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Abstract

Analyzing time-resolved disk-integrated spectral images of the Earth can provide a baseline for future exoplanet
characterization. The Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory
(DSCOVR) provides ∼5000 full-disk sunlit Earth images each year in ten wavelengths from the ultraviolet to the
near-infrared. A whole-disk radiative transfer model can improve our understanding of the temporal variation of
Earth’s disk-integrated reflected radiance (“light curves”) at different wavelengths and create a pool of possible
observations of Earth-like exoplanets. We use the two-stream-exact-single-scattering line-by-line radiative transfer
model to build the Earth Spectrum Simulator (ESS) and reconstruct DSCOVR/EPIC spectral observations.
Atmospheric effects, such as scattering by air molecules, clouds, aerosols, and gaseous absorption, are included.
Surface contributions are treated using appropriate bidirectional reflectance distribution functions. We simulate
∼300 images in each channel for observations collected in 2016, with a spatial resolution of ∼2000 pixels over the
visible disk. ESS provides a simultaneous fit to the observed light curves, with time-averaged reflectance
differences typically less than 7% and root-mean-square errors less than 1%. The only exceptions are in the oxygen
absorption channels, where reflectance biases can be as large as 19.55%; this is a consequence of simplified
assumptions about clouds; especially their vertical placement. We also recover principal components of the
spectrophotometric light curves and correlate them with atmospheric and surface features.

Unified Astronomy Thesaurus concepts: Spectrophotometry (1556); Radiative transfer (1335); Exoplanets (498);
Exoplanet surface variability (2023); Exoplanet atmospheres (487); Exoplanet astronomy (486); Habitable planets
(695); Earth (planet) (439); Exoplanet atmospheric composition (2021); Exoplanet atmospheric variability (2020);
Exoplanet surface characteristics (496); Exoplanet surface composition (2022)

1. Introduction

Since the discovery of the first exoplanet, 4500 more have
been confirmed. Among them, some terrestrial-size or
terrestrial-mass planets are in habitable zones, e.g., exoplanets
in the TRAPPIST-1 system (Gillon et al. 2017). Following the
launch of the Transiting Exoplanet Survey Satellite (TESS;
Ricker et al. 2015), more terrestrial planets in the habitable
zones of nearby stars are expected to be identified, paving the
way for in-depth follow-on observations. Future mission
concepts, e.g., the Large Ultraviolet Optical and Infrared
Telescope (LUVOIR; Fischer et al. 2019), and the Habitable
Exoplanet Observer (HabEx; Gaudi et al. 2019) are being
studied to obtain direct imaging and spectroscopic data for
characterization of Earth analogs. Despite the rapid advances in
observation technology, Earth-like exoplanets will remain faint
and spatially unresolved in the foreseeable future. Therefore,
analysis of single-pixel observables will remain the major
approach in characterizing Earth-like exoplanets, which
motivates a more comprehensive understanding of these disk-
integrated observables.

As the only known celestial body that harbors life, analyzing
Earth’s time-resolved disk-integrated spectral images (hereafter
referred to as light curves) can provide a baseline for future
exoplanet characterization. The Earth Polychromatic Imaging
Camera (EPIC) onboard the Deep Space Climate Observatory
(DSCOVR) provides ∼5000 full-disk sunlit Earth images each
year in ten narrowband channels extending from the ultraviolet
(UV) to the near-infrared (NIR; Figure 1(a)). By spatially
integrating the EPIC images, Jiang et al. (2018) created point-
source light curves of Earth as a proxy exoplanet and evaluated
the information with respect to cloud patterns and surface types
encoded in the temporal and spectral variations of the light
curves. Fan et al. (2019) successfully extracted information on
the surface distribution in the presence of interference from
clouds and retrieved a two-dimensional surface map using
principal components of the EPIC light curves. Using the same
data, Kawahara (2020) managed to disentangle spatial features
such as oceans, continents, and clouds, and improved the surface
mapping approach. Further work was done by Gu et al. (2021) to
go beyond the correlations found in previous studies and
demonstrate the causation between the unmixed spectra and
spatial features. They used a non-radiative-transfer-based Earth
model and demonstrated that information about low clouds,
surface types distribution, and high clouds resides in different
principal components of Earth’s light curves. However, the lack
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of inclusion of radiative transfer (RT) processes limits the
capability of investigating the influence of factors such as
atmospheric composition and scattering. Efforts have been made
to model light curves of the Earth using RT models (Tinetti et al.
2006a, 2006b; Robinson et al. 2011; Feng et al. 2018; Batalha
et al. 2019), but none of them have been validated against
observations with a time range longer than a few days.
Consequently, developing a whole-disk RT model of the Earth
and validating it with extensive observations is critical and
urgent in this context. Observations of EPIC Earth images enable
this approach.

