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Abstract. The relative role of external forcing and of intrin-
sic variability is a key question of climate variability in gen-
eral and of our planet’s paleoclimatic past in particular. Over
the last 100 years since Milankovic’s contributions, the im-
portance of orbital forcing has been established for the pe-
riod covering the last 2.6 Myr and the Quaternary glaciation
cycles that took place during that time. A convincing case
has also been made for the role of several internal mecha-
nisms that are active on timescales both shorter and longer
than the orbital ones. Such mechanisms clearly have a causal
role in Dansgaard–Oeschger and Heinrich events, as well
as in the mid-Pleistocene transition. We introduce herein a
unified framework for the understanding of the orbital forc-
ing’s effects on the climate system’s internal variability on
timescales from thousands to millions of years. This frame-
work relies on the fairly recent theory of non-autonomous
and random dynamical systems, and it has so far been suc-
cessfully applied in the climate sciences for problems like the
El Niño–Southern Oscillation, the oceans’ wind-driven cir-
culation, and other problems on interannual to interdecadal
timescales. Finally, we provide further examples of climate
applications and present preliminary results of interest for
the Quaternary glaciation cycles in general and the mid-
Pleistocene transition in particular.

1 Introduction and motivation

In the early 20th century, Milutin Milankovic presented his
theory of ice ages (Milankovitch, 1920). Based on his own
calculations and on insightful suggestions from Wladimir
Köppen and Alfred Wegener (Imbrie and Imbrie, 1986), he
proposed that the transitions between glacial and interglacial
climate conditions were primarily caused by variations of in-
coming solar radiation, which by that time was known to
vary in a quasi-periodic manner on slow timescales of tens
of thousands to hundreds of thousands of years (Poincaré,
1892–1899). These variations of insolation, which arise as
a consequence of the gravitational interaction of the Earth
with the other planets and with its own Moon, are typically
referred to as orbital forcing.

The orbital forcing comprises variations in (i) the eccen-
tricity of the Earth’s orbit around the sun with dominant spec-
tral peaks around 400 and 100 kyr; (ii) the obliquity, or ax-
ial tilt, i.e., the angle between the Earth’s rotational and its
orbital axis, with dominant periodicity around 41 kyr; and
(iii) the climatic precession, which determines the phase of
the summer solstice along the Earth’s orbit and has its most
pronounced spectral power around 23 and 19 kyr (Berger,
1978).

For 2 centuries or so of modern geology, records of our
planet’s physical and biological past were merely discrete
sequences of strata with specific properties, like coloration
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and composition (Imbrie and Imbrie, 1986). This state of af-
fairs led, after the initial success of the Milankovitch (1920)
theory of the ice ages, to severe criticism of the temporal
mismatch between insolation minima and glaciation maxima
(e.g., Flint, 1971).

The advent of marine-sediment cores after World War II
led, for the first time, to the availability of records that were
more or less continuous in time. Like all climate records,
these cores covered limited time intervals and did so with
limited resolution and with inaccuracies in absolute dating,
as well as in the quantities being measured. Moreover, they
posed the problem of inverting proxy records of isotopic and
microbiotic counts to physical quantities like temperature
and precipitation.

In spite of these limitations, the spectral analysis of deep-
sea records allowed Hays et al. (1976) to overcome the diffi-
culties previously encountered by the orbital theory of Qua-
ternary glaciations, in particular the absence of the imprint of
precessional and obliquity peaks in glaciation proxy records.
Specifically, Hays et al. (1976) were able to create a compos-
ite record – back to over 400 kyr b2k, i.e., over 400 000 years
before the year 2000 CE – from two relatively long marine-
sediment records of the best quality available in the early
1970s. The authors demonstrated therewith that significant
precessional and obliquity peaks near 20 and 40 kyr were
present in this record’s spectral analysis; see Fig. 1. The
power spectrum in the figure also made it quite clear that
these peaks were superimposed on a continuous background
– the stippled area in the figure – whose total variance much
exceeded the sum of the variances present in the peaks.

The work of Hays et al. (1976) and of the subsequent
CLIMAP and SPECMAP projects resulted in a much more
detailed spatiotemporal mapping of the Quaternary and ex-
tended the belief in the pacemaking role of orbital variations
into the more remote past. The spectral peaks near 20 and
40 kyr have been widely interpreted within the geological
community as evidence for a linear response of the climate
system to the orbital forcing (Imbrie and Imbrie, 1986). A
third spectral peak at 100 kyr was, however, the most pro-
nounced but much more difficult to reconcile with the orbital
theory of Quaternary glaciations. Since no sufficiently pro-
nounced counterpart can be found in the spectra of the sea-
sonal insolation forcing, Hays et al. (1976) hypothesized a
nonlinear response of the climate system in order to explain
this dominant periodicity of the Late Pleistocene glacial–
interglacial cycles. At the same time, the advent of higher-
resolution marine cores and especially ice cores from both
Greenland and Antarctica, led to the discovery of Heinrich
events (Heinrich, 1988), Dansgaard–Oeschger (D-O) events
(e.g., Dansgaard et al., 1993), and Bond cycles (Bond et al.,
1997), which were hard to explain by orbital forcing given
their shorter timescales.

In fact, interest in past climates was heightened not only by
these striking observational discoveries but also by the grow-
ing concerns about humanity’s impact on the climate (SMIC,

Figure 1. Power spectrum of a composite δ18O record using deep-
sea cores RC11-120 and E49-18. This figure is based on the work
of Hays et al. (1976), as presented by Imbrie and Imbrie (1986).
Reprinted by permission from Springer Nature Customer Service
Centre GmbH: Springer Nature. Topics in Geophysical Fluid Dy-
namics: Atmospheric Dynamics, Dynamo Theory, and Climate Dy-
namics by Ghil and Childress (1987), © 1987 by Springer Sci-
ence+Business Media New York. All rights reserved. 1987.

1971; National Research Council, 1975). Given the declining
temperatures between the 1940s and 1970s, on the one hand,
as shown in Fig. 2 (see also Ghil and Vautard, 1991, Fig. 3),
and the substantial advances in the description of the Qua-
ternary glaciations, on the other hand, it is clear that interest
was mainly on the planet’s falling into another ice age (e.g.,
National Research Council, 1975).

As a result of the twofold stimulation provided by data
about past glaciations and concern about future ones, a num-
ber of researchers in the early-to-mid 1970s worked on en-
ergy balance models (EBMs) of climate with multiple sta-
ble steady states (Held and Suarez, 1974; North, 1975; Ghil,
1976). Two such stable “equilibria” corresponded to the
present climate and to a “deep-freeze”, as it was called at
the time, i.e., to a totally ice-covered Earth. At the time there
was some disbelief about this second climate, as its calcu-
lated temperatures were much lower than those associated
with the Quaternary glaciations and incompatible with pale-
oclimatic evidence available in the 1970s.

New geochemical evidence, however, led in the early
1990s to the discovery of a “snowball” or, at least, “slush-
ball” Earth prior to the emergence of multicellular life, some-
time before 650 Myr b2k (Hoffman et al., 1998). It thus
turned out that this climate state – predicted by several
EBMs and confirmed by a general circulation model (GCM)
with much higher spatial resolution (Wetherald and Manabe,
1975) – had actually occurred and is now being modeled in

Clim. Past, 18, 863–893, 2022 https://doi.org/10.5194/cp-18-863-2022



K. Riechers et al.: Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations 865

Figure 2. Comparison of six analyses of the annually and globally averaged surface temperature anomalies through 2018. The abscissa is
time in years, and the ordinate is temperature anomalies in ◦C with respect to a 30-year climatological average for 1951–1980. NASA stands
for the National Aeronautics and Space Administration; NOAA stands for the National Oceanic and Atmospheric Administration. Reprinted
by permission from John Wiley & Sons Inc.: American Geophysical Union. Journal of Geophysical Research: Atmospheres. Improvements
in the GISTEMP Uncertainty Model. Lenssen et al. (2019), © 2019. American Geophysical Union. All Rights Reserved. 2019.

much greater detail (Pierrehumbert, 2004; Ghil and Lucarini,
2020).

On the other hand, it also became clear that these early
models, whose only stable solutions were stationary, could
not reproduce the wealth of variability that the proxy records
were describing very well, not even in the presence of
stochastic forcing (e.g., Ghil, 1994). Certain theoretical pa-
leoclimatologists therefore turned to coupling a “climate”
equation, with temperature as its only dependent variable,
with an ice sheet equation (Källén et al., 1979; Ghil and
Le Treut, 1981) or a carbon dioxide equation (Saltzman
et al., 1981; Saltzman and Maasch, 1988). These coupled
climate models, albeit highly idealized, did produce oscil-
latory solutions that captured some of the features of the
Quaternary glaciation cycles as known at that time. For in-
stance, the models of Ghil and associates (Källén et al., 1979;
Ghil and Le Treut, 1981) captured the phase differences be-
tween peak ice sheet extent and minimum temperatures in the
North Atlantic suggested by Ruddiman and McIntyre (1981),
while the work of Saltzman and associates (e.g., Saltzman
and Maasch, 1988) captured the asymmetry of the glaciation
cycles with their more rapid “terminations” (Broecker and
Van Donk, 1970).

The stable self-sustained oscillations of these coupled
models, however, were totally independent of any orbital or
other time-dependent forcing, i.e., the solar input to their ra-
diative budget was constant in time. Hence, they could not
capture the wealth of spectral features, with their orbital and
other peaks, of the paleo-records available by the 1980s. The
basic quandary of the Quaternary glaciation cycles – at least

from the point of view of theoretical climate dynamics (Ghil
and Childress, 1987, Part IV) – is formulated in Fig. 3 be-
low; see also Ghil (1994): How does the quasi-periodic or-
bital forcing, with its relatively narrow spectral peaks, act on
the climate’s internal variability to produce a response that is
characterized by significant spectral peaks superimposed on
a broad continuous background? In addition, how does the
climate’s spectral peak at 100 kyr arise given its absence in
the power spectrum of the forcing?

In this paper, we try to show a path toward resolving the
four fundamental questions listed in Box 1. In the next sec-
tion, we summarize existing results on how the climate sys-
tem’s intrinsic variability arises on Quaternary timescales
and on how this variability is modified by the time-dependent
orbital forcing, which was added to the previously au-
tonomous climate models as the next step in paleoclimate
modeling evolution; see, for instance, Le Treut and Ghil
(1983) and Le Treut et al. (1988) vs. Ghil and Le Treut
(1981). In Sect. 3, we outline a more general framework
for the study of such mechanisms, as given by the theory
of non-autonomous and random dynamical systems (NDSs
and RDSs), and sketch an application of this theory to other
climate problems. An application to the problem at hand is
proposed in Sect. 4 and conclusions follow in Sect. 5.

https://doi.org/10.5194/cp-18-863-2022 Clim. Past, 18, 863–893, 2022
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Figure 3. The theoretical quandary of modeling the Quaternary glaciation cycles, illustrated here by schematic diagrams of the composite
power spectral densities (PSD) of (a) the paleo-records and (b) the orbital forcing. In panel (a), the dominant peak for the Late Pleistocene
is near 100 kyr, while in panel (b) eccentricity forcing is distributed over several spectral lines. The peaks at 6–8 and 1–2 kyr in panel (a)
correspond to Bond cycles (Bond et al., 1992, 1993) and to the mean recurrence of D-O events, and they lack a match in the forcing lines of
panel (b).

Box 1. Fundamental questions regarding the Quaternary glacial–
interglacial cycles.

2 Self-sustained climate oscillators

2.1 A simple mechanism for climate oscillations

We follow Ghil (1994) in sketching the simplest physical
mechanism for a self-sustained climate oscillation at fixed
insolation forcing. Consider the Källén et al. (1979, here-
after KCG) oscillator, to the best of our knowledge the first
such self-sustained climate oscillator. The model itself was
built from the ground up, coupling a scalar version of the
Ghil (1976) energy balance model (EBM) with a simplified,
scalar version of the Weertman (1964, 1976) ice sheet model

(ISM). The model’s details and further analyses of its ingre-
dients and variants can be found in several references (e.g.,
Crafoord and Källén, 1978; Ghil and Tavantzis, 1983; Ghil,
1984; Bódai et al., 2015).

The basic workings of this climate oscillator can be
represented by two coupled ordinary differential equations
(ODEs), written symbolically as follows:

Ṫ '−V, (1a)
V̇ ' T . (1b)

Here T stands for global temperature and V for global ice
volume, while Eq. (1a) is an EBM and Eq. (1b) is an ice sheet
model (ISM). The “'” symbol stands for a binary relation of
rough proportionality and is intended to neglect the details
of the equation’s right-hand side (RHS), including its non-
linearities. The EBM represents the well-known ice–albedo
feedback used by both Budyko (1969) and Sellers (1969),
while the ISM relies on the precipitation–temperature feed-
back postulated by KCG and used also by Ghil and Le Treut
(1981), who coined the term.

The latter feedback can be better understood by writing the
following equations:

V̇ ' p, (2a)
p ' pac−pab, (2b)
pac ' T . (2c)

Here p is net precipitation on the single ice sheet of the glob-
ally integrated model, given by the difference in Eq. (2b) be-
tween the accumulation pac and the ablation pab (KCG).

As first observed by George C. Simpson – the meteorol-
ogist of Robert F. Scott’s Terra Nova expedition to Antarc-
tica in 1910–1912 and later the longest-serving Director of
the U.K. Meteorological Office – warmer winters have more
snow, and hence, at least in central Antarctica, the increase
of pac with T exceeds the more obvious increase of pab with
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T . Hence, p ' T , and we have derived therewith Eq. (1b),
i.e., V ' p ' T . For more recent studies of the precipitation–
temperature feedback, see Tziperman and Gildor (2002).

More generally, the presence of feedbacks of opposite sign
in a system of two linear coupled ODEs,

ẋ = y, ẏ =−x,

leads to an oscillation, with the solution given by two
trigonometric functions in quadrature with each other, x(t)=
sin(t), y(t)= cos(t)= sin(t +π/2), and the trajectory de-
scribing a circle in the (x,y) phase plane, x2(t)+ y2(t)= 1.
In a nonlinear system, however – like the full KCG model or
any other climate oscillator mentioned so far – the possibility
of an oscillation, as indicated by the system (1), is actually
realized in the explicit, full set of equations only for certain
parameter values and not for others.

This can be understood by considering the so-called nor-
mal form of a Hopf bifurcation, which leads from a stable
steady state, called a fixed point in dynamical systems the-
ory, to a stable oscillatory solution, called a limit cycle. The
easiest way to see this transition is by writing the normal
form in polar coordinates, as in Arnold (1988) and in Ghil
and Childress (1987, Sect. 12.2), namely,

ż= (µ+ ıω)z+ c(zz)z. (3)

Here z= x+ ıy is complex, where ı =
√
−1 is the imagi-

nary unit, while µ is a real bifurcation parameter, and c,ω
are real and nonzero. Note that the KCG model per se is not
in the normal form above, and we will discuss its bifurcation
parameter µ∗ in the next subsection.

