
HAL Id: insu-03726910
https://insu.hal.science/insu-03726910

Submitted on 22 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Better calibration of cloud parameterizations and
subgrid effects increases the fidelity of the E3SM

Atmosphere Model version 1
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew

Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein,
Mark D. Zelinka, et al.

To cite this version:
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, et al.. Better
calibration of cloud parameterizations and subgrid effects increases the fidelity of the E3SM Atmo-
sphere Model version 1. Geoscientific Model Development, 2022, 15, pp.2881-2916. �10.5194/gmd-15-
2881-2022�. �insu-03726910�

https://insu.hal.science/insu-03726910
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Geosci. Model Dev., 15, 2881–2916, 2022
https://doi.org/10.5194/gmd-15-2881-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Better calibration of cloud parameterizations and subgrid effects
increases the fidelity of the E3SM Atmosphere Model version 1
Po-Lun Ma1, Bryce E. Harrop1, Vincent E. Larson2,1, Richard B. Neale3, Andrew Gettelman3, Hugh Morrison3,
Hailong Wang1, Kai Zhang1, Stephen A. Klein4, Mark D. Zelinka4, Yuying Zhang4, Yun Qian1, Jin-Ho Yoon5,
Christopher R. Jones1, Meng Huang1, Sheng-Lun Tai1, Balwinder Singh1, Peter A. Bogenschutz4, Xue Zheng4,
Wuyin Lin6, Johannes Quaas7, Hélène Chepfer8, Michael A. Brunke9, Xubin Zeng9, Johannes Mülmenstädt1,
Samson Hagos1, Zhibo Zhang10, Hua Song11, Xiaohong Liu12, Michael S. Pritchard13, Hui Wan1, Jingyu Wang14,
Qi Tang4, Peter M. Caldwell4, Jiwen Fan1, Larry K. Berg1, Jerome D. Fast1, Mark A. Taylor15,
Jean-Christophe Golaz4, Shaocheng Xie4, Philip J. Rasch1, and L. Ruby Leung1

1Pacific Northwest National Laboratory, Richland, Washington, USA
2Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
3National Center for Atmospheric Research, Boulder, Colorado, USA
4Lawrence Livermore National Laboratory, Livermore, California, USA
5School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology,
Gwangju, South Korea
6Brookhaven National Laboratory, Upton, New York, USA
7Institute for Meteorology, Universität Leipzig, Leipzig, Germany
8LMD/IPSL, Sorbonne Université, École Polytechnique, CNRS, Paris, France
9Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona, USA
10Department of Physics, University of Maryland, Baltimore County, Baltimore, Maryland, USA
11Science Systems and Applications, Inc., Lanham, Maryland, USA
12Department of Atmospheric Sciences, Texas A&M University, College Station, Texas, USA
13Department of Earth System Science, University of California, Irvine, California, USA
14Department of Humanities and Social Studies Education, National Institute of Education, Nanyang Technological
University, Singapore, Singapore
15Sandia National Laboratory, Albuquerque, New Mexico, USA

Correspondence: Po-Lun Ma (po-lun.ma@pnnl.gov)

Received: 29 August 2021 – Discussion started: 13 October 2021
Revised: 31 January 2022 – Accepted: 16 February 2022 – Published: 7 April 2022

Abstract. Realistic simulation of the Earth’s mean-state cli-
mate remains a major challenge, and yet it is crucial for
predicting the climate system in transition. Deficiencies in
models’ process representations, propagation of errors from
one process to another, and associated compensating errors
can often confound the interpretation and improvement of
model simulations. These errors and biases can also lead
to unrealistic climate projections and incorrect attribution
of the physical mechanisms governing past and future cli-
mate change. Here we show that a significantly improved
global atmospheric simulation can be achieved by focusing

on the realism of process assumptions in cloud calibration
and subgrid effects using the Energy Exascale Earth Sys-
tem Model (E3SM) Atmosphere Model version 1 (EAMv1).
The calibration of clouds and subgrid effects informed by
our understanding of physical mechanisms leads to signifi-
cant improvements in clouds and precipitation climatology,
reducing common and long-standing biases across cloud
regimes in the model. The improved cloud fidelity in turn
reduces biases in other aspects of the system. Furthermore,
even though the recalibration does not change the global
mean aerosol and total anthropogenic effective radiative forc-
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ings (ERFs), the sensitivity of clouds, precipitation, and sur-
face temperature to aerosol perturbations is significantly re-
duced. This suggests that it is possible to achieve improve-
ments to the historical evolution of surface temperature over
EAMv1 and that precise knowledge of global mean ERFs is
not enough to constrain historical or future climate change.
Cloud feedbacks are also significantly reduced in the recali-
brated model, suggesting that there would be a lower climate
sensitivity when it is run as part of the fully coupled E3SM.
This study also compares results from incremental changes
to cloud microphysics, turbulent mixing, deep convection,
and subgrid effects to understand how assumptions in the
representation of these processes affect different aspects of
the simulated atmosphere as well as its response to forcings.
We conclude that the spectral composition and geographical
distribution of the ERFs and cloud feedback, as well as the
fidelity of the simulated base climate state, are important for
constraining the climate in the past and future.

1 Introduction

The Energy Exascale Earth System Model (E3SM) version
1 (E3SMv1) (Golaz et al., 2019; Caldwell et al., 2019) in-
cludes an atmospheric component called the E3SM atmo-
sphere model (EAM) version 1 (EAMv1) (Rasch et al.,
2019). EAMv1 was released in April 2018 together with
the fully coupled E3SMv1 and all of its model compo-
nents. EAMv1 uses a revised four-mode version of the modal
aerosol module (MAM) (Liu et al., 2012, 2016; Wang et al.,
2020); an updated two-moment cloud microphysics scheme
(Gettelman and Morrison, 2015; Gettelman et al., 2015)
(hereafter MG2); the Cloud Layers Unified By Binormals
(CLUBB) parameterization (Golaz et al., 2002; Larson et
al., 2002; Larson and Golaz, 2005; Bogenschutz et al., 2013)
for turbulence, shallow convection, and cloud macrophysics;
the Zhang and McFarlane (1995) (ZM) parameterization for
deep convection with the addition of convective momentum
transport (Richter and Rasch, 2008); and a modified dilute
plume calculation (Neale et al., 2008). The model shows gen-
eral success in simulating present-day climatology, produc-
ing improved simulation compared to atmospheric simula-
tions of previous-generation Earth system models (ESMs)
(Rasch et al., 2019) that participated in the Coupled Model
Intercomparison Project (CMIP) phase 5 (CMIP5) (Taylor et
al., 2012).

However, EAMv1 still produces significant regional cloud
and precipitation biases that are common in many ESMs
(Y. Zhang et al., 2019; Xie et al., 2018; Brunke et al., 2019).
These persistent errors include the underestimation of coastal
stratocumulus (Sc), overly bright trade cumulus (Cu), mislo-
cation of the Sc-to-Cu transition regions, and a notable un-
derestimation of the areal extent of clouds over the Indo-
Pacific warm pool. EAMv1 also showed some new cloud

biases compared to its predecessors, including overly bright
clouds embedded within storm tracks and an unrealistically
high liquid water path (LWP) in polar regions (Zhang et al.,
2020). Closely related to these errors are biases in the mean,
variability, and extremes of precipitation. As shown in Rasch
et al. (2019), EAMv1 produces high annual mean precipi-
tation over the global average in high-elevation regions and
in the central Pacific but low annual mean precipitation over
Amazonia and the tropical western Pacific (TWP). EAMv1
contains the signature of a double Intertropical Convergence
Zone (ITCZ) that has been problematic in ESMs for over
2 decades (Mechoso et al., 1995; Dai, 2006). Furthermore,
similar to many other coarse-resolution models, EAMv1 pro-
duces too many light precipitation events and too few heavy
precipitation events compared to observations (Stephens et
al., 2010). The diurnal cycle of precipitation over regions
that are strongly influenced by mesoscale convective systems
(MCSs) is skewed, producing peak precipitation at midday
instead of from the late afternoon to early morning (Xie et
al., 2019). These common and persistent biases in predic-
tions of clouds and precipitation arise from the coarse model
resolution that is insufficient to represent small-scale fea-
tures, as well as various deficiencies in parameterizations of
cloud, turbulence, and convection processes. These deficien-
cies can, in turn, adversely affect other aspects of the atmo-
sphere.

In addition to these cloud and precipitation biases, EAMv1
also shows large biases in the simulated present-day clima-
tology of surface temperature and winds, similar to other
global model predictions (Morcrette et al., 2018). These bi-
ases pose challenges for the fully coupled E3SMv1 to pro-
duce credible projections of the future climate. As discussed
in Golaz et al. (2019), E3SMv1 appears very sensitive to per-
turbations of atmospheric composition (aerosols and green-
house gases), producing differences in the observed and sim-
ulated temporal evolution of the global mean surface tem-
perature in the 20th century and a relatively high estimate
of equilibrium climate sensitivity (ECS) of 5.3 K compared
to estimates based on multiple lines of evidence including
process understanding, historical climate record, and paleo-
climate record (Sherwood et al., 2020).

Many factors may contribute to the behavior and biases of
the model. Biases affect the interpretation of climate projec-
tions and future model development plans. The choice of pa-
rameter settings for parameterizations is a scientifically im-
portant factor in creating (and reducing) these biases. This
study explores the impact of changes to parameter settings
(i.e., recalibration) to improve fidelity of model climate, and
implications for climate change studies. Hence, this recal-
ibration effort can provide important physical insights into
future development of E3SM as well as other ESMs.

Model calibration, or tuning, is a crucial research element
in Earth system modeling. This procedure optimizes model
fidelity by addressing the trade-off between optimizing indi-
vidual processes and process interactions so that the model
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climate agrees with observables while simultaneously sat-
isfying energy balance requirements. These multiple con-
straints frequently expose the presence of error compensa-
tions in ESMs. As discussed in depth in Hourdin et al. (2017)
and Schmidt et al. (2017), balancing these requirements is
a mix of art and science because some degree of subjectiv-
ity is inevitable and choices are made based on expert judg-
ment. Expert judgment consists of evaluation, intercompari-
son, and interpretation of results. This is followed by changes
to the model parameter settings to make the model better
suited for answering specific science questions that origi-
nally motivated its development. During the development
of EAMv1, model calibration primarily used the traditional
one-at-a-time parameter adjustment approach (Rasch et al.,
2019; Xie et al., 2018). In principle, automated procedures
could be employed to perform such calibrations, but they are
not yet used for final calibrations (for reasons discussed be-
low). Instead, automated procedures have been performed for
an ensemble of short simulations with perturbed parameter to
provide a systematic assessment of the parametric sensitivity
(Rasch et al., 2019; Qian et al., 2018), helping to provide in-
sight about multivariate responses of the model to changes in
single or multiple parameters.

The traditional one-at-a-time parameter adjustment ap-
proach is inefficient and expensive in terms of both com-
putational and human resources (Zhang et al., 2012). It is
a sequential and iterative process that requires a large num-
ber (e.g., hundreds) of iterations consisting of (1) running a
multi-year simulation, (2) performing a comprehensive eval-
uation using diagnostics packages to assess the impact of the
change in a single parameter value on different aspects of
the simulation, and (3) designing and running the next sim-
ulation based on evaluation of the current simulation. How-
ever, there are too many uncertain parameters within a cli-
mate model to repeat this process and perfectly optimize its
climate fidelity.

The perturbed parameter ensemble approach (Murphy et
al., 2004) has been used for quantifying parametric uncer-
tainty. The EAMv1 development team adopted the short sim-
ulation ensemble approach (Wan et al., 2014; Qian et al.,
2018), which uses 5 d simulations rather than multi-year sim-
ulations to assess the fast physics (Xie et al., 2012; Ma et
al., 2014, 2021). The approach significantly reduces the turn-
around time and computational cost compared to the tradi-
tional multi-year simulation ensemble approach for a sys-
tematic assessment of the parametric uncertainty. One caveat,
however, is that it requires a priori knowledge of a manage-
able set of uncertain parameters and their physically, obser-
vationally, or empirically justifiable ranges. The parameter
space is also too large to explore fully, and only a subset of
parameters are typically selected based on physical intuition
and expert judgment. In hindsight, the parameter set selected
for the short simulation ensemble during the EAMv1 devel-
opment was insufficient because parameters not included in
the original ensemble were later found to be important. An-

other limitation is that the short simulations focus on fast
physical processes and rapid adjustments. By design, impor-
tant factors such as slow internal variability of the atmo-
sphere (e.g., inter-annual variability) and circulation feed-
backs are not considered, and thus any conclusion drawn
from the short simulation ensemble might not be applica-
ble to the calibration of the ESM for climate simulations.
Both limitations could be mitigated if the perturbed parame-
ter ensemble includes every possible combination of param-
eter choices and the simulations were a decade in length, but
the amount of computational resources required for such an
exercise is prohibitive.

The one-at-a-time calibration approach using multi-year
simulations and the short simulation ensemble approach us-
ing multi-day simulations are complementary, but for the
purpose of tuning EAMv1 both approaches shared some
common challenges: (1) there were insufficient computa-
tional and human resources to explore and optimize param-
eter choices, (2) there was insufficient time to perform and
analyze the simulations, and (3) there was a necessary trade-
off in that improvements to one aspect of the simulation in
general may be made at the price of degradation in other as-
pects, suggesting model structural deficiency in addition to
parametric uncertainty (Qian et al., 2018). Reconciling these
contradictory results and further improving the model fidelity
have been great challenges for the model development team.

In contrast to the above, an important aspect of the tun-
ing strategy we present here is that we intentionally focus
only on a subset of parameters and skill metrics related to
cloud processes rather than optimizing the model for more
than a dozen of the metrics that the community typically re-
lies on (Burrows et al., 2018; Hourdin et al., 2017; Mauritsen
et al., 2012; Gleckler et al., 2008). We find that when clouds
in every regime are improved, other aspects of the global at-
mospheric simulation are also improved, even though they
are not the direct targets for calibration. Interestingly, the re-
calibrated atmosphere model, denoted as EAMv1P, exhibits
weaker sensitivities to aerosol perturbation and to surface
warming for both clouds and precipitation. Because the no-
table biases in E3SMv1’s simulated surface temperature evo-
lution are due to a combination of high ECS (from cloud
feedback) and strong aerosol forcing (Golaz et al., 2019),
EAMv1P may lead to improvements in the simulation of the
20th century temperature evolution and a lower estimate of
ECS when running as part of the fully coupled E3SM. More
challenges may yet emerge in tuning fully coupled models.

