices (Am

i )m=1,...,M
i=1,...,L . Each of the

rows m = 1, . . . , M of this matrix contains one aligned pro-
tein sequence Am = (Am

1 , . . . , Am
L ) of length L. In the context

of MSA, L is also called the alignment width, and M is
called its depth. Entries in the matrix come from the alphabet
A = {−, A,C, . . . ,Y } containing the 20 natural amino acids
and the alignment gap “−.” Throughout this paper, the size
of the alphabet will be denoted by q = 21. In practice, we will
use a numerical version of the alphabet, denoted by {1, . . . , q},
but we have to keep in mind that variables are categorical
variables, i.e., there is no linear order associated with these
numerical values.

The PFAM database [2] currently (release 32.0) lists almost
18 000 protein families. Statistical modeling is most success-
ful for large families, which contain between 103 and 106

sequences. Typical lengths span the range of L = 30–500.

B. Maximum-entropy modeling

The aim of statistical modeling is to represent each protein
family by a function P(A), which assigns a probability to
each sequence A ∈ AL, i.e., to each sequence formed by L

letters from the amino acid alphabet A. Obviously, the number
of sequences, even in the largest MSA, is much smaller
than the number qL − 1 of a priori independent parameters
characterizing P. So we have to use clever parametrizations
for these models.

A commonly used strategy is based on the MaxEnt ap-
proach [21]. It starts from any number p of observables,

Oμ:AL → R, μ = 1, . . . , p, (1)

which assign real numbers to each sequence. Only the values
of these observables for the sequences in the MSA (Am) go
into the MaxEnt models. More precisely, we require the model
to reproduce the empirical mean of each observable over the
data,

∀μ = 1, . . . p:
∑

A∈AL

P(A)Oμ(A) = 1

M

M∑
m=1

Oμ(Am). (2)

In a more compact notation, we write 〈Oμ〉P = 〈Oμ〉MSA.
Besides this consistency with the data, the model should be
as unconstrained as possible. Its entropy has, therefore, to be
maximized

−
∑

A∈AL

P(A) ln P(A) −→ max . (3)

Imposing the constraints in Eq. (2) via Lagrange multipliers
λμ, μ = 1, . . . , p, we immediately find that P(A) assumes a
Boltzmann-like exponential form

P(A) = 1

Z
exp

⎧⎨
⎩

p∑
μ=1

λμOμ(A)

⎫⎬
⎭ . (4)

Model inference consists in fitting the Lagrange multipliers
such that Eqs. (2) are satisfied. The partition function Z
guarantees normalization of P.

MaxEnt relates observables and the analytical form of the
probability distribution, but it does not provide any rule on
how to select observables. Frequently, prior knowledge is used
to decide which observables are important and which are not.
More systematic approaches, therefore, have to address, at
least, the following two questions:

(1) Are the selected observables sufficient? In the best
case, model P becomes generative, i.e., sequences A sampled
from P are statistically indistinguishable from the natural se-
quences in the MSA (Am) used for model learning. Although
this is hard to test in full generality, we can select observables
not used in the construction of the model and check if their
averages in the model and over the input data coincide.

(2) Are the selected observables necessary? Would it be
possible to construct a parameter-reduced, thus, more par-
simonious, model of same quality? This question is very
important due to, at least, two reasons: (a) The most par-
simonious model would allow for identifying a minimal set
of evolutionary constraints acting on proteins and, thus, offer
deep insight into protein evolution; and (b) a reduced number
of parameters would allow to reduce overfitting effects, which
result from the limited availability of data (M � qL).

Although there has been promising progress in the first
question, cf. the next two subsections, our paper attempts

032128-2



SELECTION OF SEQUENCE MOTIFS AND GENERATIVE … PHYSICAL REVIEW E 100, 032128 (2019)

to approach both questions simultaneously thereby going
beyond standard MaxEnt modeling.

To facilitate the further discussion, two important technical
points have to be mentioned. First, MaxEnt leads to a family
of so-called exponential models where the exponent in Eq. (4)
is linear in the Lagrange multipliers λμ, which parametrize
the family. Second, MaxEnt is intimately related to maximum
likelihood. When we postulate Eq. (4) for the mathematical
form of model P(A), and when we maximize the logarithmic
likelihood,

L
[{λμ}|(Am

i

)] =
M∑

m=1

ln P(Am), (5)

with respect to the parameters λμ, μ = 1, . . . , P, we redis-
cover Eqs. (2) as the stationarity condition. The particular
form of P(A) guarantees that the likelihood is convex, having
only a unique maximum.

C. Profile models

The most successful approaches in statistical modeling
of biological sequences are probably profile models [22],
which consider each MSA column (i.e., each position in the
sequence) independently. The corresponding observables are
simply Oia(A) = δAi,a for all positions i = 1, . . . , L and all
amino acid letters a ∈ A with δ being the standard Kronecker
symbol. These observables, thus, just ask, if in a sequence A,
amino acid a is present in position i. Their statistics in the
MSA is, thus, characterized by the fraction,

fi(a) = 1

M

M∑
m=1

δAm
i ,a, (6)

of sequences having amino acid a in position i. Consistency
of model and data requires marginal single-site distributions
of P to coincide with fi,

∀ i = 1, . . . , L, ∀ Ai ∈ A:
∑

{Aj | j �=i}
P(A) = fi(Ai ). (7)

The MaxEnt model results as P(A) = ∏L
i=1 fi(Ai ), which can

be written as a factorized Boltzmann distribution,

P(A) = 1

Z
exp

{∑
i

hi(Ai )

}
, (8)

where the local fields equal hi(a) = ln fi(a). Pseudocounts or
regularization can be used to avoid infinite negative parame-
ters for amino acids, which are not observed in some MSA
column.

Profile models reproduce the so-called conservation statis-
tics of a MSA, i.e., the heterogenous usage of amino acids
in the different positions of the sequence. Conservation of a
single or few amino acids in a column of the MSA is typically
an indication of an important functional or structural role of
that position. Profile models, frequently in their generaliza-
tion to profile hidden Markov models [3,4,23], are used for
detecting homology of new sequences to protein families,
for aligning multiple sequences, and—using the conserved
structural and functional characteristics of protein families—
indirectly for the computational annotation of experimentally

uncharacterized amino acid sequences. They are, in fact, at the
methodological basis of the generation of the MSA used here.

Despite their importance in biological sequence analysis,
profile models are not generative. Biological sequences show
significant correlation in the usage of amino acids in different
positions, which are said to coevolve [7]. Due to their fac-
torized nature, profile models are not able to reproduce these
correlations, and larger sets of observables have to be used to
obtain potentially generative sequence models.

D. Direct-coupling analysis

The DCA [10,11], therefore, includes also pairwise corre-
lations into the modeling. The statistical model P(A) is not
only required to reproduce the amino acid usage of single
MSA columns, but also required to reproduce the fraction
fi j (a, b) of sequences having, simultaneously, amino acid a
in position i and amino acid b in position j for all a, b ∈ A
and all 1 � i < j � L,

fi j (a, b) = 1

M

M∑
m=1

δAm
i ,aδAm

j ,b

=
∑

A∈AL

P(A)δAi,aδAj ,b. (9)

The corresponding observables δAi,aδAj ,b are, thus, products of
pairs of observables used in profile models.