A very natural transformation of variables,

ρ = zz > 0, z= ρ1/2 exp(ıθ ), (4)

leads from the complex ODE (3) to the system of two real
and decoupled ODEs,

ρ̇ = 2ρ(µ+ cρ), (5a)
θ̇ = ω. (5b)

Equation (5b) simply provides an angular rotation around
the origin ρ = 0= x = y, since the complex exponential in
Eq. (4) is periodic with period 2π . Equation (5a) is quadratic
in ρ, and thus it can have two real roots, ρ = ρ0 = 0 and
ρ = ρ∗ =−µ/c. But ρ has to be positive, and thus in the case
in which c < 0, the only possible solution forµ < 0 is the ori-
gin, and it is stable since ρ(µ+ cρ) is negative for ρ > 0 in
this case; hence, ρ has to be monotonically decreasing, i.e.,
all the solutions of Eq. (5) spiral into the origin. The Hopf bi-
furcation from this stable steady state to a periodic solution,
i.e., a limit cycle with radius ρ1/2

= ρ
1/2
∗ , occurs asµ crosses

0. Since now ρ(µ+cρ)> 0 for 0< ρ < ρ∗ and ρ(µ+cρ)< 0
for ρ > ρ∗, the limit cycle is stable and trajectories spiral out
from inside this cycle and into it from outside; see Fig. 4
for the so-called supercritical (or soft) Hopf bifurcation case
with c < 0.

2.2 Intrinsic climate oscillations and the mid-Pleistocene
transition (MPT)

In this subsection, we present an argument for the role of in-
trinsic oscillations in the mid-Pleistocene transition (MPT).
The first point to be made is that while orbital forcing clearly
plays a major role in the power spectrum of the Quaternary’s
climatic variability, it cannot be, in and of itself, the cause of
the MPT. Indeed, changes in the solar system’s orbital peri-
odicities only occur on much longer timescales than the en-
tire Quaternary’s duration (Varadi et al., 2003; Laskar et al.,
2004a). Our argument continues with a further analysis of the
Hopf bifurcation presented in the previous subsection. Such
an analysis was carried out for the KCG model by Ghil and
Tavantzis (1983).

Physically speaking, the presence or absence of the reg-
ular, purely periodic oscillations obtained by KCG and il-
lustrated in Ghil and Childress (1987, Fig. 12.6) depends on
whether c≷0 in Eq. (5a). The KCG model’s bifurcation pa-
rameter is µ∗ = cT /cL, where cT is the heat capacity in its
EBM, while cL is the “mass capacity” in its ISM (Ghil and
Tavantzis, 1983). Large µ∗ corresponds physically to a very
small, possibly pre-Pleistocene ice cap (Ghil, 1984; Saltzman
and Sutera, 1987). At these values of µ∗, the KCG model’s
nullclines and fixed points – the latter being given by the in-
tersection of the former – are very different from those that
are obtained for Quaternary-sized ice sheets, for which cL
is comparable in value to cT ; see Ghil and Tavantzis (1983,
Figs. 3–5). As µ∗ decreases to O(1), i.e., as we proceed
from very small to more substantial ice sheets, the fixed point
transfers its stability to a branch of periodic solutions via a
subcritical Hopf bifurcation (Källén et al., 1979; Ghil and Ta-
vantzis, 1983); see also Ghil and Childress (1987, Figs. 12.8
and 12.9).

To clarify the simple physical concepts that underlie sub-
critical and supercritical Hop bifurcations, let us consider a
purely mechanical oscillator with mass m, a spring kx, and
a dashpot αẋ (Landau and Lifshitz, 1960; Jordan and Smith,
1987),

mẍ =−α(x)ẋ− k(x)x. (6)

If k= const. and α= const., we have the simplest, linear
setup, but we will be interested in the nonlinear cases here.
Normalizing by the massm and not changing notation other-
wise, by rearranging terms and adding a periodic forcing we
get the following equation:

ẍ+α(x)ẋ+ k(x)x = F cos(ωt). (7)

Two classical nonlinear cases are those of the Duffing (1918)
equation, in which k(x)= x2 and α = const., and of the
Van der Pol (1926) equation, in which k= const. and α(x)=
ν(x2
− 1). The fully nonlinear case in which both the spring

and the damping are nonlinear, with k(x)= x2 and α(x)=
ν(x2
− 1), is known as the Van der Pol–Duffing oscillator
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Figure 4. Supercritical Hopf bifurcation. (a) Vector field ż(z) of Eq. (3) for the parameter values µ=−1 and c =−1; z= x+ıy. In this case,
the origin constitutes the only stable fixed point, and all trajectories will spiral into this point, as illustrated by the single brown trajectory.
(b) Vector field ż(z) and three trajectories for µ= 1. In this case, the origin is an unstable fixed point, while the limit cycle with radius
ρ

1/2
∗ = 1 constitutes the only stable solution. Trajectories that start inside this limit cycle, with ρ(t0)< ρ∗, tend to it by spiraling out – as

illustrated by the magenta trajectory – while trajectories that start outside the limit cycle, with ρ(t0)> ρ∗, approach it by spiraling inward,
as illustrated by the gray trajectory. (c) Dependence of the stable solution of Eq. (3) on the parameter µ, for c =−1. For µ≤ 0, the single
stable solution is the fixed point located at the origin, ρ ≡ 0. For µ > 0, the stable solution is the limit cycle given by ρ = µ.

(e.g., Jackson, 1991; Pierini et al., 2018). Note that all three
types of nonlinear oscillators can exhibit chaotic behavior
even in the presence of simple periodic forcing (e.g., Gucken-
heimer and Holmes, 1983; Pierini et al., 2018, and references
therein). The idea of using such simple, classical oscillators
in modeling Quaternary glaciation cycles goes back to Saltz-
man et al. (1981).

Jordan and Smith (1987, Sect. 5.6) specifically discuss
the case of a soft and a hard spring for a generalized Duff-
ing equation, with k(x)= k0+ εh(x), where 0< |ε| � 1,
h(−x)= h(x), and h′′ > 0. A spring is soft if it is sublinear,
ε < 0, and hard if it is superlinear, ε > 0; see their Eq. (5.37)
and Fig. 5.4a, b, with h(x)= x2.

The supercritical Hopf bifurcation in the absence of forc-
ing is analogous to the nonlinear response of a soft, sublinear
spring to periodic forcing in which the oscillations in the po-
sition x of the mass m increase gradually in amplitude as the
spring constant k0 increases past a critical value k∗, while
the subcritical case is analogous to the response of a hard,
superlinear spring, for which the oscillations in x jump sud-
denly from zero amplitude to a finite amplitude as the spring
constant k0 crosses the value k∗. Please compare the behav-
ior of supercritical and subcritical Hopf bifurcations in Ghil
and Childress (1987, Sect. 12.2 and Figs. 12.7–12.9) and see
Jordan and Smith (1987, Fig. 5.7) for the change in the non-
linear response of a Duffing oscillator as its spring changes
from soft, with ε < 0, to hard, with ε > 0.

There is a clear-cut analogy with the mid-Pleistocene
transition, occurring at roughly 0.8 Ma b2k, at which small-
amplitude climate variability with a dominant periodicity
near 40 kyr becomes larger, dominated by a periodicity that
is close to 100 kyr, as well as being more irregular (e.g., Huy-
bers, 2009; Quinn et al., 2018; Rousseau et al., 2020). A fair
number of distinct dynamical theories for this transition have
been formulated (e.g., Maasch and Saltzman, 1990; Ghil,
1994; Crucifix, 2012; Ashwin and Ditlevsen, 2015; Daruka

and Ditlevsen, 2016; Omta et al., 2016; Ditlevsen and Ash-
win, 2018). A rather obvious one is that a Hopf bifurcation
occurs at that point, which leads to a more vigorous response
to the multi-periodic orbital forcing; thus, the latter does not
need to change in the least in order to explain the observed
phenomena. In Saltzman and Sutera (1987), there is only a
comment on the likely role of a Hopf bifurcation in the tran-
sition, but their Fig. 3 suggests that in their model such a bi-
furcation would have to be of the supercritical type and lead
to a fairly gradual transition.

In contrast, the subcritical Hopf bifurcation of the KCG
and Ghil and Le Treut (1981) oscillators would have to lead
to a more abrupt transition, as suggested by Ghil (1984).
Later, Crucifix (2012) showed that the models by Saltzman
and Maasch (1990, 1991) exhibit MPT-like behavior via su-
percritical or subcritical Hopf bifurcations, depending on the
parameter values. The existing δ18O and δ13C records might
or might not have sufficient resolution back in time up to
1.2 Ma to settle this question about the abruptness of the tran-
sition. In case some of them do, an objective test of sudden-
ness – as proposed by Bagniewski et al. (2021) for the high-
resolution NGRIP record (North Greenland Ice Core Project
members, 2004) – will have to be applied to such records.

3 Time-dependent forcing, NDSs, and RDSs

3.1 Orbital forcing of a climate oscillator

We start this section by describing some fairly simple ways
in which the orbital forcing might have modified intrinsic cli-
mate variability, thus helping to solve the mismatch between
Fig. 3a and b in Sect. 1. To explore this possibility, Le Treut
and Ghil (1983) used somewhat simplified insolation forcing
based on the calculations of Berger (1978) and applied it to
a slightly modified version of the Ghil and Le Treut (1981)
oscillator. These authors found that, as expected for a nonlin-
ear oscillator, its internal frequency f0 is affected strongly by
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the forcing ones, {f1, . . .,f5}, resulting in both nonlinear res-
onance and combination tones (Landau and Lifshitz, 1960).

Depending on parameter values, the periodicity P0 =

1/f0 of the Ghil and Le Treut (1981) oscillator is P0 ' 6–
7 kyr. The lines in the simplified insolation spectrum used
by Le Treut and Ghil (1983) had the following periodic-
ities: P1 = 19kyr, P2 = 23kyr, P3 = 41kyr, P4 = 100kyr,
and P5 = 400kyr. These periodicities correspond to the two
precessional ones, the obliquity one, and the two eccentricity
ones. The actual celestial-mechanics calculations that Berger
(1978) based his insolation calculations on have been sub-
stantially updated since (e.g., Varadi et al., 2003; Fienga
et al., 2015). However, these advances have not modified the
spectrum of the planetary-orbit solutions over the 2.6 Myr of
the Quaternary very much, which is a rather short interval in
celestial-mechanics terms.

The results of the Le Treut and Ghil (1983) model on the
evolution of the primary climate variables T and V were con-
verted to δ18O values in simulated isotopic records of marine
sediment and ice cores by Le Treut et al. (1988); the spectra
of the latter are plotted in Fig. 5. The values on the abscissa of
Fig. 5a are values of the logarithm of frequency, while those
in Fig. 5b are values of the frequency itself; the values on the
ordinate of both panels are powers of 10. One refers to such
figures as being in (a) log–log coordinates vs. (b) log–linear
coordinates for short.

Aside from the spectral features noted in the figure caption
and discussed in greater detail by Ghil (1994), it is important
to realize (i) that the large continuous background in Fig. 5a
is purely of deterministically chaotic origin since there is
no stochastic element whatsoever in the Le Treut and Ghil
(1983) model or in its forcing and (ii) that the dominant peak
at 109 kyr is not directly forced by the f4 = 1/100 kyr−1 ec-
centricity line but rather it is due to the difference tone be-
tween the two precessional frequencies, f1 and f2. Finally, it
is the nonlinear, broad resonance of the model’s f0 frequency
with the quasi-periodic forcing that produces the bump in the
spectrum of Fig. 5a to the right of the orbital frequencies.

In returning to the “fundamental question no. 2” in Box 1,
one must recall that on the paleoclimatic timescales of in-
terest – apart from deterministic chaos à la Lorenz (1963),
as obtained by Le Treut and Ghil (1983) and Le Treut et al.
(1988) and shown here in Fig. 5a – stochastic contributions
à la Hasselmann (1976) to the continuous part of the spec-
trum must also play an important role. In fact, RDS theory, as
outlined in the next subsection, provides an excellent frame-
work for a “grand unification” of these two complementary
points of view (Ghil, 2014, 2019). In the paleoclimatic con-
text, Ditlevsen et al. (2020) have suggested that, aside from
red noise processes, dating uncertainties in the proxy records
from which the spectra are derived may contribute, in all like-
lihood, to this background; see also Boers et al. (2017a, b).
In this context, Verbitsky and Crucifix (2020) also provide a
simple theory that addresses scaling properties in the glacial

cycles and their spectra, based on the so-called Buckingham
π -theorem (e.g., Barenblatt, 1996).

3.2 Basic facts of NDS and RDS life

The highly preliminary results summarized in Sect. 3.1 en-
courage us to pursue the effects of the orbital forcing on in-
trinsic climatic variability in a more systematic way, effects
that may have contributed to generate the rich paleoclimate
spectrum on Quaternary and longer timescales (e.g., West-
erhold et al., 2020). In fact, several research groups in the
climate sciences have carried out during the past 2 decades
an important extension of the dynamical systems and model
hierarchy framework presented by Ghil and Childress (1987)
and by Ghil (2001), from deterministically autonomous to
non-autonomous and random dynamical systems (NDSs and
RDSs, e.g., Ghil et al., 2008; Chekroun et al., 2011; Bódai
and Tél, 2012).

On the road to including deterministically time-dependent
and random effects, one needs to realize first that the climate
system – as well as any of its subsystems on any timescale –
is not closed: it exchanges energy, mass, and momentum with
its surroundings, whether this pertains to other subsystems or
the interplanetary space and the solid earth. The typical ap-
plications of dynamical systems theory to climate variability
until not so long ago have only taken into account exchanges
that are constant in time, thus keeping the model – whether
governed by ordinary, partial, or other differential equations
– autonomous; i.e., the models had coefficients and forcings
that were constant in time.

Alternatively, the external forcing or the parameters were
assumed to change either much more slowly than a model’s
internal variability, meaning that the changes could be as-
sumed to be quasi-adiabatic, or much faster, meaning that
they could be approximated by stochastic processes. Some of
these issues are covered in much greater detail by Ghil and
Lucarini (2020, Sect. III.G). The key concepts and tools of
NDSs and RDSs go beyond such approaches that rely in an
essential way on a scale separation between the characteris-
tic times of the forcing and the internal variability of a given
system; such a separation is rarely if ever actually present in
the climate sciences.

The presentation of the key NDS and RDS concepts and
tools in this subsection is aimed at as large a readership as
possible and follows Ghil (2014). Slightly more in-depth but
still fairly expository presentations can be found in Crauel
and Kloeden (2015) and in Caraballo and Han (2017). Read-
ers who are less interested in this mathematical framework –
which allows a truly thorough understanding of the way that
orbital forcing acts on intrinsic climate variability on Quater-
nary timescales – may skip at a first reading the remainder of
this section and continue with Sect. 4.
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Figure 5. Power spectra of simulated (a) deep-sea and (b) ice core records for the forced climate oscillator of Le Treut et al. (1988) with
idealized orbital forcing. Panel (a) is in log–log coordinates and clearly shows a dominant peak at 109 kyr and a very large amount of variance
in the continuous spectrum, which has a roughly−2 power law slope. The orbital peaks at P1 = 19 kyr, P2 = 23 kyr and P3 = 41 kyr are also
present, along with peaks at 14.7 and 10.4 kyr, which correspond to the sum tones f2+f3 and f1+f2, respectively. Panel (b) is in log–linear
coordinates and shows additional harmonics and sum tones, as well as the difference tone f1− f2, which corresponds to the dominant peak
at 109 kyr. Inside the figure, the notation ka instead of kyr has been kept unchanged from the original publication. Adapted by permission
from John Wiley & Sons Inc.: American Geophysical Union. Journal of Geophysical Research: Atmospheres. Isotopic Modeling of Climatic
Oscillations: Implications for a Comparative Study of Marine and Ice Core Records by Le Treut et al. (1988), © 1988 by the American
Geophysical Union. 1988.