In this work, we develop the Earth Spectrum Simulator
(ESS) and employ it to reconstruct EPIC observations during
the year 2016. The paper is organized as follows: Section 2
provides detailed information about the construction of ESS,
including the two-stream-exact-single-scattering (2S-ESS) line-

by-line RT model (Spurr & Natraj 2011), and treatment of
surface reflection and atmospheric processes such as cloud and
aerosol scattering, and gaseous absorption; Section 3 presents
results from simulations of EPIC data and describes the
performance of ESS through comparisons against observations;
Section 4 discusses possible sources of discrepancies between
ESS simulations and EPIC observations; Section 5 outlines key
conclusions.

2. Method

The EPIC instrument observes Earth from the first
Lagrangian point (L1) orbit between the Earth and the Sun,
imaging the full sunlit disk of the Earth with a 2048× 2048
charge-coupled device. The observations cover 10 narrowband
channels centered at 317, 325, 340, 388, 443, 551, 680, 688,
764, and 780 nm, with an observation interval of ∼68–110

Figure 1. EPIC (a) observed and (b) synthetic reflectance images in 10 channels at 9:08 UTC, 2016 April 5.
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minutes, resulting in ∼5000 images per channel every year. To
develop ESS and compare against EPIC observations, we first
curate a data set that can describe the atmospheric and surface
properties of the Earth during the time period of interest. The
data is then mapped onto the sunlit disk using the same spatial
grid as the EPIC observations. As a compromise between
simulating the observations with high fidelity and the
associated computational cost, we degrade the spatial resolu-
tion to ∼2000 pixels over the visible disk. The degradation is
performed by averaging parameters with weights corresp-
onding to the area of each pixel. Spectrally resolved radiance
data are then derived, using the 2S-ESS line-by-line RT model,
for each pixel at every channel and geometry corresponding to
EPIC measurements. Finally, simulated images are created
using spectral convolution with the instrument filter function.
In this work, we simulate ∼300 images in each channel
distributed around 2016. These results are used to simulate
disk-integrated spectrophotometric light curves of the Earth.

2.1. The 2S-ESS Model

The 2S-ESS model adopts an accurate calculation for the
single-scatter radiation field and employs a two-stream
approximation for multiple scattering, thus striking a balance
between efficiency and accuracy. This model has been widely
used for the remote sensing of greenhouse gases and aerosols
on Earth (Xi et al. 2015; Zhang et al. 2015, 2016; Zeng et al.
2017, 2018; Huang et al. 2020; Natraj et al. 2022). The viewing
geometry for each pixel at every time point is included in the
EPIC L1B data set (NASA/LARC/SD/ASDC, DSCOVR
EPIC Level 1B Version 3). We perform calculations with
spectral resolutions of 5, 2, 10, 10, 1, 1, 1, 0.05, 0.05, and 1
cm−1 respectively from the UV to the NIR, with the highest
resolutions for the 688 and 764 nm channels to account for the
fine structure of oxygen absorption. On the contrary, the
coarsest two resolutions correspond to smooth gas absorption
features and relatively wider bandwidths. The output reflec-
tance is then normalized by the Sun–Earth distance.

2.2. Surface Reflectance

Appropriate bidirectional reflectance distribution functions
(BRDF) are used to simulate the directional variations in
surface reflectance. Over land, we adopt the semiempirical
Ross–Thick–Li–Sparse model (Roujean et al. 1992), which
treats land surface reflectance as a linear combination of three
kernels with individual coefficients, characterizing isotropic
scattering, volumetric scattering, and geometric scattering,
respectively. We use the DSCOVR Multi-Angle Implementa-
tion of Atmospheric Correction (MAIAC) Version 02 data set
(NASA/LARC/SD/ASDC 2018) for the model coefficients
for the 443, 551, 680, and 780 nm channels. Figure 2(a) shows
a sample land reflectance map in the 551 nm channel calculated
using the Ross–Thick–Li–Sparse model. For the two oxygen
absorption channels (688 and 764 nm), coefficient data from
the nearby nonabsorbing channels (680 and 780 nm) are used.
For the four UV channels, scaled 443 nm BRDF data are used.
Scaling factors are given by the ratio between laboratory
measured reflectance in the corresponding UV channels and the
443 nm channel, depending on the surface type (Figure 2(g)).
Using spatially resolved EPIC-view land cover data included in
the DSCOVR composite data set (NASA/LARC/SD/
ASDC 2017), we group the land surface into seven types:

desert, grass, wetland, snow, tree, lichen, and shrub (Table 1).
Examples of the surface type map at two time points are shown
in Appendix A1. Due to the limited capability of cloud
identification over snow/ice-covered areas using observations
obtained through EPIC channels, MAIAC does not provide
BRDF information for snow- or ice-covered pixels. Therefore,
we assume a Lambertian albedo for these land types
(Figure 2(g)).
The water surface reflectance in ESS is simulated by the

Cox–Munk model (Cox & Munk 1954). It enables the
calculation of liquid water specular reflectance given wind
speed and water refractive index, and thus can reconstruct the
sunglint feature (Figure 2(b)). The input wind speed data is also
obtained from DSCOVR composite data (NASA/LARC/SD/
ASDC 2017). Due to spatial degradation, coastal pixels are
mixtures of both land and ocean surfaces. For these pixels, RT
calculations are performed twice, once each for land and ocean
surface. The radiance is calculated as a weighted average based
on the area fractions of the original land and ocean pixels.