According to the general MaxEnt scheme described before,
DCA leads to a generalized q-state Potts model,

P(A) = 1

Z
exp

⎧⎨
⎩

∑
i< j

Ji j (Ai, Aj ) +
∑

i

hi(Ai )

⎫⎬
⎭, (10)

with heterogeneous pairwise couplings Ji j (a, b) and local
fields hi(a). The inference of parameters becomes compu-
tationally hard since the computation of the marginal dis-
tributions in Eq. (9) requires to sum over O(qL ) sequences.
Many approximation schemes have been proposed, includ-
ing message-passing [10], mean-field [11], Gaussian [13,24],
and pseudolikelihood maximization [12,25] approximations.
DCA and related global inference techniques have found
widespread applications in the prediction of protein structures,
of protein-protein interactions, and of mutational effects,
demonstrating that amino acid covariation as captured by fi j

contains biologically valuable information.
Although these approximate inference schemes do not lead

to generative models—not even fi and fi j are accurately
reproduced—recently, very precise but time-extensive infer-
ence schemes based on Boltzmann-machine learning have
been proposed [26–29]. Astonishingly, these models do not
only reproduce the fitted one- and two-column statistics of
the input MSA, but also reproduce nonfitted characteristics,
such as the three-point statistics fi jk (a, b, c) or the clustered
organization of sequences in sequence space. These observa-
tions strongly suggest that pairwise Potts models as inferred
via DCA are generative models, i.e., that the observables used
in DCA—amino acid occurrence in single positions and in
position pairs—are actually defining a (close to) sufficient
statistics. In a seminal experimental work [30], the importance
of respecting pairwise correlations in amino acid usage in
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generating small artificial but folding protein sequences was
shown.

However, DCA uses an enormous amount of parameters.
There are independent couplings for each pair of positions
and amino acids. In the case of a protein of limited length L =
200, the total number of parameters is close to 108. Very few
of these parameters are interpretable in terms of, e.g., contacts
between positions in the three-dimensional protein fold. We
would, therefore, expect that not all of these observables are
really important to statistically model protein sequences. On
the contrary, given the limited size (M = 103–104) of most
input MSAs, the large number of parameters makes overfitting
likely, and quite strong regularization is needed. It would,
therefore, be important to devise parameter-reduced models as
proposed in Ref. [31] but without giving up on the generative
character of the inferred statistical models.

III. FROM SEQUENCE MOTIFS TO THE
HOPFIELD-POTTS MODEL

Seeing the importance of amino acid conservation in pro-
teins and of profile models in computational sequence anal-
ysis, we keep Eqs. (7), which link the single-site marginals
of P(A) directly to the amino acid frequencies fi(a) in single
MSA columns. Furthermore, we assume that the important
observables for our protein-sequence ensemble can be repre-
sented as so-called sequence motifs,

Oμ(A) =
∑

i

ω
μ
i (Ai ), μ = 1, . . . , p, (11)

which are linear additive combinations of single-site terms.
In sequence bioinformatics, such sequence motifs are widely
used, also under alternative names, such as position-specific
scoring and weight matrices, cf. Refs. [32,33]. Note that, in
difference to the observables introduced before for profile or
DCA models, motifs constitute collective observables poten-
tially depending on the entire amino acid sequence.

Let us assume for a moment that these motifs, or more
specifically the corresponding ω matrices, are known. We will
address their selection later. For any model P reproducing the
sequence profile, i.e., for any model fulfilling Eqs. (7), also
the ensemble average of Oμ is given∑

A

P(A)Oμ(A) =
∑
i,a

ω
μ
i (a) fi(a). (12)

The empirical mean of these observables, therefore, does
not contain any further information about the MSA statistics
beyond the profile itself. The key step is to consider also the
variance, or the second moment,

1

M

∑
m

[Oμ(Am)]2 =
∑

i, j,a,b

ω
μ
i (a)ωμ

j (b) fi j (a, b), (13)

as a distinct feature characterizing the sequence variability in
the MSA, which has to be reproduced by the statistical model
P(A). This second moment actually depends on combinations
of fi j , which were introduced in DCA to account for the
correlated amino acid usage in pairs of positions.

The importance of fixing this second moment becomes
clear in a very simple example: Consider only two positions

{1, 2} and two possible letters {A, B}, which are allowed in
these two positions. Let us assume further that these two
letters are equiprobable in these two positions, i.e., f1(A) =
f1(B) = f2(A) = f2(B) = 1/2. Assume further a single mo-
tif to be given by ω1(A) = ω2(A) = 1/2, ω1(B) = ω2(B) =
−1/2. In this case, the mean of O equals zero. We further
consider two cases:

(1) Uncorrelated positions: In this case, all words
AA , AB, BA, and BB are equiprobable. The second moment
of O, thus, equals 1/2.

(2) Correlated positions: As a strongly correlated exam-
ple, only the two words AA and BB are allowed. The second
moment of O, thus, equals 1.

We conclude that an increased second moment (or vari-
ance) of these additive observables with respect to the uncor-
related case corresponds to the preference of combinations of
letters or entire words; this is also the reason why they are the
called sequence motifs.

Including, therefore, these second moments as conditions
into the MaxEnt modeling, our statistical model takes the
shape,

P
[
A|{λμ, hi(a), ωμ

i (a)
}]

= 1

Z
exp

⎧⎨
⎩

p∑
μ=1

λμ

L∑
i, j=1

ω
μ
i (Ai )ω

μ
j (Aj ) +

L∑
i=1

hi(Ai )

⎫⎬
⎭,

(14)

with Lagrange multipliers λμ, μ = 1, . . . , p, imposing
means (13) to be reproduced by the model, and hi(a), i =
1, . . . , L, a ∈ A, to impose Eqs. (7).

The Hopfield-Potts model: from MaxEnt
to sequence-motif selection

As mentioned before, an important limitation of MaxEnt
models is that they assume certain observables to be re-
produced, but they do not offer any strategy on how these
observables have to be selected. In the case of Eq. (14), this
accounts, in particular, to optimizing the values of the Lan-
grange parameters λμ to match the ensemble averages over
P(A) with the sample averages Eq. (13) over the input MSA.
As mentioned before, this corresponds also to maximizing the
logarithmic likelihood of these parameters given MSA and the
ω matrices describing the motifs,

L
({λμ, hi(a)}|(Am

i

)
,
{
ω

μ
i (a)

})
=

M∑
m=1

ln P
[
Am|{λμ, hi(a), ωμ

i (a)
}]

. (15)

The important, even if quite straightforward, step from
MaxEnt modeling to motif selection is to optimize the like-
lihood also over the choice of all possible ω matrices as
parameters. To remove degeneracies, we absorb the Lagrange
multipliers λμ into the motif matrix ωμ, and introduce

ξ
μ
i (a) = √

λμω
μ
i (a), i = 1, . . . , L,

μ = 1, . . . , p, a ∈ A . (16)
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The model in Eq. (14), thus, slightly simplifies into

P
(
A|{hi(a), ξμ

i (a)
})

= 1

Z
exp

⎧⎨
⎩

p∑
μ=1

L∑
i, j=1

ξ
μ
i (Ai )ξ

μ
j (Aj ) +

L∑
i=1

hi(Ai )

⎫⎬
⎭, (17)

with parameters, which have to be estimated by maximum
likelihood,{

ĥi(a), ξ̂μ
i (a)

}
= argmax

{hi (a),ξμ
i (a)}

M∑
m=1

ln P
[
Am|{hi(a), ξμ

i (a)
}]

. (18)

Our model becomes, therefore, the standard Hopfield-Potts
model, which has been introduced in Ref. [31] in a mean-field
treatment, and the sequence motifs equal, up to the rescaling
in Eq. (16), the patterns in the Hopfield-Potts model.