3.2.1 Autonomous and non-autonomous systems

Succinctly, one can write an autonomous system as

Ẋ = F (X;µ), (8)

where X stands for any state vector or climate field. While
F is a smooth function of X and of the parameter µ, it does
not depend explicitly on time. This autonomous character of
Eq. (8) greatly facilitates the analysis of its solutions’ prop-
erties.

For instance, two distinct trajectories, X1(t) and X2(t), of
a well-behaved, smooth autonomous system cannot intersect
– i.e., they cannot pass through the same point in phase space
– because of the uniqueness of solutions. This property helps
one draw the phase portrait of an autonomous system, as does
the fact that we only need to consider the behavior of solu-
tions X(t) as time t tends to +∞. The sets of points so ob-
tained are (possibly multiple) equilibria, periodic and quasi-
periodic solutions, and chaotic sets. In the language of dy-
namical systems theory, these are called, respectively: fixed
points, limit cycles, tori, and strange attractors.

We know only too well, however, that the seasonal cy-
cle plays a key role in climate variability on interannual
timescales, while orbital forcing is crucial on the Quaternary
timescales of many millennia. In addition, more recently it
has become obvious that anthropogenic forcing is of utmost
importance on the interdecadal timescales between these two
extremes.

How can one take into account these types of time-
dependent forcings and analyze the non-autonomous systems

that they lead us to formulate? One succinctly writes such a
system as follows:

Ẋ = F (X, t;µ). (9)

In Eq. (9), the dependence of F on t may be periodic,
F (X, t +P )= F (X, t), as in various El Niño–Southern Os-
cillation (ENSO) models, where the period P = 12 months,
or monotonic, |F |(X, t+ τ )≥ |F |(X, t), as it is when study-
ing scenarios of anthropogenic climate forcing. An even
more general situation includes time dependence in one or
more parameters {µ1, . . .,µp}.

To illustrate the fundamental distinction between an au-
tonomous system like Eq. (8) and a non-autonomous one like
Eq. (9), consider the simple scalar version of these two equa-
tions:

Ẋ =−βX, (10a)

and

Ẋ =−βX+ γ t, (10b)

respectively. We assume that both systems are dissipative,
i.e., β > 0, and that the forcing is monotonically increas-
ing, γ ≥ 0, as would be the case for anthropogenic forcing
in the industrial era. Lorenz (1963) pointed out the key role
of dissipativity in giving rise to strange but attracting solu-
tion behavior, while Ghil and Childress (1987) emphasized
its importance and pervasive character in climate dynamics.
Clearly the only attractor for the solutions of Eq. (10a), given
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any initial point X(0)=X0, is the stable fixed point X∗ = 0,
attained as t→+∞.

In the case of Eq. (10b), however, this forward-in-time ap-
proach yields blow-up from t→+∞ for any initial point. To
make sense of what happens in the case of time-dependent
forcing, one instead introduces the pullback approach, in
which solutions are allowed to still depend on the time t at
which we observe them but also on a time s from which the
solution is started, with X(s)=X0 and s� t . With this little
change of approach, one can easily verify that

|X(s, t;X0)−At | → 0 as s→−∞, (11)

for all t andX0, where At = (γ /β)(t−1/β). We obtain there-
with, in this pullback sense, the intuitively obvious result that
the solutions, if we start them far enough in the past, all ap-
proach the family of attracting sets At ; this family follows
the forcing γ t , and it thus has a linear growth in time t .
Hence, the fixed point X∗ of Eq. (10b) is in fact a moving
target and it is given by X∗ = γ t/β. Due to the system’s in-
ertia, the set At that is approached by the trajectories lags
this time-dependent fixed point by a constant offset of γ /β2.

3.2.2 Pullback attractor (PBA)

Formally, the indexed family of all pullback attracting sets
At ,

= {At }t∈R, (12)

is termed the pullback attractor (PBA) of an NDS if the fol-
lowing two conditions are fulfilled:

i. each snapshot At is compact and the family of snap-
shots {A(t)}t∈R is invariant with respect to the dynam-
ics,

X(t, s;X0) ∈At ∀s ≤ t and X0 ∈ As, (13)

and

ii. the pullback attraction occurs for all times,

lim
s→−∞

|X(t, s;X0)−At | = 0 ∀t. (14)

To further improve the reader’s intuition for PBAs, we pro-
vide a second illustrative example here. A system defined in
polar coordinates by

ρ̇ = α(µ− ρ), φ̇ = ω, (15)

with ρ, µ ∈ R+, and φ ∈ R/2π can easily be seen to ex-
hibit a limit cycle in the (x,y) plane with (x = ρ cosφ,y =
ρ sinφ). An initial deviation of ρ from µ will decay expo-
nentially, and the system converges to an oscillation of ra-
dius µ with the angular velocity ω. Here, we transform this

autonomous dynamical system into a non-autonomous one
by modulating the target radius µ with a sinusoidal forcing,

µ→ µ(t)= µ0+β sin(νt), (16)

where the modulation is moderate to guarantee that µ0+

β sin(νt)> 0 for all t .
Since the dynamics of the phase φ and of the radius ρ are

decoupled, the corresponding equations can be solved and
analyzed separately. While the temporal development of the
phase is trivial, the pullback-invariant attracting set of the
radius for the initial condition ρ(s)= ρ0 is given by

A(ρ)(t;ρ0)= lim
s→−∞

ρ(t, s;ρ0)= αβ sin(νt +ϑ)+µ0, (17a)

with

ϑ = arctan(−ν/α), (17b)

as shown in Appendix B. Note that in the limit s→−∞, the
dependence on the initial value ρ0 vanishes and the attracting
set A(ρ)

t performs an oscillation of the same frequency as the
forcing. It lags the phase of the time-dependent fixed point
µ(t) by the constant ϑ , while its amplitude is amplified by the
factor α. Since ρ is restricted to positive values, this solution
requires αβ < µ0.

The PBA with respect to the coordinate ρ is comprised of
the family of all the sets A(ρ)

t as defined in Eq. (18) and thus
reads

= {αβ sin(νt +ϑ)+µ0}t∈R. (18)

Since the pullback limit for the phase φ does not exist,
no constraints on it other than φ ∈ [0,2π ) are imposed by
the dynamics. Hence, for the system (15) comprised of ra-
dius and phase, we find that the distance of any trajectory
at time t – i.e. (ρ(t; t0,ρ0),φ(t; t0,φ0)) – to the set At =

{(αβ sin(νt +ϑ)+µ0,ϕ) : ϕ ∈ [0,2π )} tends to zero as we
pullback the initial time t0 to −∞. The pullback attracting
sets At at time t are circles in the (x,y) plane with a radius
that oscillates in time, and the system’s PBA is given by the
family of these circles

= {(αβ sin(νt +ϑ)+µ0,ϕ) : ϕ ∈ [0,2π )}t∈R. (19)

Figure 6 shows trajectories of the system starting from
different points in the past. In Fig. 6a, the trajectories are
depicted in the three-dimensional (3-D) space spanned by
the two Cartesian coordinates (x,y) and the time t , where
the usual transformation from polar to Cartesian coordinates
was applied. The shaded surface in this panel represents the
PBA of the system. Corresponding trajectories of ρ(t) and
their convergence to the PBA A(ρ)

t are shown Fig. 6b. Fig-
ure 6f shows a heat map (Wilkinson and Friendly, 2009) that
approximates a portion of the PBA’s invariant measure pro-
jected onto the (x,y) plane. For a clean definition of such

https://doi.org/10.5194/cp-18-863-2022 Clim. Past, 18, 863–893, 2022



872 K. Riechers et al.: Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations

Figure 6. Trajectories and PBA of the system defined by Eqs. (15) and (16); in all the panels the parameter values are µ0 = 15, α = 10,
ν = 0.2, and ω = 0.3, unless stated otherwise. (a) Trajectories (ρ(t),φ(t)) of the system starting from different times in the past in the
3-D space spanned by (x,y) and time t ; the system’s PBA lies on the red-shaded surface. (b) Temporal evolution of the radius (solid
colors) of the three trajectories shown in (a) together with its PBA (dotted red). (c–e) Trajectories integrated from t0 =−100 to tf = 200
for ν = 0.3,0.2,0.51/2 in panels (c), (d), and (e), respectively. The values are chosen such that the ratio between ν and ω is ω/ν = 1,
ω/ν ∈ Z\{1} and ω/ν ∈ R\Z in panels (c) to (e). Correspondingly, in (c) the trajectory quickly converges to a circle, whose center is slightly
shifted from the origin. In panel (d) a quasi-closed three-fold loop can be observed, since ω/ν = 3/2. In panel (e) the trajectories will densely
fill the annular disk defined in the video supplement statement. (f) Heat map of numerous trajectories projected onto the (x,y) plane. The
trajectories start at random points in state space and are integrated from ti =−200 to tf = 200. A video of the heat map filling up as more
and more trajectories with different initial conditions are added is provided in the video supplement. The heat map shown here is a snapshot
of the video taken at time t = 0.20; see details in the video supplement.

a measure in NDSs and RDSs, please see Caraballo and
Han (2017), Chekroun et al. (2011), Crauel and Kloeden
(2015), or Ghil et al. (2008). Essentially, the heat map here
counts the number of times that 100 trajectories integrated
from t =−200 to t = 200, with randomized initial condi-
tions like the ones shown in Fig. 6a, cross small pixels in
the (x,y) plane.

Figure 6c–e demonstrate a particularity of this system,
which is characteristic of dynamics confined to a torus.
Namely, the structure of the system’s trajectories depends on
the frequency ratio ω/ν, and three different cases must be
distinguished. If the radius is modulated with the same fre-
quency as the oscillation itself, i.e. ω = ν as in panel (c), the
forcing and the system have a fixed phase relation. That is,

for a given phase of the system, its radius is always attracted
by the same fixed point. Hence, the system practically re-
peats its orbit after a short time. More precisely, the radius
of the oscillation does differ from one “round trip” around
the torus to the next, but this difference tends to zero as ρ(t)
approaches the PBA A(ρ)

t .
If ω and ν are rationally related, i.e.,mω = nν with n,m ∈

N, as in Fig. 6d, then – after n periods of the radial modula-
tion and m periods of the system’s oscillation – the phase
relation between the system and its forcing will repeat itself,
and hence we observe the same quasi-repetition of the orbit
after the time n 2π/ν =m2π/ω. That is, such a trajectory
will appear as an n-fold quasi-closed loop.
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Finally, if ω/ν 6∈ Z, as in Fig. 6e, then a given phase of
the system will never coincide with the same phase of the
radius modulation more than once. Hence, the trajectory does
not repeat itself but instead densely covers the annular disk
D = {(ρ,φ) : ρ ∈ [µ0−αβ,µ0+αβ] and φ ∈ [0,2π )}.

3.2.3 Random attractor

Let us return now to the more general, nonlinear case of
Eq. (9) and add not only deterministic time dependence
F (X, t) but also random forcing,

dX = F (X, t)dt +G(X)dη, (20)

where η = η(t,ω) represents a Wiener process – with dη
commonly referred to as “white noise” – and ω now la-
bels the particular realization of this random process. When
G= const., the noise is additive, while for ∂G/∂X 6= 0 we
speak of multiplicative noise. The distinction between dt and
dη in the stochastic differential Eq. (20) is necessary since,
roughly speaking and following the Einstein (1905) paper on
Brownian motion, it is the variance of a Wiener process that
is proportional to time and thus dη ∝ (dt)1/2. In Eq. (20), we
dropped the dependence on a parameter µ for the sake of
simplicity.

The noise processes may include “weather” and volcanic
eruptions when X(t) is “climate”, thus generalizing the linear
model of Hasselmann (1976), or cloud processes when deal-
ing with the weather itself: one person’s signal is another per-
son’s noise, as the saying goes. In the case of random forcing
of Eq. (20), the concepts introduced by the simple determin-
istic examples of Eq. (10b) and Eqs. (15) and (16) above can
be illustrated by the random attractor (ω) in Fig. 7.

A key feature of the pullback point of view on noise-
perturbed dynamical systems that characterizes RDS theory
is the use of a single noise realization, as opposed to the tra-
ditional, forward viewpoint of the Fokker–Planck equation
and associated concepts, in which multiple noise realizations
play a role. For a precise definition of a random attractor – as
well as the commonalities and differences between the de-
terministic and random cases of time-dependent forcing –
please see Caraballo and Han (2017).

Chekroun et al. (2011) studied a specific case of such
a random attractor for the paradigmatic, climate-related
Lorenz (1963) convection model. The authors introduced
multiplicative noise into each of the ODEs of the original,
deterministically chaotic system, as shown below:

dX = Pr (Y −X)dt + σXdη, (21a)
dY = (rX−Y −XZ)dt + σYdη, (21b)
dZ = (−bZ+XY )dt + σZdη, (21c)

where r = 28, Pr = 10, and b = 8/3 are the standard param-
eter values for chaotic behavior in the absence of noise and
σ is a constant variance of the Wiener process that is not

Figure 7. Schematic diagram of a random attractor (ω) and of
the pullback attraction to it; here ω labels the particular realization
of the random process θ (t)ω that drives the system. We illustrate
the evolution in time t of the random process θ (t)ω (light solid
black line at the bottom), the random attractor (ω) itself (yel-
low band in the middle), with the snapshots A0(ω)=A(ω; t = 0))
and A(ω; t) (the two vertical sections, heavy solid lines), and the
flow of an arbitrary compact set B from “pullback times” t =−τ2
and t =−τ1 onto the attractor (heavy blue arrows). See Ghil et al.
(2008, Appendix A) for the requisite properties of the random pro-
cess θ (t)ω that drives the RDS formulated by Eq. (20). Adapted
from Physica D: Nonlinear Phenomena, 237, Ghil et al. (2008), Cli-
mate dynamics and fluid mechanics: natural variability and related
uncertainties, 2111–2126, © 2008 Elsevier B.V. All rights reserved.
2008, with permission from Elsevier.

necessarily small; both the noise realization η(t) and σ are
the same in all three equations. The well-known strange at-
tractor of the deterministic case is replaced by the Lorenz
model’s random attractor, dubbed LORA by the authors.
Four snapshots At (ω) of LORA are plotted in Fig. 8 and a
video of its evolution in time (ω)= {At (ω)}t∈R is avail-
able as supplementary material to Chekroun et al. (2011) at
https://doi.org/10.1016/j.physd.2011.06.005.

Charó et al. (2021) have further analyzed the striking ef-
fects of the noise on the nonlinear dynamics that are visi-
ble in Fig. 8 and in the video of Chekroun et al. (2011) and
gathered further insights into the abrupt changes of the snap-
shots’ topology at critical points in time. These remarkable
changes suggest the possibility of random processes giving
rise to qualitative jumps, such as the MPT, in paleoclimatic
variability.