We acknowledge that our recalibration approach has sev-
eral caveats. First, like all current model calibration strate-
gies, our recalibration does not lead to a unique and perfect
configuration, and there are likely multiple ways to achieve a
different model configuration with equally accurate present-
day climate. We also acknowledge that there may be compli-
cations when the recalibrated atmosphere model is coupled
with the ocean. Additional tuning might be required. How-
ever, the experience from this study will likely be valuable in
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that effort. Finally, we acknowledge that some tuning choices
are better justified than others because many of the uncertain
parameters do not have a physically or observationally justi-
fiable range. For those poorly constrained processes, the re-
calibration provides a way to identify the important process
assumptions that affect our ability to accurately simulate the
climate system. Future and ongoing studies that develop the-
oretical or observational constraints to reduce the uncertain-
ties associated with these fundamental process formulations
will continue to be very valuable.

In Sect. 2, we provide a discussion on the recalibration.
Section 3 shows the results from the recalibrated model. We
draw conclusions in Sect. 4.

2 Approach

Because clouds in different regimes are governed by differ-
ent processes, the recalibration first treats each regional cloud
bias separately, followed by adjustments (including sea salt
and dust emission factors) to refine the cloud climatology and
to restore the top-of-atmosphere (TOA) energy balance. The
TOA cloud radiative effects (CREs) are the primary tuning
target, but other cloud properties and cloud controlling fac-
tors are also assessed. We adopted the one-at-a-time param-
eter adjustment approach. Adjustments of uncertain parame-
ters were driven by analysis of physical mechanisms affect-
ing the simulation in every cloud regime. We also introduced
new parameters for controlling the coupling of subgrid ef-
fects between the convection, turbulence, and surface flux pa-
rameterizations to produce better simulation of clouds. The
recalibration is described in detail in this section.

2.1 Tropical clouds

Tropical clouds and precipitation are primarily controlled by
the deep-convection parameterization and ice cloud micro-
physics. They interact strongly with the atmospheric circu-
lation in the tropics through their overturning and vertical
mixing of moist static energy. In EAMv1, cloud cover is sig-
nificantly underestimated in the TWP and the eastern Pacific.
Precipitation is biased low in the TWP and over the Amazon
and biased high in the central Pacific, which can be viewed as
a displacement of the Walker circulation. These biases also
reflect errors in the simulated Hadley cell, moderating subsi-
dence in the subtropics and the distribution of stratocumulus
and trade cumulus.

Our main strategy to improve the tropical clouds and
precipitation is through incorporating a previously missing
gustiness representation, which includes the subgrid wind
and temperature variance in the surface flux and the ZM’s
parcel buoyancy calculations. As we will show below, this
improves the spatial distribution of cloud and precipitation,
provided it is followed by subsequent parameter adjustments
to keep the magnitude of tropical CREs and precipitation

within a reasonable range. This idea is motivated in part
by Harrop et al. (2018), who showed that including the
Redelsperger et al. (2000) gustiness effects associated with
deep convection over ocean increases local surface fluxes in
EAMv1 running at∼ 1◦ horizontal grid spacing. The circula-
tion responses significantly improve clouds and precipitation
over the TWP. This is because E3SMv1 uses the Large and
Pond (1982) and Zeng et al. (1998) parameterizations for sur-
face fluxes of heat, moisture, and momentum over ocean and
land, respectively, and these bulk aerodynamic schemes are
prone to underestimate surface fluxes in regions where (1)
large-scale winds are weak and (2) convective episodes are
frequent. Enabling gustiness effects increases surface fluxes
in those regions and hence increases clouds and precipitation.

The gustiness effects associated with deep convection
were not ready in time to be included in the E3SMv1 release
because including the gustiness effects requires retuning of
the model. In this study, we built on the success of Harrop
et al. (2018) and extended the Redelsperger et al. (2000) pa-
rameterization to operate over both land and ocean. To ac-
count for the gustiness effects associated with shallow con-
vection and turbulence, the subgrid wind variance predicted
by CLUBB was passed to the surface flux calculations. The
total wind speed used for surface flux computation is ex-
pressed as follows:

U2
= U2

0 + ag ·U
2
g(ZM)+ bg ·U

2
g(CLUBB), (1)

where U is the total wind speed, U0 is the resolved large-
scale wind speed, and Ug(ZM) and Ug(CLUBB) are the wind
speed enhancements owing to the gustiness associated with
ZM and CLUBB, respectively. The use of the Redelsperger
et al. (2000) parameterization over land is meant as a sim-
ple approximation to incorporate a consistent gustiness treat-
ment globally until more targeted studies of gustiness im-
pacts over land are made into a suitable alternative parame-
terization. Parameters ag and bg are tunable parameters used
for calibrating the spatial distribution of surface fluxes. The
ag parameter can be set to different values to account for the
difference in surface roughness and to provide the flexibility
to adjust the model in the face of the structural uncertainty of
this parameterization. Based on sensitivity tests, we set ag to
0.9 over ocean and 1.2 over land and bg to 1.5 over both land
and ocean.

Figure 1 shows that the gustiness associated with the ZM
deep-convection parameterization contributes about 15 % to
the total surface wind speed felt by the surface flux scheme
over tropical ocean and up to 45 % over tropical land. Mean-
while, gustiness associated with the shallow-convection and
turbulence parameterization CLUBB accounts for 10 %–
30 % of the total surface wind speed globally. Therefore,
including gustiness effects significantly increases surface
fluxes of sensible heat, moisture, and momentum in these re-
gions.

Next, we considered the subgrid temperature perturbation
in the parcel buoyancy calculation in the ZM scheme. The
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Figure 1. Present-day EAMv1 climatology of wind speed (m s−1) at the lowest model level in (a) resolved motion, (b) gustiness associated
with the ZM parameterization, and (c) gustiness associated with the CLUBB parameterization. Panels (d)–(f) are the fractional contribution
of the three components to the total wind speed.

subgrid temperature perturbation is set to 0.5 K in the Com-
munity Atmosphere Model version 5 (CAM5) (Neale et al.,
2010) and 0.8 K in EAMv1 (Rasch et al., 2019). This treat-
ment assumes that the subgrid heterogeneity of temperature
is globally uniform. However, subgrid variability of tempera-
ture should vary in space and time. In particular, subgrid tem-
perature heterogeneity is typically larger over land than over
ocean. Setting a globally uniform subgrid temperature per-
turbation can potentially create biases in the distribution of
deep convection. To address this deficiency, we computed the
subgrid temperature perturbation by taking the square root
of the subgrid temperature variance (a prognostic variable
in CLUBB) and passed that information through ZM’s par-
cel buoyancy calculation to account for the variability of the
subgrid temperature perturbation. Based on sensitivity tests,
a scaling factor of 2.0 was introduced to enhance the effect
so that the simulated tropical clouds are in better agreement
with observations (as discussed in Sect. 3).

Accounting for the gustiness effects and the variability of
subgrid temperature variance was designed for EAMv1 run-
ning at ∼ 1◦ horizontal grid spacing. It is logical to expect
that increasing model spatial resolution will reduce the im-
pacts of these subgrid effects. Thus, a retuning of these sub-
grid effects would likely be needed when the model is run
at a different horizontal resolution. The model configuration
with only the gustiness effects and the subgrid temperature
variance added to EAMv1 is labeled as EAMv1_SGV.

While EAMv1_SGV improves the spatial distribution of
tropical clouds and precipitation (discussed in Sect. 3), trop-
ical CREs and precipitation become overly strong after these
changes, indicating a need for additional tuning to compen-
sate for the unintended changes. Among all the tunable pa-
rameters, we targeted the ones that were heavily tuned in
EAMv1 and adjusted their values to be closer to their the-
oretical or nominal values. For context, in EAMv1, the co-
efficients controlling the autoconversion rate in convective

clouds c0_lnd and c0_ocn (which are inversely proportional
to the timescale that condensate is converted to precipitation)
were set to 0.007, more than 3 times larger than the nomi-
nal rate used in Lord et al. (1982). The consequence is that
little condensate is detrained from convective updrafts, pro-
ducing cirrus clouds with very low water content in the upper
troposphere. To compensate for the weak source of ice wa-
ter, EAMv1 assumes more Aitken mode sulfate aerosols are
efficient homogeneous ice nuclei. As a result, EAMv1 pro-
duces relatively high cloud ice number (Ni) with small ice
water content and weak sedimentation rates, making the cir-
rus clouds more persistent and highly reflective. In this recal-
ibration, we chose to take the following steps:

1. increase the supply of condensed water to cirrus clouds
by reducing c0_lnd and c0_ocn to their nominal value
0.002,

2. reduce the deep convective cloud fraction parameter
dp1,

3. increase the downdraft mass fraction parameter alfa,

4. reduce the assumed ice crystal radius detrained from
deep convection (ice_deep),

5. increase the sensitivity of deep convection to surface
temperature changes by reducing the number of low-
est layers skipped for computing maximum moist static
energy (mx_bot_lyr_adj) (while maintaining numerical
stability),

6. enhance the lateral entrainment of deep convection by
increasing the magnitude of dmpdz.

It is worth noting that changing dmpdz has different effects
on CREs in different parts of the tropics and a significant
impact on the subtropical CREs, but the exact mechanism is
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unclear and requires further investigation. We took an itera-
tive approach to retune the model, adjusting one parameter
at a time and assessing its impacts after each simulation. The
model configuration with only these ZM parameter changes
added to EAMv1 is labeled as EAMv1_ZM (Table 1).

In addition to changes made to the deep convection
scheme in EAMv1_ZM, we also introduced two microphys-
ical changes in MG2 in order to refine the tropical CRE (Ta-
ble 3): (1) we increased the size threshold for sulfate aerosols
to act as homogeneous ice nuclei (so4_sz_thresh_icenuc) to
reduce ice number concentration and increase ice crystal size
and thus the sedimentation rate and (2) increased ice_sed_ai
to further increase the ice sedimentation rate. Combining
the two MG2 changes with EAMv1_SGV and EAMv1_ZM,
these adjustments increase cloudiness in the western and
eastern Pacific, decrease cloudiness in the central Pacific, and
cause weaker subsidence in the subtropics.

2.2 Subtropical low clouds

Realistic simulation of low clouds across various cloud
regimes requires not only a realistic simulation of the large-
scale meteorological conditions but also a versatile param-
eterization that is able to describe different subgrid char-
acteristics of clouds and atmospheric thermodynamic con-
ditions in different cloud regimes. Following Medeiros and
Stevens (2011), cloud regimes are determined by the ver-
tical velocity at 500 hPa and the lower tropospheric stabil-
ity. We also assessed the geographical distribution of those
clouds. The CLUBB parameterization employed in EAMv1
uses a multivariate probability density function (PDF) to
describe the subgrid variability of cloud, thermodynamic,
and dynamic variables, all of which are closely connected
to changes in the subgrid vertical velocity w′. The second
and third moments of w′, w′2 and w′3, are prognostic vari-
ables in CLUBB, meaning that the skewness of the w′ PDF,

Skw ≡ (w′3)/(w′2
3/2

), is predicted according to the govern-
ing equations. This is a critical treatment because it allows
CLUBB to produce different subgrid characteristics in dif-
ferent regimes. As illustrated in Golaz et al. (2002), a low
skewness corresponds to a rather symmetric PDF of w′ char-
acteristic of the stratus and stratocumulus regimes, whereas
a high skewness is more characteristic of a trade cumulus
regime in which stronger and isolated updrafts embedded
in subsidence occur more frequently. In principle, CLUBB
can be used to represent the deep-convection regime as well
(Thayer-Calder et al., 2015; Guo et al., 2015), but it requires
significant amount of effort to enable said unification such
that EAMv1 still uses ZM for a separate treatment of deep
convection. The limit of Skw ≤ 4.5 is imposed in EAMv1
in order to prevent numerical instability in CLUBB’s equa-
tions. To simulate different subgrid variabilities in different
regimes, CLUBB uses different damping coefficients and
different widths of the w′ PDF as a function of Skw: for

X∗ set to the diffusivity or variance of a CLUBB’s prog-
nostic variable (e.g., vertical velocity variance, total water
variance), X∗ = Xb+ (X−Xb) · e−0.5·( Skw

Xc )
2
, where X∗ is

a linear combination of low skewness values X (C1, C11,
and gamma_coef in Table 2) and high skewness values Xb
(C1b, C6rtb, C6rthlb, C11b, and gamma_coefb in Table 2)
with a weighting factor e−0.5·( Skw

Xc )
2
, where Xc is a transi-

tion factor (C1c, C6rtc, C6rthlc, C11c, gamma_coefc in Ta-
ble 2). For instance, the damping coefficient for w′2, C1∗,
is expressed as a function of skewness, C1, C1b, and C1c:

C1∗ = C1b+ (C1−C1b) · e
−0.5·

(
Skw
C1c

)2

.
Although this variable skewness treatment provides a

way to simulate different subgrid characteristics in different
regimes, it is poorly constrained – the equation describing
X∗ and the chosen values of parameters X, Xb, and Xc are
somewhat ad hoc. In EAMv1, we set C1b and gamma_coefb
to be the same as C1 and gamma_coef, respectively, to re-
duce unconstrained assumptions. This is a simple choice that
reduces the number of free parameters in CLUBB, but it also
limits the flexibility of the CLUBB parameterization with
implications for the model fidelity. As shown in Brunke et
al. (2019), EAMv1 produces overly bright shallow Cu and
a significant bias in near-coast Sc. Therefore, we explored a
different pathway in this study by setting C1 and C1b and
gamma_coef and gamma_coefb to different values and used
the simulated low-cloud CREs as the tuning target to deter-
mine the parameter values. Improvements in the simulated
clouds are significant, as will be shown in Sect. 3. However,
it is worth noting that these improvements do not suggest
that this treatment or the parameter settings are the correct
representation of the physical processes in the real world.
Rather, our study should be viewed as a demonstration that
it is useful to enable the variable skewness treatment to fa-
cilitate the production of different subgrid characteristics in
different cloud regimes. Reducing the level of complexity of
the physics may sometimes compromise the model fidelity
and can lead to further uncertainties in climate projections.
As we further show in Sect. 3, these changes also affect
aerosol–cloud interactions, cloud feedbacks, and, ultimately,
climate sensitivity. Future studies that employ sufficient ob-
servations (from Doppler lidar, for example) or large eddy
simulations (LES) to either constrain the parameter values in
the current parameterization or develop a new parameteriza-
tion to mimic the real-world subgrid characteristics in differ-
ent regimes would be highly valuable.