The mean-field treatment of Ref. [31] has both advantages
and disadvantages with respect to our present paper: On one
hand, the largely analytical mean-field solution allows to
relate the Hopfield-Potts patterns ξμ to the eigenvectors of the
Pearson-correlation matrix of the MSA, and their likelihood
contributions to a function of the corresponding eigenvalues.
This is, in particular, interesting since not only the eigen-
vectors corresponding to large eigenvalues were found to
contribute—as one might expect from the apparent similarity
to principal-component analysis (PCA)—but also the smallest
eigenvalues lead to large likelihood contributions. However,
the mean-field treatment leads to a nongenerative model,
which does not even reproduce precisely the single-position
frequencies fi(a). The aim of this paper is to reestablish the
generative character of the Hopfield-Potts model by more
accurate interference schemes without losing too much of the
interpretability of the mean-field approximation.

The model in Eq. (17) contains now an exponent, which
is nonlinear in the parameters ξμ. As a consequence, the
likelihood is not convex anymore, and possibly many local
likelihood maxima exist. This is also reflected by the fact that
any p-dimensional orthogonal transformation of ξμ leaves
the probability distribution P(A) invariant, thus, leading to an
equivalent model.

IV. INFERENCE AND INTERPRETATION
OF HOPFIELD-POTTS MODELS

A. The Hopfield-Potts model as a restricted Boltzmann machine

The question how many and which patterns are needed for
generative modeling, therefore, cannot be answered properly
within the mean-field approach. We, therefore, propose a more
accurate inference scheme based on RBM learning [34,35],
exploiting an equivalence between Hopfield models and RBM
originally shown in Ref. [36]. To this aim, we first perform p
Hubbard-Stratonovich transformations to linearize the expo-
nential in ξμ,

P(A) = 1

Z̃

∫
Rp

p∏
μ=1

dxμ exp

⎧⎨
⎩

∑
i,μ

xμξ
μ
i (Ai )

+
∑

i

hi(Ai ) − 1

2

∑
μ

(xμ)2

}
, (19)

with Z̃ containing the normalizations both of the Gaussian
integrals over the new variables xμ and the partition function
of Eq. (14). The distribution P(A) can, thus, be understood as
a marginal distribution of

P(A, x)= 1

Z̃
exp

⎧⎨
⎩

∑
i,μ

xμξ
μ
i (Ai ) +

∑
i

hi(Ai ) − 1

2

∑
μ

(xμ)2

⎫⎬
⎭,

(20)

which depends on the so-called visible variables A =
(A1, . . . , AL ) and the hidden (or latent) variables x =
(x1, . . . , xp). It takes the form or a particular RBM with a
quadratic confining potential for xμ: The important point is
that couplings in the RBM form a bipartite graph between
visible and hidden variables, cf. Fig. 1. RBM may have more
general potentials uμ(xμ) confining the values of the new
random variables xμ. This fact has been exploited in Ref. [20]
to cope with the limited number of sequences in the training
MSA. However, in our paper, we stick to quadratic potentials
in order to keep the equivalence to Hopfield-Potts models,
and thus, the interpretability of patterns in terms of pairwise
residue-residue couplings via Eq. (17).

B. Parameter learning by persistent contrastive divergence

Maximizing the likelihood with respect to the parameters
leads, for our RBM model, to the stationarity equations,

1

M

∑
m

δAm
i ,a = 〈

δAi,a
〉
P(A,x),

1

M

∑
m

δAm
i ,a〈xμ〉P(x|Am ) = 〈

δAi,axμ
〉
P(A,x) (21)

for all i, a, and μ; the difference of both sides equals the
gradient of the likelihood in the direction of the corresponding
parameter. Although the first line matches the standard Max-
Ent form—sample and ensemble average of an observable
have to coincide, the second line contains a mixed sample-
ensemble average on its left-hand side. Since the variables xμ

are latent and, thus, not contained in the MSA, an average
over their probability P(x|Am) conditioned to the sequences
Am in the MSA has to be taken. Having a P dependence
on both sides of Eqs. (21) is yet another expression of the
nonconvexity of the likelihood function.

Model parameters hi(a) and ξ
μ
i (a) have to be fitted to

satisfy the stationarity conditions Eq. (21). This can be per-
formed iteratively: Starting from arbitrarily initialized model
parameters, we determine the difference between the left- and
the right-hand sides of this equation and use this difference
to update parameters (i.e., we perform gradient ascent of the
likelihood); each of these update steps is called an epoch of
learning. A major problem is that the exact calculation of aver-
ages over the (L + p)-dimensional probability distribution P
is computationally infeasible. It is possible to estimate these
averages by Markov chain Monte Carlo (MCMC) sampling,
but efficient implementations are needed since accurate pa-
rameter learning requires, in practice, thousands of epochs.
To this aim, we exploit the bipartite structure of RBM: Both
conditional probabilities P(A|x) and P(x|A) are factorized.
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FIG. 1. Panel (a) represents the (Hopfield-)Potts model as a statistical model for sequences A ∈ AL , typically characterized by a fully
connected coupling matrix J and local fields h (not represented). The model can be transformed into a RBM by introducing Gaussian hidden
variables x ∈ Rp with p being the rank of J . Note the bipartite graphical structure of RBM, which causes the conditional probabilities P(A|x)
and P(x|A) to factorize. Panel (b) shows a schematic of persistent contrastive divergence (PCD). Initially, the sample is initialized in the training
data (the MSA of natural sequences), and then, k alternating steps of sampling from P(A|x), respectively, P(x|A)’s are performed. Parameters
are updated after these k sampling steps, and sampling is continued using the updated parameters.

This allows us to initialize MCMC runs in natural sequences
from the MSA and to sample x and A in alternating fashion.
As a second simplification, we use PCD [37]. Only in the
first epoch the visible variables are initialized in the MSA
sequences, and each epoch performs only a finite number
of sampling steps (k for PCD k), cf. Fig. 1(b). Trajectories
are continued in a new epoch after parameter updates. If the
resulting parameter changes become small enough, PCD will
thereby generate close-to-equilibrium sequences, which form
an (almost) independent and identically distributed (i.i.d.)
sample of P(A, x) uncorrelated from the training set used for
initialization.

Details of the algorithm and comparison to the simpler
contrastive divergence are given in Appendix B. Further
technical details, such as regularization, are also delegated to
Appendix B.