3.3 Application to Dansgaard–Oeschger (D-O) events

Before discussing conceptual glacial cycle models, we take
a little detour and introduce a simpler – yet interesting and
at the same time highly instructive – application of NDS the-
ory to another important climate phenomenon. During past
glacial periods, Greenland experienced a series of sudden
decadal-scale warming events that left a clear trace in ice core
records (Dansgaard et al., 1993). These so-called D-O events
were followed by intervals of steady moderate cooling, be-
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Figure 8. Heat maps of the time-dependent invariant measure νt (ω)
supported on four snapshots (ω) of LORA. The values of the pa-
rameters r , s, and b are the classical ones, where the variance of
the noise σ = 0.5. The color bar is on a log scale, and it quanti-
fies the probability of landing in a particular region of phase space;
a projection is shown of the 3-D phase space (X,Y,Z) onto the
(X,Z) plane. Note the complex, interlaced filament structures be-
tween highly populated regions (in yellow) and moderately popu-
lated ones (in red). Reprinted from Physica D: Nonlinear Phenom-
ena, 240, Chekroun et al. (2011), Stochastic climate dynamics: Ran-
dom attractors and time-dependent invariant measures, 1685–1700,
© 2011 Elsevier B.V. All rights reserved. 2011, with permission
from Elsevier.

fore a short phase of enhanced cooling brought the temper-
atures back to their pre-event levels (e.g., Rasmussen et al.,
2014). This pattern is very clearly apparent in NGRIP δ18O
records (North Greenland Ice Core Project members, 2004),
and it can be qualitatively simulated by the fast compo-
nent of a FitzHugh–Nagumo (FHN) model (FitzHugh, 1961;
Nagumo et al., 1962), as pointed out by Mitsui and Crucifix
(2017), among others; see also Kwasniok (2013), Rial and
Yang (2007), Roberts and Saha (2017), and Vettoretti et al.
(2022).

We discuss the example of the FHN model at some length
in order to illustrate how external forcing can act on a sys-
tem’s internal variability and thereby give rise to more com-
plex dynamics. This model’s concise mathematical formula-
tion and its widespread application in paleoclimate modeling
and other fields make it ideally suited for this goal. We start
with a description of the autonomous model with no time-
dependent forcing. Subsequently, we introduce a simple si-
nusoidal forcing and numerically compute the correspond-
ing PBA. We then extend these consideration into the realm

of random dynamical systems by adding stochastic forcing
and discuss the resulting random attractor. Finally, we re-
place the synthetic forcings by one that corresponds to a pa-
leoclimate proxy record of past CO2 concentrations retrieved
from Antarctic ice cores (Bereiter et al., 2015a) and show that
this setup brings the model’s trajectories into good qualitative
agreement with the D-O patterns observed in δ18O records
from Greenland ice cores. In doing so, we pay less attention
to the physical interpretation of the model’s variables, while
focusing on the detailed explanation of model behavior and
on the role of the forcing in the resulting dynamics.

3.3.1 The FitzHugh–Nagumo (FHN) model of fast–slow
oscillations

The FHN model consists of two coupled ODEs that govern
behavior alternating between slow evolutions and fast transi-
tions. Typically, the timescales of the two variables are sepa-
rated by introducing the parameters τx and τy , with x(t) be-
ing the slow component and y(t) the fast one:

ẋ =
1
τx

(y− γ ), (22a)

ẏ =
1
τy
[α(y− y3)− x]. (22b)

In order to develop an understanding for the way that such
a model can simulate the rapid D-O warmings, followed by
slow coolings, we start by discussing its autonomous behav-
ior for time-independent γ .

First, consider the case of large timescale separation

τx � τy . (23)

This choice guarantees that the fast y component adjusts
adiabatically to quasi-static changes of the slow x compo-
nent. The time derivative of y(t), as shown in Fig. 10a, ex-
hibits either three real roots or a single one, depending on the
value of x(t), which shifts the graph of the cubic polynomial
P3(x,y)= α(y−y3)−x globally upwards or downwards. Of
the three potential roots, the outer two are stable fixed points
for y(t) at a fixed value of x, while the inner one is unsta-
ble. Note that the two stable fixed points are always located
either left or right of the local minimum or maximum of
P3(x,y), respectively. Accordingly, we label them yl and yr.
The positions of the local extrema, namely ymin =−

√
1/3

and ymax =
√

1/3, provide an upper and a lower bound for
the left and right stable fixed point, respectively.

Now, let us investigate the coupled dynamics of the slow
and fast variables x(t) and y(t). Assume we are in a state
where x > 2α/

√
27 such that yl is the only root of P3(x,y).

Provided that |γ |<
√

1/3, the time derivative ẋ and x itself
will have opposite signs, with the consequence that a slow
adjustment process of x(t) sets in. This will shift the poly-
nomial P3(x,y) upwards in Fig. 10a, which in turn revives
the other two roots of P3(x,y). The fast y(t) closely follows
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yl, which is shifted accordingly. Once x(t)=−2α/
√

27, the
root yl stops existing and a fast transition to the neighbor-
hood of the opposite root yr ensues. This transition switches
the sign of ẋ(t) and the slow adjustment of x(t) now happens
in the opposite direction.

In the (x,y) plane, this behavior manifests itself as a sta-
ble limit cycle. However, any value |γ |>

√
1/3 prevents

ẋ(t) from switching sign and therefore interrupts the cyclic
destruction and revival of the respective opposite root of
P3(x,y). Instead, |γ |>

√
1/3 gives rise to a single stable

fixed point for the entire system in the (x,y) plane and in
this case both variables relax towards it.

In fact, in the autonomous setting, the system’s qualitative
behavior is controlled by the value of the parameter γ , which
decides between internal oscillations along a limit cycle and
relaxation towards a fixed point in the (x,y) plane. Note that
previously we referred to the roots yl and yr also as stable
fixed points of y for a given value of x. Here, the term stable
fixed point refers to the entire system defined by the coupled
ODEs (22a) and (22b). Both γ =±

√
1/3 are critical values

of γ that give rise to supercritical Hopf bifurcations of the
coupled system’s fixed points; recall Fig. 4 of Sect. 2.1.

This behavior can be better understood by considering the
nullclines of Eqs. (22b) and (22a) in the (x,y) plane, as
shown in Fig. 9. If the branches of the y nullcline that corre-
spond to yl and yr, and thus to stable fixed points of Eq. (22b)
for a given value of x, intersect with the x nullcline given by
y = γ , then this intersection constitutes a stable fixed point
for the entire system.

If they do not, the system first relaxes along the fast direc-
tion toward the y nullcline. Only then does the adjustment of
the slow component start to drag the system along the y null-
cline in the direction where the distance to the x nullcline
decreases. At the point where the y nullcline reverses, the
fast component is immediately attracted by the other branch
of the fast nullcline and the same process starts all over again.

So far we have described the formation of the limit cycle
in the FHN model under the assumption of clear timescale
separation and the independence of the x nullcline {y = γ }
from x. See Rocsoreanu et al. (2000) for the emergence of
the limit cycle in the more general FHN model.

The highly nonlinear, two-time behavior of the FHN
model somewhat modifies the way that stable limit cycles
arise in it. While we saw the oscillation’s radius grow with
the square root of the bifurcation parameter in the case of the
normal form given by Eqs. (3)–(5), in the case of the FHN
model, the radius of the oscillations actually grows exponen-
tially over a small range of γ values right after the bifurcation
point and then stabilizes. These exponentially growing sta-
ble limit cycles have been termed “canard cycles” (Benoît,
1983). Roberts and Saha (2017) have pointed out a possible
link between canard cycles and D-O cycles, and they play a
role in other excitable climate models; see Pierini and Ghil
(2022) and references therein.

3.3.2 A pullback attractor of a periodically forced FHN
model

Introducing a sinusoidal time dependence

γ → γ (t)∝ sin(t/τf) (24)

into the slow Eq. (22a) makes the system non-autonomous,
as discussed in general terms in Sect. 3.2, and it periodically
switches the self-oscillatory behavior on and off. We con-
sider here the case in which the variations of the external
forcing γ (t;τf) occur on a slower timescale than the entire
internal dynamics, i.e.,

τf > τx > τy . (25)

Note that we give up here on the restriction of strict timescale
separation between x(t) and y(t), as expressed by Eq. (23).

The trajectories plotted in Fig. 10c–e and f–h represent the
solutions of such a periodically forced FHN model starting
at different points in the past. The time units are arbitrary
and the two sets of solutions are for two different forcing
timescales τf. These trajectories illustrate the applicability of
the pullback perspective suggested by Sect. 3.2 and Fig. 6
to the periodically forced FHN model. In contrast to the il-
lustrative examples of Sect. 3.2, an analytical solution is not
available in this case. However, this small sample of numer-
ically computed trajectories, together with the phenomeno-
logical discussion herein, is quite sufficient for an intuitive
understanding of the system’s pullback behavior.

For Fig. 10c–e, the forcing’s timescale is much slower then
the internal timescales. The amplitude of the forcing γ (t)
was chosen such that it repeatedly crosses the two thresholds
±
√

1/3 and thus induces a sequence of Hopf bifurcations by
switching between intervals of self-sustained oscillation and
attraction to a stable fixed point. Crossing such a bifurca-
tion point due to slow changes in the forcing is referred to as
a bifurcation-induced tipping or “B-tipping” (Ashwin et al.,
2012; Ghil, 2019; Ghil and Lucarini, 2020).

Strikingly, all trajectories converge to one another during
non-oscillatory time intervals, when they are simultaneously
attracted by the single existing fixed point. During oscillatory
intervals, phase differences between individual trajectories
may, in principle, persist. Still, convergence during a single
non-oscillatory interval is so strong that after it the trajec-
tories can no longer be discriminated visually. Numerically,
however, the distance between trajectories only tends to zero
but never reaches it. At the end of non-oscillatory intervals,
the trajectories always re-enter the oscillatory regime from
the same location in the (x,y) plane – to within negligible
numerical differences – and hence very nearly repeat them-
selves. Qualitatively speaking, the PBA – i.e., the family
of invariant snapshots {A(t)}t∈R of Eq. (13) – is an infinite
repetition of the common trajectory structure that can be ob-
served in Fig. 10d, e between −5000 and 15 000 time units.
In the case at hand, each snapshot A(t) consists of a single
point.
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Figure 9. Nullclines of the autonomous FHN model governed by Eq. (22) with large timescale separation, for α = 2, τx = 100, and τy = 10;
the nullclines of the fast y component are in blue, and those of the slow x component are in orange. (a–c) One illustrative trajectory (red
dotted) for γ = 0, 0.5, and 1.0, respectively. The upper branch and the lower branch of the y nullcline (solid blue) correspond to the roots yr
and yl, respectively, as defined in the text. For fixed values of x, they constitute stable fixed points for Eq. (22b). The middle branch (dashed
blue) corresponds to the unstable fixed point for Eq. (22b) for a given x. The trajectories for panels (a) and (b) follow a limit cycle, as the
x nullcline does not intersect with either of the stable branches of the y nullcline, given that |γ |<

√
1/3, while the trajectory in panel (c)

approaches a single stable fixed point for the coupled system formed by the intersection of the x nullcline with the yl branch of the y nullcline.

For Fig. 10f–h, the timescale separation between the forc-
ing and the internal dynamics is reduced, resulting in a qual-
itatively different behavior of the non-autonomous system.
The frequency of occurrence of B-tipping points is much
higher, and hence the trajectories do not even execute a full
oscillation during a single time interval that permits oscil-
lations. As a result, two stable patterns of trajectories are
formed. These two patterns can be brought into agreement
by switching the sign of one pattern and shifting it in time
by τf/2. This symmetry reflects the symmetry of the stable
nullcline of the fast system component, as shown in Fig. 9.

Again, the PBA of this non-autonomous system can be
thought of as an infinite repetition of the common trajectory
structure that can be observed in Fig. 10g, h between −5000
and 15 000 time units. In contrast to the slow-forcing case,
each snapshot A(t) now is comprised of two points in the
(x,y) plane. This example illustrates how the action of an
external force on an autonomous system can give rise to con-
siderably richer dynamics, which crucially depends on both
the system’s internal variability and the nature of the forcing.

3.3.3 A random attractor of a periodically and
stochastically forced FHN model

Based on the brief introduction to RDSs in Sect. 3.2, we take
our investigation of the periodically forced FHN model one
step further and include a random component into the exter-
nal forcing, acting on the model’s fast y component:

dx =
1
τx

(y− γ (t))dt, (26a)

dy =
1
τy

[
α
(
y− y3

)
− x

]
dt + σdη. (26b)

Here, η denotes a Wiener process, as in Eq. (20) – i.e., a
continuous stochastic process whose increments dη are inde-

pendently and normally distributed, with mean zero and unit
variance – and γ (t) remains a periodic forcing of the x com-
ponent proportional to sin(τft).

In order to study the random attractor of this system, we
compute trajectories with random initial conditions over a
time span long enough to reveal the asymptotic behavior, as
shown in Fig. 11. For both the slower and faster determin-
istic forcing – i.e., τf = 1000 and τf = 350, respectively, as
studied in the previous paragraphs – several random attrac-
tors are approximated for increasing noise variance values
σ in Eq. (26b). For each attractor approximation, we use 20
trajectories with the same noise realization. Each random at-
tractor (red) is shown together with the corresponding PBA
of the FHN system subject to purely periodic forcing (blue
and green).

For the long periodic forcing with τf = 1000, the trajecto-
ries in Fig. 11a converge fairly rapidly to a single one, as in
the case with no noise in Fig. 10d, e. Furthermore, there is
a clear similarity of pattern and proximity in phase between
the PBA of the deterministic system and the random attrac-
tor. However, the deviations of the random attractor from the
PBA increase in both pattern and phase as the noise variance
increases. These deviations are most striking during the os-
cillatory intervals because the noise can induce phase shifts
in the oscillations, which then persist for the duration of the
oscillatory interval. During non-oscillatory intervals, the ran-
dom attractor is less susceptible to the noise because the re-
sulting perturbations decay in the presence of a stable fixed
point of the underlying deterministic system.

For the shorter period forcing with τf = 350, the PBA of
the deterministic system features two stable branches, which
could in principle persist in the random attractor. As for the
case of τf = 1000, a rapid convergence of the trajectories can
be observed for all noise variances. However, two separate
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Figure 10. FitzHugh–Nagumo (FHN) model with parameters τx = 100, τy = 60, and α = 2. (a) The cubic polynomial P3(x,y) of the fast
derivative as a function of y for x = 0 (solid blue line); the red lines point to the local maximal and minimal values of P3(x,y), namely
±2a/

√
27, respectively – these are the maximal values by which P3 can be shifted up or down, while maintaining all of its three roots;

the dotted gray lines indicate the shifted function with x =±2α/
√

27. The purple lines labeled ymin and ymax mark the right and left
boundaries for the roots yl and yr, respectively: yl and yr can never be located in between the two purple lines. (b) Trajectories of the non-
autonomous model with γ (t)= 0.8sin(t/τf) and τf = 1000, plotted in the (x,y) phase plane; the trajectories are colored by their starting
times {t0 =−20000, t1 =−16000, t2 =−13000, t3 =−7000}, and the initial positions were drawn from a standard Gaussian bivariate
distribution. (c) The slow time-dependent forcing γ (t)= 0.8sin(t/1000). (d, e) The same trajectories as in (b) but plotted in time as y = y(t)
and x = x(t), respectively. Panels (f–h) are same as panels (c)–(e) but for the fast time-dependent forcing γ (t)= 0.8sin(t/350). The gray
shading in panels (c)–(h) indicates intervals during which |γ |>

√
1/3, and the internal oscillation is hence suppressed.

bundles of trajectories persist, each associated with one of
the two separate branches of the deterministic PBA. Only af-
ter some time do the two bundles merge and subsequently
follow either one of the two branches of the PBA or the
other. This phenomenon is called noise-induced synchroniza-
tion (e.g., Arnold, 1998; Chekroun et al., 2011). Which of the
two PBA branches the random attractor follows depends on
the exact noise realization. The random attractor may also
switch irregularly from one branch of the PBA to the other
(not shown). Already in the simple setup explored here, one
notices that the higher the noise variance, the faster the syn-
chronization of the trajectories. This statement must be un-
derstood probabilistically: it may certainly happen for two
given noise realizations that the random attractor with the

higher noise level takes longer to synchronize, as is the case
for σ = 0.7 and σ = 0.8 in Fig. 11b.