2.3. Atmospheric Properties

Both Rayleigh scattering and molecular absorption are
included in ESS. Given the fact that EPIC bands are narrow,
contributions from gaseous species other than O2, O3, and H2O
are small; therefore, only these three gases are considered in the
EPIC simulations (Table 2). For O2, and H2 O, gas absorption
cross-sections are generated using the HITRAN 2008 database
(Rothman et al. 2009), on top of which additional continuum
absorption is also included using the MT_CKD model (Mlawer
et al. 2012). The HITRAN-based cross-sections are calculated
as Voigt line profiles using the pressures and temperatures of
the respective atmospheric layers. For O3, cross-section tables
based on the works of Daumont et al. (1992), Brion et al.
(1993), Brion et al. (1998), and Malicet et al. (1995) are used.
Moreover, H2O and temperature profiles are assumed to be
spatially invariant due to their limited effect on the light curves
(Figure 2(h)). Also, as O2 is well-mixed in the Earth’s
atmosphere, a uniform vertical distribution is employed over
the entire Earth (Figure 2(h)). The representative profiles
shown in Figure 2(h) are extracted over the land region (34°N)
at noontime in the US from the National Center for
Environmental Prediction–National Center for Atmospheric
Research reanalysis data (Kalnay et al. 1996). The spatially and
temporally varying surface pressure (Figure 2(c)) data are
extracted from the Modern-Era Retrospective analysis for
Research and Application, Version 2 (MERRA-2; Global
Modeling & Assimilation Office 2015b). For each pixel, the
a priori temperature and H2O profiles (Figure 2(h)) are
interpolated to the MERRA-2 pressure levels in log-pressure
space for the RT calculation. ESS also uses spatially and
temporally varying three-dimensional O3 data, similarly
extracted from MERRA-2 (Global Modeling & Assimilation
Office 2015b; Figure 2(d)), which provides 3 hourly,
instantaneous assimilations of ozone mixing ratio in 72 model
layers. For the purpose of reasonably reducing computation and
storage cost, we use data on days 5, 15, and 25 of each month
in lieu of a fully varying data set.
The atmospheric aerosol data is also extracted from the

MERRA-2 data set (Global Modeling & Assimilation Office
2015a), which provides mixing ratios in 72 model layers for
five aerosol types: dust, sulfate, sea salt, black carbon, and
organic carbon. The wavelength-dependent scattering and

3
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extinction coefficients and phase functions of these aerosol
types are calculated using Mie scattering theory, except for dust
where nonsphericity is taken into account (Meng et al. 2010).
The aerosol optical properties are obtained using the same
methodology as that used by Crisp et al. (2021). Figure 2(e)

shows an example of the total aerosol optical depth distribution
in the 551 nm channel. Similar to the procedure for O3, data on
days 5, 15, and 25 of each month are used in the analysis.
Clouds constitute another important contribution to the UV-

NIR Earth spectrum. We classify clouds as liquid and ice

Figure 2. (a) Land reflectance map, calculated using the Ross–Thick–Li–Sparse model (Roujean et al. 1992). (b) Ocean reflectance map, calculated using the Cox–
Munk model (Cox & Munk 1954). (c) Surface pressure map. (d) Column integrated ozone map. (e) Total aerosol optical depth map. (f) Total cloud optical depth. (g)
Laboratory reflectance data for seven surface types. Snow (300 ∼ 340 nm) and wetland (300 ∼ 400 nm) reflectance are partly extrapolated in the UV channels, using
the nearest available value. Wetland, shrub, snow, lichen, and grass data are taken from the USGS Spectral Library (Kokaly et al. 2017). Desert and tree data are from
the RELAB spectral database (Pieters & Hiroi 2004). (h) Fixed vertical profiles used for water vapor, oxygen, and temperature. All maps are for the 551 nm channel
and have the same viewing geometry of EPIC at 9:08 UTC, 2016 April 5.
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particles. For simplicity, only one type of cloud is assumed to
exist at a single pixel and the vertical distribution is prescribed
and fixed. Liquid cloud optical properties are computed using
Mie theory, with parameters relevant to continental stratus
clouds employed in the calculations (Hess et al. 1998). For ice
clouds, a habit mixture of generalized cirrus is assumed (Baum
et al. 2011). The cloud spatial distribution, optical depth,
effective pressure, and effective radius (for ice clouds only) are
obtained from EPIC composite data (NASA/LARC/SD/
ASDC 2017). A sample total cloud optical depth distribution
map is shown in Figure 2(f). Multiple RT computations are
performed for degraded pixels with mixed cloud types at the
degraded spatial resolution. For example, the simulated
reflectance of a pixel covered with 50% liquid cloud, 20%
ice cloud, and 30% clear sky is computed using a weighted
average of three separate RT calculations.