C. Determining the likelihood contribution
of single Hopfield-Potts patterns

It is obvious that the total likelihood grows monotonously
when increasing the number p of patterns ξμ. It is, therefore,
important to develop criteria, which tell us if patterns are
more or less important for modeling the protein family. To
this aim, we estimate the contribution of single patterns to
the likelihood by comparing the full model with a model
where a single pattern ξμ has been removed, whereas the other
p − 1 patterns and the local fields have been retained. The
corresponding normalized change in logarithmic likelihood
reads

��μ = 1

M

M∑
m=1

[ln P(Am) − ln P−μ(Am)], (22)

where P−μ has the same form as given in Eq. (14) for
P but with pattern ξμ = {ξμ

i (a); i = 1, . . . , L, a ∈ A} re-
moved. Plugging Eq. (14) into Eq. (22), we find

��μ = 1

M

M∑
m=1

[
L∑

i=1

ξ
μ
i

(
Am

i

)]2

+ ln
Z−μ

Z
. (23)

The likelihood difference depends, thus, on the ratio of the
two partition functions Z and Z−μ. Although each of them
is individually intractable due to the exponential sum over
qL sequences, the ratio can be estimated efficiently using
importance sampling. We write

Z−μ

Z
= 1

Z

∑
A∈AL

exp

⎧⎨
⎩

∑
ν �=μ

L∑
i, j=1

ξν
i (Ai )ξ

ν
j (Aj ) +

L∑
i=1

hi(Ai )

⎫⎬
⎭

=
∑

A∈AL

P(A) exp

⎧⎨
⎩−

L∑
i, j=1

ξ
μ
i (Ai )ξ

μ
j (Aj )

⎫⎬
⎭. (24)

The last expression contains the average of an exponential
quantity over P(A), so estimating the average by MCMC
sampling of P might appear a risky idea. However, since P and
P−μ differ only in one of the p patterns, the distributions are
expected to overlap strongly, and sufficiently large samples
drawn from P(A) can be used to estimate Z−μ/Z . Note that
sampling is performed from P, so the likelihood contributions
of all patterns can be estimated in parallel using a single large
sample of the full model.

Once these likelihood contributions are estimated, we can
sort them, and identify and interpret the patterns of largest
importance in our Hopfield-Potts model.
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V. HOPFIELD-POTTS MODELS OF PROTEIN FAMILIES

To understand the performance of Hopfield-Potts models
in the case of protein families, we have analyzed three protein
families extracted from the PFAM database [2]: the Kunitz-
bovine pancreatic trypsin inhibitor domain (PF00014), the
response regulator receiver domain (PF00072), and the RNA
recognition motif (PF00076). They have been selected since
they have been used in DCA studies before; in our case,
RBM results will be compared to the ones of BMDCA,
i.e., the generative version of DCA based on Boltzmann
machine learning [29]. MSAs are downloaded from the PFAM

database [2], and sequences with more than five consecutive
gaps are removed; cf. Appendix B for a discussion of the
convergence problems of PCD-based inference in the case of
extended gap stretches. The resulting MSA dimensions for the
three families are, in the order given before, L = 52/112/70
and M = 10 657/15 000/10 000. As can be noted, the last two
MSAs have been subsampled randomly since they were very
large, and the running time of the PCD algorithm is linear
in the sample size. The MSA for PF00072 was chosen to be
slightly larger because of the longer sequences in this family.

In the following sections, results are described in detail
for the PF00072 response regulator family. The results for
the other protein families are coherent with the discussion;
they are moved to Appendix B to seek the conciseness of our
presentation.

A. Generative properties of Hopfield-Potts models

PCD is able, for all values of the pattern number p, to
reach parameter values satisfying the stationarity conditions
Eqs. (21). This is not only true when these are evaluated using
the PCD sample propagated via learning from epoch to epoch,
but also when the inferred model is resampled using MCMC,
i.e., when the right-hand side of Eqs. (21) is evaluated using
an i.i.d. sample of the RBM.

In the leftmost column of Fig. 2 [panels (a.1)–(g.1)], this
is shown for the single-site frequencies, i.e., for the first of
Eqs. (21). The horizontal axis shows the statistics extracted
from the original data collected in the MSA, whereas the
vertical axis measures the same quantity in an i.i.d. sample
extracted from the inferred model P(A, x). The fitting quality
is comparable to the one obtained by BMDCA as can be seen
by comparison with the last panel in the first column of Fig. 2.

The other two columns of the figure concern the generative
properties of RBM: connected two-point correlations [panels
(a.2)–(g.2) in Fig. 2] and three-point correlations [panels
(a.3)–(g.3) in Fig. 2],

ci j (a, b) = fi j (a, b) − fi(a) f j (b),

ci jk (a, b, c) = fi jk (a, b, c) − fi j (a, b) fk (c) − fik (a, c) f j (b)

− f jk (b, c) fi(a) + 2 fi(a) f j (b) fk (c), (25)

with the three-point frequencies fi jk (a, b, c) defined in anal-
ogy to Eqs. (6) and (9). Note that, in difference to DCA,
already the two-point correlations are not fitted directly by the
RBM but only the second moments related to the Hopfield-
Potts patterns. This becomes immediately obvious for the case
of p = 0 where RBM reduces to simple profile models of
statistically independent sites but remains true for all values of

p < (q − 1)L. Note also that connected correlations are used
since the frequencies fi j and fi jk contain information about
the fitted fi and, therefore, show stronger agreement between
data and model.

The performance of RBM is found to be, up to statistical
fluctuations, monotonous in the pattern number p. As in the
mean-field approximation [31], no evident overfitting effects
are observed. Even if not fitted explicitly, as few as p = 20–40
patterns are sufficient to faithfully reproduce even the nonfit-
ted two- and three-point correlations. This is very astonishing
since only about 1.7–3.5% of the parameters of the full DCA
model are used: The p patterns are given by p(q − 1)L param-
eters, whereas DCA has (q − 1)2(L

2) independently inferred
couplings. The times needed for accurate inference decrease
accordingly: In some cases, a slight decrease in accuracy of
BMDCA is observed as compared to RBM with the largest p;
this could be overcome by iterating the inference procedure
for further epochs.

B. Strong couplings and contact prediction

One of the main applications of DCA is the prediction
of contacts between residues in the three-dimensional protein
fold, based only on the statistics of homologous sequences. To
this aim, we follow Ref. [25] and translate q × q coupling ma-
trices Ji j (a, b) = ∑p

μ=1 ξ
μ
i (a)ξμ

j (b) for individual site pairs
(i, j) into scalar numbers by first calculating their Frobenius
norm,

Fi j = Fji =
∑

a,b∈A
Ji j (a, b)2, (26)

followed by the empirical average-product correction (APC),

F APC
i j = Fi j − Fi·F· j

F··
, (27)

where the · denotes an average over the corresponding index,

Fi· = 1

L − 1

∑
k

Fik,

F· j = 1

L − 1

∑
k

Fk j, (28)

F·· = 2

L(L − 1)

∑
k<l

Fkl .

The APC is intended to remove systematic nonfunctional
bias due to conservation and phylogeny. These quantities are
sorted, and the largest ones are expected to be contacts.

The results for several values of p and for BMDCA are
depicted in Fig. 3(a): The PPV is the fraction of true positives
(TPs) among the first n predictions as a function of n. TPs
are defined as native contacts in a reference protein structure
(PDB ID 3ilh [38] for PF00072) with a distance cutoff of
8 Å between the closest pair of heavy atoms forming each
residue. Pairs in the vicinity along the peptide chain are not
considered in this prediction since they are trivially in contact:
In coherence with the literature standard, Fig. 3 only considers
predictions with |i − j| � 5.