The investigation carried out herein assesses a very spe-
cial case of an FHN model’s random attractor. Random at-
tractors of FHN-type models have been studied intensively
(e.g., Wang, 2009; Yamakou et al., 2019). Most studies so
far, however, have concentrated on the excitable regime of
the stochastically forced FHN model, i.e., the deterministic
model’s parameters were chosen so as to exhibit a single sta-
ble fixed point in the absence of the noise. The noise vari-
ance was then chosen sufficiently high to ensure that random
fluctuations can push the system out of equilibrium and al-
low it to take a round trip on what would be the determin-
istic model’s limit cycle, given different parameter values.
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Figure 11. Random attractor of the periodically and stochastically forced FHN model governed by Eq. (26). (a) Results for slow periodic
forcing with period τf = 1000. The top graph shows the periodic forcing, with non-oscillatory intervals marked by gray shading. The next
three graphs show the fast y component of the approximate random attractors, as per Eq. (26b); the noise variance σ increases from top to
bottom. Each random attractor is approximated by integrating 20 trajectories (solid red) with different initial conditions over time and using
the same Wiener process as their common stochastic forcing; the corresponding deterministic PBA is shown in blue. The random attractors
and the PBA are very similar for small noise variances, but they differ more and more as the noise variance increases. (b) Results for faster
periodic forcing with period τf = 350. The forcing is only shown for the first 8000 time units, with non-oscillatory intervals again shaded
gray. The left part of panel (b) shows five approximate random attractors, computed as in panel (a), on a common time axis. The panel’s right-
hand side shows their continuations on individual time axes in order to display the moment when full noise-induced synchronization of the
trajectories takes place. Prior to this point, the random attractor is split into two branches, which closely follow the PBA of the deterministic
system (blue and green). For σ = 0.7, the synchronization already takes place during the first 8000 time units.

The situation studied here is rather different, as shown across
Figs. 9–11.

3.3.4 An FHN model of the NGRIP record

Readers who are familiar with the NGRIP δ18O record
(North Greenland Ice Core Project members, 2004) might
have already realized the qualitative resemblance between
the proxy data and the fast component’s trajectory of the pe-
riodically forced FHN model in Fig. 10d. In particular, the
prominent sawtooth pattern of the data is satisfactorily cap-
tured by the fast and slow dynamics of the model.

Figure 12 shows a trajectory of the FHN model for which
the sinusoidal forcing used in Fig. 10 was replaced by a
rescaled time series of atmospheric CO2 concentrations re-

trieved from Antarctic ice cores (Bereiter et al., 2015a):

γ (t)∝ CO2(t). (27)

Is it remarkable how well this simple forcing brings the os-
cillatory intervals of the FHN model into agreement with
the time intervals of the record that are dominated by D-O
cycles without any systematic tuning of the model parame-
ters. Clearly, the CO2-forced FHN model fails to reproduce
the exact waiting times between D-O events. However, with
these waiting times being at least in part stochastically deter-
mined (Ditlevsen et al., 2007), the purely deterministic FHN
model is not meant to reproduce the exact pattern of D-O
events. Vettoretti et al. (2022) have carried out a detailed
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Figure 12. FHN model fit to the NGRIP δ18O dataset of 20-year means, as published as a supplement to Seierstad et al. (2014) (see also
Rasmussen et al., 2014). Originally, the North Greenland Ice Core Project members (2004) reported a 50-year-mean dataset. (a) The fast
component yFHN(t) of an FHN model forced with historical CO2 concentrations (orange), together with the observed δ18O record (blue)
from the NGRIP ice core (Seierstad et al., 2014). (b) Rescaled atmospheric CO2 concentrations from Antarctic ice cores in arbitrary units
(au) (Bereiter et al., 2015a); the horizontal red lines indicate the lower and upper bounds, ymin =−

√
1/3 and ymax =

√
1/3, respectively, of

the free-oscillation regime.

study on the use of a CO2-forced FHN-type model to sim-
ulate D-O variability.

In fact, Rousseau et al. (2022, Fig. 6) describe in detail a
somewhat more complex, proxy-record-based picture of the
interaction between episodes full of D-O events, (Heinrich,
1988) events, and longer-term cooling trends. It is quite pos-
sible that a simple model like the one in this section but in-
cluding explicitly continental ice sheets could capture such a
detailed picture.

In the present framework, the FHN model’s fast variable
y(t) may be interpreted as the intensity of the Atlantic merid-
ional overturning circulation (AMOC), which switches be-
tween on and off states during self-oscillatory behavior; see,
for instance, Henry et al. (2016), Ghil (1994, Table 5), and
Ghil and Lucarini (2020, Table I). The slower x variable
that drives the transition between the on and off states of
the AMOC may then be taken, for instance, as the waxing
and waning of Northern Hemisphere ice sheets (e.g., Ghil
et al., 1987), linked in turn to varying ice shelf extent (e.g.,
Boers et al., 2018), or as the weakening and strengthening of
Antarctic bottom water production (Vettoretti et al., 2022).

The interaction between the fast variable and the slow one
happens here in the presence of a climate forcing represented
by CO2 concentration. On the much slower timescales of
Quaternary glaciations, an interplay between the CO2 con-
centration and mean global temperature might also occur, as
we shall see in the next section.

4 An NDS for the Quaternary glaciations

Apparently, it was Crucifix (2013) who first applied pull-
back ideas to the problems of Quaternary glaciations, inde-
pendently of earlier work on the topic in the climate litera-
ture (Ghil et al., 2008; Chekroun et al., 2011; Bódai and Tél,
2012). His work concentrated mainly on the connection be-
tween the pacemaking role of the orbital forcing and the ob-
served irregularity of the glacial terminations during the Late
Pleistocene; cf. Broecker and Van Donk (1970) and Ghil and
Childress (1987, Fig. 11.2).

Based on the considerable success of NDS and RDS ap-
plications to other climate problems – such as ENSO (Ghil
et al., 2008; Ghil and Zaliapin, 2015; Chekroun et al., 2018;
Marangio et al., 2019), the wind-driven ocean circulation
(Pierini et al., 2016, 2018), or the evaluation of the ensem-
ble simulations routinely performed in support of the As-
sessment Reports of the Intergovernmental Panel on Climate
Change (Drótos et al., 2015; Vissio et al., 2020) – it would
appear worthwhile to proceed further along these lines.

Box 2 summarizes open questions with respect to Quater-
nary glaciations whose investigation should be aided by NDS
and RDS theory. Of course, each of these problems requires
one or more distinct climate models, as well as very careful
modeling of the kinds of time-dependent changes in forcing
and parameters that are most enlightening, as well as most
relevant and plausible. A good way would be to start testing
ideas with relatively simple models and pursue the investi-
gation systematically across a hierarchy of models – through
intermediate ones and on to the most detailed ones – in order
to further increase understanding of the climate system and
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Box 2. Some open questions concerning Quaternary glaciations.

of its predictability on the various paleoclimatic time scales
mentioned in the list above.

Such an approach can usefully complement the more com-
mon one of merely pushing onwards to higher and higher
model resolution in order to achieve ever more detailed sim-
ulations of the system’s behavior for a limited set of semi-
empirical parameter values. Ghil (2001) and Held (2005),
among others, have emphasized the need to pursue such a
model hierarchy, as originally proposed by Schneider and
Dickinson (1974), in order to balance the need to broaden the
number of plausible hypotheses vs. the need for confronting
them with spatiotemporal details derived from observations.

In this section, we illustrate how the PBA concept can help
shed more light upon the dynamics of ice age models. As
pointed out in Sect. 3.1 and elsewhere in this paper, there
is a long history of modeling the climate of the Quaternary
by means of conceptual models, and many non-autonomous
models have been proposed to simulate glacial–interglacial
cycles of the last 400 kyr to 2.6 Myr based on the orbital forc-
ing. In Appendix A, we provide a long but still not exhaus-
tive list of glacial-cycle models and specify some of their key
characteristics, including the degree of their success at simu-
lating the MPT; see also the discussion in Sect. 2.2.

Among these glacial-cycle models, the model of Daruka
and Ditlevsen (2016, DD16 hereafter) belongs to the more
abstract ones, as it is not derived from detailed physical con-
siderations. Still, its concise form, interesting nonlinear dy-
namics, and ability to simulate glacial cycles, as well as the
MPT, make the DD16 model well suited for our illustrative
purposes. We first modify this model slightly from its orig-
inal formulation. We do so mainly in order for the model
to better approximate the benthic δ18O proxy reconstruc-
tion of glacial–interglacial cycles due to Lisiecki and Raymo
(2005a), especially the timing of glacial terminations; com-
pare our Fig. 13 with Fig. 1 in DD16. Thereafter, we compute
the PBAs of the modified DD16 model (hereafter M-DD16)
to investigate the dynamical stability of its glacial cycles over
the past 2.6 Myr.

Our model’s variables, following DD16, are a global tem-
perature anomaly y that is proportional to minus the global
ice volume and an effective climatic memory term x that rep-
resents the internal degrees of freedom. In the determinis-
tic case, the governing equations of the M-DD16 model are
given by

τ ẋ = λy, (28a)

τ ẏ =−α(t)+ x− x3
−β(t)F (t)x− κy; (28b)

here t is the time (in kyr) and F (t) is the normalized 21 June
insolation at 65◦ N, based on the calculations of Laskar et al.
(2004a), as shown in Fig. 13a. The constant parameter values
are chosen as κ = 1, τ = 100, and λ= 10. Note that with this
choice of λ and unlike in the FHN model of D–O oscillations
in Sect. 3.3, x is the fast variable and y is the slow one.

In the original DD16 model, MPT-like behavior was pro-
duced by a slow sigmoid variation of the parameter κ in
Eq. (28b),

κ(t)= κ1+ 0.5(κ0−κ1)
(

1.0− tanh
(
t−t0

ts

))
. (29)

In our M-DD16 model, we introduce instead a slow change
in the parameters α(t) and β(t) of Eq. (28b) as follows:

α(t)= 2.1− 1.4tanh((t + 1100)/500) , (30a)
β(t)= 2.5+ 1.4tanh((t + 1100)/500) . (30b)

The functions α(t) and β(t) so defined are plotted in Fig. 13b,
and they induce, as we shall see forthwith, a change in model
behavior that not only resembles the MPT but also shows
correct timings for most of the terminations. Moreover, to
simulate δ18Omodel, we add a linear trend to the slow vari-
able y to mimic the overall cooling at time scales of mil-
lions of years, and thus δ18Omodel = 4.3− 1.4y+ 0.0003t .
Equation (28) generalizes a first-order ODE system that is
equivalent to the Duffing form of the nonlinear spring Eq (7)
discussed in Sect. 2.2. The use of such classical first-order
systems – like the Duffing and Van der Pol ones – in paleo-
climate models was initiated by Saltzman et al. (1981); see
also Sect. 2.2 herein.

Clim. Past, 18, 863–893, 2022 https://doi.org/10.5194/cp-18-863-2022



K. Riechers et al.: Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations 881

Figure 13. Glacial–interglacial cycles simulated by the modified Daruka and Ditlevsen model of Eqs. (28) and (30): (a) 21 June insolation
F (t) at 65◦ N, normalized to have mean zero and unit standard deviation over the last 1000 kyr, according to Laskar et al. (2004a). (b) Slowly
changing parameters α(t) and β(t) introduced to give rise to the MPT. (c) Simulated glacial–interglacial cycles δ18Omodel (red) in comparison
with the benthic δ18O data (blue); the latter dataset, provided by Lisiecki and Raymo (2005a), is also known as the LR04 stack.

Figure 13c shows a time series of simulated glacial–
interglacial changes δ18Omodel (red) in comparison with the
benthic δ18O (blue) of Lisiecki and Raymo (2005a). The
model’s initial condition is taken to be x =−1 and y = 0
at t = 10000 kyr b2k and, since the insolation forcing in
Fig. 13a is prescribed as a time series with 100-year sam-
pling, we solved Eq. (28) using Heun’s predictor–corrector
method (Isaacson and Keller, 2012, chap. 8) with a step size
of 100 years. A large spin-up time is chosen to guarantee that
transient effects caused by the initial conditions have abated
by the year 2.6 Ma b2k, which is the starting point for the
time interval under study. The correlation between the model
simulation and the proxy record is 0.75 for the time interval
from 2600 to 0 kyr b2k and 0.72 over the interval from 1000
to 0 kyr b2k. Varying the parameters slowly across the time
interval of interest, as shown in Fig. 13b, leads to a change
in the frequency – from a dominant 41 kyr periodicity prior
to the MPT, at roughly 1.2 Ma kyr b2k, to a dominant 100 kyr
periodicity after the MPT, at roughly 800 kyr b2k – and a sub-
stantial increase in the amplitude.

We next approximate the PBA by taking 40 random ini-
tial conditions at 10 Ma b2k and integrating the model of
Eqs. (28) and (30) up to the present time. The PBA in this
case is simply a moving fixed point, as plotted in Fig. 14a,
since the model dynamics is predominantly stable in the long

time interval prior to the MPT. It would thus appear that the
orbital forcing simply moves this fixed point around and fully
determines Earth’s climate. This agrees with the clear state-
ment in DD16 that “first and foremost, our model does not
have any internal periods of oscillation”.

However, when keeping the parameters α and β fixed
at their post-MPT values α = 0.7 and β = 3.9 throughout
the simulation interval and repeating the computation of
the PBA, a more complex picture arises. In the latter case,
Fig. 14b shows a bunching of trajectories into separate
fuzzy clusters, subject to the quasi-periodic orbital forcing
of Fig. 13a.

There are two interesting inferences to be drawn. First,
post-MPT dynamics is much more irregular and unstable
than the more stable dynamics prior to the MPT. The robust-
ness of the 40 kyr glacial cycles and instability of 100 kyr
glacial cycles against perturbations is in line with the conclu-
sions of previous studies (Mitsui et al., 2015; Quinn et al.,
2018). It also appears to be consistent with the Willeit et al.
(2019) simulation of the last 3 Myr of Earth’s history that
used an Earth system model of intermediate complexity
(CLIMBER-2) that included ice sheets and a carbon cycle,
along with atmosphere–ocean dynamics. In their work, tra-
jectories starting from different initial states tended to con-
verge to a single attracting trajectory in the Early Pleistocene,

https://doi.org/10.5194/cp-18-863-2022 Clim. Past, 18, 863–893, 2022



882 K. Riechers et al.: Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations

Figure 14. PBA of the M-DD16 model governed by Eq. (28), ap-
proximated by 40 trajectories starting from random initial condi-
tions in (x,y) ∈ [−2,2]× [−2,2] at t =−10000 kyr. (a) The PBA
corresponding to Fig. 13, with the slowly changing parameters α(t)
and β(t) given by Eq. (30). (b) The PBA for α(t) and β(t) kept con-
stant at the post-MPT values of α = 0.7 and β = 3.9. In panel (b),
the PBA is shown over a shorter time interval of the last 1000 kyr so
that the detailed structure is more clearly visible. Without changes
in α and β in time, the overall structure of the PBA is similar before
and after 1000 kyr b2k.

while several distinct trajectories survived in the Late Pleis-
tocene after the MPT.