3. Results

Figures 1(b) and (b) show examples of simulated Earth
images in the 10 EPIC channels at two time points. ESS is able
to reproduce all major characteristics in the observations.
Generally, in the shortest wavelength channels, the strong
Rayleigh scattering results in bright images. Due to the
increasing ozone absorption from 340 to 317 nm, the brightest
image is in the 340 nm channel (Figures 1 and 3). On the other
hand, in the longer wavelength channels, surface information is
more clearly seen except for the two oxygen absorption
channels (688 and 764 nm). An enhancement of land
reflectance is apparent, especially for vegetated pixels
(Appendix A1) because of the red edge effect (Figures 1 and
3; 780 nm). Owing to the detailed description of land BRDF,
the reflectance features of different land surface types are
reflected in the simulations; for example, the increasing
reflectance of desert pixels (Appendix A1) through the 551,
680, and 780 nm channels, in contrast with the abrupt increase
of vegetation reflectance in the 780 nm channel. Moreover, the
usage of MAIAC data (NASA/LARC/SD/ASDC 2018)
guarantees a better representation of the backscattering peak
viewed at EPIC geometry. The ocean glint feature can also be
seen due to the inclusion of the Cox–Munk surface model
(Figures 1(b) and 3(b)). The exact location and cloud
characteristics are slightly different due to the usage of the
DSCOVR composite data set (NASA/LARC/SD/
ASDC 2017); the cloud data in the satellite composite data
set is not at exactly the same time as the EPIC observations, but
the general cloud patterns, such as tropical deep convective
clouds (blue box in Figure 3) and midlatitude fronts (purple
box in Figure 3) can still be captured at the degraded spatial
resolution.
The differences between the ESS results and the observa-

tions suggest possible improvements. First, in the short
wavelength channels, simulated reflectances for clear-sky
pixels are lower than observed values. This is possibly a result
of the simplified treatment of multiple scattering in the 2S-ESS
model. Cloudy pixels generally appear to be brighter in the
simulations, especially those with ice clouds. This could be a
result of both simplified ice cloud models and degraded cloud
properties due to the low spatial resolution used in the

Table 1
Surface Type Categorization

Index Surface Type Index Surface Type

Tree 1 Evergreen Needleleaf Forest 12 Cropland

2 Evergreen Broadleaf Forest 14 Croplands Mosaics

3 Deciduous Needleleaf Forest Wetland 11 Permanent Wetlands

4 Deciduous Broadleaf Forest Lichen 18 Tundra

5 Mixed Forest Desert 13 Urban and Built-up

Shrub 6 Closed Shrublands 16 Bare Soil and Rocks

7 Open Shrublands Ocean 17 Water Bodies

Grass 8 Woody Savannas Snow/Ice 15 Snow and Ice (permanent)

9 Savannas 19 Snow (seasonal over land)

10 Grasslands 20 Ice (on water bodies)

Note. The 19 land surface types in the DSCOVR composite data are regrouped into seven.

Table 2
Gaseous Absorption

Band
Index

Band Cen-
ter (nm) O2 (CTM

a) O2 O3

H2

O (CTM) H2O

1 317 ✓

2 325 ✓

3 340 ✓ ✓

4 388 ✓ ✓

5 443 ✓ ✓

6 551 ✓ ✓ ✓ ×

7 680 ✓ ✓ ×

8 688 × ✓ ✓ ×

9 764 ✓ × ✓ ×

10 780 × ✓ ✓ ×

Notes. Cross marked area denotes the use of the HITRAN 2008 database, while
right mark indicates that cross-section tables are used.
a CTM denotes continuum absorption.
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simulations. Also, snow- or ice-covered pixels are darker due to
the Lambertian assumption. However, this has a small effect in
the simulations due to the low spatial coverage (∼10%) and
confinement to high latitudes, which have small weights in disk
integration. Extreme viewing geometry can also cause
problems at the edges of the disk.