To recalibrate CLUBB, we first increased the overall
cloudiness through the following processes.

1. We weakened the turbulent mixing in the planetary
boundary layer (PBL), which reduces PBL decou-
pling and mixing between the PBL and the free tro-
posphere. This was achieved by increasing C1, C1b,
C6rtb, C6rthlb, and C14; increasing C_k10; and in-
creasing the eddy length scale threshold (Fig. 2a, b).
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Table 1. Description of tunable parameters and their values in EAMv1 and EAMv1_ZM.

Parameter Description EAMv1 EAMv1_ZM

alfa Downdraft mass flux fraction adjustment 0.1 0.14
c0_lnd Coefficient for converting convective cloud water to rain over land 0.007 0.002
c0_ocn Coefficient for converting convective cloud water to rain over ocean 0.007 0.002
dmpdz Parcel fractional mass entrainment rate (m−1) −0.7× 10−3

−1.2× 10−3

dp1 Deep convective cloud fraction parameter 0.045 0.018
ice_deep Ice particle radius detrained from deep convection (10−6 m) 16 14
mx_bot_lyr_adj Number of lowest layers skipped for computing maximum moist static energy 2 1

Table 2. Description of tunable parameters and their values in EAMv1 and EAMv1_CLUBB.

Parameter Description EAMv1 EAMv1_CLUBB

C1 Coefficient for w′2 damping at low Skw 1.335 2.4

C1b Coefficient for w′2 damping at high Skw 1.335 2.8

C1c Coefficient for Skw dependency of C1 1.0 0.75

C6rtb Coefficient for w′q ′t damping at high Skw 6.0 7.5

C6rtc Coefficient for Skw dependency of C6rt 1.0 0.5

C6thlb Coefficient for w′θ ′
l

damping at high Skw 6.0 7.5

C6thlc Coefficient for Skw dependency of C6rthl 1.0 0.5

C8 Coefficient for w′3 damping 4.3 5.2

C11 Coefficient for w′3 damping at low Skw 0.80 0.7

C11b Coefficient for w′3 damping at high Skw 0.35 0.2

C11c Coefficient for Skw dependency of C11 0.5 0.85

C14 Coefficient for u′2 and v′2 damping 1.06 2.0

c_k10 Ratio of eddy diffusivity of momentum to heat 0.30 0.35

gamma_coef The width of the Gaussian distribution at low Skw 0.32 0.12

gamma_coefb The width of the Gaussian distribution at high Skw 0.32 0.28

gamma_coefc Coefficient for Skw dependency of the Gaussian distribution width 5.0 1.2

mu Fractional entrainment rate (m−1) 1.0× 10−3 5.0× 10−4

wpxp_L_thresh Eddy length scale threshold for Newtonian and buoyancy damping of w′q ′t and
w′θ ′

l
(m)

60 100

2. We facilitated cloud formation by reducing the
width of the w′ PDF via reducing gamma_coef and
gamma_coefb.

3. We promoted Sc-like symmetric mixing rather than
shallow Cu-like asymmetric mixing by reducing Skw
via increasing C8.

4. We allowed larger horizontal variation in subgrid char-
acteristics by enlarging the difference in parameter val-
ues between high- and low-skewness regimes (i.e., X’s

and Xb’s), as determined from satellite observations (Z.
B. Zhang et al., 2019), and modified the Xc values to
refine the transition between low- and high-skewness
regimes.

The change in the width of the w′ PDF also affects the
in-cloud liquid water mixing ratio (Qc) variance, resulting
in variable enhancement factors for warm rain processes in
cloud microphysics. We also reduced the cloudiness in the
shallow Cu regime by decreasing the lateral entrainment (i.e.,
reducing mu). These changes increase the skewness in the
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shallow Cu regime (Fig. 2c, d), and lead to a realistic Sc-to-
Cu transition (as discussed in Sect. 3). The model configu-
ration with only these CLUBB parameter changes added to
EAMv1 is labeled as EAMv1_CLUBB (Table 2).

Uncertainties in cloud microphysical processes affect all
non-deep convective clouds, including subtropical clouds.
The tuning of the microphysical processes is justified by
fundamental process-level uncertainties and simplifying as-
sumptions made in bulk microphysics schemes (including
the MG2 scheme used in EAMv1) regarding particle size dis-
tributions and the subgrid scale distribution of cloud prop-
erties. To increase cloudiness in the Sc regime, we weak-
ened cloud-top entrainment by enhancing droplet sedimen-
tation (Bretherton et al., 2007). Next, we reduced the lower
bound of subgrid vertical velocity used for cloud droplet nu-
cleation (wsubmin). This improves the coupling between the
simulated subgrid updraft velocity and the cloud microphys-
ical properties such as droplet number, size, and condensate
amount. We also adjusted the warm rain processes by restor-
ing the heavily tuned prc_exp1, the exponent of droplet num-
ber (Nc) in the autoconversion parameterization in EAMv1
(Rasch et al., 2019), to the nominal value based on obser-
vations (Wood, 2005). This increases cloudiness in areas
where more aerosols are present. The accretion process is
also enhanced to compensate for the reduction of precipita-
tion from the change in autoconversion. The above micro-
physical modifications designed to optimize stratocumulus
will be combined with additional microphysical tunings in-
spired by cloud types at other latitudes (see Sect. 2.3).

It is worth noting that the autoconversion parameter-
izations in EAMv1 is based on Khairoutdinov and Ko-
gan (2000), which is a function of Qc and Nc. However, the
parameter values (i.e., the scale factor and exponents of Qc
and Nc) for different cloud regimes are very different (Ko-
gan, 2013), indicating that the autoconversion process is gov-
erned by more factors than those considered in the current
parameterization. Therefore, there is no one set of param-
eter values that can optimally represent the autoconversion
process for all cloud regimes. Adjusting these parameters to
achieve reasonably good representation of cloud and precip-
itation simulations is possible, but one should use caution
when interpreting the results and acknowledge the funda-
mental deficiency of the underlying process representations
in the model. Given the importance of warm rain processes
(autoconversion and accretion) in simulating clouds and pre-
cipitation and their responses to forcings, developing new
parameterizations that can flexibly represent these processes
over a broad range of cloud types to address this model de-
ficiency should be included in the roadmap toward next gen-
eration ESMs.

2.3 Midlatitude and high-latitude clouds

Another significant cloud bias present in midlatitude and
high-latitudes in EAMv1 can be attributed to excessive

supercooled liquid clouds due to a suppressed Wegener–
Bergeron–Findeisen (WBF) process (Rasch et al., 2019).
This insufficient conversion from liquid to ice is a con-
sequence of an inherited value of a scaling factor of 0.1
that tuned down the WBF process rate significantly. The
WBF rate was previously tuned down in order to address
an underestimate supercooled liquid clouds in CAM5 (Tan
et al., 2016; DeMott et al., 2010; Liu et al., 2011). How-
ever, EAMv1 eliminated one of the sources of this bias by
replacing the Meyers et al. (1992) ice nucleation (IN) scheme
from CAM5 with a classical nucleation theory (CNT)-based
scheme (Hoose et al., 2010; Wang et al., 2014). The CNT
scheme addresses the overproduction of ice crystals by Mey-
ers et al. (1992), which scavenges liquid water rapidly. Re-
placing the Meyers et al. (1992) scheme but maintaining the
slow WBF conversion from liquid to ice produced unrealisti-
cally high liquid water path (LWP) in midlatitudes and high
latitudes: the LWP poleward of 60◦ N and over the South-
ern Ocean is 15 %–30 % higher than the LWP in the trop-
ics (see discussion in Sect. 3.1; Fig. 3). Such an unrealistic
meridional distribution of LWP can cause significant biases
in the radiative energy distribution, atmospheric circulation,
and water cycle. The excessive cloud liquid water in midlati-
tudes and high latitudes can also lead to strong aerosol–cloud
interactions and biases in long-range transport of aerosols
due to strong wet scavenging (Wang et al., 2013). The high-
resolution configuration of E3SMv1 reverted the IN scheme
to Meyers et al. (1992) to address this bias (Caldwell et al.,
2019), but the error compensation from two incorrect cloud
processes can potentially produce biases in cloud microphys-
ical properties, adversely impacting the credibility of climate
projections.

In this study, we adopted an alternative approach to ad-
dress this bias. Y. Zhang et al. (2019) shows that im-
provements can be made by increasing the WBF process
rate. Therefore, we retained the new CNT-based IN scheme
that had been shown to perform better than the Meyers et
al. (1992) scheme and significantly increased the scale factor
for the WBF process to increase the conversion from liquid
to ice. This adjustment is superposed with additional benefits
from the parameter adjustments in the ZM scheme (Sect. 2.1)
that improved the upper-tropospheric ice clouds in the trop-
ics and increased ice clouds in the midlatitudes. The model
configuration with only the MG2 parameter changes added
to EAMv1 is labeled as EAMv1_MP (Table 3). The combi-
nation of EAMv1_MP and EAMv1_ZM lead to lower LWP
and higher ice water path (IWP) in the midlatitudes and high
latitudes (see discussion in Sect. 3.1; Fig. 3).

2.4 Model simulations

The final revised model (labeled as EAMv1P) includes all
changes discussed above and two additional changes to the
scale factors for emissions of sea spray and dust aerosols (Ta-
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Figure 2. Present-day climatology of (a) mean subgrid vertical velocity variance (w′2; unit=m2 s−2) at 925 hPa in EAMv1. (b) The w′2

difference between EAMv1_CLUBB and EAMv1. (c) The skewness of subgrid vertical velocity (Skw ≡ (w′3)/(w′2
3/2
)) in EAMv1. (d)

The Skw difference between EAMv1_CLUBB and EAMv1 at 925 hPa.

Figure 3. Zonal mean of (a) ice water path (IWP), (b) liquid water path (LWP), and (c) liquid condensate fraction (LCF), defined as the
ratio of liquid to total cloud condensate amount, and (d) LCF as a function of temperature (unit=K) between 30 and 80◦ S. The horizontal
dashed line in (d) denotes T5050 (McCoy et al., 2016, 2015), where ice and liquid each contributes to 50 % of the total condensate. The
observational estimate of T5050 range (McCoy et al., 2016) are shown in the gray-shaded area.

ble 4) so that the global mean aerosol optical depth (τaer) is
similar between EAMv1 and the recalibrated model.

In this paper, we show model results from grouped pa-
rameter adjustments instead of individual parameter changes.
Model configurations are listed in Table 5. The effects and
the mechanisms of each individual parameter adjustment re-
quire further investigation and will be documented in sepa-
rate papers.

Each model configuration was used for 11-year global at-
mospheric simulations (the first year was discarded as spin-
up) in which the atmosphere model was coupled with an in-
teractive land model but sea surface temperature (SST) and
sea ice cover were prescribed. Emissions of aerosols and
their precursors were obtained from CMIP phase 6 (CMIP6)
emission datasets (Hoesly et al., 2018; van Marle et al.,

2017). We ran the coarse-resolution EAM configuration (i.e.,
ne30np4, which corresponds to approximately 1◦ horizontal
grid spacing) with

1. present-day (here 2000 CE) forcing;

2. pre-industrial (here 1850 CE) forcing;

3. present-day forcing, except for pre-industrial aerosol
emissions;

4. pre-industrial forcing with SST elevated by 4 K uni-
formly;

5. present-day forcing with SST, sea ice, and solar constant
set to pre-industrial conditions.
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Table 3. Description of tunable parameters and their values in EAMv1 and EAMv1_MP.

Parameter Description EAMv1 EAMv1_MP

cld_sed Liquid droplet sedimentation adjustment 1.0 1.8

ice_sed_ai Ice particle fall speed parameter 500 1200

micro_mg_accre_enhan_fac Liquid cloud accretion adjustment 1.5 1.75

micro_mg_berg_eff_factor WBF process adjustment 0.1 0.7

prc_exp1 Exponent of liquid droplet number concentration in autoconversion −1.2 −1.4

so4_sz_thresh_icenuc Aitken model sulfate aerosol size threshold for homogeneous ice nu-
cleation (m)

0.05× 10−6 0.08× 10−6

wsubmin Minimum subgrid vertical velocity used for liquid droplet nucleation
(m s−1)

0.2 0.1

Table 4. Description of scale factors of emissions and their values in EAMv1 and EAMv1P.

Parameter Description EAMv1 EAMv1P

seasalt_emis_scale Adjustment for sea spray aerosol mobilization 0.85 0.60
dust_emis_fact Adjustment for dust mobilization 2.05 2.8

We compute the effective radiative forcing (ERF) from
these prescribed SST and sea ice experiments (Hansen et al.,
2005). Forster et al. (2016) compared different methodolo-
gies for computing the ERF and recommend the prescribed
SST and sea ice method. The differences between (1) and
(3) provide information on the impacts of anthropogenic
aerosols. Contrasting (2) and (4) provides climate feedback
estimates. Total anthropogenic ERF (ERFant), also termed
total adjusted forcing, is derived by comparing (5) and (2)
(Forster et al., 2013). ERFant includes anthropogenic forcing
(greenhouse gas concentrations, aerosols, and land use land
cover change) and rapid adjustments in water vapor, clouds,
and temperature.

3 Results

3.1 Clouds

Table 6 summarizes the global mean present-day climatol-
ogy of cloud properties using the various model configura-
tions listed in Table 5. Satellite observations summarized in
Stubenrauch et al. (2013) and Neubauer et al. (2019) are also
provided, but we note that it is dangerous (and can be mis-
leading) to compare model state variables with satellite re-
trievals without using a simulator since large retrieval and
sampling uncertainties exist. The CREs are computed by
double radiation calls in the model. Shortwave and longwave
CREs contributed from liquid clouds, ice clouds, convective
clouds, and snow are independently computed. Rain droplets
are not radiatively active in EAMv1. Because radiative trans-

fer is nonlinear, the sum of the CREs from clouds and snow
are not equal to the total CRE.