Despite the fact that, even for as few as p = 20–40 patterns,
the model appears to be generative, i.e., nonfitted statistical
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FIG. 2. Statistics of natural sequences (PF00072, horizontal axes) vs MCMC samples (vertical axes) of Hopfield-Potts models for values of
p ∈ {5, 10, 20, 40, 80, 160} and for a full-rank Potts model inferred using BMDCA. The first column [panels (a.1)–(g.1)] shows the one-point
frequencies fi(a) for all pairs (i, a) of sites and amino acids; the other two columns show the connected two- and three-point functions ci j (a, b)
[panels (a.2)–(g.2)] and ci jk (a, b, c) [panels (a.3)–(g.3)]. Due to the huge number of combinations for the three-point correlations, only the
100 000 largest values (evaluated in the training MSA) are shown. The Pearson correlations and the slope of the best linear fit are inserted in
each of the panels.
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FIG. 3. Panel (a) shows the positive predictive value (PPV) for contact prediction as a function of the number of predictions for various
values of the pattern number p and for BMDCA. Panels (b)–(d) show, for p = 20, 160, and BMDCA, the distribution of coupling scores F APC

i j .
All residue pairs are grouped into contacts (red) and noncontacts (blue). The best contact predictions correspond to the positive tail of the red
histogram, which becomes more pronounced when increasing p or even going to BMDCA.

observables are reproduced with good accuracy, the PPV
curves depend strongly on the pattern number p. Up to
statistically probably insignificant exceptions, we observe a
monotonous dependence on p, and none of the RBM-related
curves reach the performance of the full-rank Ji j matrices of
BMDCA. Even large values of p where RBM have more than
30% of the parameters of the full Potts model show a drop in
performance in contact prediction.

Can we understand this apparent contradiction: similarly
accurate reproduction of the statistics but reduced perfor-
mance in contact prediction? To this end, we consider, in
Figs. 3(b)–3(d), the histograms of coupling strengths F APC

i j di-
vided into two subpopulations: Values for sites i, j in contact
are represented by red, and values for distant sites are repre-
sented by blue histograms. It becomes evident that the rather
compact histogram of noncontacts remains almost invariable
with p (even if individual coupling values do change), but
the histogram of contacts changes systematically: The tail of
large F APC

i j going beyond the upper edge of the blue histogram
is less pronounced for small p. However, in the procedure
described before, these F APC

i j values provide the first contact
predictions.

The reduced capacity to detect contacts for small p is
related to the properties of the Hopfield-Potts model in itself.
Although the residue-residue contacts form a sparse graph,
the Hopfield-Potts model is explicitly constructed to have a
low-rank coupling matrix [Ji j (a, b)]. It is, however, hard to
represent a generic sparse matrix by a limited number of
possibly distributed patterns. Hopfield-Potts models are more
likely to detect distributed sequence signals than localized
sparse ones. However, for larger pattern numbers p, we are

able to detect more and more localized signals thereby im-
proving the contact prediction until BM and Hopfield-Potts
models become equivalent for p = (q − 1)L.

This observation establishes an important limitation to
the generative character of Hopfield-Potts models with lim-
ited pattern numbers: The applicability of DCA for residue-
residue contact prediction has demonstrated that physical
contacts in the three-dimensional structure of proteins intro-
duce important constraints on sequence evolution. A perfectly
generative model should respect these constraints and, thus,
lead to a contact prediction being, at least, as good as the one
obtained by full DCA, cf. also the discussion in the outlook of
this article.

C. Likelihood contribution and interpretation
of selected sequence motifs

So what do the patterns represent? In Sec. IV C, we
have discussed how to estimate the likelihood contribution
of patterns thereby being able to select the most important
patterns in our model. Figure 4 displays the ordered contri-
butions for different values of p. We observe that, for small
p, the distribution becomes more peaked with few patterns
having very large likelihood contributions. For larger p, the
contributions are more distributed over many patterns, which
collectively represent the statistical features of the data set.

Figure 5 represents the first five patterns for p = 20. Panels
(a.1)–(e.1) of Fig. 5 represent the pattern ξ

μ
i (a) as a sequence

logo, a standard representation in sequence bioinformatics.
Each site i corresponds to one position, the possible amino
acids are shown by their one-letter codes, the size of the
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FIG. 4. Likelihood contribution of the individual patterns for
pattern numbers p = 20, 40, 80, and 160.

letter being proportional to |ξμ
i (a)|, according to the sign

of ξ
μ
i (a), letters are represented above or below the zero

line. The alignment gap is represented as a minus sign in an
oval shape, which allows to represent its size in the current
pattern.

Patterns are very distributed, both in terms of the sites and
in the amino acids with relatively large entries ξi(a). This
makes a direct interpretation of patterns without prior knowl-
edge rather complicated. The distributed nature of patterns
explains also why they are not optimal in defining localized
contact predictions. Rather than identifying contacting residue
pairs, the patterns define larger groups of sites, which are
connected via a dense network of comparable couplings.
However, as we will see in the next section, the sites of
large entries in a pattern define functional regions of proteins,
which are important in subensembles of proteins of strong
(positive or negative) activity values along the pattern under
consideration. In particular, we will show that the largest
entries may have an interpretation connecting structure and
function to sequence in protein subfamilies.

The middle column [panels (a.2)–(e.2)] of Fig. 5 shows
a histogram of pattern-specific activities of single sequences,
i.e., of

xμ(A) =
N∑

i=1

ξ
μ
i (Ai ). (29)

Note that, up to the rescaling in Eq. (16), these numbers
coincide with the sequence motifs, introduced in Eq. (11)
at the beginning of this article. They also equal the average
value of the latent variable xμ given sequence A. The blue
histograms result from the natural sequences collected in the
training MSA. They coincide well with the red histograms,
which are calculated from an i.i.d. MCMC sample of our
Hopfield-Potts model, including the bimodal structure of
several histograms. This is quite remarkable: The Hopfield-
Potts model was derived, in the beginning of this paper, as
the maximum-entropy model reproducing the first two mo-
ments of the activities {xμ(Am)}m=1···M . Finding higher-order
features, such as bimodality, is again an expression of the
generative power of Hopfield-Potts models.

Figures (5.a.3)–(5.e.3) prove the importance of individual
patterns for the inferred model. The panels show the two-point
correlations ci j (a, b) of the natural data (horizontal axis) vs
the one of samples drawn from the distributions P−μ(A), intro-
duced in Eq. (22) as Hopfield-Potts models of p − 1 patterns
with pattern ξμ removed (vertical axis). The coherence of the
correlations is strongly reduced when compared to the full
model, which was shown in Fig. 2: Removal even of a single
pattern has a strong global impact on the model statistics.

D. Sequence clustering

As already mentioned, some patterns show a clear bimodal
activity distribution, i.e., they identify two statistically distinct
subgroups of sequences. The number of subgroups can be
augmented by using more than one pattern, i.e., combinations
of patterns can be used to cluster sequences.

To this aim, we have selected three patterns (numbers 6, 13,
and 14) with a pronounced bimodal structure from the model
with p = 20 patterns. In terms of likelihood contribution, they
have ranks 8, 4, and 1 in the contributions to the logarithmic
likelihood, cf. Fig. 5.