A comparison of the time-averaged Earth spectrum between
EPIC observations and simulations is shown in Figure 4. The
same time points are used in both data sets to calculate the
time-averaged reflectance. ESS reproduces the mean Earth
spectrum with errors less than 7% (Table 3), and mostly within
5%, except for the two oxygen absorption channels (688 and
764 nm), where the simulations are brighter than the observa-
tions by as much as 19.53%. For bands 317–443 nm, ESS
provides a slightly darker simulation, while for the other longer
wavelength channels, the simulation tends to be brighter. The

standard deviation in each channel is denoted in Figure 4 by the
shaded area, and the percentage difference in reflectance
between the two data sets is shown in Table 3. In general, the
simulated data show a slightly larger temporal variation than
the observations. A comparison between the simulated and
observed light curves in the 10 channels is shown in Figure 5.
Time-averaged values are extracted from both data sets in all
channels. A general seasonal cycle with a larger reflectance
during the southern hemisphere summer, which is related to a
closer Sun–Earth distance and the Antarctic ice sheet, can be
reproduced by the simulations in all the channels. In addition, a
relatively smaller enhancement during the northern hemisphere
summer can also be seen in the simulations, which can be
related to larger land cover and larger cloud cover due to the
South Asian monsoon, as presented in Jiang et al. (2018). A
scatter plot of the data points in Figure 5 is shown in Figure 6.

Figure 3. EPIC (a) observed and (b) synthetic reflectance images in 10 channels at 14:47 UTC, 2016 August 7. The purple and blue boxes indicate examples of
midlatitude front and tropical deep convective cloud, respectively.
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The simulations show a good fit with the observations, with
slopes all close to unity. Slightly larger slopes can be seen in
the two oxygen absorption channels (688 and 764 nm). Table 3
shows the root-mean-square errors (RMSE) of the light curves
presented in Figures 5 and 6, which helps to measure the
goodness of the simulated time-dependent variability in each
channel. With RMSE all smaller than 1%, the simulations show
a good temporal match with the observations.

To evaluate the performance of ESS in terms of capturing the
spectral and time-dependent characteristics of the Earth in its
disk-integrated light curves, we use singular value decomposi-
tion (SVD) analysis, in line with previous efforts (Fan et al.
2019; Gu et al. 2021), and compare the principal components
(PCs) between observation and simulation (Figure 7). The
entire observation data set contains ∼5000 time points in the
year 2016, while the subsampled data set contains ∼300 time

points to match the simulation. First, the comparison of the
singular value distributions of the full and subsampled
observation data sets suggests that ∼300 time points are
sufficient to recover the time variation characteristics of the
light curves, although the singular values are smaller in
amplitude due to fewer time points (Figure 7(a)). Second, for
the same time points, the singular values of the simulated light
curves are generally larger than those of the subsampled
observations, corresponding to larger temporal variation in the
simulated light curves (Table 3). For both data sets, the first
two PCs (PC1 and PC2) contribute more than 95% of the total
variance, while the last four PCs (PC7 to PC10) contribute less
than 0.3%. Therefore, we ignore the latter in the PC spectra
comparison (Figure 7(b)). The sequence of the observed PC
spectra is adjusted for a clearer comparison of their
characteristics; specifically, PC3 and PC4 are switched. The

Figure 4. Time-averaged Earth spectrum. The red and blue lines represent the observed and simulated results, respectively. The shaded area denotes the standard
deviation in each channel.

Table 3
Model Performance

Band Center (nm) Avg Diff (%) Std a Diff (%) RMSE b (%) Band Center (nm) Avg Diff (%) Std Diff (%) RMSE (%)

317 −3.83 5.07 0.25 551 2.07 9.20 0.60

325 −0.06 12.56 0.38 680 6.90 2.00 0.74

340 −2.16 12.03 0.44 688 14.20 27.15 0.65

388 −0.30 12.56 0.44 764 19.55 36.82 0.54

443 −0.84 11.17 0.49 780 6.50 −7.97 0.82

Notes. Negative values indicate that the simulation has a smaller result than the observation.
a Std denotes standard deviation.
b RMSE denotes root-mean-square errors. For residual light curves, it is calculated by comparing the simulation to the observation in each channel over the entire time
period.
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simulation successfully reconstructs PCs 1–5. In particular, for
the first two PCs, the simulation has a near perfect match with
the observation, indicating that ESS can recover the two most
important signals, which have previously been reported as
indicative of low clouds and surface distribution, respectively
(Gu et al. 2021). The observed PC4 and PC3 also have good
matches with the simulated PC3 and PC4. Since the observed
PC4 mainly contains high cloud information (Gu et al. 2021)
and ESS simulates the high (ice) clouds with a brighter
reflectance, the eigenvalue of this signal increases along with
increased variance contributed by high clouds.

4. Discussion

ESS is capable of reproducing EPIC observations in the 10
wavelength channels, in terms of both absolute brightness and
temporal variation. It can also reconstruct the principal
components, which represent the spectrophotometric variations
of the Earth. This validation not only ensures the accuracy of
ESS as a tool for producing EPIC-like data for further research
related to EPIC observations, but also hints at the potential for
extending it to other wavelengths. Furthermore, because of the
detailed treatment of the directional reflection of the surface, it
enables a new generation of more realistic phase-dependent

Figure 5. Time series of disk-integrated reflectance deviation from the time average. Red and blue lines denote observed and simulated results, respectively.