Second, the separate bundles or “ropes” of trajecto-
ries in Fig. 14b seem to point to the type of generalized
synchronization discussed in the paleoclimate context by
De Saedeleer et al. (2013) and in the context of interan-
nual and interdecadal climate variability by Pierini and Ghil
(2022) and Vannitsem et al. (2021). Generalized synchro-
nization in the strict sense of the existence of a map between
a time-dependent control and the system’s asymptotic behav-
ior has only been shown to hold for non-chaotic systems.
Work is under way, however, to further generalize this con-
cept to chaotic systems as well (e.g., Rulkov et al., 1995;
Zhang et al., 2007).

5 Conclusions

In this review and research paper, we have covered the contri-
butions of the 1970s to the rebirth of the Milankovitch (1920)
theory of the ice ages in Sect. 1 and the 1980s advances
in modeling the Quaternary climate’s intrinsic variability in
Sect. 2. In Sect. 3, we presented first results on the effects of

the orbital insolation forcing of the data discussed in Sect. 1
on the intrinsic variability of the data discussed in Sect. 2,
and proceeded to introduce the novel concepts and tools of
the theory of non-autonomous and random dynamical sys-
tems (NDSs and RDSs) that can help to better model and un-
derstand these effects. Section 3 concluded with the formula-
tion and study of a FitzHugh–Nagumo (FHN)-type model of
recurrent Dansgaard–Oeschger (D-O) events, in which his-
torical CO2 concentrations induced episodes of D-O events
alternating with episodes of their absence in excellent quali-
tative agreement with NGRIP δ18O data; see Fig. 12.

Finally, in Sect. 4, we listed a number of open issues on
Quaternary and longer paleoclimate timescales and proposed
to address them by using the tools of Sect. 3.2. This ap-
proach was illustrated by a Duffing-type model of Daruka
and Ditlevsen (2016), modified to include slow changes in
the parameters that mimic such changes in the Earth system
over the duration of the Quaternary period.

When the parameters are gradually changed in time so as
to exhibit the mid-Pleistocene transition (MPT), the PBA is
simply a moving fixed point. However, when the parameters
are fixed at their post-MPT values, the PBA so obtained is
chaotic and exhibits clusters of trajectories that we termed
ropes. This suggests (a) that the stability of the system is
gradually lost while crossing the MPT and (b) that the Late
Pleistocene climate, albeit chaotic, may well be subject to a
kind of generalized synchronization (cf. De Saedeleer et al.,
2013; Pierini and Ghil, 2022; Vannitsem et al., 2021) with
the orbital forcing that is illustrated in Fig. 5 of Sect. 3.1
herein. In the specific situation at hand, separate ropes may
be associated with various combination tones of the forcing
frequencies.

In a broader perspective – and leaving aside various finer
points of the MPT conversation outlined in Sect. 2.2 – one
can see the work that was reviewed and extended in this pa-
per as a confirmation of the fine intuition of Emiliani and
Geiss (1959), 6 decades ago, as summarized in and further
expanded by Ghil and Childress (1987, Sect. 12, pp. 446–
447).

Hence the following scenario (compare Emiliani
and Geiss, 1959) suggests itself for the successive
climatic transitions from Pliocene to Pleistocene
and from Early to Late Pleistocene: As land masses
moved towards more northerly positions, small ice
caps formed on mountain chains and at high lat-
itudes. These ice caps, due to their feedback on
albedo, made climate more sensitive to insolation
variations than it was in the total absence of ice.
The response of the climatic system to such vari-
ations during the Early Pleistocene (2000 [kyr]–
1000 [kyr] ago) was still relatively weak, of a frac-
tion of a degree centigrade in global temperature
perhaps, in agreement with the quasi-equilibrium
results of Sect. 10.2.
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As ice caps passed, about 1000 [kyr] ago, a cer-
tain critical size, the unforced system jumped from
its stable equilibrium to its stable limit-cycle state
(Figures 12.5 and 12.9), increasing dramatically
the climate’s total variability, to a few degrees
centigrade in global temperature. Furthermore, res-
onant response became possible (see also Oerle-
mans (1984) [in Berger et al. (1984)] and Sergin
(1979)), enhancing abruptly the amplitude of the
peak at 100 kyr, among others.

The take-home message is that slow and fast processes,
both intrinsic and extrinsic, interact on all paleoclimatic
timescales and that we are mastering the art of modeling such
interactions.

Appendix A: Low-order dynamical-system models of
glacial cycles

The dynamical modeling of glacial cycles dates back to the
1970s. Calder (1974) proposed a model of global ice volume
changes that had different sensitivities to the insolation when
ice sheets were waxing and waning, respectively. His model
can be written as an NDS, according to Paillard (2001). Sub-
sequently, conceptual dynamical models were further devel-
oped (e.g., Imbrie and Imbrie, 1980; Berger, 1999). Some of
the more recent models simulate the proxy records of glacial
cycles remarkably well (Paillard, 1998; Imbrie et al., 2011;
Parrenin and Paillard, 2012).

Shortly after Calder (1974) presented his work, Weertman
(1976) proposed a simple ice sheet model based on the flow
law of a perfectly plastic solid. Next, researchers extended
this simple ice sheet model by coupling it with an energy bal-
ance model (Källén et al., 1979) and further with the isostatic
response of the underlying bedrock (Oerlemans, 1980; Ghil
and Le Treut, 1981; Le Treut and Ghil, 1983; Pollard, 1983).
Källén et al. (1979) found self-sustained oscillations in their
simple coupled ice sheet–energy balance model. Le Treut
and Ghil (1983) showed that the dominant 100 kyr period-
icity of glacial cycles is generated – in their simple oscilla-
tor coupling ice sheet volume with the bedrock’s isostatic re-
bound, on the one hand, and with the atmosphere and ocean’s
energy balance, on the other hand – via nonlinear resonance
with the multi-periodic orbital forcing. More recently, Verbit-
sky et al. (2018) developed a simple physical model through
a scaling argument that respects the underlying physics. An-
other branch of simple models explicitly includes the carbon
cycle as an essential ingredient (Saltzman and Maasch, 1990;
Paillard and Parrenin, 2004; Hogg, 2008; Toggweiler, 2008;
Omta et al., 2016; Talento and Ganopolski, 2021).

A deeper understanding of glaciation cycles cannot be
obtained without process-based models that focus on the
detailed physics and biogeochemical phenomena involved
(Berger et al., 1999; Ganopolski and Calov, 2011; Abe-Ouchi
et al., 2013; Ganopolski and Brovkin, 2017; Willeit et al.,

2019). Still, simple dynamical models like the ones men-
tioned above, as well as models based on more mathematical
considerations, are also useful for understanding the climate
system’s behavior and changes therein, since complex sys-
tems can sometimes exhibit familiar dynamics, regardless of
the details (Nicolis and Nicolis, 2012; Crucifix, 2011). As
Henri Poincaré pointed out, “mathematics is the art of giving
the same name to different things”.

For example, coupled nonlinear oscillators frequently ex-
hibit synchronization with simple frequency ratios, either
with each other (Pikovsky et al., 2001) or with the forc-
ing (Ghil and Childress, 1987). Thus, mathematical models
that ignore many physical details may also help us elucidate
emergent properties in paleoclimatic dynamics (Tziperman
et al., 2006; Crucifix, 2011, 2012; De Saedeleer et al., 2013;
Mitsui et al., 2015; Ashwin and Ditlevsen, 2015; Daruka and
Ditlevsen, 2016) or test different orbital hypotheses (Huy-
bers, 2011). Many low-order models of glacial dynamics are
listed in Table A1, although it is by no means exhaustive.

Appendix B: PBA for a limit cycle with sinusoidally
modulated radius

Here we study the system of two formally decoupled ODEs

dρ
dt
= α(µ+β sin(νt)− ρ),

dφ
dt
= ω with ρ > 0, µ > 0, (B1)

that were introduced in Sect. 3.2 and analytically derive their
invariant sets

A(t)= {(αβ sin(νt +ϑ)+µ,ϕ) : ϕ ∈ [0,2π )}

∀t ∈ R, (B2)

as well as the corresponding pullback attractor (PBA). Fol-
lowing Crauel and Kloeden (2015), the PBA is given by the
family

= {A}t :t∈R. (B3)

First, we define 1ρ(t)= ρ(t)−µ, which gives rise to

d1ρ(t)
dt

=−α1ρ(t)+αβ sin(νt). (B4)

This is an inhomogeneous ODE and can thus be solved by
the variation of parameters method (e.g., Boyce and DiPrima,
2005). The ansatz

1ρ(t)= c(t) e−α(t−t0), (B5)

yields

d1ρ(t)
dt

=−α1ρ(t)+
dc(t)

dt
e−α(t−t0). (B6)
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Table A1. List of simple conceptual glacial-cycle models with only 1–3 variables. Note that, while extensive, this list is not exhaustive.

Author(s) (year) Succinct description Dynamical properties Is the mid-Pleistocene
transition (MPT)-like
behavior generated?

Additional comments

Low-order dynamical systems models of glacial cycles

Calder (1974) Model of the global ice vol-
ume with different sensitivi-
ties to the insolation during
growth and retreat, respec-
tively.

Non-chaotic. No self-
sustained oscillation in
the absence of forcing

Not specifically addressed. His model can be written
as a non-autonomous dynam-
ical system (NDS) (Paillard,
2001).

Weertman (1976) Simplified ice sheet model
based on the flow law of a per-
fectly plastic solid.

Non-chaotic. No self-
sustained oscillation in
the absence of forcing.

Not specifically addressed.

Källén et al. (1979),
Ghil and Le Treut (1981),
Le Treut and Ghil (1983),
Ghil (1994)

Ice sheet–bedrock–
temperature coupled os-
cillator; see the text for
details.

Chaotic in the presence of
orbital forcing (Ghil, 1994).
Exhibits self-sustained os-
cillations with a period of
≈ 10 kyr; the basic mecha-
nism for getting ∼ 100 kyr
cycle is nonlinear resonance
at a difference tone between
the 19 and 23 kyr precession
cycles (Le Treut and Ghil,
1983); see Sect. 2.1 herein.

Not explicitly. It can exhibit,
however, the MPT in princi-
ple, since 41 kyr oscillations
and dominant 100 kyr oscil-
lations can be generated de-
pending on the model’s pa-
rameter values.

Källén et al. (1979) is an ice
sheet–temperature coupled
oscillator. Ghil and Le Treut
(1981) introduced the bedrock
and Le Treut and Ghil (1983)
added the orbital forcing.

Imbrie and Imbrie (1980) Piecewise linear model with
two different timescales for
ice sheet waxing and waning.

Non-chaotic. No self-
sustained oscillation in
the absence of forcing.

Not specifically addressed. 400 kyr periodicity is more
dominant than 100 kyr period-
icity.

Saltzman and Maasch
(1988, 1990),
Maasch and Saltzman
(1990)

Coupled oscillator based on
ice–CO2–ocean temperature
(or NADW) coupling. Nonlin-
earity is only in the CO2 com-
ponent.

Non-chaotic. After the MPT,
it exhibits self-sustained os-
cillations with a period of
∼ 100 kyr in the absence of
forcing.

Yes, the MPT arises via a
Hopf bifurcation in the under-
lying system; see also Cruci-
fix (2012).

It has a strange non-chaotic at-
tractor, as well as a chaotic
one, depending on the param-
eter setting (Mitsui and Ai-
hara, 2014).

Paillard (1998), Parrenin
and Paillard (2003, 2012)

Hybrid dynamical system
with discrete states that
switch when conditions are
satisfied.

Non-chaotic but the dynam-
ics is sensitive to parameter
changes near the switching
boundaries (Paillard, 2001).
No self-sustained oscillations
in the absence of forcing.

Yes, in Paillard (1998). The authors call these models
relaxation oscillators, in spite
of their discrete-state formula-
tion.

Berger (1999) Delayed differential equation
for ice volume,

Robustness of trajectories
against random perturbations
is mentioned. It exhibits
damped oscillations in the
absence of forcing.

Not specifically addressed.

Paillard and Parrenin
(2004)

Coupled oscillator based
on Northern Hemisphere
ice volume–Antarctic ice
extent–CO2 coupling.

Non-chaotic. It exhibits self-
sustained oscillations in the
absence of forcing.

Yes, the MPT is induced by a
slow drift in the bottom water
formation efficiency around
the Antarctic.

Ashwin et al. (2018) showed
that this model can exhibit
chaotic dynamics when it is
slightly modified.

Ashkenazy and Tziperman
(2004),
Tziperman et al. (2006)

An ice mass model that sim-
plifies the sea ice switch
model of Gildor and Tziper-
man (2000).

It exhibits self-sustained os-
cillations in the absence of
forcing. Non-chaotic under
the orbital forcing.

Yes, in Ashkenazy and
Tziperman (2004), where
the maximum ice volume
threshold is increased in time
according to the regolith
hypothesis.

Uses the temperature–
precipitation feedback
introduced by Källén et al.
(1979).

Huybers (2007, 2011) The ice mass grows monoton-
ically and collapses to zero
when it exceeds a threshold
modulated by the obliquity
(Huybers, 2007) or by a hy-
brid measure consisting of the
obliquity and climatic preces-
sion (Huybers, 2011).

Non-chaotic. It exhibits self-
sustained oscillations in the
absence of forcing.

Yes, in Huybers (2007).
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Table A1. Continued.

Author(s) (year) Succinct description Dynamical properties Is the mid-Pleistocene
transition (MPT)-like
behavior generated?

Additional comments

Imbrie et al. (2011) Data-based, phase space
model for Pleistocene ice
volume with thresholds.

Due to the presence of the
threshold, the model is sen-
sitive to changes in parame-
ters or in its position in phase
space.

Yes, MPT-like behavior is
produced solely by changes in
orbital parameters.

Crucifix (2012),
De Saedeleer et al. (2013)

Forced Van der Pol (VdP) os-
cillator model; closely related
to the FHN model used in
Sect. 3.3 herein.

Non-chaotic (Crucifix, 2012)
but sensitive to the noise. It
exhibits self-sustained oscilla-
tions in the absence of forc-
ing.

Yes, MPT-like behavior is
generated via a Hopf bifurca-
tion with an explosive charac-
ter (Crucifix, 2012).

Ashwin et al. (2018) showed
that this model has only a
small parameter region corre-
sponding to chaotic dynamics
but may have a wider chaotic
region when it is generalized
to the VdP–Duffing system.

Mitsui et al. (2015) One-dimensional phase oscil-
lator model.

Non-chaotic. Yes, MPT-like frequency
change accompanies a smooth
or non-smooth saddle-node
bifurcation of tori.

It has a strange non-chaotic
attractor or a quasi-periodic
attractor in a classical sense,
i.e., not in the pullback sense.

Ashwin and Ditlevsen
(2015)

Two-dimensional forced limit
cycle oscillator.

Non-chaotic; overall stability
of simulated glacial cycles
against dynamical noise is re-
ported.

It exhibits MPT-like behavior
via a trans-critical bifurcation
of the slow manifold in the
fast dynamics.

Omta et al. (2016) Forced two-dimensional os-
cillator consisting of ocean al-
kalinity and calcifier popula-
tion.

Non-chaotic or chaotic given
periodic forcing, depending
on the parameters. It exhibits
self-sustained oscillations in
the absence of forcing.

Yes.

Daruka and Ditlevsen
(2016)

Forced Duffing oscillator–
type model.

No self-sustained oscillations
in the absence of forcing. Can
be chaotic depending on pa-
rameter values; the authors
call this the “climatic butterfly
effect”.

Yes, MPT-like behavior is in-
duced by a slow change in the
damping coefficient parame-
ter κ .

See also Sect. 4 herein.