The clustered organization of response-regulator se-
quences becomes even more evident in the two-dimensional
plots characterizing, simultaneously, two activity distribu-
tions. The results for all pairs of the three patterns are dis-
played in Fig. 6, panels (a.1–(a.3). As a first observation, we
see that the main modes of the activity patterns give rise to one
dominant cluster. Smaller clusters deviate from the dominant
one in a single pattern but show compatible activities in the
other patterns—the two-dimensional plots, therefore, show
typically an L-shaped sequence distribution and three clusters
instead of the theoretically possible four combinations of
activity models. It appears that single patterns identify the
particularities of single subdominant sequence clusters.

We have chosen the response-regulator protein-domain
family in this paper also due to the fact that it constitutes
a functionally well studied and diversified family. Response
regulators are predominantly used in bacterial signaling sys-
tems:

(1) In chemotaxis, they appear as single-domain proteins
named CheY, which transmit the signal from kinase proteins
(activated by signal reception) to flagellar motor proteins,
which trigger the movement of the bacteria. CheY proteins
can be identified in our MSA as those coming from single-
domain proteins, i.e., with lengths compatible to the PF00072-
MSA width L = 112. We have selected a sub-MSA consisting
of all proteins with total sequence lengths between 110 and
140 amino acids.

(2) In two-component signal transduction (TCS), response
regulators are typically transcription factors, which are acti-
vated by signal-receiving histidine sensor kinases. The cor-
responding proteins contain two or three domains, in partic-
ular, a DNA-binding domain, which is actually responsible
for the transcription-factor activity of the activated response-
regulator protein. According to the present DNA-binding
domain, these TCS proteins can be subdivided into differ-
ent classes, the dominant ones are the OmpR, the GerE,
and the Sigma54-HTH8 classes, we identified three sub-
MSA corresponding to these classes by co-occurrence of the
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FIG. 5. The five patterns of highest likelihood contribution for p = 20, the eighth ranking is added since used later in the text. The left
panels (a.1)–(f.1) show the patterns in logo representation, the letter size is given by the corresponding element ξi(a). The middle panels
(a.1)–(f.2) show the distribution of the activities, i.e., the projections of sequences onto the patterns. The blue histogram contains the natural
sequences from the training MSA, and the red histogram contains sequences sampled by MCMC from the Hopfield-Potts model. The right-hand
side [panels (a.3)–(f.3)] shows the connected two-point correlations of the natural data (horizontal axis) vs data sampled from P−μ(A), i.e., a
Hopfield-Potts model with one pattern removed. Strong deviations from the diagonal are evident.

DNA-binding domains with the response-regulator domain in
the same protein. The different DNA-binding domains are
indicative for distinct homodimer structures assumed by the
active transcription factors; DCA run on the sub-MS identifies
their specific subfamily interfaces [39].

(3) Phosphorelays are similar to TCS but consist of more
complex multicomponent signaling pathways. In these sys-
tems, found in bacteria and plants, response-regulator do-
mains are typically fused to the histidine-sensor kinases. They
do not act as transcription factors but transduct a signal to
a phosphotransferase, which finally activates a down-stream
transcription factor of the same architecture mentioned in the
last paragraph. We identified a class of response-regulator do-
mains, which are fused to a histidine kinase domain. In terms

of domain architecture and protein length, this subfamily is
extremely heterogenous.

Panel columns (a)–(f) in Fig. 6 show the activities of
these five subfamilies. It is evident that distinct sub-MSAs
fall actually into distinct clusters according to these three
patterns:

(1) The CheY-like single domain proteins [panels (b.1)–
(b.3)] of Fig. 6 fall, according to all three patterns, into the
dominant mode.

(2) The OmpR-class transcription factors [panels (c.1)–
(c.3)] show a distinct distribution of higher activities for the
second of the patterns (which actually has the most pro-
nounced bimodal structure, probably due to the fact that the
OmpR class forms the largest sub-MSA). As can be seen
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FIG. 6. Patterns with multimodal activity distributions for the set of all MSA sequences can be used to cluster sequences. The rows show
combinations of patterns 6–13 [panels (a.1)–(f.1)], 6–14 [panels (a.2)–(f.2)], and 13 to 14 [panels (a.3)–(f.3)]. Each sequence corresponds to
a density-colored dot. A strongly clustered structure is clearly visible. When dividing the full MSA into functional subclasses, we can relate
clusters to subclasses and, thus, patterns to biological function.

in Fig. 6, this pattern has the largest positive entries in the
region of positions 80–90 and 100–110. Interestingly, these
regions define the interface of OmpR-class transcription-
factor homodimerization, cf. Ref. [39]. In accordance with
this structural interpretation, we also find a periodic structure
of period 3 to 4 of the large entries in the pattern, which
reflects the fact that the interface is formed by two helices,
which lead to a periodic exposure of amino acids in the protein
surface.

(3) The GerE class [panels (d.1)–(d.3)] of Fig. 6 differs in
activities in the direction of the first pattern, only GerE-class
proteins have positive, and all others have negative activities.
Dominant positive entries are found in regions 5–15 and
100–105, again identifying the homodimerization interface,
cf. Ref. [39].

(4) The Sigma54 class [panels (e.1)–(e.3)] does not show
a distinct distribution of activities according to the three
selected patterns. It is located together with the CheY-
type sequences. However, when examining all patterns, we
find that pattern number 5 (ranked sixth according to the
likelihood contribution) is almost perfectly discriminating
the two.

(5) Last but not least, the response regulators fused to
histidine kinases in phosphorelay systems [panels (f.1)–(f.3)]
of Fig. 6 show a distinct activity distribution according to

the third pattern, mixing a part of activities compatible with
the main cluster, and others being substantially larger (this
mixing results presumably from the previously mentioned
heterogenous structure of this sub-MSA). Structurally known
complexes between response regulators and histidine phos-
photransferases (PDB ID 4euk [40], 1bdj [41]) show the
interface located in residues 5–15, 30–32, and 50–55, re-
gions being important in the corresponding pattern. It appears
that the pattern selects the particular amino acid composi-
tion of this interface, which is specific to the phosphorelay
sub-MSA.

These observations do not only show that the patterns allow
for clustering sequences into sub-MSA, but also show that the
discriminating positions in the patterns have a clear biological
interpretation. This is very interesting since the analysis in
Ref. [39] required a prior clustering of the initial MSA into
sub-MSA, and the application of DCA to the individual
sub-MSA. Here, we have inferred only one Hopfield-Potts
model describing the full MSA, and the patterns automatically
identify biologically reasonable subfamilies together with the
sequence patterns characterizing them. The prior knowledge
needed in Ref. [39] is not needed here; we use it only for the
posterior interpretation of the patterns.

It is also important to remember that sequence clustering
can be obtained by a technically simpler PCA. PCA is based
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FIG. 7. The same as Fig. 2 but for the protein family PF00014.

on the leading eigenvectors of the data-covariance matrix, i.e.,
exclusively on the largest eigenvalues. The potential differ-
ences were already discussed in Ref. [31] in the context of the
mean-field approximation of Hopfield-Potts models. It was
shown that not only the eigenvectors with large eigenvalues
lead to important contributions in likelihood, but also those

corresponding to the smallest eigenvalues. Both tails of the
spectrum are, thus, important for the statistical description of
protein-sequence ensembles. A second drawback of PCA as
compared to our approach is the nongenerative character of
PCA. No explicit statistical model is learned, but the data co-
variance matrix is simply approximated by a low-rank matrix.
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FIG. 8. The same as Fig. 3 but for the protein family PF00014.
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FIG. 9. The same as Fig. 5 but for the protein family PF00014.
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FIG. 10. The same as Fig. 2 but for the protein family PF00076.