Compared with EAMv1, EAMv1_CLUBB shows lower-
magnitude top-of-atmosphere (TOA) net CREs due primar-
ily to a reduction of liquid clouds in the shallow Cu regime.
EAMv1_MP also produces lower-magnitude total shortwave
and longwave CREs, but it is attributable to the reduction
of CREs from both liquid and ice clouds from increasing
the WBF process. EAMv1_SGV only marginally increases
CREs, but EAMv1_ZM significantly enhances the CREs
from liquid and ice clouds, though the convective CREs
are significantly reduced in EAMv1_ZM because the con-
vective cloud fraction is much lower as a result of reduc-
ing the deep convective cloud fraction parameter dp1. The
CRE differences are consistent with the differences in cloud
optical depth (τcld). In contrast, cloud fractions and cloud
heights are relatively invariant between different configura-
tions. EAMv1_MP reduces LWP, IWP, Nc, and Ni mostly at
midlatitudes and high latitudes, and EAMv1_ZM increases
them mostly in the tropics. The EAMv1P configuration com-
bines all of the changes and produces global mean net CRE
(−24.28 W m−2) not very different from that in EAMv1
(−24.7 W m−2), but we emphasize that the spatial distribu-
tion of clouds is as important as global mean values because
different cloud regimes may respond to perturbations differ-
ently.

Figure 3 shows that the changes made in EAMv1_ZM
increase the IWP significantly at most latitudes except the
polar regions. This is likely due to the combination of re-
ducing the convective autoconversion efficiency (by reducing
c0_lnd and c0_ocn) and decreasing the ice particle size de-
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Table 5. List of model configurations.

Configuration Description

EAMv1 Default EAMv1 configuration
EAMv1_CLUBB EAMv1 with only the CLUBB changes
EAMv1_MP EAMv1 with only the MG2 changes
EAMv1_SGV EAMv1 with only the inclusion of subgrid effects
EAMv1_ZM EAMv1 with only the ZM changes
EAMv1P EAMv1 with all the changes

Table 6. Global mean 10-year-averaged cloud properties of EAMv1, EAMv1_CLUBB, EAMv1_MP, EAMv1_SGV, EAMv1_ZM, EAMv1P,
and satellite observations summarized in Stubenrauch et al. (2013) and Neubauer et al. (2019). Relevant cloud properties listed here are
TOA shortwave cloud radiative effects (SWCRE; unit=W m−2) and those of liquid clouds (SWCREliq), ice clouds (SWCREice), snow
(SWCREsnow), and convective clouds (SWCREconv); TOA longwave cloud radiative effects (LWCRE; unit=W m−2) and those of liquid
clouds (LWCREliq), ice clouds (LWCREice), snow (LWCREsnow), and convective clouds (LWCREconv); cloud fraction (unit=%) of the
total column (Fcld,tot), below 700 hPa (Fcld,low), between 400 and 700 hPa (Fcld,med), and above 400 hPa (Fcld,hgh); optical depth of all
clouds (τcld) and that of liquid clouds (τliq), ice clouds (τice), snow (τsnow), convective clouds (τconv), and all clouds below 700 hPa (τlow) and
above 400 hPa (τhgh); column-integrated total LWP (unit= g m−2) and IWP (unit= g m−2), Nc (unit= 109 m−2) and Ni (unit= 109 m−2);
altitude of the top (Zhgh,top; unit= km) and base (Zhgh,top; unit= km) of clouds above 400 hPa; and altitude of the top (Zlow,top; unit= km)
and base (Zlow,top; unit= km) of clouds below 700 hPa.

Variable EAMv1 EAMv1_CLUBB EAMv1_MP EAMv1_SGV EAMv1_ZM EAMv1P OBS

SWCRE −49.31 −45.37 −45.11 −50.30 −54.15 −47.27 −46
SWCREliq −34.87 −31.36 −30.52 −35.33 −37.22 −30.23 –
SWCREice −10.73 −10.01 −8.22 −10.85 −16.62 −13.96 –
SWCREsnow −6.22 −6.03 −4.72 −6.22 −6.83 −5.32 –
SWCREconv −5.73 −5.47 −5.78 −6.27 −2.59 −2.71 –
LWCRE 24.61 23.55 20.98 24.66 27.11 22.99 28
LWCREliq 10.95 10.06 7.18 10.85 10.89 6.59 –
LWCREice 14.19 13.56 11.03 14.27 17.49 14.47 –
LWCREsnow 6.79 6.69 4.66 6.77 7.16 5.03 –
LWCREconv 1.23 1.22 1.27 1.27 0.51 0.54 –
Fcld,tot 67.95 65.58 65.98 69.21 69.50 66.22 0.56–0.74
Fcld,low 42.73 39.73 43.04 44.58 42.80 41.10 0.26–0.62
Fcld,med 27.18 26.92 25.99 26.75 28.99 27.29 0.12–0.42
Fcld,hgh 38.88 38.28 35.72 39.31 40.44 37.52 0.13–0.54
τcld 8.25 7.65 7.27 8.19 9.61 8.00 4–10
τliq 5.37 4.92 4.58 5.25 4.24 4.36 –
τice 0.48 0.43 0.34 0.48 1.02 0.82 –
τsnow 0.50 0.49 0.47 0.50 0.58 0.52 –
τconv 1.90 1.81 1.89 1.97 2.37 2.30 –
τlow 5.61 5.09 5.38 5.59 6.10 5.26 –
τhgh 0.62 0.60 0.53 0.63 0.87 0.69 –
LWP 53.71 51.11 47.02 52.98 58.79 49.77 30–120
IWP 11.07 10.49 9.72 11.11 20.35 17.98 25
Nc 14.35 13.22 12.83 14.16 15.53 11.91 –
Ni 0.29 0.25 0.17 0.29 0.57 0.43 –
ZHCT 11.90 11.83 11.70 11.94 11.92 11.74 –
ZHCB 8.87 8.82 8.75 8.89 8.84 8.72 –
ZLCT 2.04 2.01 2.03 1.98 2.11 2.03 –
ZLCB 0.61 0.57 0.60 0.59 0.60 0.55 –
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trained from deep convection (by reducing ice_deep), which
increases the ice crystal number and prolongs the lifetime
of ice clouds. EAMv1_MP shows a slight reduction of IWP
in the Southern Ocean, while significantly reducing LWP in
midlatitudes and high latitudes. This remedies the unrealisti-
cally high LWP in those regions in EAMv1 due to its weak
WBF process.

These changes in condensate also lead to a more re-
alistic liquid condensate fraction (LCF) thermal depen-
dence (Fig. 3d). Because of the general IWP increase in
EAMv1_ZM, the meridional distribution of LCF is reduced
as a result of changes made in ZM (Fig. 3c). Interestingly,
the global mean atmospheric temperature where ice and liq-
uid each contribute to 50 % of total condensate, T5050 (Mc-
Coy et al., 2015, 2016), in EAMv1 is about 240 K, which
is significantly lower than observational estimates of 254–
258 K (McCoy et al., 2016). While the CMIP5 models tend
to freeze liquid condensates at higher temperatures (Ce-
sana et al., 2015; Tan et al., 2016; McCoy et al., 2016),
EAMv1 appears to have overcorrected this bias and produced
excessive supercooled liquid at low temperatures. Consis-
tent with Y. Zhang et al. (2019), EAMv1_MP increases the
T5050. Combining with changes introduced in EAMv1_ZM,
EAMv1P produces a much more reasonable T5050 of 254 K,
which is at the lower bound of the observational estimates.
We note that even though Hu et al. (2010) provided an obser-
vationally derived LCF–T relationship based on the Cloud–
Aerosol Lidar and Infrared Pathfinder Satellite Observation
(CALIPSO) measurements (Winker et al., 2007), EAMv1
does not have the CALIPSO cloud-phase simulator (Cesana
and Chepfer, 2013), and thus a fair comparison is not possi-
ble. Evaluating the model LCF–T relationship against satel-
lite observations in a consistent way will be very useful and
requires further investigation.

Differences in the simulated cloud phase can have impor-
tant implications for aerosol–cloud interactions (ACI) be-
cause the physical processes regulating the interactions be-
tween aerosols and warm cloud and between aerosols and
cold clouds are very different. The simulated cloud phase
can also affect cloud feedbacks to warming (Tan et al., 2016).
The ACI and cloud feedbacks will be discussed in Sect. 3.4
and 3.5.

Figure 4 illustrates how the most challenging TOA short-
wave cloud radiative effect (SWCRE) biases in EAMv1
(Fig. 4a) are greatly remedied by the cumulative effects of
our retuning (Fig. 4f), with intermediate subpanels decom-
posing the grouped parameter changes in ways that help il-
lustrate how they are intended to address those biases in-
dependently and jointly. By enabling the variable skew-
ness treatment in CLUBB and the adjustments that follow,
the overly bright shallow Cu and the significant lack of
Sc in EAMv1 are greatly improved in EAMv1_CLUBB.
SWCRE associated with coastal Sc is increased by about
10–20 W m−2 off the coast of California and by about 30–
40 W m−2 off the coast of Peru and Chile, while over the

shallow Cu regime SWCRE is reduced by 20–30 W m−2.
The elevated Skw in the shallow Cu regime also reduces the
cloud water removal timescale (not shown). In EAMv1_MP,
tuning up the WBF process corrects the SWCRE bias at mid-
latitudes and high latitudes. With increasing fraction of ice
condensate, the cloud water removal timescale is reduced
(not shown) because warm rain processes are less efficient in
removing condensate than ice precipitation processes (Mül-
menstädt et al., 2021). Adjustments to cloud droplet sedi-
mentation and warm rain processes make moderate improve-
ments to Sc. Changes to ice crystal sedimentation and sul-
fate aerosol size result in significant reduction in tropical
SWCRE, as upper tropospheric clouds respond to these ad-
justments the most. Furthermore, EAMv1_SGV increases
clouds in areas where large-scale winds are weak and con-
vection occurs frequently, including the TWP and Amazo-
nia. Some effects on the eastern Pacific are also observed.
EAMv1_ZM further increases cloudiness in the ITCZ, es-
pecially in the western and eastern Pacific. Cloudiness in
the Southern Pacific Convergence Zone (SPCZ) is also im-
proved. Setting c0_lnd and c0_ocn to lower values essen-
tially slows down the convective autoconversion process,
leading to longer water removal timescales in the tropics.
Combining all the changes, EAMv1P shows improved cloud
distribution with reduced biases in the tropics, subtropics,
midlatitudes, and high latitudes, indicating that the changes
discussed in Sect. 2 are appropriate.

Further evaluation using the Cloud–Aerosol Lidar and
Infrared Pathfinder Satellite Observation (CALIPSO) cloud
simulator (Chepfer et al., 2008), as part of the Cloud Feed-
back Model Intercomparison Project (CFMIP) Observation
Simulator Package (COSP) (Bodas-Salcedo et al., 2011), that
samples the model at 13:30 local time (LT) for compar-
isons of total cloud fraction with version 3.1.2 of the Gen-
eral Circulation Model-Oriented CALIPSO Cloud Product
(GOCCP) (Chepfer et al., 2010) shows similar results. Fig-
ure 5 shows cloud bias reductions in the Northern Hemi-
sphere high latitudes, the stratocumulus regions, the TWP,
and over tropical lands. These improvements match our ex-
pectations, increasing our confidence in the model clouds.
However, there are some differences between the compar-
isons in Figs. 4 and 5. In Fig. 4, EAMv1 shows overly
bright clouds in trade cumulus regions and over the Southern
Ocean, and EAMv1P reduces these biases. Figure 5 shows
that EAMv1 produces less clouds in trade cumulus regions
and more clouds over then Southern Ocean than GOCCP,
and EAMv1P increases the bias in trade cumulus regions and
does not change the Southern Ocean bias. This could indi-
cate that the improvements to the TOA SWCRE over these
regions are achieved by compensating errors between cloud
fraction and cloud optical depth.

Given the importance of low clouds in Earth’s radiation
budget, we investigate the planetary boundary layer (PBL)
properties in different model configurations to gain insights
into the physical mechanisms associated with the param-
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Figure 4. Difference in present-day TOA SWCRE (W m−2) climatology between (a) EAMv1 and Clouds and Earth’s Radiant Energy System
(CERES) (Wielicki et al., 1996) Energy Balance and Filled (EBAF) Edition 4.1 (Loeb et al., 2012, 2003, 2018) averaged over 2001–2010,
(b) EAMv1_CLUBB and EAMv1, (c) EAMv1_MP and EAMv1, (d) EAMv1_SGV and EAMv1, (e) EAMv1_ZM and EAMv1, and (f)
EAMv1P and EAMv1. Model TOA SWCRE values are 10-year averages. Stippling denotes significant difference at the 95 % confidence
level based on a Student’s t test.

Figure 5. Total cloud fraction between (a) EAMv1 and the version 3.1.2 of the GOCCP total cloud fraction (Chepfer et al., 2010) averaged
over 2007–2017, (b) EAMv1_CLUBB and EAMv1, (c) EAMv1_MP and EAMv1, (d) EAMv1_SGV and EAMv1, (e) EAMv1_ZM and
EAMv1, and (f) EAMv1P and EAMv1. Model cloud fractions are derived from the CALIPSO cloud simulator (Chepfer et al., 2008) sampled
at 13:30 LT.

eter adjustments. Table 7 shows that the adjustments to
CLUBB parameters affect the simulated PBL properties sig-
nificantly (as expected). The adjustments to CLUBB param-
eters directly reduce the w′2925 and increase Skw925, but
they also govern the turbulent mixing and cloud processes
in the PBL, producing a complex set of overall impacts on
the macroscale properties of the PBL. The weaker w′2925 in-
dicates a shallower PBL, reducing both the PBL decoupling
strength (PBLdcp), defined as the difference between cloud
base height and lifting condensation level (LCL) (Jones et al.,
2011), and the frequency of occurrence of decoupled PBL.
The cloud-top entrainment rate for PBL clouds (we) is re-
duced as a result. It is interesting to note that the changes to
the ZM deep-convection scheme can also reduce cloud-top
entrainment, presumably through strengthening of the large-

scale subsidence in the subtropics. On the other hand, higher
Skw925 indicates that the model produces more asymmetric
mixing and shallow Cu-like clouds. This matters for cloud
feedback since an increase in Cu-like clouds and decrease in
Sc-like clouds can lead to weaker low-cloud feedback (Ce-
sana et al., 2019), and results will be discussed further in
Sect. 3.5. Finally, we find that the inverse relative variance of
cloud water, which affects the enhancement factors of auto-
conversion, accretion, and immersion freezing (Morrison and
Gettelman, 2008), are not sensitive to the parameter changes.
Thus, there is a limited impact on these three processes from
changes in subgrid in-cloud water variance.