Figure 6. Correlation between simulated and observed disk-integrated reflectance deviations. The x- and y-axis values correspond to the observations and simulations,
respectively, which are also the red and blue lines in Figure 5, respectively. The gray line denotes a 1:1 correspondence.
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light curves of the Earth, which will extend the usage of EPIC
observations for exoplanet research. Moreover, in comparison
with the simplified model presented in Gu et al. (2021), the
inclusion of RT processes enables ESS to simulate light curves
of Earth-like exoplanets with different configurations, such as
surface distribution, cloud patterns, and atmospheric condi-
tions, in combination with general circulation models (GCMs).
The Earth simulations provide a starting point and benchmark
for characterizing exoplanets, especially in terms of utilizing
temporal variations. Furthermore, for future missions aiming at
the detection of Earth-like exoplanets, more emphasis will be
placed on wavelengths from the UV to the NIR due to low
planetary temperatures, such as the 575, 660, 730, and 825 nm
bandpasses for the coronagraph instrument onboard the Nancy
Grace Roman Space Telescope (Groff et al. 2021), the
coronagraph and starshade instrument covering 0.2–1.8 μm
on HabEx (Gaudi et al. 2019), and the ECLIPS instrument
covering 0.2–2.0 μm on LUVOIR (Fischer et al. 2019).
Combined with instrument models, ESS will be a good testing
ground, generating Earth-like exoplanet light curves for
detectability research.

Although our simulations provide good agreement with the
observations, there are two possible improvements that can be
implemented in future work:

(1) The simplified cloud settings account for a large part of
the biases in the simulations. First, clouds (especially ice
clouds) generally appear brighter in our simulations. Figures 8
and 9 show the probability distributions of the pixel reflectance
for liquid and ice clouds, respectively. Both simulation and
observation results are shown in all 10 channels for
comparison. We select the liquid/ice cloud pixels based on
the DSCOVR composite data, using a threshold of 80% in
cloud fraction. The observations are all first degraded to the
same spatial resolution as the simulations before selecting the

pixels. For liquid clouds, a slightly longer tail of bright
reflectance is noticeable in most of the channels; this is
especially true in the longest four wavelength channels, where
there is a clear shift of the distribution peak toward larger
values (Figure 8). On the contrary, although there is no large
shift of the peak in the ice cloud reflectance distribution, a fatter
tail of high-reflectance values is evident in all channels,
demonstrating a biased representation of ice cloud properties.
Our knowledge of ice clouds is limited due to large
uncertainties in ice crystal microphysical and optical properties.
At the same time, sophisticated ice cloud models are being
developed for various applications. A more meticulous
classification and application of ice cloud models may help
improve the current model. Second, the largest difference exists
in the two oxygen absorption channels (688 and 764 nm) in
both disk-integrated (Figures 4 and 6) and pixel (Figures 8 and
9) reflectance comparisons. Given the large sensitivity of these
two channels to cloud height (Richardson et al. 2017; Zeng
et al. 2020), we perform a sensitivity test by placing the clouds
at 10% higher effective pressure. About 30 time points are
tested, with both disk-integrated and pixel reflectance results
shown in Figure 10. For a clearer comparison, results for the
same time points in the original simulation are also shown. The
average simulation difference drops by 4.62% and 7.86% in the
688 nm and 764 nm channels, respectively (Figure 10(a)), with
no significant changes identified in the slopes. Since ice cloud
effective pressure is generally smaller, a 10% increase would
result in a smaller absolute change than that for liquid clouds.
As a result, a relatively smaller shift to lower values can be
found in the ice cloud pixel reflectance histograms
(Figure 10(b)). Meanwhile, for liquid clouds, the peaks shift
to smaller values with 9.86% and 14.27% decreases in average
reflectance for 688 nm and 764 nm, respectively (Figure 10(c)).

Figure 7. (a) Singular values for the full observation (black; ∼5000 time points; normalized by a factor of 0.26), subsampled observation (red; ∼300 time points, same
as the number of simulation time points), and simulated (blue) light curves. (b) Eigenvectors (spectra) of the first six PCs of the full observation (black), subsampled
observation (red), and simulated (blue) light curves. The text in each panel denotes the PC index for the three sets of data. PC3 and PC4 are switched between the
simulations and observations for a clearer comparison.
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This demonstrates the importance of accurate cloud vertical
distribution information.