VI. CONCLUSION AND OUTLOOK

In this paper, we have rederived Hopfield-Potts models as
statistical models for protein sequences by selection of addi-
tive sequence motifs. Statistical sequence models are required
to reproduce the first and second moments of the empirical
motif distributions (i.e., over the MSA of natural sequences).
Within a maximum-entropy approach, these motifs are found
to be (up to a scaling factor) the Hopfield-Potts patterns
defining a network of residue-residue couplings. In addition to

the maximum-entropy framework, which is built upon known
observables, the Hopfield-Potts model adds a step of variable
selection: The probability of the sequence data is maximized
over all possible selections of sequence motifs.

The quadratic coupling terms can be linearized using
a Hubbard-Stratonovich transformation. When the Gaussian
variables introduced in this transformation are interpreted as
latent random variables, the Hopfield-Potts model takes the
form of a restricted Boltzmann machine. This interpretation,
originally introduced in Ref. [36], allows for the application of
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FIG. 11. The same as Fig. 3 but for the protein family PF00076.

efficient inference techniques, such as persistent contrastive
divergence and, therefore, for the accurate inference of the
Hopfield-Potts patterns for any given MSA of a homologous
protein family.

We find that Hopfield-Potts models acquire interesting
generative properties even for a relatively small number of
parameters (p = 20–40). They are able to reproduce nonfitted
properties, such as higher-order covariation of residues. Also,
the bimodality observed in the empirical activity distributions
(i.e., the projection of the natural sequences onto individual
Hopfield-Potts patterns) is not automatically guaranteed when
using only the first two moments for model learning, but it is
recovered with high accuracy in the activity distributions of
artificial sequences sampled from the model. This observation
is not only interesting in the context of generative-model
learning, but also forms the basis of sequence clustering
according to interpretable sequence motifs in the main text.

The Hopfield-Potts patterns, or sequence motifs, are typ-
ically found to be distributed over many residues thereby
representing global features of sequences. This observation
explains why Hopfield-Potts models tend to lose accuracy in
residue-residue contact prediction as compared to the full-
rank Potts models normally used in direct coupling analysis:
The sparsity of the residue-residue contact network cannot be
represented easily via few distributed sequence motifs, which
describe more global patterns of sequence variability. Despite
the fact that Hopfield-Potts models reproduce also nonfitted
statistical observables, the loss of accuracy in contact predic-
tion demonstrates that these models are not fully generative
and alternative concepts for parameter reduction should be
explored.

Individual sequences from the input MSA can be pro-
jected onto the Hopfield-Potts patterns, resulting in sequence-
specific activity values. Some patterns show a monomodal
histogram for the protein family. They introduce a dense

network of relatively small couplings between positions with
sufficiently large entries in the pattern without dividing the
family into subfamilies. These patterns have great similarity
to the concept of protein sectors, which was introduced in
Refs. [42,43] to detect distributed modes of sequence coevo-
lution. However, the conservation-based reweighting used in
determining sectors is not present in the Hopfield-Potts model,
and the precise relationship between both ideas remains to
be elaborated. Other Hopfield-Potts patterns show bimodal
activity distributions, leading to the detection of functional
subfamilies. Since these are defined by, e.g., the positive vs
the negative entries of the pattern, the entries of large absolute
value in the patterns identify residues, which play a role
similar to so-called specificity determining residues [44,45],
i.e., residues, which are conserved inside specific subfami-
lies, but vary between subfamilies. Both concepts—sectors
and specificity-determining residues—emerge naturally in the
context of Hopfield-Potts families, even if their precise math-
ematical definitions differ and, thus, also their precise biolog-
ical interpretations.

These observations open up new ways of parameter reduc-
tion in statistical models of protein sequences: The sparsity
of contacts, which are expected to be responsible for a large
part of localized residue covariation in protein evolution, has
to be combined with the low-rank structure of Hopfield-
Potts models, which detect distributed functional sequence
motifs. However, distributed patterns may also be related to
phylogenetic correlations, which are present in the data, cf.
Ref. [46]. As has been shown recently in a heuristic way [47],
the decomposition of sequence-data covariance matrices or
coupling matrices into a sum of a sparse and a low-rank matrix
can substantially improve contact prediction if only the sparse
matrix is used.

Combining this idea with the idea of generative model-
ing seems a promising road towards parsimonious sequence
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FIG. 12. The same as Fig. 5 but for the protein family PF00076.

models, which, in turn, would improve parameter inter-
pretability and reduce overfitting effects, both limiting factors
of current versions of DCA. In this context, it will also be
interesting to explore more general regularization strategies
which favor more localized sequence motifs or Hopfield-Potts
patterns thereby unifying sparse and low-rank inference in a
single framework of parameter-reduced statistical models for
biological sequence ensembles.
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APPENDIX A: RESULTS FOR OTHER PROTEIN FAMILIES

The first Appendix is dedicated to other protein families.
As discussed in the main text, we have analyzed three distinct
families and discussed only one in full detail in the main
text. Here, we present the major results—generative prop-
erties, contact prediction, and selected collective variables
(patterns)—for two more families. These results show the
general applicability of our approach beyond the specific
response-regulator family used in the main text.

1. Kunitz-bovine pancreatic trypsin inhibitor domain PF00014

Figures 7–9 display the major results for the PF00014
protein family. PPV curves are calculated using PDB ID
5pti [48].

2. RNA recognition motif PF00076

Figures 10–12 display the major results for the PF00076
protein family. PPV curves are calculated using PDB ID
2x1a [49].
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FIG. 13. The upper two panels show the statistics (two-point
connected correlations) of the training data (PF00014) against an
i.i.d. MCMC sample extracted from the inferred model and the CD
sample used for inference. The perfect coincidence of the two in
the CD case demonstrates that the CD algorithm is converged and
contrast is lost despite the fact that the correlations extracted from an
i.i.d. sample do not match the empirical ones. To understand this, we
have selected those (i, j, a, b)’s with substantial deviations, cf. the
inset in the first panel and analyzed their location in the protein (first
panel) and their amino acid composition (second panel, amino acids
in alphabetical order of one-letter code [−, A,C, . . . ,Y ]), densities
are represented via heat map plots. Location at the extremities in the
sequences and in gap-gap correlations emerge clearly.

APPENDIX B: NOTES AND DETAILS
ON INFERENCE METHODS

1. Regularization

In the case of limited data but many parameters, i.e., the
case (Hopfield-)Potts models for protein families are in, the
direct likelihood maximization in Eq. (18) can lead to over-
fitting effects, causing problems in sampling and parameter
interpretation. To give a simple example, a rare and, therefore,
unobserved event would be assigned zero probability, corre-
sponding to (negative) infinite parameter values.