Next, we compare the estimated inversion strength (EIS)
(Wood and Bretherton, 2006) between model simulations
and a reanalysis dataset. The EIS was computed follow-
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Table 7. Global mean 10-year-averaged PBL properties of EAMv1, EAMv1_CLUBB, EAMv1_MP, EAMv1_SGV, EAMv1_ZM, and

EAMv1P. Relevant PBL properties listed here are subgrid vertical velocity variance (w′2, unit=m2 s−2) and the subgrid vertical veloc-
ity skewness (Skw) at 925 hPa, PBL decoupling strength (PBLdcp; unit= km), PBL decoupling frequency (FREQdcp; unit=%), cloud-top
entrainment rate (we; unit=m d−1), and inverse relative variance of cloud water at 925 hPa (ν925). Only columns with clouds in PBL are
sampled.

Variable EAMv1 EAMv1_CLUBB EAMv1_MP EAMv1_SGV EAMv1_ZM EAMv1P

w′2925 0.13 0.09 0.13 0.12 0.13 0.09
Skw925 0.45 0.90 0.47 0.41 0.50 1.02
PBLdcp 0.32 0.28 0.32 0.30 0.31 0.26
FREQdcp 26.20 22.90 26.38 25.67 25.90 22.05
we 171.9 148.8 171.7 164.8 143.4 121.5
ν925 2.91 2.83 2.85 3.05 2.92 2.87

ing the CFMIP diagnostics code catalogue (Tsushima et al.,
2017). EIS has traditionally been considered as an important
cloud-controlling factor affecting low clouds and low-cloud
feedback (Klein et al., 2017; Myers et al., 2021). Figure 6
shows that EAMv1 generally underestimates EIS, except in
the tropics. The revised model EAMv1P alleviates many of
the biases, but some biases remain. EAMv1_CLUBB re-
duces the bias over land in general (except for in northern
Africa) as well as the midlatitude and high-latitude ocean.
EAMv1_MP shows significant difference in the polar re-
gions, indicating that reducing supercooled liquid in the
mixed-phase cloud regime can change polar PBL properties.
EAMv1_SGV enhances the EIS as a result of convection in-
vigoration. Similarly, EAMv1_ZM directly reduces the bias
in the tropics and produces enhanced EIS in midlatitudes and
high latitudes through large-scale circulation responses.

Figure 7 shows that changes in EAMv1_CLUBB also sig-
nificantly reduce the PBL decoupling strength (Jones et al.,
2011). The decoupled PBL is often a sign that the PBL
grows too deep, and thus the negative buoyancy at the top
of the PBL is insufficient to mix through the sub-cloud layer
(Wood, 2012). These conditions favor the transition from Sc
to shallow Cu (Wood, 2012; Xiao et al., 2011), reducing
the overall cloudiness and contributing to the lack of Sc in
EAMv1. This long-standing regional cloud bias is primar-
ily alleviated by adjustments to CLUBB parameters, partic-
ularly the increases in C1 and C1b that reduce w′2. Fur-
thermore, EAMv1_SGV also reduces the PBL decoupling
strength over tropical land and subtropical and midlatitude
ocean, likely due to the enhanced surface flux that moistens
the PBL. The recalibrated model EAMv1P shows the col-
lective effect of significant reduction in decoupling strength
(Fig. 7) and frequency (not shown).

We also diagnose the cloud-top entrainment efficiency
(Bretherton et al., 2007) in different model configurations
to further clarify the physical mechanisms associated with
the parameter adjustments. Cloud-top entrainment efficiency
is defined as A= we1bzi/w

3
∗, where we is the entrain-

ment rate computed by differencing the resolved vertical

motion and change in inversion height (zi), 1b is the vir-
tual potential temperature jump scaled into buoyancy jump
(1b = g1θv

θref
), where the reference virtual potential tempera-

ture θref is 300 K, and w∗ is the convective velocity (w∗ =
(2.5

∫ zi
0 w
′b′dz)1/3) that measures the buoyancy integrated

over the boundary layer, where b′ is the buoyancy pertur-
bation and w′b′ is the buoyancy flux. Figure 8 shows that
the largest differences are again a result of changes made
in CLUBB. As w′2 is reduced, EAMv1_CLUBB produces a
shallower PBL consistent with a reduced cloud-top entrain-
ment efficiency. In EAMv1_MP, the enhancement of liquid
and ice sedimentation also reduces entrainment efficiency
(Bretherton et al., 2007). EAMv1_SGV generally enhances
the surface fluxes and produces a deeper and relatively less
stable PBL, leading to enhanced mixing between the PBL
and the free troposphere.

The changes in PBL decoupling strength and cloud-top
entrainment efficiency shown in Figs. 7 and 8 are consis-
tent with expectations and affirm our understanding of the
physical mechanisms connecting the parameter adjustments,
CREs, and PBL properties, even though they are not di-
rectly controlled by any tunable parameters. Unfortunately,
currently there is no global observational estimate for decou-
pling frequency and cloud-top entrainment efficiency, and
thus we cannot assert that the recalibration improves these
physical mechanisms when taken alone. However, put to-
gether they constitute a reassuring sign that relevant metrics
of macroscale low-cloud dynamics are associated with de-
sired changes in TOA SWCRE in logical ways. Future stud-
ies that derive decoupling frequency and cloud-top entrain-
ment efficiency, as well as other important cloud-controlling
factors, from field campaign measurements for evaluating
models in particular regions and time periods would be
highly valuable.

3.2 Precipitation

Table 8 shows the global mean precipitation characteristics.
We find that adjustments to the ZM scheme (e.g., reduc-
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Figure 6. Estimated inversion strength (EIS; unit=K). The EIS computed from the European Centre for Medium-Range Weather Forecasts’
(ECMWF’s) fifth-generation global meteorological reanalysis (ERA5) (Hersbach et al., 2019a) is used for the comparison with EAMv1.

Figure 7. PBL decoupling strength (unit=m) defined as the difference between LCL and the altitude of the cloud base (Jones et al., 2011).
The PBL decoupling strength is computed at every cloud physics time step (dt = 5 min), averaged over samples where decoupled PBL is
detected.

ing the convective autoconversion efficiency and convective
cloud fraction) lead to a reduction of convective precipita-
tion (PRECC) and an increase in large-scale precipitation
(PRECL). Here convective precipitation refers to the pre-
cipitation produced by the ZM deep-convection parameter-
ization and large-scale precipitation refers to the precipita-
tion produced by the MG2 cloud microphysics parameteriza-
tion. While EAMv1 produces more convective precipitation
than large-scale precipitation, the revised model EAMv1P
corrects this bias so that the model is in better agreement
with observational estimates (Yang et al., 2013). The shift
from convective to large-scale precipitation is expected to
improve precipitation characteristics (Yang et al., 2013) be-
cause more detailed cloud microphysics processes are con-
sidered for large-scale clouds.

Nevertheless, the common bias in ESMs of producing
frequent drizzle and light precipitation is pronounced in
EAMv1, and adjustments of parameters have only a marginal
impact. This suggests that the precipitation PDF bias is not
related to parametric uncertainty and perhaps is attributed to

model’s structural deficiency such as issues with the trigger
and closure in its deep-convection scheme or the coarse reso-
lution, which is insufficient to simulate strong moisture con-
vergence or dependency of precipitation formation on unre-
solved mesoscale forcing. Such an interpretation is consistent
with many intercomparisons between super-parameterized
and conventionally parameterized versions of the Commu-
nity Earth System Model (CESM) (Kooperman et al., 2016)
that have sampled different structural formulations for rain-
fall production. Recent studies indicated that using an im-
proved convective trigger (Xie et al., 2019) or incorporating
a stochastic convection scheme (Wang et al., 2021) into ZM
can also help address the “too-frequent–too-weak” precipita-
tion biases in EAMv1. Lastly, we show that the fraction of
large-scale precipitation produced by autoconversion (Rauto
in Table 8) in EAMv1 is already much lower than its pre-
decessor model CAM5 even at 0.25◦ horizontal grid spacing
(Ma et al., 2015), and the changes in EAMv1_MP further
reduce the autoconversion fraction. This change will affect
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Figure 8. Cloud-top entrainment efficiency (Bretherton et al., 2007). The cloud-top entrainment efficiency is computed at every cloud physics
time step (dt = 5 min) of the model.

Table 8. Global mean 10-year-averaged precipitation fields of EAMv1, EAMv1_CLUBB, EAMv1_MP, EAMv1_SGV, EAMv1_ZM, and
EAMv1P. Relevant precipitation variables listed here are total, convective, and large-scale precipitation rates (PRECT, PRECC, and PRECL,
respectively; unit=mm d−1); ratio of deep convective precipitation to total precipitation (Rconv); frequency of occurrence (unit=%) of
no precipitation (FREQdry), drizzle with precipitation rates less than 0.5 mm d−1 (FREQdrizzle), light precipitation with precipitation rates
between 0.5 and 8 mm d−1 (FREQlight), moderate precipitation with precipitation rates between 8 and 80 mm d−1 (FREQmoderate), and
heavy precipitation with precipitation rates exceeding 80 mm d−1 (FREQheavy); and ratio of autoconversion to total precipitation (Rauto).

Variable EAMv1 EAMv1_CLUBB EAMv1_MP EAMv1_SGV EAMv1_ZM EAMv1P

PRECT 3.07 3.02 3.10 3.09 3.02 3.01
PRECC 1.76 1.74 1.79 1.82 1.32 1.38
PRECL 1.32 1.29 1.32 1.27 1.70 1.63
Rconv 0.57 0.58 0.58 0.59 0.44 0.46
FREQdry 6.38 6.30 6.41 6.50 5.98 6.13
FREQdrizzle 50.94 51.08 50.59 50.16 50.02 49.07
FREQlight 34.23 34.33 34.44 34.84 36.35 37.17
FREQmoderate 8.41 8.26 8.52 8.46 7.57 7.56
FREQheavy 0.05 0.05 0.05 0.05 0.10 0.09
Rauto 0.20 0.21 0.12 0.20 0.16 0.11

the model estimate of aerosol indirect effects (Posselt and
Lohmann, 2009; Wang et al., 2012; Gettelman et al., 2013).

As discussed in Rasch et al. (2019) and shown in Fig. 9,
EAMv1 produces high annual mean precipitation over the
globe, over high elevations, over the Maritime Continent, and
in the central Pacific but low annual mean precipitation over
Amazonia and the oceanic TWP. With an improved cloud
distribution, we find the precipitation simulation improves as
well. Figure 9 shows that tropical precipitation is greatly im-
proved. EAMv1_SGV enhances precipitation in the TWP,
eastern Pacific, and Amazonia, whereas EAMv1_CLUBB
and EAMv1_ZM reduce precipitation in the central Pacific
and western Indian Ocean while increasing precipitation in
the SPCZ. This suggests that the displaced Walker circula-
tion in EAMv1 is significantly improved in the recalibrated
model. EAMv1_SGV also reduces precipitation bias over
high-elevation regions such as the Andes and Himalayas
(likely through non-local circulation response). We also find
an unexpected improvement from the ZM changes by reduc-

ing the double ITCZ bias. While the physical mechanism
remains unclear and requires further investigation, our re-
sults corroborate the finding of Song and Zhang (2018) that
the double ITCZ bias is sensitive to the adjustments in the
deep-convection parameterization, which affects the tropical
clouds (and energy budget) and precipitation directly and the
large-scale circulations indirectly.

In summary, the recalibrated model with improved clouds
also produces more realistic present-day precipitation clima-
tology. Pronounced precipitation biases in the tropics, over
land, and over high elevations are significantly reduced. The
improved realism of the precipitation distribution is consis-
tent with the improved cloud distribution. These improve-
ments lead to a more realistic atmospheric circulation and
positive impacts on other aspects of the simulated atmo-
sphere. The remaining biases in tropical clouds and precipi-
tation could be related to the coarse model resolution, which
fails to resolve islands, narrow mountain ranges, mesoscale
convection, and small-scale meteorological fields (Wang et
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Figure 9. Total precipitation rate differences (unit=mm d−1). The Global Precipitation Climatology Project (GPCP) version 2.3 dataset
(Huffman et al., 2001; Adler et al., 2018) is used for the comparison with EAMv1.

al., 2018), and also has a deficiency in representing the trig-
gering of deep convection (Xie et al., 2019). The lack of
representing ice clouds in CLUBB can also contribute to re-
maining biases in midlatitudes and high latitudes (Zhang et
al., 2020).

3.3 Other aspects of the present-day climate

Our recalibration is governed by an understanding of the
physical mechanisms present in the atmosphere and their
representation in parameterizations. Our effort has focused
on improving the CREs across cloud regimes. Improvements
to clouds and precipitation have been accomplished that are
consistent with our expectations, but an evaluation of other
aspects of the simulated present-day climate is essential.
While the possibility of compensating biases always exists,
our confidence in the underlying physics in the model will
be increased if many other aspects are also improved. Oth-
erwise, we are forced to suspect that the model achieves its
behavior primarily through compensating biases.

Near-surface air temperature is an important state vari-
able for validating the fidelity of the ESMs. Both dynam-
ical and physical processes affect the temperature field, and
thus an appropriate balance between these processes is essen-
tial for producing a realistic simulation of present-day condi-
tions. Therefore, the near-surface air temperature can also be
viewed as a minimum requirement for providing some con-
fidence in projections of future climate. However, like many
weather and climate models (Morcrette et al., 2018), EAMv1
produces significant near-surface air temperature biases. The
Northern Hemisphere (NH) high latitudes exhibit a 1–5 K
warm bias, and there are cold biases in other places (Fig. 10).
The warm high-latitude bias and the cold tropical bias pro-
duce a weaker Equator-to-pole temperature gradient, which
can cause errors in midlatitude baroclinicity, storm tracks,
and large-scale circulations. It can also lead to excessive
melting of sea ice and land ice, which has adverse impacts on

ocean circulation. Figure 10 shows that the parameter adjust-
ments that aim to improve CREs generally improve the near-
surface temperature, and the changes in EAMv1_MP lead to
the largest improvements. This suggests that the liquid cloud
bias in EAMv1 due to the underactive WBF process, coupled
with the CNT-based IN parameterization, may be responsi-
ble for the near-surface temperature bias. Strong liquid-to-ice
conversion improves the CREs and subsequently affects the
near-surface temperature, which will further impact circula-
tions and affect other aspects of the Earth’s climate.