(2) Though the model gives good fits for the time-averaged
reflectance in the short wavelength channels, the clear sky
pixels are generally darker, compensating for the brighter
clouds. As shown in Figure 11, a shift of the peak to smaller
values becomes more significant in the shorter wavelength
channels (pixels with a total cloud fraction less than 20% are
selected). Given the strong Rayleigh scattering effect in these
bands, the simplified multiple scattering approximation in the
2S-ESS RT model is likely the major cause of the relatively
dark simulations. To demonstrate this effect, we compare

results using the numerically more exact VLIDORT RT model
(16 streams; Spurr 2006) with those from the 2S-ESS model,
with gas absorption neglected. Comparisons for the 317 nm and
443 nm channels are shown in Figure 12. Despite the relatively
small changes in cloud reflectance, the clear sky pixel
reflectances in these two channels using VLIDORT are
22.32% and 59.34% larger on average than those using 2S-
ESS, indicating the necessity for better representation of
multiple scattering when simulating UV channels. Besides
Rayleigh scattering, other factors such as ocean volume
scattering and ocean color change due to chlorophyll may also
contribute to the differences.

Figure 8. Histograms of liquid cloud-covered pixel reflectance for observation (red) and simulation (blue) for the 10 EPIC channels.

Figure 9. Same as Figure 8, but for ice cloud-covered pixels.
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Furthermore, there are two more aspects that should be noted
when using ESS for exoplanet characterization, especially
when the focus is on atmospheric effects on light curves:

(1) Although the HITRAN 2008 database is used in the
current version of ESS, inclusion of the latest HITRAN 2020
database, which contains more absorption lines for H2O and
O2, introduces small differences in the absolute value of the
simulated EPIC channel reflectance. A comparison of the
transmissivity of H2O and O2 using the two databases in the

five longest wavelength channels (the HITRAN database is
only used for optical depth computations in these channels) is
shown in Appendix A2. The profiles in Figure 2(h) are used to
calculate the column integrated optical depth (OD), and the
wavelength-dependent transmissivity is then calculated as exp
(–OD). After convolution with filter functions, we can obtain
the band-averaged transmissivities (Appendix A2). Compared
to HITRAN 2008, HITRAN 2020 introduces small changes in
the O2 transmissivity: there is a high bias of ∼ 0.23% in the

Figure 10. (a) Scatter plots of simulated disk-integrated reflectance against observations for the original simulation (blue dots) and the “10% higher cloud effective
pressure” experiment (red dots) in the two oxygen absorption channels. Linear regression results for the original simulation (blue line) and the experiment (red line) are
also given. (b) Histograms of ice cloud-covered pixel reflectance for the original simulation (blue) and the experiment (red). (c) Same as (b), but for liquid cloud-
covered pixels.

Figure 11. Same as Figure 8, but for clear-sky pixels.
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688 nm channel, and a low bias of ∼ 0.5% in the 764 nm
channel. The greater number of H2O lines included in HITRAN
2020 results in smaller transmissivity in all five channels.
However, as the H2O ODs are small, the updated HITRAN
version has a negligible effect on the transmissivity, with
changes ~ 0.01%. Table 4 provides a summary of the average
reflectance difference between the HITRAN versions. We
select eleven different sets of profiles (Figure A2; no aerosols
or clouds), and calculate the one-dimensional reflectance over
three different underlying surface types (forest, desert, and
ocean) for multiple viewing geometries. The differences for the
various scenarios in the 551 nm channel are also shown in
Figure A3. The average difference for the 551 nm channel,
shown in Table 4, is calculated by averaging all the data points
(11 profiles, three surface types, and eight geometries) in
Figure A3. The largest difference, caused by the O2 OD
increase, is in the 764 nm channel, with ∼ 1.2% decrease in
reflectance. For the other channels, the differences are within
0.5%, which demonstrates that usage of HITRAN 2020 would
likely only result in small changes in the EPIC reflectance
images.

(2) In our current version of ESS, single representative
temperature and H2O profiles are used for the entire Earth.
Spatially and temporally varying profiles would likely cause
changes in the disk-integrated reflectance. About thirty time
points are tested with profile data from MERRA-2 (Global
Modeling & Assimilation Office 2015c); the differences are
shown in Table 5. The average differences in all channels are
within 0.7%, which demonstrates a negligible influence of the
variability in the profiles on the absolute disk-integrated
reflectance. Moreover, the range of the differences, represented
by the minimum and maximum values in Table 5, are all within
2%, which indicates small changes due to the temporal
variation as well. It seems that integrating over the entire disk
makes the spatiotemporal variation of temperature and H2O
profiles a second or higher order effect on the light curves.

However, for future exoplanet characterization extending to
other wavelength channels, the above effects may need to be
considered.

5. Conclusions

We have developed a whole-disk spectral model, called ESS,
to simulate light curves of the Earth and validated it using EPIC
observations covering the spectral region from the UV to the
NIR. The simulator utilizes the 2S-ESS line-by-line RT model
and accounts for atmospheric effects, including clouds,
aerosols, and gas absorption. Realistic surface contributions
are also included by using appropriate BRDF data. We simulate
∼300 full-phase images in each channel for the year 2016 with
a spatial resolution of ∼2000 pixels over the sunlit disk. The
time-averaged spectrum, as well as the light curves, can be
reproduced with high fidelity by ESS. The principal compo-
nents can also be simulated, indicating the good performance of
our model in reconstructing the temporal variation of the light
curves. The largest discrepancies are in the two oxygen
absorption channels (688 and 764 nm) for both the time-
averaged reflectance and its temporal variation. These

Figure 12. Histograms of (a) ice cloud-covered, (b) liquid cloud-covered, and (c) clear sky pixel reflectance for simulations using approximate (2S-ESS; blue) and
numerically exact (VLIDORT; red) RT models.