Huybers and Langmuir
(2017)

Coupled system of ice vol-
ume, temperature, and at-
mospheric CO2 incorporating
a delayed CO2 contribution
from ocean ridge volcanism.
It is reduced to a forced 1-D
delay differential equation.

A phase-locking property
is reported. The underlying
system has two stable and
one unstable stationary states.
However, it is close to a
Hopf bifurcation point and is
excitable by the forcing.

Yes, the MPT is modeled
as a switch from small-
amplitude oscillations to
large-amplitude ones, which
is triggered by the amplitude
modulation of obliquity
cycles.

Quinn et al. (2018) Scalar delay differential
equation for ice volume, de-
rived from the Saltzman and
Maasch (1988) model via the
linear chain approximation.

Non-chaotic before the MPT
and temporarily chaotic after
the MPT around 800 kyr b2k.
In the absence of astronomical
forcing, the delayed feedback
leads to bistable behavior, in
which stable large-amplitude
oscillations and an equilib-
rium coexist.

Yes, MPT-like behavior is
induced by summer insolation
forcing as a transition from
small-amplitude ∼ 41 kyr
cycles to large-amplitude
∼ 100 kyr cycles.

Ashwin et al. (2018) Study of several low-order dy-
namical systems models, in-
cluding Paillard and Parrenin
(2004), Crucifix (2012), and a
generalized VdP–Duffing os-
cillator.

Chaotic or non-chaotic de-
pending on the model and its
parameter values.

Not explicitly discussed. The
models can, however, exhibit
MPT-like behavior in princi-
ple because 41 kyr oscillations
and dominant 100 kyr oscilla-
tions are generated depending
on parameter values.

The authors stress the possi-
bility of chaotic dynamics oc-
curring.
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Table A1. Continued.

Author(s) (year) Succinct description Dynamical properties Is the mid-Pleistocene
transition (MPT)-like
behavior generated?

Additional comments

Verbitsky et al. (2018) Coupled model relying on
ice sheet basal temperature–
ocean temperature coupling,
deduced from physical laws
via a scaling analysis.

Non-chaotic. No self-
sustained oscillations in
the absence of forcing. The
100 kyr cycles are attributed
to a period-doubling response
to 41 kyr obliquity cycles.

Yes, MPT-like behavior is
induced by an enhancement
of positive feedbacks against
negative feedbacks in the
model.

Talento and Ganopolski
(2021)

Ice volume–CO2 coupled
conceptual model.

Not specifically addressed. This model was developed to
simulate the last 800 kyr of
glacial cycles and Earth’s fu-
ture climate on the million-
year timescale.

Low-order dynamical models in which stochastic processes are of the essence

Benzi et al. (1981, 1982),
Nicolis (1981)

Two independent formu-
lations of a stochastic-
resonance model. Additive
noise favors the bimodal
response of a periodically
modified double-well poten-
tial to global annual insolation
variations.

Additive stochastic perturba-
tions play a key role.

Not specifically addressed.
An MPT-like transition could
be obtained by subjecting
both the depth of the deter-
ministic double well and the
pure periodicity of its modula-
tion to a more or less gradual
modification.

Benzi et al. (1981, 1982)
and Nicolis (1981) proposed
the stochastic-resonance idea
for ice age cyclicity indepen-
dently of each other.

Matteucci (1989) Generalized stochastic reso-
nance model with obliquity
and precessional forcing.

Additive stochastic perturba-
tions play a key role.

Not specifically addressed.

Pelletier (2003) Model based on the coher-
ence resonance mechanism
(Pikovsky and Kurths, 1997)
uses a single temperature
ODE with a discrete delay.

Additive stochastic perturba-
tions play a key role.

Yes. The delay feedback in the
temperature is based on ice
sheet extent reconstructions
and affects the model’s
albedo.

Ditlevsen (2010) Generalized stochastic reso-
nance model with obliquity
and precessional forcing.

Additive stochastic perturba-
tions play a key role.

Yes. The model has an underly-
ing bifurcation structure fol-
lowing Paillard (1998).

A comparison with Eq. (B4) requires

d
dt
c(t)= αβ sin(νt)e+α(t−t0), (B7)

and hence

c(t)=

t∫
t0

αβ sin(νt ′)e+α(t ′−t0)dt ′+ γ

=

[
αβ sin(νt ′)

1
α
e+α(t ′−t0)

]t
t0

−

t∫
t0

ν

α
αβ cos(νt ′)e+α(t ′−t0)dt ′+ γ. (B8)

Repeated partial integration yields

t∫
t0

ν

α
αβ cos(νt ′)e+α(t ′−t0)dt ′ =

[
ν

α
αβ cos(νt ′)

1
α
e+α(t ′−t0)

]t
t0

+

t∫
t0

ν2

α2αβ sin(νt ′)e+α(t ′−t0)dt ′. (B9)

Therefore, we find(
1+

ν2

α2

) t∫
t0

αβ sin(νt ′)e+α(t ′−t0)dt ′ =

[
αβ sin(νt ′)

1
α
e+α(t ′−t0)

]t
t0

−

[
ν

α
αβ cos(νt ′)

1
α
e+α(t ′−t0)

]t
t0

, (B10)
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and finally

c(t)=
1(

1+ ν2

α2

)

[
β sin(νt ′)e+α(t ′−t0)

]t
t0︸ ︷︷ ︸

=β
[
sin(νt)eα(t−t0)

−sin(νt0)
]

−

[
νβ

α
cos(νt ′)e+α(t ′−t0)

]t
t0︸ ︷︷ ︸

=

νβ

α

[
cos(νt)eα(t−t0)

− cos(νt0)
]
+ γ


. (B11)

Plugging this result into the ansatz (Eq. B5) yields

1ρ(t, t0)=
1(

1+ ν2

α2

) (β [sin(νt)− sin(νt0)e−α(t−t0)
]

−
νβ

α

[
cos(νt)− cos(νt0)e−α(t−t0)

])
+ γ e−α(t−t0), (B12)

with the initial conditions

1ρ(t0, t0)= γ. (B13)

In the pullback limit, all the terms that carry a factor e−α(t−t0)

vanish, and thus

lim
t0→−∞

1ρ(t, t0)=
1(

1+ ν2

α2

) (β sin(νt)−
νβ

α
cos(νt)

)
= αβ sin(νt +ϑ), (B14)

with ϑ = arctan(−ν/α). For comparison, the modulation of
the target radius itself was given by β sin(νt), and hence it is
amplified by the factor of α. Since ρ is restricted to positive
values, this solution requires αβ < µ.

Since the evolution in time of the phase φ(t) is trivial, dif-
ferent initial conditions for the phase do not converge. Hence,
the time-dependent sets that are invariant with respect to the
dynamics of the system are

A(t)= {(ρ(t),φ) : φ ∈ [0,2π )}

= {(αβ sin(νt +ϑ),φ) : φ ∈ [0,2π )}. (B15)

Defined as the indexed family of all A(t), the system’s PBA
is comprised of the family of circles

= {A(t)}t∈R
= {(αβ sin(νt +ϑ),φ) : φ ∈ [0,2π )}t∈R. (B16)

Code and data availability. All code used to generate the fig-
ures presented in this article is available from the authors upon

request. The NGRIP δ18O – originally published in North Green-
land Ice Core Project members (2004) – and the historical CO2
data (Seierstad et al., 2014) shown in Fig. 12 are available as a
supplement to Seierstad et al. (2014) or https://www.iceandclimate.
nbi.ku.dk/data/ (last access: 13 April 2022) and from https://
www.ncei.noaa.gov/access/paleo-search/study/17975 (last access:
13 April 2022, Bereiter et al., 2015b), respectively. The ben-
thic δ18O data (Lisiecki and Raymo, 2005a) shown in Fig. 13
can be obtained from https://doi.org/10.1594/PANGAEA.704257
(Lisiecki and Raymo, 2005b), and the 21 June insolation at 65◦ N
(Laskar et al., 2004a) can be downloaded from http://vo.imcce.
fr/insola/earth/online/earth/online/index.php (last access: 13 April
2022, Laskar et al., 2004b).

Video supplement. The video supplement to this article
(https://doi.org/10.5281/zenodo.6346211, Riechers, 2022) illus-
trates the pullback attractor (PBA) associated with the simple
system governed by Eqs. (15) and (16). It shows a heat map
of the phase plane, derived from an increasing number of tra-
jectories with common initial time ti =−200 and final time
tf = 200. The initial radius and phase of each trajectory are ran-
domly sampled from Gaussian distributions centered at µρ = 20
and µφ = 0 with standard deviations of σρ = 5 and σφ = 10,
respectively. Over the course of the video, 100 trajectories
are continuously added to the heat map and the annular disk
D = {(ρ,φ) : ρ ∈ [µ−αβ,µ+αβ] and φ ∈ [0,2π )} fills up. The
heat map in Fig. 6b is a snapshot from this video at time t = 0.2.

Author contributions. MG conceived and designed the study.
KR and TM carried out the major part of the article’s new research
in close interaction with MG and NB. All authors interpreted and
discussed the results and wrote the manuscript.

Competing interests. The contact author has declared that nei-
ther they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Special issue statement. This article is part of the special issue
“A century of Milankovic’s theory of climate changes: achieve-
ments and challenges (NPG/CP inter-journal SI)”. It is a result of
the conference “One Hundred Years of Milankovic’s Theory of Cli-
mate Changes: synergy of the achievements and challenges of the
next century”, 17–18 November 2020.

Acknowledgements. We thank Andreas Groth for helpful com-
ments on an earlier version of this manuscript. It is a pleasure to
thank Tamás Bódai and two anonymous referees for their thorough
and constructive comments. István Daruka’s public comments in
part motivated the addition of Appendix A and its Table A1, in order

https://doi.org/10.5194/cp-18-863-2022 Clim. Past, 18, 863–893, 2022

https://www.iceandclimate.nbi.ku.dk/data/
https://www.iceandclimate.nbi.ku.dk/data/
https://www.ncei.noaa.gov/access/paleo-search/study/17975
https://www.ncei.noaa.gov/access/paleo-search/study/17975
https://doi.org/10.1594/PANGAEA.704257
http://vo.imcce.fr/insola/earth/online/earth/online/index.php
http://vo.imcce.fr/insola/earth/online/earth/online/index.php
https://doi.org/10.5281/zenodo.6346211


888 K. Riechers et al.: Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations

to give a broader perspective of relevant work on the Quaternary’s
glacial cycles and the mid-Pleistocene transition (MPT). Takahito
Mitsui and Niklas Boers acknowledge funding by the Volkswagen
Foundation. The present work is TiPES contribution no. 52; the
TiPES (Tipping Points in the Earth System) project has received
funding from the European Union’s Horizon 2020 research and in-
novation program under grant agreement no. 820970. Michael Ghil
acknowledges support by the EIT Climate-KIC; EIT Climate-KIC
is supported by the European Institute of Innovation & Technology
(EIT), a body of the European Union.

Financial support. This research has been supported by the
Horizon 2020 research and innovation program under grant
agreement no. 820970 (TiPES), the Volkswagen Foundation, and
the European Institute of Innovation & Technology via the EIT
Climate-KIC.

The publication of this article was funded by the
Open Access Fund of the Leibniz Association.

Review statement. This paper was edited by Marie-France
Loutre and reviewed by Tamas Bodai and two anonymous referees.

References

Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno,
J., Takahashi, K., and Blatter, H.: Insolation-driven 100 000-year
glacial cycles and hysteresis of ice-sheet volume, Nature, 500,
190–193, https://doi.org/10.1038/nature12374, 2013.

Arnold, L.: Random Dynamical Systems, 1st edn., Springer, Berlin,
Heidelberg, https://doi.org/10.1007/978-3-662-12878-7, 1998.

Arnold, V.: Geometrical Methods in the Theory of Or-
dinary Differential Equations, Springer, New York, NY,
https://doi.org/10.1007/978-1-4612-1037-5, 1988.

Ashkenazy, Y. and Tziperman, E.: Are the 41 kyr glacial oscillations
a linear response to Milankovitch forcing?, Quaternary Sci. Rev.,
23, 1879–1890, https://doi.org/10.1016/j.quascirev.2004.04.008,
2004.

Ashwin, P. and Ditlevsen, P.: The middle Pleistocene transition as a
generic bifurcation on a slow manifold, Clim. Dynam., 45, 2683–
2695, 2015.

Ashwin, P., Wieczorek, S., Vitolo, R., and Cox, P.: Tipping points in
open systems: bifurcation, noise-induced and rate-dependent ex-
amples in the climate system, Philos. T. Roy. Soc. A, 370, 1166–
1184, 2012.

Ashwin, P., David Camp, C., and von der Heydt, A. S.: Chaotic
and non-chaotic response to quasiperiodic forcing: limits to
predictability of ice ages paced by Milankovitch forcing,
Dynamics and Statistics of the Climate System, 3, 1–20,
https://doi.org/10.1093/climsys/dzy002, 2018.

Bagniewski, W., Ghil, M., and Rousseau, D. D.: Automatic de-
tection of abrupt transitions in paleoclimate records, Chaos, 31,
113129, https://doi.org/10.1063/5.0062543, 2021.

Barenblatt, G. I.: Scaling, Self-similarity, and Interme-
diate Asymptotics: Dimensional Analysis and Inter-

mediate Asymptotics, Cambridge University Press,
https://doi.org/10.1017/CBO9781107050242, 1996.

Benoit, E.: Systèmes lents-rapides dans R 3 et leurs canards, in:
IIIe rencontre de géométrie du Schnepfenried Volume 2 – 10–
15 mai 1982, no. 109-110 in Astérisque, Société mathématique
de France, http://www.numdam.org/item/AST_1983__109-110_
_159_0/ (last access: 13 April 2022), 1983.

Benzi, R., Sutera, A., and Vulpiani, A.: The mechanism of
stochastic resonance, J. Phys. A-Math. Den., 14, L453,
https://doi.org/10.1088/0305-4470/14/11/006, 1981.

Benzi, R., Parisi, G., Sutera, A., and Vulpiani, A.: Stochas-
tic resonance in climatic change, Tellus, 34, 10–15,
https://doi.org/10.3402/tellusa.v34i1.10782, 1982.

Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker,
T. F., Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision
of the EPICA Dome C CO2 record from 800 to 600 kyr before
present, Geophys. Res. Lett., 42, 542–549, 2015a.

Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker,
T. F., Fischer, H., Kipfstuhl, S., and Chappellaz, J. A.: Antarc-
tic Ice Cores Revised 800KYr CO2 Data, National Centers
for Environmental Information, NESDIS, NOAA, U.S. Depart-
ment of Commerce [data set], https://www.ncei.noaa.gov/access/
paleo-search/study/17975 (last access: 13 April 2022), 2015b.

Berger, A.: Long-term variations of daily insolation and Quaternary
climatic changes, J. Atmos. Sci., 35, 2362–2367, 1978.

Berger, A., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B. (Eds.):
Milankovitch and Climate: Understanding the Response to As-
tronomical Forcing, NATO ASI series. Series C, Mathematical
and physical sciences; vol. 126, pts. 1–2, Springer, Dordrecht,
https://doi.org/10.1007/978-94-017-4841-4, 1984.

Berger, A., Li, X., and Loutre, M.-F.: Modelling northern hemi-
sphere ice volume over the last 3 Ma, Quaternary Sci. Rev., 18,
1–11, 1999.

Berger, W. H.: The 100 kyr ice-age cycle: Internal oscillation
or inclinational forcing?, Int. J. Earth Sci., 88, 305–316,
https://doi.org/10.1007/s005310050266, 1999.