Surface winds affect the physical climate and the biogeo-
chemical cycle in a variety of ways. In EAMv1, surface
winds affect surface flux of heat, moisture, and momentum,
which influence the thermodynamic properties in the PBL
but also more generally affect atmospheric energy and wa-
ter cycles. The emissions of sea spray aerosols and mineral
dust are a function of surface winds. Over the ocean, sur-
face winds drive the ocean surface currents and influence
the mixed-layer depth, heat budget, and carbon uptake in the
ocean. Figure 11 shows that surface winds in EAMv1 are
significantly stronger than those in the MERRA-2 reanaly-
sis, especially in the Southern Ocean and North Atlantic. In
the tropical Pacific Ocean, the trade easterlies are too strong,
which pushes the cold tongue into the Indo-Pacific warm
pool. The wind direction biases are reduced in EAMv1_SGV
when the gustiness parameterization is enabled, such that
the subgrid winds are accounted for in surface flux calcula-
tions. EAMv1_ZM also shows some minor improvements in
TWP. Combining all the model changes, the revised model
EAMv1P shows significant improvements in surface winds
in many parts of the tropics, North Atlantic, and Southern
Ocean. In the fully coupled E3SM, these improvements may
lead to more realistic ocean circulations as well as ocean–
atmosphere exchange of heat, moisture, momentum, trace
gases, and aerosols.
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Figure 10. The 2 m height air temperature (unit=K). The ERA5 reanalysis is used for the comparison with EAMv1.

Figure 11. Winds at the lowest model level. The surface winds from the Modern-Era Retrospective Analysis for Research and Applications
Version 2 (MERRA-2) (Gelaro et al., 2017) is used for the comparison with EAMv1.

Although our recalibration is only targeted to improve
CRE features (Fig. 4), those changes can affect aerosols
as well because cloud processing is an important sink in
the aerosol life cycle. Figure 12 shows that the changes in
EAMv1_MP and EAMv1_ZM increase the aerosol load-
ing, while EAMv1_SGV produces lower aerosol loading.
The changes in aerosol loading are partially due to the
changes in wet scavenging. In EAMv1_MP, the reduction
of supercooled liquid water path increases aerosol loading
in midlatitudes and high latitudes because liquid clouds re-
move aerosols efficiently. EAMv1_SGV enhances the sur-
face moisture flux, which also increases wet scavenging, and
the weakened convective autoconversion in EAMv1_ZM re-
duces the wet removal of aerosols. We also find that the revi-
sions have reduced dust emissions over the Sahara because of
the weakened turbulence in EAMv1_CLUBB. Collectively,
the recalibrated model EAMv1P reduces the aerosol optical
depth (τaer) biases in the NH midlatitudes and high latitudes,
in the tropics, and over land in general. There are, however,
remaining τaer biases in the subtropics, eastern Pacific, east-
ern Atlantic, and Southern Ocean.

In addition to improvements in near-surface temperature,
surface winds, and column-integrated aerosols, we observe
improvements to sea level pressure (SLP) and temperature
and wind fields in the recalibrated model EAMv1P (Fig. 13).
While EAMv1_CLUBB and EAMv1_MP do not produce
different results from EAMv1, we find that the meridional
wind at 850 and 500 hPa (coded as numbers 4 and 7) in
EAMv1_SGV and EAMv1_ZM are in better agreement with
ERA5 as their normalized standard deviation reduces. Many
other aspects of the climate are carefully evaluated using
E3SM standard diagnostics (https://portal.nersc.gov/project/
e3sm/beharrop/EAMv1P/, last access: 14 February 2022).
We find that the recalibrated model shows improvements in
most aspects of the simulated present-day climate (despite
the fact that they were not tuning targets), and low or no
degradation in others. We conclude that when improvements
in simulating clouds across regimes are achieved by apply-
ing adjustments based on an understanding of the physical
mechanisms, those changes are manifested by more realistic
simulation of many features of the global atmosphere. Be-
cause the correct response of the nonlinear climate system
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Figure 12. Clear-sky aerosol optical depth (τaer). The MODIS onboard Aqua τaer data product (Levy et al., 2013) is used for comparison
with EAMv1. Model clear-sky τaer is sampled at 13:30 LT.

depends on both realistic base state and realistic process rep-
resentations, the improved realism in the recalibrated model
EAMv1P provides greater confidence in estimating the re-
sponses of the climate system to anthropogenic forcings and
ultimately the ECS.

3.4 Responses to anthropogenic aerosols

The role of aerosols in the climate system is a major uncer-
tainty in projections of Earth’s future climate and in interpret-
ing how the climate has been forced over recent decades. The
uncertainty has been attributed to both a lack of understand-
ing of aerosol emissions in pre-industrial times (Carslaw et
al., 2013) and uncertainties associated with modeling aerosol
and cloud processes (Regayre et al., 2018; Yoshioka et al.,
2019). E3SMv1 produces notable biases in the historical evo-
lution of surface temperature due to a combination of high
ECS (from cloud feedback) and strong aerosol forcing, both
of which are likely to be too large (Golaz et al., 2019). In
this section, we assess the cloud and precipitation responses
to anthropogenic aerosols in the recalibrated model where
processes influencing aerosols and clouds operate differently
from EAMv1 and the simulated present-day atmosphere is
more realistic than that in EAMv1. Our goal is to understand
the impacts and the physical mechanisms of the parameter
adjustments on cloud and precipitation responses to aerosols.
The effects of anthropogenic aerosols are assessed by dif-
ferencing paired simulations where one uses the present-
day aerosol emissions and the other uses the pre-industrial
aerosol emissions (see Sect. 2 for the experiment design).

Table 9 shows the global mean net total ERFant in EAMv1
is quite low compared to CMIP5 (Forster et al., 2013)
and other previous-generation models (Kiehl, 2007). This
is mostly attributed to the aerosol ERF (ERFaer) (Golaz et
al., 2019). EAMv1_MP increases ERFant, but other parame-
ter adjustments lower ERFant so that the recalibrated model
EAMv1P produces about the same ERFant. ERFaer com-

prises the ERF associated with aerosol–radiation interactions
(ERFari), aerosol–cloud interaction (ERFaci), and aerosol-
induced surface albedo changes. The ERFaer is computed
by differencing all-sky TOA radiative flux between paired
fixed SST simulations with present-day and pre-industrial
aerosol emissions (Hansen et al., 2005), which is referred
to as ERF_fSST in Forster et al. (2016). ERFaci is de-
fined as the clean-sky TOA CRE difference (Ghan, 2013).
Note that the Ghan (2013) method removes the direct ra-
diative effect from the anthropogenic aerosols on CREs,
producing stronger ERFaci (−1.48 W m−2) compared to the
Boucher et al. (2013) method (∼−1 W m−2) used in Wang et
al. (2020), which assumes that ERFaci is the residual between
ERFari+aci and ERFari. EAMv1 produces slightly weaker net
ERFaer (−1.42 W m−2) and ERFaci (−1.48 W m−2) than its
predecessor CAM5’s −1.47 and −1.53 W m−2, respectively
(Ghan et al., 2012). EAMv1’s ERFaer falls within the 68 %
confidence range of −1.6 to −0.6 W m−2 (where the 90 %
confidence range is between −2.0 and −0.4 W m−2) esti-
mated recently by considering various lines of evidence in-
cluding models, observations, theories, energy balance re-
quirements, and observed temperature constraints (Bellouin
et al., 2020).

Collectively, the net ERFaci and ERFaer in EAMv1P
remain about the same as EAMv1, but EAMv1P pro-
duces significantly weaker ERFaci,sw and ERFaci,lw. These
are due to competing effects of our microphysical versus
deep convective recalibrations. Our microphysical tunings in
EAMv1_MP significantly weaken ERFaci for two reasons.
First, EAMv1_MP reduces supercooled liquid clouds in the
NH storm track from tuning up the WBF process, which
weakens the ERFaci due to aerosol effects on liquid clouds.
Second, EAMv1_MP reduces the sulfate aerosols participat-
ing in homogeneous ice nucleation, an expected consequence
of having increased the size threshold of sulfate aerosols.
Since ERFaci is mostly attributed to aerosol effects on liq-
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Figure 13. Taylor diagram (Taylor, 2001) comparing sea level pressure, temperature, and winds in EAMv1, EAMv1_CLUBB, EAMv1_MP,
EAMv1_SGV, EAMv1_ZM, and EAMv1P with the ERA5 reanalysis.

Table 9. Global mean 10-year-averaged total ERFant derived from paired simulations with present-day and pre-industrial forcings. Short-
wave, longwave, and net ERFaer; shortwave, longwave, net ERFaci (unit=W m−2); and the difference in total precipitation rate (PRECT,
unit=mm d−1), land surface temperature (Ts; unit=K), and aerosol optical depth (τaer) difference between paired simulations with present-
day and pre-industrial aerosol emissions are also given.

Variable EAMv1 EAMv1_CLUBB EAMv1_MP EAMv1_SGV EAMv1_ZM EAMv1P

ERFant 1.19 1.19 1.48 1.05 0.97 1.24
ERFaer −1.42 −1.46 −1.09 −1.55 −1.72 −1.46
ERFaer,sw −2.19 −2.24 −1.55 −2.28 −2.36 −1.72
ERFaer,lw 0.76 0.78 0.46 0.73 0.64 0.26
ERFaci −1.48 −1.53 −1.25 −1.53 −1.79 −1.46
ERFaci,sw −2.02 −2.11 −1.48 −2.11 −2.24 −1.55
ERFaci,lw 0.54 0.58 0.23 0.58 0.45 0.08
1PRECT −0.028 −0.024 −0.024 −0.026 −0.025 −0.021
1Ts −0.20 −0.01 −0.05 −0.09 −0.04 −0.10
1τaer 0.024 0.023 0.026 0.023 0.029 0.033

uid clouds in EAMv1, reducing the amount of baseline liquid
clouds reduces ERFaci. Conversely, our tunings of the deep-
convection scheme in EAMv1_ZM enhance ERFaci. Since
the ZM scheme does not consider detailed cloud microphys-
ical processes, this enhancement is likely due to the over-
all increase in cloudiness as shown in Fig. 1. Collectively,

the net ERFaci and ERFaer in EAMv1P remain about the
same as EAMv1, but EAMv1P produces significantly weaker
ERFaci,sw and ERFaci,lw.

Both longwave and shortwave radiation affect surface tem-
perature and atmospheric cooling rates, which govern the hy-
drological cycle. Because ERFaer is reduced for both short-
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wave and longwave in EAMv1P, the recalibrated model
shows reduced aerosol-induced response in precipitation (Ta-
ble 9) and land surface temperature (Table 9), even though
the net ERFaer is about the same. Furthermore, the τaer dif-
ference between the paired simulations with present-day and
pre-industrial aerosol emissions (1τaer) in EAMv1P agrees
much better with estimates from model ensembles (Watson-
Parris et al., 2020) and from an estimate based on a combina-
tion of models and observations (Kinne et al., 2006) than that
in EAMv1. Because 1τaer is significantly larger in EAMv1P
than EAMv1, whereas ERFaci values in the two model con-
figurations are similar, the sensitivity of CREs to aerosol per-
turbations (i.e., the change in CRE per unit aerosol perturba-
tion) is lower in EAMv1P.

Figure 14 shows that the recalibration leads to a smaller
magnitude of both positive and negative ERFaci in most
places. The aerosol-induced strong warming in the Arctic
and strong cooling in the NH storm track, East Asia, and
North America are reduced, indicating a weaker local CRE
response to aerosols in EAMv1P. EAMv1_MP again pro-
duces the most significant reduction, which we attribute to
the more effective WBF process that reduces the supercooled
liquid clouds. Other changes introduced in EAMv1_MP may
also contribute to the weaker ERFaci in East Asia, the North-
east Pacific, and North America, including (1) enhancing the
sedimentation of ice and liquid cloud droplets, (2) reduc-
ing the sulfate aerosols available for homogeneous ice nu-
cleation, and (3) reducing the minimum subgrid vertical ve-
locity used for liquid droplet nucleation. Regional exceptions
with enhanced ERFaci magnitude also occur and are notewor-
thy in the subtropical stratocumulus regions off the Peruvian
and Namibian coasts, where our recalibration has increased
the amount of low cloud available to participate in aerosol-
induced brightening.

Of particular note regarding model calibration against his-
torical temperature changes are the response of aerosol-
induced land surface temperature changes. In Fig. 15, we
show that the strong influence of aerosols on surface tem-
perature in EAMv1 is encouragingly reduced by each of our
incremental recalibrations. Despite the fact that the global
mean ERFaer remains the same in EAMv1P, the tempera-
ture effects are muted. With the reduced sensitivity of surface
temperature to aerosol perturbations, we speculate that these
recalibrations might ameliorate the concerning signature of
the unrealistically strong cooling in the 1950s in E3SMv1
(Golaz et al., 2019) if the cause of the bias is indeed due to
the overly strong aerosol forcing as hypothesized. We also
find that aerosols induce opposite land temperature changes
over northeastern Eurasia and northwestern North America.
This indicates that the surface temperature changes are not
determined only by local energy balance. Other processes in
the climate system, such as large-scale circulation changes
also play a role. Furthermore, an empirical relation has been
shown to exist between the global mean ERFant and ECS in
climate models from both the CMIP3 and CMIP5 collections

(Kiehl, 2007; Forster et al., 2013). The relationship between
ERFant and ECS exists because both values in models are
sensitive to simulated clouds. Our tuning strategy specifi-
cally targets improving the representation of clouds, and it
is worth asking whether these improvements uphold or al-
ter the ERFant–ECS relation. The small difference in ERFant
between the EAMv1 and EAMv1P configurations suggests
the possibility of a similar small difference in ECS between
these two configurations, and yet we find this is not the case
(see Sect. 3.5).

Table 10 shows that the aerosol-induced change in
cloud fraction remains small in all model configurations.
For column-integrated condensate amount, consistent with
muted cloud radiative responses to aerosol, EAMv1_MP
significantly reduces the sensitivity of LWP and IWP to
aerosols. EAMv1_ZM also reduces the IWP sensitivity. The
droplet and ice number concentrations are highly sensitive to
anthropogenic aerosols as expected, but EAMv1_MP signif-
icantly reduces the sensitivity of both Nc and Ni to aerosols,
while EAMv1_ZM only reduces the sensitivity of Ni to
aerosol perturbations. By combining the present-day Nc and
Ni in Table 6 and the relative change in Nc and Ni due to an-
thropogenic aerosols in Table 10, we find that EAMv1_ZM
produces higher Nc and Ni in the unperturbed pre-industrial
environment than those in EAMv1. EAMv1_ZM also pro-
duces a larger Nc increase (4.79× 109 m−2) due to anthro-
pogenic aerosols than EAMv1 (4.58× 109 m−2), which is
consistent with the larger ERFaci. Changes in cloud macro-
physical and microphysical properties drive cloud optical
property and radiative effect changes as well. EAMv1_MP
reduces the sensitivity of τliq, τice, and τsnow to aerosols, lead-
ing to lower sensitivity of CRE for corresponding hydrome-
teors to aerosol perturbations. EAMv1_ZM also reduces the
sensitivity of τice and τsnow to aerosols and the correspond-
ing CRE sensitivities. This is likely due to the reduction of
the ice particle size detrained from deep convection, which
increases Ni in the unperturbed pre-industrial environment
so that the ice clouds are less susceptible to aerosols. Finally,
the revised model EAMv1P shows decreases in shortwave
and longwave CRE responses.