Table 4
Average Reflectance Difference Between HITRAN 2020 and HITRAN 2008

Band
Center (nm)

Average
Difference (%)a

Band
Center (nm)

Average
Difference (%)

551 −0.02 764 −1.2
680 −0.02 780 −0.02
688 0.43

Notes. Negative values indicate that HITRAN2020 has a low bias in
reflectance compared to HITRAN2008.
a Average difference is calculated by averaging the differences over all tested
data points (11 profiles, three surface types, and eight solar zenith angles); an
example for the 551 nm band is shown in Figure A3.
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differences result from simplified cloud settings, especially for
ice clouds, demonstrating the important role of clouds in
determining the nature of disk-integrated light curves in gas
absorption channels. In spite of these discrepancies, high cloud
information can still be disentangled through SVD analysis,
indicating the robustness of this signal. The simplified
treatment of multiple scattering in the 2S-ESS RT model
counteracts biases in cloud simulation in the UV channels. We
envisage future improvements to better represent the multiple
scattering contributions. The reproduction of Earth’s character-
istics (spectral and temporal) with high fidelity indicates that
ESS can not only be used to generate Exo-Earth light curves
but also be a testing ground for Earth-like exoplanet light
curves in combination with GCMs. Moreover, combined with
direct imaging instrument models, ESS can serve as a robust,
reliable, and efficient forward model for future exoplanet
characterizations.
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Appendix

A1.

Eight surface types are included in our surface reflectance
calculation (Figure A1).

A2.

In order to illustrate the differences between HITRAN 2008
and HITRAN 2020, we provide the transmissivity of H2O and
O2, calculated using the two databases in the five longest
wavelength channels, in Table A1. Further, eleven different
sets of profiles (Figure A2; no aerosols or clouds) are used to
calculate the one-dimensional reflectance over three different
underlying surface types (forest, desert, and ocean) for multiple
viewing geometries. An example of the reflectance difference is
shown for the 551 nm channel in Figure A3.

Table 5
Disk-integrated Reflectance Difference Caused by Spatially and Temporally Varying Temperature and H2O Profiles

Band Center (nm) Difference (%) Avg (Min, Max) a Band Center (nm) Difference (%) Avg (Min, Max)

317 −0.60 [−0.82, −0.37] 551 −0.21 [−0.32, −0.08]
325 −0.70 [−0.85, −0.55] 680 −0.11 [−0.32, 0.26]
340 −0.66 [−0.79, −0.54] 688 0.15 [−0.11, 0.55]
388 −0.55 [−0.68, −0.44] 764 0.68 [−0.07, 1.83]
443 −0.44 [−0.56, −0.36] 780 −0.08 [−0.11, −0.00]

Notes. Negative values indicate that the varying profiles cause a decrease in reflectance.
a Average [Minimum, Maximum].
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Figure A1. Distribution of the eight surface types at (a) 9:08 UTC, 2016 April 5, and (b) 14:47 UTC, 2016 August 7.

Table A1
Sample Transmissivities for H2O and O2 Calculated using HITRAN 2008 and HITRAN 2020

Band Center (nm) H Transmissivity a (%) O2 Transmissivity (%)

HITRAN
2008

HITRAN
2020

HITRAN
2008

HITRAN
2020

551 99.9557 99.9433 100.00 100.00
680 99.9664 99.9622 99.8404 99.8420
688 99.8210 99.8159 71.2951 71.5293
764 100.00 99.9959 49.2614 48.7703
780 99.9733 99.9659 99.9998 99.9998

Note.
a The Transmissivity is calculated as exp(–OD), where the OD denotes the column integrated optical depth. The profiles used in the OD calculations are shown in
Figure 2(h). The values of band-averaged transmissivity, shown in the table, are after convolution with the filter function for each band.
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Figure A2. Profiles of (a) temperature and (b) H2O used for the reflectance comparison between HITRAN 2008 and HITRAN 2020.

Figure A3. Reflectance difference between HITRAN 2020 and HITRAN 2008 in the 551 nm channel. Tests are done for the eleven different sets of profiles shown in
Figure A2, over three different underlying surface types: (a) ocean, (b) forest, and (c) desert. For each set of profiles over each underlying surface type, eight different
viewing geometries are tested (colored dots): solar zenith angle (equal to viewing zenith angle) varies from 10°to 80°. The relative azimuth angle is assumed to
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