To cope with this problem, regularization is used. Regu-
larization, in general, penalizes large (respectively, nonzero)
parameter values and can be justified in Bayesian inference
as a prior distribution acting on the parameter values. In this
paper and following Ref. [20], we use a block regularization
of the form

R(ξ, h) = η0

p∑
μ=1

(∑
i,a

∣∣ξμ
i (a)

∣∣)2

+ qη0

∑
i,a

hi(a)2 , (B1)

with η0 being a hyperparameter determining the strength of
regularization. This regularization weakly favors sparsity of
the patterns.

We use η0 = α0L/qM with α0 = 0.0525 as default values
throughout this paper. In the last section of this Appendix, we
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FIG. 14. The upper two panels show the statistics (two-point
connected correlations) of the training data (PF00014) against an
i.i.d. MCMC sample extracted from the inferred model and the
PCD sample used for inference. As in the CD case, the MCMC
sample shows larger deviations from the empirical observations
than the PCD sample, but correlations appear overestimated and
contrast in the PCD plot is sufficient to drive further evolution of
parameters. To understand these observations, we have selected those
(i, j, a, b)’s with substantial deviations, cf. the inset in the first panel
and analyzed their location in the protein (first panel) and their amino
acid composition (second panel, amino acids in alphabetical order
of one-letter code [−, A,C, . . . ,Y ]), densities are represented via
heat map plots. Locations at the extremities in the sequences and
in gap-gap correlations emerge clearly.

show that Hopfield-Potts inference is robust with respect to
this choice.

2. Contrastive divergence vs persistent contrastive divergence

a. Contrastive divergence does not reproduce
the two-point statistics

CD is a method for training restricted Boltzmann machines
similar to persistent contrastive divergence. Initialized in the
original data, i.e., the MSA of natural amino acid sequences, a
few sampling steps are performed in analogy to Fig. 1, and the
kth step is used in the parameter update to approach a solution
of Eq. (21). However, rather than continuing the MCMC
sampling from this sample, the sample is re-initialized in the
original data after each epoch. This has, a priori, advantages
and disadvantages: The sample remains close to a good
sample of the model in CD but far from a sample of the
intermediate model with not yet converged parameters.

As can be seen in Fig. 13, after a sufficient number of
epochs the statistics of the CD sample and the training data
are perfectly coherent, the model appears to be converged.
However, the connected two-point correlations are not well
reproduced when resampling the inferred model with standard
MCMC. Part of the empirically nonzero correlations are not
reproduced and mistakenly assigned very small values in the
inferred model.
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FIG. 15. Regularization dependence for CD inference, empirical two-point connected correlations (PF00014) are plotted against those
estimated from the model using an i.i.d. MCMC sample. The regularization strength is varied over almost two orders of magnitude with
η0 = α0L/qM and α0 = 0.0525, going from a zone of overfitting to one of over-regularization. Results are shown for various values of p,
illustrating a strong p dependence of the optimal coupling strength.

To understand this observation, we have selected the ele-
ments of the second panel, which show discrepancies between
empirical and model statistics, cf. the inset in the figure.
The corresponding values of (i, j, a, b) are strongly local-
ized in the beginning and the end of the protein chain and
correspond to the gap-gap statistics ci j (−,−). This gives a
strong hint towards the origin of the problems in CD-based
model inference: gap stretches, which exist in MSA of natural
sequences, in particular, at the beginning and the end of
proteins due to the local nature of the alignment algorithm
used in PFAM. Those located at the beginning of the sequence
start in position 1 and continue with only gaps until they are
terminated by an amino acid symbol. They never start later
than in position 1 or include individual internal amino acid
symbols (analogous for the gap stretches at the end, which go
up to the last position i = L).

In CD, only a few sampling steps are performed, so
stretched gaps in the initialization tend to be preserved even
if the associated gap-gap couplings are very weak. Basi-
cally, to remove a gap stretch, an internal position cannot be
switched to an amino acid, but the gap has to be removed
iteratively from one of its end points, namely, the one inside
the sequence (i.e., not positions 1 or L). So, in CD, even

small couplings are, thus, sufficient to reproduce the gap-gap
statistics.

If resampling the same model with MCMC, parameters
have to be such that gap stretches emerge spontaneously
during sampling. This requires quite large couplings, actually,
in BMDCA, gap-gap couplings between neighboring sites are
the largest couplings of the entire Potts model. Using now
the small couplings inferred by CD, these gap stretches do
not emerge at sufficient frequency, and correspondingly the
positions at the extremities of the sampled sequences appear
less correlated.

b. Persistent contrastive divergence and transient oscillations
in the two-point statistics

Persistent contrastive divergence overcomes this sampling
issue by not reinitializing the sample after each epoch but
by continuing the MCMC exploration in the next epoch with
updated parameters.

As shown in the main text, PCD can actually be used to
infer parameters, which lead to accurately reproduced two-
point correlations when i.i.d. samples are generated from
the inferred model. However, during inference, we have
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FIG. 16. Regularization dependence for PCD inference, empirical two-point connected correlations (PF00014) are plotted against those
estimated from the model using an i.i.d. MCMC sample. The regularization strength is varied over almost two orders of magnitude with
η0 = α0L/qM and α0 = 0.0525; results are shown for various values of p. We find a strong robustness of results with respect to regularization.

observed transient oscillations, cf. Fig. 14 for an epoch where
correlations in a subset of positions and amino acids are
overestimated. An analysis of the positions and the spins
involved in these deviations shows that again gap stretches are
responsible.

The reason can be understood easily. Initially, PCD is
not very different from CD. Gap stretches are present due
to the correlation with the training sample, and only small
gap-gap interactions are learned. However, after some epochs,
the sample will lose the correlation with the training sample.
Due to the currently small gap-gap correlations, gap stretches
are lost in the PCD sample. According to our update rules,
the corresponding gap-gap couplings will fastly increase.
However, due to the few sampling steps performed in each
PCD epoch, this growth will go on even when parameters
would be large enough to generate gap stretches in an i.i.d.
sample. Also, in the PCD sample, gap stretches will now
emerge, but due to the overestimation of parameters, they will
be more frequent than in the training sample, i.e., parameters
start to decrease again. An oscillation of gap-gap couplings is
induced.

The strength of these oscillations can be strongly reduced
by removing samples with large gap stretches from the train-
ing data and train only on data with limited gaps. If the initial

training set was large enough, the resulting models are even
expected to be more precise since gap stretches do contain
no or little information about the amino acid sequences un-
der study. However, if samples are too small, the suggested
pruning procedure may reduce the sample to an insufficient
size for accurate inference. Care has, thus, to be taken when
removing sequences.

3. Robustness of the results

As discussed before, we need to include regularization to
avoid overfitting due to limited data. In Figs. 15 and 16, we
show the dependence of the inference results due to changes
in the regularization strength over roughly two orders of
magnitude. The first of the two figures shows the results for
CD: Empirical connected two-point correlations are compared
with i.i.d. samples of the corresponding models. We note that
the results depend strongly on the regularization strength.
For low regularization, the correspondence between model
and MSA is low due to overfitting. At strong regularization,
only part of the correlations is reproduced, we over-regularize
and, thus, underfit the data. For each protein family and each
number p of patterns, the regularization strength would have
to be tuned.
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For PCD, the situation is fortunately much better; results
are found to be very robust with respect to regularization, cf.

Fig. 16. This allows us to choose one regularization strength
across protein families and pattern numbers.
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