In addition to damping condensate and radiative responses
to aerosol loading, our recalibration also reduces the sensi-
tivity of precipitation intensity statistics. In EAMv1, anthro-
pogenic aerosols reduce the frequency of occurrence of light
precipitation (<2 mm d−1) across all large-scale dynamical
regimes based on large-scale vertical velocity at 500 hPa, re-
duce light-to-moderate precipitation (<80 mm d−1) in strong
ascending regions (<− 20 hPa d−1), and increase precipita-
tion between 2.5 and 20 mm d−1 in general (Fig. 16). The
parameter adjustments in EAMv1_MP, EAMv1_SGV, and
EAMv1_ZM all lead to weakened precipitation response
compared to EAMv1. As a consequence, cloud and precipita-
tion processes become less sensitive to aerosol perturbations
in the recalibrated model.
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Figure 14. ERFaci estimated using the Ghan (2013) method in (a) EAMv1, (b) EAMv1_CLUBB, (c) EAMv1_MP, (d) EAMv1_SGC, (e)
EAMv1_ZM, and (f) EAMv1P.

Figure 15. Aerosol-induced changes in land surface temperature.

In summary, the recalibration reduces the overall re-
sponses of CREs, surface temperature, and the hydrolog-
ical cycle to aerosols. Evaluation of the hydrological cy-
cle response to aerosols indicates that the total precipitation
rate is influenced globally (Table 9), regionally (not shown),
and in terms of large-scale precipitation frequency of oc-
currence (using a joint PDF; Fig. 16). However, the global
mean ERFant, ERFaer, and ERFaci remain about the same be-
tween the default model EAMv1 and the recalibrated model
EAMv1P due to invariant effects of changes inNc, and due to
compensations in shortwave and longwave effects that vary
in the opposite direction. These analyses demonstrate that
the global mean ERFs are insufficient for understanding or
constraining the response of the hydrological cycle and sur-
face temperature to aerosols. The shortwave and longwave
contribution to the total aerosol ERF, as well as the spatial
distribution of aerosol ERF, need to be considered to under-
stand how aerosols affect the Earth system. Furthermore, the
unperturbed base state climate can play a role as well. As
shown in Fig. 10, the recalibrated model reduces the surface

temperature bias significantly, which can lead to a more real-
istic response of surface temperature to forcings.

3.5 Response to surface warming

The response of the Earth system to surface warming is
of great scientific and societal importance. ECS values in
CMIP6 span a significantly wider range (1.8 to 5.6 K) than
in CMIP5 and observationally constrained estimates (Sher-
wood et al., 2020), and their substantially higher multi-model
mean value has been attributed to the same causes identified
in E3SMv1: strong positive cloud feedbacks (Zelinka et al.,
2020). In this section, we discuss the impacts of parameter
adjustments on cloud and other climate feedbacks. The feed-
backs are assessed using the Cess methodology (Cess et al.,
1989) by contrasting the difference between a control pre-
industrial simulation and a perturbed simulation with SST
elevated by 4 K globally (see Sect. 2 for the experiment de-
sign).

Figure 17 shows that EAMv1’s total climate feedback of
−1.51 W m−2 K−1 is weaker than the CMIP5 multi-model
mean (−1.6 W m−2 K−1), but it is within the inter-model
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Table 10. The same as Table 6 but instead showing the change in cloud properties induced by anthropogenic aerosols relative to their
pre-industrial values (unit=%). Variables are defined in Table 6.

Variable EAMv1 EAMv1_CLUBB EAMv1_MP EAMv1_SGV EAMv1_ZM EAMv1P

1RFcld,tot 0.37 0.56 0.20 0.50 0.48 0.38
1RFcld,low 0.42 0.89 0.38 0.43 0.71 0.88
1RFcld,med 0.93 1.05 0.74 0.77 1.01 0.65
1RFcld,hgh 0.34 0.15 −0.22 0.56 0.27 −0.17
1RLWP 4.16 4.88 3.32 4.08 4.34 3.50
1RIWP 2.33 2.31 0.78 2.18 0.85 −0.26
1RNc 46.91 47.31 41.72 45.04 44.59 41.43
1RNi 15.15 15.02 9.65 15.23 7.33 1.03
1Rτcld 11.08 11.51 9.13 10.67 10.11 8.13
1Rτliq 16.57 17.62 14.13 15.92 16.47 15.15
1Rτice 6.43 6.06 3.30 6.08 2.51 0.47
1Rτsnow 0.93 0.71 0.11 0.84 0.32 −0.31
1Rτconv 1.38 1.33 1.65 1.93 2.48 1.15
1Rτlow 11.07 11.82 9.66 10.57 10.70 9.83
1Rτhgh 8.83 8.80 3.58 8.98 5.26 0.87
1RSWCRE 3.21 3.75 2.17 3.35 3.10 1.97
1RSWCREliq 5.32 6.11 3.97 5.43 5.97 4.93
1RSWCREice 3.67 3.74 1.27 3.76 0.92 −0.99
1RSWCREsnw 0.12 −0.04 −1.01 0.21 −0.30 −1.50
1RSWCREconv −1.14 −0.69 −0.69 −0.62 −1.11 −1.68
1RLWCRE 2.17 2.47 1.05 2.33 1.60 0.27
1RLWCREliq 3.87 4.28 2.53 3.90 4.26 3.47
1RLWCREice 3.76 3.92 1.78 3.83 1.94 −0.20
1RLWCREsnw 0.89 0.72 −0.34 0.94 0.62 −0.71
1RLWCREconv −1.88 −0.96 −1.16 −1.29 −1.66 −1.77

Figure 16. Anthropogenic aerosol-induced change in frequency of occurrence of resolved-scale precipitation as a function of vertical velocity
at 500 hPa (unit= hPa d−1) in (a) EAMv1 and differences between (b) EAMv1_CLUBB and EAMv1, (c) EAMv1_MP and EAMv1, (d)
EAMv1_SGV and EAMv1, (e) EAMv1_ZM and EAMv1, and (f) EAMv1P and EAMv1. Model precipitation rates are sampled at every
model time step (dt = 30 min).
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spread of −1.05 to −1.95 W m−2 K−1 (Ringer et al., 2014).
The less negative feedback suggests a faster warming in
the late 20th century and a higher ECS, consistent with
the findings in Golaz et al. (2019). EAMv1_CLUBB and
EAMv1_MP produce stronger global mean feedback, which
will lead to lower ECS and weaker warming in the 20th
century, while EAMv1_ZM produces positive feedback in
the tropics. The recalibrated model EAMv1P produces a
stronger climate feedback of −1.74 W m−2 K−1, a 15 % in-
crease from EAMv1, and thus it can be expected to have a
lower ECS.

In Fig. 18, climate feedbacks diagnosed using the Pen-
dergrass et al. (2018) radiative kernel reveal that the non-
cloud feedbacks are invariant across different model configu-
rations and that the variation in total climate feedback is due
solely to the spread in cloud feedbacks as a result of our pa-
rameter and subgrid adjustments. Further decomposing the
cloud feedback into its total, shortwave, and longwave com-
ponents via cloud radiative kernels (Zelinka et al., 2012a,
b, 2013) indicates that cloud feedbacks are weakened from
0.77, 0.35, and 0.42 W m−2 K−1 in EAMv1 to 0.47 (−39 %),
0.20 (−43 %), and 0.27 W m−2 K−1 (−35 %) in EAMv1P.
The stronger negative total climate feedback from the weak-
ened positive cloud feedback suggests that the recalibration
will produce a slower warming in the late 20th century and
lower ECS.

Figure 18b shows that EAMv1_CLUBB and EAMv1_MP
both reduce the magnitude of shortwave cloud feedback.
EAMv1_MP strengthens the negative shortwave cloud op-
tical depth feedback, likely due to the reduction of mean-
state supercooled liquid in mixed-phase clouds (by strength-
ening the WBF process). The weaker cloud feedback in
EAMv1_CLUBB comes from the reduction of cloud amount
feedback. This is likely due to the fact that EAMv1_CLUBB
improves the simulation of shallow Cu. Because Sc cloud
amount decreases more with warming than shallow Cu
(Cesana et al., 2019; Cesana and Del Genio, 2021; My-
ers et al., 2021; Scott et al., 2020), producing shallow Cu
rather than Sc reduces cloud amount feedback. In other
words, EAMv1_CLUBB simulates a control-state climate
with more Cu and less Sc than the default EAMv1, and thus
the positive feedback from warming-induced reductions of
low-cloud cover is weakened because Cu is more resilient
to warming than Sc. In the meantime, EAMv1_CLUBB re-
duces the decoupling strength and cloud-top entrainment in
the Sc regime, which can also reduce the cloud amount feed-
back.

Contrary to the effects introduced by EAMv1_CLUBB
and EAMV1_MP, EAMv1_ZM enhances total cloud feed-
back. Figure 18b shows that EAMv1_ZM significantly re-
duces both shortwave and longwave cloud optical depth feed-
backs and diminishes longwave cloud amount feedback. The
large reduction in the negative shortwave cloud optical depth
feedback results in a stronger positive total cloud feedback.
This indicates that changes made in EAMv1_ZM, particu-

larly (1) the reduction of the ice particle radius detrained
from deep convection (ice_deep) and (2) the reduction of
convective autoconversion (c0_ocn and c0_lnd), which make
convective clouds and their anvils opaque in the present-
day climate, result in a weaker sensitivity of CRE to surface
warming. However, the physical mechanisms relating those
tuning choices to cloud feedbacks remain unclear and require
further investigation.

Figure 19 shows that parameter adjustments affect cloud
feedbacks in different geographical regions. The total cloud
feedback appears to be a balance between cloud optical
depth feedback and cloud amount feedback, as the cloud
altitude feedback is insensitive to our adjustments in pa-
rameters and subgrid effects. In the tropics, the recalibrated
model EAMv1P shows stronger positive total cloud feedback
(Fig. 19a), which can be attributed to the enhanced cloud
optical depth feedback introduced by EAMv1_SGV and
EAMv1_ZM. This highlights the importance of realistic rep-
resentation of cloud properties associated with deep convec-
tion, including both the deep convective clouds and the anvil
detrained from deep convection. In the subtropics, EAMv1P
produces weaker positive total cloud feedback due to the re-
duction of cloud amount feedback in EAMv1_CLUBB and
EAMv1_ZM. EAMv1_CLUBB weakens turbulent mixing
and increases the skewness Skw in the shallow Cu regions to
facilitate asymmetric vertical mixing that enhances shallow
Cu rather than the symmetric vertical mixing that enhances
Sc. For this reason, a weaker positive cloud feedback is ex-
pected since Sc cloud amount decreases more with warm-
ing than shallow Cu (Cesana et al., 2019). EAMv1_ZM also
reduces subtropical cloud amount feedback, likely through
its impacts on circulation that affect subtropical subsidence
and clouds. In midlatitudes and high latitudes, EAMv1_MP
makes the largest contribution to modifying cloud feedbacks.
Making the WBF process more efficient reduces supercooled
liquid clouds in the mean state, which strengthens the neg-
ative cloud optical depth feedback through enhancing the
negative cloud-phase feedback (Tan et al., 2016). We note
that the high-latitude cloud optical depth feedback is highly
uncertain. Sherwood et al. (2020) estimated the feedback to
be near zero based on two studies, Ceppi et al. (2016) and
Terai et al. (2016), which reported feedback estimates of sim-
ilar magnitude but opposite signs. Hence, it remains unclear
if the stronger negative cloud optical depth feedback in the
Southern Ocean produced by EAMv1_MP and EAMv1P is
closer to reality, but this essentially reduces the global to-
tal cloud feedback due to the sign reversal of the total cloud
feedback in the Southern Ocean.

In Table 11, we find that cloud fraction changes induced
by surface warming are insensitive to the recalibration. LWP
increases as the surface warms. By making the WBF process
more efficient, EAMv1_MP shows a greater LWP response
to surface warming, which weakens the positive cloud feed-
back as discussed previously. Liquid and ice particle num-
bers Nc and Ni are both reduced with surface warming, and
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Figure 17. Climate feedback parameter (Cess et al., 1989).

Figure 18. (a) Climate feedbacks and (b) cloud feedbacks decomposed using radiative kernels (Pendergrass et al., 2018; Zelinka et al.,
2012b, a, 2013).

parameter adjustments in EAMv1_MP and EAMv1_ZM af-
fect the sensitivity. In terms of radiative properties, we find
that the recalibration reverses the sign of the response of
τliq to surface warming largely due to the changes made in
EAMv1_MP, leading to cloud thickening instead of thin-
ning in the lower troposphere (i.e., increasing τlow as surface
warms). In the upper troposphere, EAMv1_ZM reduces the
τhgh sensitivity to surface warming, which weakens the posi-
tive high cloud feedback. The modifications in EAMv1_ZM
have the largest impact on the changes in CRE response
changes associated with ice clouds. Combining all of the
changes, the revised model EAMv1P reverses the sign of the
liquid CREs, likely due to the cloud-phase response to warm-
ing caused by increased IWP in the model.

In assessing the impact of parameter changes on ECS, we
also computed the lower tropospheric mixing index (LTMI)
(Sherwood et al., 2014) and found that the recalibration leads
to a 10 % reduction in LTMI (not shown), which corresponds
to about 1 K decrease in ECS based on the LTMI–ECS re-
lationship from CMIP5. Most parameter adjustments do not

alter LTMI. EAMv1_ZM produces lower LTMI because it
reduces convective activity by weakening the convective au-
toconversion process to increase the cirrus cloud opacity
that stabilizes the troposphere. However, because the statis-
tical significance of the relationship between LTMI and ECS
has decreased in CMIP6 compared to CMIP5 (Schlund et
al., 2020), LTMI might not be a good predictor for ECS in
E3SM.

Finally, we assess the impacts of our recalibration on
the patterned response of precipitation to surface warm-
ing. In Sect. 3.2 we showed that the parameter changes in
EAMv1_ZM significantly reduce the ratio of convective pre-
cipitation rate to total precipitation rate in the present-day
climatology. This change alone can lead to different precip-
itation responses to surface warming because different pre-
cipitation mechanisms are employed between the convection
and the microphysics parameterizations. Figure 20 shows en-
hanced convective precipitation with warming in the tropics,
the SPCZ, and storm tracks in EAMv1. EAMv1_ZM sig-
nificantly reduces the response, likely due to the reduced
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Figure 19. Zonal mean of (a) total cloud feedback, (b) cloud optical depth feedback, (c) cloud amount feedback, and (d) cloud altitude
feedback.

Table 11. The same as Table 6 but showing the change in cloud properties induced by surface warming relative to their pre-industrial values
(unit=% K−1). Variables are defined in Table 6.

Variable EAMv1 EAMv1_CLUBB EAMv1_MP EAMv1_SGV EAMv1_ZM EAMv1P

1RFcld,tot −0.61 −0.55 −0.52 −0.62 −0.70 −0.56
1RFcld,low −1.37 −1.36 −1.26 −1.41 −1.38 −1.17
1RFcld,med −2.81 −2.79 −2.40 −2.76 −3.04 −2.78
1RFcld,hgh 0.36 0.32 0.45 0.31 −0.03 0.11
1RLWP 1.75 1.82 2.73 1.92 2.11 3.12
1RIWP −3.65 −3.52 −3.79 −3.74 −4.19 −3.74
1RNc −2.09 −2.02 −1.39 −1.84 −1.69 −0.64
1RNi −2.13 −2.59 −3.54 −2.01 −4.42 −4.35
1Rτcld 0.26 0.37 0.98 0.40 0.14 1.00
1Rτliq −0.28 −0.20 0.69 0.04 0.16 1.44
1Rτice −2.99 −3.02 −3.53 −3.10 −4.21 −3.80
1Rτsnow −0.25 −0.23 −0.02 −0.27 −0.97 −0.62
1Rτconv 2.50 2.66 2.70 2.26 2.30 2.48
1Rτlow −0.54 −0.42 0.23 −0.39 −0.30 0.68
1Rτhgh 7.04 6.81 6.78 7.04 4.71 4.62
1RSWCRE −0.72 −0.50 −0.41 −0.70 −1.07 −0.60
1RSWCREliq −0.48 −0.13 0.10 −0.43 −0.27 0.63
1RSWCREice −2.42 −2.46 −2.89 −2.50 −3.71 −3.55
1RSWCREsnw −0.62 −0.50 −0.51 −0.61 −1.33 −1.10
1RSWCREconv −0.59 −0.56 −0.42 −0.67 −0.53 −0.51
1RLWCRE −0.58 −0.50 −0.79 −0.53 −1.18 −1.21
1RLWCREliq −0.08 0.29 −0.16 0.02 0.06 0.50
1RLWCREice −1.18 −1.27 −1.80 −1.20 −2.27 −2.47
1RLWCREsnw 0.36 0.40 0.31 0.42 −0.24 −0.11
1RLWCREconv −2.56 −2.47 −2.39 −2.63 −2.56 −2.48

convective autoconversion efficiency. Other parameter ad-
justments also affect the response in the Indo-Pacific warm
pool, but the parameter changes do not have a direct im-
pact on convective precipitation, and thus the change in re-
sponse might be caused by circulation feedbacks. In the re-
calibrated model EAMv1P, the convective precipitation re-
sponse to surface warming is mostly reduced in the tropics.
The global mean convective precipitation response is reduced

by 0.013 mm d−1 K−1 (−24 %) compared to the response in
EAMv1. The relative increase in convective precipitation due
to surface warming, however, is only slightly reduced from
3.07 % K−1 in EAMv1 to 2.97 % K−1 in EAMv1P.

The large-scale precipitation response in EAMv1 has a
similar magnitude as the convective precipitation response,
but the response is larger in the storm tracks and not as strong
in the tropics (Fig. 21). EAMv1_ZM significantly enhances
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Figure 20. The change in convective precipitation rate induced by surface warming.

the response in the TWP because the parameter changes in
EAMv1_ZM shift the precipitation from convective to large-
scale so that the response comes from the large-scale precip-
itation. The recalibrated model EAMv1P enhances the large-
scale precipitation response by 0.018 mm d−1 K−1 (+37 %)
compared to EAMv1. The relative increase in large-scale
precipitation due to surface warming is also increased from
3.17 % K−1 in EAMv1 to 4.11 % K−1 in EAMv1P.

In summary, the recalibration enhances the negative cli-
mate feedback to surface warming by reducing the positive
cloud feedback. The storm track, shallow Cu regions, and
the Indo-Pacific warm pool are the regions where the cloud
feedback is most sensitive to the parameter adjustments. The
largest precipitation response is seen in the tropics, SPCZ,
and storm tracks. The parameter adjustments in the ZM deep-
convection parameterization produce the largest changes in
the response. Because the default model EAMv1 and the
recalibrated model EAMv1P produce different climate and
cloud feedbacks, the two models are expected to produce dif-
ferent estimates of ECS, even though their ERFant values are
about the same. Our results are consistent with the findings
of Smith et al. (2020) that the statistical relationship between
the ERFaer and ECS established in Kiehl (2007) and Forster
et al. (2013) is challenged by modern ESMs. Fully coupled
model simulations are needed to test this hypothesis.

4 Summary and discussion

In this study, we have developed a new model configuration
of EAMv1, named EAMv1P, using a model calibration strat-
egy that focuses on calibrating CREs that can be reliably ob-
served across cloud regimes and geographical regions. The
recalibration was guided by our understanding of the phys-
ical mechanisms that relate biases to uncertain process as-
sumptions and used ample iterations to buffer unintended
consequences of interventions in individual regimes against
those they interact with. The recalibrated model produces an
encouragingly improved present-day cloud and precipitation

climatology and reduced sensitivity to aerosol perturbation
and surface warming. Below we summarize the changes and
behavior of the intermediate model configurations.

– Incorporating the subgrid effects (EAMv1_SGV) was
intended to increase cloudiness in regions where large-
scale winds are weak and yet convection occurs fre-
quently (e.g., TWP and Amazon) by enhancing local
surface fluxes of heat, moisture, and momentum in those
regions. Compared to all other intermediate model con-
figurations, EAMv1_SGV produces the largest impact
in terms of reducing the tropical surface wind direction
bias, which will likely reduce the cold tongue bias in the
fully coupled E3SM. Introducing these subgrid effects
also reduces precipitation biases over the TWP, Ama-
zon, and high-elevation regions (e.g., the Himalayas
and Andes). EAMv1_SGV produces only a moderately
weakened surface temperature response and precipita-
tion response to aerosol forcing compared to the default
model EAMv1.

– Parameter adjustments in the ZM deep-convection pa-
rameterization (EAMv1_ZM) were intended to improve
overall tropical cloud amounts by weakening the con-
vective autoconversion and reducing detrained ice crys-
tal radius. We find that these changes increase IWP
globally. Furthermore, we find that EAMv1_ZM is
the only model configuration that produces a stronger
ERFaci and a stronger positive cloud feedback. The en-
hanced ERFaci is seen in East Asia, Europe, and Sc and
shallow Cu regions. The increased cloud feedback is
primarily due to the significant reduction of negative
cloud optical depth feedback in the tropics.

– Parameter adjustments in the CLUBB parameterization
(EAMv1_CLUBB) were introduced to improve the sub-
tropical Sc, shallow Cu, and the Sc-to-Cu transition
by making parameters a function of the skewness of
subgrid vertical velocity Skw. These changes lead to
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Figure 21. The change in large-scale precipitation rate induced by surface warming.

encouraging reductions in both the “too-dim stratocu-
mulus” and “too-bright trade cumulus” biases in mod-
ern ESMs. We find that the changes also significantly
reduce the precipitation bias over the central Pacific
Ocean. The changes introduced in EAMv1_CLUBB do
not affect ERFaci, but they lead to the largest reduction
in the positive cloud amount feedback in the subtropics
compared to other intermediate model configurations.

– Parameter adjustments in the MG2 microphysical pa-
rameterization (EAMv1_MP) were intended to (1) re-
duce the excessive supercooled cloud liquid in the mid-
latitudes and high latitudes by enhancing the WBF pro-
cess, (2) reduce ice particle number by reducing the
sulfate aerosol available for homogeneous ice nucle-
ation, and (3) improve Sc by enhancing the droplet
sedimentation rate. We find that these changes give
the largest reduction in ERFaci in the midlatitudes and
high latitudes, in areas under great anthropogenic influ-
ence (e.g., East Asia, North America), and in the sub-
tropics. EAMv1_MP also produces the weakest total
cloud feedback due to the stronger negative cloud opti-
cal depth feedback in the tropics, midlatitudes, and high
latitudes. The significant enhancement of negative cloud
optical depth feedback results in a reversal of the sign of
the total cloud feedback in the Southern Ocean.

The revised model EAMv1P includes all of the incremen-
tal changes discussed above. We find that EAMv1P produces
a much more realistic CRE distribution than EAMv1 by ad-
dressing multiple regime-specific cloud biases spanning the
tropics, subtropics, midlatitudes, and high latitudes. This is
achieved through the collective effects of our modest adjust-
ments to the ZM deep-convection scheme and subgrid ef-
fects, CLUBB turbulence, and MG2 microphysics. The im-
proved CRE distribution naturally leads to better geographic
distribution of radiative energy at the TOA, which is essen-
tial for setting up a realistic atmospheric circulation that fur-
ther improves the overall fidelity of the model atmospheric

state. We have also compared results from grouped parameter
changes to understand how process assumptions affect CRE
and other aspects of the simulated atmosphere. We show that
the recalibrated model produces more improvements than the
sum of the improvements from individual intermediate con-
figuration, demonstrating the nonlinearity in the climate sys-
tem and the necessity of combining all of the improvements
that target different biases in different regimes. Further re-
ducing the model biases by improving parameterizations, nu-
merics, resolution, and calibration is an ongoing effort for
the E3SM team. Incorporating process-oriented diagnostics
in model development and calibration will be useful for en-
suring that the model get the right answer for the right reason.

Cloud, precipitation, and surface temperature responses
to anthropogenic aerosols and greenhouse gases are major
sources of uncertainty in the simulated climate of the past,
present, and future. Since the climate system is nonlinear,
realistic estimates of the system’s response depend on a re-
alistic base state. EAMv1’s deficiencies in base state fidelity
likely contribute to its biases in the historical surface temper-
ature evolution and its high ECS. In contrast, the recalibrated
model EAMv1P produces a much more realistic present-day
base climate state, due to a better calibration of cloud prop-
erties and subgrid effects that improve the representation of
physical mechanisms compared to EAMv1. Hence, the re-
vised model EAMv1P is more likely to produce credible es-
timates of the climate system’s response to external forcings
and climate projections when running as part of the fully cou-
pled E3SM.

We show that the sensitivity of clouds, precipitation, and
surface temperature to anthropogenic aerosols is significantly
lower in the recalibrated model than in the default model,
suggesting the potential to improve the historical surface
temperature evolution over E3SMv1, such as the poten-
tial to reduce the cold bias between the 1960s and 1980s.
We find that the responses to anthropogenic aerosols are
mostly affected by parameter adjustments in EAMv1_MP
and EAMv1_ZM. To simulate historical surface tempera-
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ture evolution accurately, future model development efforts
should target these two parameterizations so that processes of
cloud microphysical and deep convective processes are better
constrained to represent real-world processes.

The recalibrated model EAMv1P also produces a weaker
cloud feedback compared to the default model EAMv1,
suggesting potential improvements to the surface temper-
ature evolution, like slower warming after the 1980s and
a lower ECS. Parameter adjustments in EAMv1_CLUBB,
EAMv1_MP, and EAMv1_ZM significantly affect cloud
feedbacks. Hence, to reduce the uncertainty in the predic-
tions of future climate, subgrid cloud properties and process
representations, including turbulent mixing, cloud macro-
physics and microphysics, and deep convection, need to
be better constrained. We find that EAMv1 and EAMv1P
produce different surface temperature responses to anthro-
pogenic aerosols and different cloud feedbacks (and, con-
sequently, ECS) even though they produce the same global
mean ERF. This suggests that the statistical relationships be-
tween the global mean ERF, cloud feedback, and ECS estab-
lished in Kiehl (2007) and Forster et al. (2013) do not ap-
ply to current generation ESMs, as documented in Smith et
al. (2020). This indicates that global mean ERF is not a good
indicator of the historical and future climate change. Other
factors such as the spectral composition (i.e., shortwave ver-
sus longwave) and spatial distribution of the ERF and cloud
feedback, as well as the realism of the unperturbed base cli-
mate state, need to be considered. Identifying the process
representations that affect only ERF, those that affect only
cloud feedback, and those that affect both is an important
step toward a better understanding of the evolution of the cli-
mate system.

It is natural to wonder if an equivalent or superior ESM
calibration might have been achievable with less human ef-
fort or fewer computational resources via semi-automated
machine learning (ML) methods that emulate or expand the
workflow outlined in this paper. Indeed, emulating a complex
model’s parameter sensitivities following human-constructed
trial simulations to aid model calibration and uncertainty
quantification would be an intriguing possibility. Several re-
cent studies have shown successful application of ML meth-
ods in model calibration (Cleary et al., 2021; Dunbar et al.,
2021; Couvreux et al., 2021; Hourdin et al., 2021). In theory,
reinforcement learning (RL) with an appropriately formu-
lated agent-based optimization system could be guided via
its loss function formulation with skill metrics that optimize
for the same patterns and mean-state climate metrics that we
prioritized in this study. In practice, however, this ML task
faces a fundamental challenge that the cost of an individual
agent–reward sample is performing multi-year climate simu-
lations. The workflow outlined in this paper has the consid-
erable advantage that experienced human experts make ed-
ucated parameter interventions based on assessment of the
simulation and discriminate the desired effects in a nuanced
way that tolerates certain unintended consequences. It is not

clear how available ML methods could be infused with anal-
ogous physical foresight to make similar decisions, and thus
it is logical to expect that they would require more evaluation
samples to succeed via brute force. Therefore, experimenting
with clever strategies to increase reward density and to inte-
grate physical knowledge from experts in the ML workflow
would be a highly worthwhile long-term challenge.
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