Bódai, T. and Tél, T.: Annual variability in a concep-
tual climate model: Snapshot attractors, hysteresis in ex-
treme events, and climate sensitivity, Chaos, 22, 023110,
https://doi.org/10.1063/1.3697984, 2012.

Bódai, T., Lucarini, V., Lunkeit, F., and Boschi, R.: Global insta-
bility in the Ghil-Sellers model, Clim. Dynam., 44, 3361–3381,
2015.

Boers, N., Chekroun, M. D., Liu, H., Kondrashov, D., Rousseau, D.-
D., Svensson, A., Bigler, M., and Ghil, M.: Inverse stochastic–
dynamic models for high-resolution Greenland ice core records,
Earth Syst. Dynam., 8, 1171–1190, https://doi.org/10.5194/esd-
8-1171-2017, 2017a.

Boers, N., Goswami, B., and Ghil, M.: A complete representation
of uncertainties in layer-counted paleoclimatic archives, Clim.
Past, 13, 1169–1180, https://doi.org/10.5194/cp-13-1169-2017,
2017b.

Boers, N., Ghil, M., and Rousseau, D.-D.: Ocean circula-
tion, ice shelf, and sea ice interactions explain Dansgaard–
Oeschger cycles, P. Natl. Acad. Sci. USA, 115, E11005–E11014,
https://doi.org/10.1073/pnas.1802573115, 2018.

Bond, G., Heinricht, H., Broecker, W., Labeyrie, L., Mcmanus,
J., Andrews, J., Huonll, S., Jantschik, R., Clasen, S., Simet,
C., Tedesco, K., Klas, M., Bonanitt, G., and Ivy, S.: Evi-

Clim. Past, 18, 863–893, 2022 https://doi.org/10.5194/cp-18-863-2022

https://doi.org/10.1038/nature12374
https://doi.org/10.1007/978-3-662-12878-7
https://doi.org/10.1007/978-1-4612-1037-5
https://doi.org/10.1016/j.quascirev.2004.04.008
https://doi.org/10.1093/climsys/dzy002
https://doi.org/10.1063/5.0062543
https://doi.org/10.1017/CBO9781107050242
http://www.numdam.org/item/AST_1983__109-110__159_0/
http://www.numdam.org/item/AST_1983__109-110__159_0/
https://doi.org/10.1088/0305-4470/14/11/006
https://doi.org/10.3402/tellusa.v34i1.10782
https://www.ncei.noaa.gov/access/paleo-search/study/17975
https://www.ncei.noaa.gov/access/paleo-search/study/17975
https://doi.org/10.1007/978-94-017-4841-4
https://doi.org/10.1007/s005310050266
https://doi.org/10.1063/1.3697984
https://doi.org/10.5194/esd-8-1171-2017
https://doi.org/10.5194/esd-8-1171-2017
https://doi.org/10.5194/cp-13-1169-2017
https://doi.org/10.1073/pnas.1802573115


K. Riechers et al.: Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations 889

dence for massive discharges of icebergs into the North Atlantic
ocean during the last glacial period, Nature, 360, 1668–1672,
https://doi.org/10.1038/360245a0, 1992.

Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L.,
Jouzel, J., and Bonani, G.: Correlations between climate records
from North Atlantic sediments and Greenland ice, Nature, 365,
143–147, https://doi.org/10.1038/365143a0, 1993.

Bond, G., Showers, W., Cheseby, M., Peter Almasi, R. L.,
deMenocal, P., Priore, P., Irka Hajdas, H. C., and Bo-
nani, G.: A pervasive millennial-scale cycle in North At-
lantic Holocene and glacial climates, Science, 278, 1257–1266,
https://doi.org/10.1126/science.278.5341.1257, 1997.

Boyce, W. E. and DiPrima, R. C.: Elementary Differential Equa-
tions and Boundary Value Problems, 8th edn., John Wiley &
Sons, ISBN 978-0-470-38334-6, 2005.

Broecker, W. S. and Van Donk, J.: Insolation changes, ice volumes,
and the O18 record in deep-sea cores, Rev. Geophys., 8, 169–198,
1970.

Budyko, M. I.: The effect of solar radiation variations on the climate
of the Earth, Tellus, 21, 611–619, 1969.

Calder, N.: Arithmetic of ice ages, Nature, 252, 216–218,
https://doi.org/10.1038/252216a0, 1974.

Caraballo, T. and Han, X.: Applied Nonautonomous and Random
Dynamical Systems: Applied Dynamical Systems, Springer,
Cham, https://doi.org/10.1007/978-3-319-49247-6, 2017.

Charó, G. D., Chekroun, M. D., Sciamarella, D., and Ghil, M.:
Noise-driven topological changes in chaotic dynamics, arXiv
[preprint], arXiv:2010.09611v7, 2 August 2021.

Chekroun, M. D., Simonnet, E., and Ghil, M.: Stochas-
tic climate dynamics: random attractors and time-
dependent invariant measures, Physica D, 240, 1685–1700,
https://doi.org/10.1016/j.physd.2011.06.005, 2011.

Chekroun, M. D., Simonnet, E., and Ghil, M.: Stochas-
tic climate dynamics: random attractors and time-
dependent invariant measures, Physica D, 240, 1685–1700,
https://doi.org/10.1016/j.physd.2011.06.005, 2011.

Chekroun, M. D., Ghil, M., and Neelin, J. D.: Pullback attrac-
tor crisis in a delay differential ENSO model, in: Advances in
Nonlinear Geosciences, edited by: Tsonis, A. A., Springer Sci-
ence & Business Media, 1–33, https://doi.org/10.1007/978-3-
319-58895-7, 2018.

Crafoord, C. and Källén, E.: A note on the condition for existence
of more than one steady state solution in Budyko-Sellers type
models, J. Atmos. Sci., 35, 1123–1125, 1978.

Crauel, H. and Kloeden, P. E.: Nonautonomous and random attrac-
tors, Jahresbericht der Deutschen Mathematiker-Vereinigung,
117, 173–206, 2015.

Crucifix, M.: How can a glacial inception be predicted?, Holocene,
21, 831–842, 2011.

Crucifix, M.: Oscillators and relaxation phenomena in Pleistocene
climate theory, Philos. T. Roy. Soc. A, 370, 1140–1165, 2012.

Crucifix, M.: Why could ice ages be unpredictable?, Clim. Past, 9,
2253–2267, https://doi.org/10.5194/cp-9-2253-2013, 2013.

Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D.,
Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen,
J. P., Sveinbjörnsdottir, A. E., Jouzel, J., and Bond, G.: Evidence
for general instability of past climate from a 250 kyr ice-core
record, Nature, 364, 218–220, https://doi.org/10.1038/364218a0,
1993.

Daruka, I. and Ditlevsen, P. D.: A conceptual model for glacial cy-
cles and the middle Pleistocene transition, Clim. Dynam., 46, 29–
40, 2016.

De Saedeleer, B., Crucifix, M., and Wieczorek, S.: Is the astronom-
ical forcing a reliable and unique pacemaker for climate? a con-
ceptual model study, Clim. Dynam., 40, 273–294, 2013.

Ditlevsen, P., Mitsui, T., and Crucifix, M.: Crossover and peaks in
the Pleistocene climate spectrum; understanding from simple ice
age models, Clim. Dynam., 54, 1801–1818, 2020.

Ditlevsen, P. D.: Extension of stochastic resonance in the
dynamics of ice ages, Chem. Phys., 375, 403–409,
https://doi.org/10.1016/j.chemphys.2010.05.022, 2010.

Ditlevsen, P. D. and Ashwin, P. B.: Complex climate response to as-
tronomical forcing: The middle-Pleistocene transition in glacial
cycles and changes in frequency locking, AIP Conf. Proc., 6, 62,
https://doi.org/10.3389/fphy.2018.00062, 2018.

Ditlevsen, P. D., Andersen, K. K., and Svensson, A.: The DO-
climate events are probably noise induced: statistical investiga-
tion of the claimed 1470 years cycle, Clim. Past, 3, 129–134,
https://doi.org/10.5194/cp-3-129-2007, 2007.

Drótos, G., Bódai, T., and Tél, T.: Probabilistic concepts in a chang-
ing climate: A snapshot attractor picture, J. Climate, 28, 3275–
3288, 2015.

Duffing, G.: Erzwungene Schwingungen bei veränderlicher
Eigenfrequenz und ihre technische Bedeutung, vol. 41/42
of Sammlung Vieweg, R. Vieweg & Sohn, Braunschweig,
https://doi.org/10.1002/zamm.19210010109, 1918.

Einstein, A.: Über die von der molekularkinetischen Theorie der
Wärme geforderte Bewegung von in ruhenden Flüssigkeiten
suspendierten Teilchen, Annalen der Physik, 322, 549–560;
reprinted in Investigations on the Theory of the Brownian Move-
ment, five articles by A. Einstein, edited by: Furth, R., trans-
lated by: Cowper, A. D., 1956, Dover Publ., New York, 122 pp.,
https://doi.org/10.1002/andp.200590005, 1905.

Emiliani, C. and Geiss, J.: On glaciations and their causes, Geol.
Rundsch., 46, 576–601, 1959.

Fienga, A., Laskar, J., Exertier, P., Manche, H., and Gastineau,
M.: Numerical estimation of the sensitivity of INPOP planetary
ephemerides to general relativity parameters, Celestial Mechan-
ics and Dynamical Astronomy, 123, 325–349, 2015.

FitzHugh, R.: Impulses and physiological states in theoretical mod-
els of nerve membrane, Biophys. J., 1, 445–466, 1961.

Flint, R. F.: Glacial and Quaternary Geology, Wiley New York,
ISBN 978-0471264354, 1971.

Ganopolski, A. and Brovkin, V.: Simulation of climate, ice sheets
and CO2 evolution during the last four glacial cycles with an
Earth system model of intermediate complexity, Clim. Past, 13,
1695–1716, https://doi.org/10.5194/cp-13-1695-2017, 2017.

Ganopolski, A. and Calov, R.: The role of orbital forcing, carbon
dioxide and regolith in 100 kyr glacial cycles, Clim. Past, 7,
1415–1425, https://doi.org/10.5194/cp-7-1415-2011, 2011.

Ghil, M.: Climate stability for a Sellers-type model, J. Atmos. Sci.,
33, 3–20, 1976.

Ghil, M.: Climate sensitivity, energy balance models, and oscilla-
tory climate models, J. Geophys. Res.-Atmos., 89, 1280–1284,
1984.

Ghil, M.: Cryothermodynamics: the chaotic dynamics of paleocli-
mate, Physica D, 77, 130–159, 1994.

https://doi.org/10.5194/cp-18-863-2022 Clim. Past, 18, 863–893, 2022

https://doi.org/10.1038/360245a0
https://doi.org/10.1038/365143a0
https://doi.org/10.1126/science.278.5341.1257
https://doi.org/10.1038/252216a0
https://doi.org/10.1007/978-3-319-49247-6
https://arxiv.org/abs/2010.09611v7
https://doi.org/10.1016/j.physd.2011.06.005
https://doi.org/10.1016/j.physd.2011.06.005
https://doi.org/10.1007/978-3-319-58895-7
https://doi.org/10.1007/978-3-319-58895-7
https://doi.org/10.5194/cp-9-2253-2013
https://doi.org/10.1038/364218a0
https://doi.org/10.1016/j.chemphys.2010.05.022
https://doi.org/10.3389/fphy.2018.00062
https://doi.org/10.5194/cp-3-129-2007
https://doi.org/10.1002/zamm.19210010109
https://doi.org/10.1002/andp.200590005
https://doi.org/10.5194/cp-13-1695-2017
https://doi.org/10.5194/cp-7-1415-2011


890 K. Riechers et al.: Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations

Ghil, M.: Hilbert problems for the geosciences in the
21st century, Nonlin. Processes Geophys., 8, 211–211,
https://doi.org/10.5194/npg-8-211-2001, 2001.

Ghil, M.: Climate variability: Nonlinear and random aspects, in:
Encyclopedia of Atmospheric Sciences, 2nd edn., edited by
G. R. North, J. P. and Zhang, F., vol. 2, 38–46, Elsevier,
ISBN 9780123822253, 2014.

Ghil, M.: A century of nonlinearity in the geosciences, Earth Space
Sci., 6, 1007–1042, https://doi.org/10.1029/2019EA000599,
2019.

Ghil, M. and Childress, S.: Topics in Geophysical Fluid Dynam-
ics: Atmospheric Dynamics, Dynamo Theory, and Climate Dy-
namics, Springer Science+Business Media, Berlin/Heidelberg,
https://doi.org/10.1007/978-1-4612-1052-8, 1987.

Ghil, M. and Le Treut, H.: A climate model with cryodynamics and
geodynamics, J. Geophys. Res.-Oceans, 86, 5262–5270, 1981.

Ghil, M. and Lucarini, V.: The physics of climate variabil-
ity and climate change, Rev. Mod. Phys., 92, 035002,
https://doi.org/10.1103/RevModPhys.92.035002, 2020.

Ghil, M. and Tavantzis, J.: Global Hopf bifurcation in a sim-
ple climate model, SIAM J. Appl. Math., 43, 1019–1041,
https://doi.org/10.1137/0143067, 1983.

Ghil, M. and Vautard, R.: Interdecadal oscillations and the warming
trend in global temperature time series, Nature, 350, 324–327,
1991.

Ghil, M. and Zaliapin, I.: Understanding ENSO variability and
its extrema: A delay differential equation approach, in: Ex-
treme Events: Observations, Modeling and Economics, Geo-
physical Monograph 214, edited by: Chavez, M., Ghil, M.,
and Urrutia-Fucugauchi, J., Wiley Online Library, 63–78,
https://doi.org/10.1002/9781119157052.ch6, 2015.

Ghil, M., Mullhaupt, A., and Pestiaux, P.: Deep water formation and
Quaternary glaciations, Clim. Dynam., 2, 1–10, 1987.

Ghil, M., Chekroun, M. D., and Simonnet, E.: Cli-
mate dynamics and fluid mechanics: natural variability
and related uncertainties, Physica D, 237, 2111–2126,
https://doi.org/10.1016/j.physd.2008.03.036, 2008.

Gildor, H. and Tziperman, E.: Sea ice as the glacial cycles’ climate
switch: Role of seasonal and orbital forcing, Paleoceanography,
15, 605–615, 2000.

Guckenheimer, J. and Holmes, P. J.: Nonlinear Oscillations, Dy-
namical Systems, and Bifurcations of Vector Fields, Applied
Mathematical Sciences, Springer Science & Business Media,
https://doi.org/10.1007/978-1-4612-1140-2, 1983.

Hasselmann, K.: Stochastic climate models. I: Theory, Tellus, 28,
473–485, 1976.

Hays, J. D., Imbrie, J., and Shackleton, N. J.: Variations in the
Earth’s orbit: pacemaker of the ice ages, Science, 194, 1121–
1132, 1976.

Heinrich, H.: Origin and consequences of cyclic ice rafting in
the Northeast Atlantic Ocean during the past 130 000 years,
Quaternary Res., 29, 142–152, https://doi.org/10.1016/0033-
5894(88)90057-9, 1988.

Held, I. M.: The gap between simulation and understanding in
climate modeling, B. Am. Meteorol. Soc., 86, 1609–1614,
https://doi.org/10.1175/bams-86-11-1609, 2005.

Held, I. M. and Suarez, M. J.: Simple albedo feedback models of
the ice caps, Tellus, 26, 613–629, 1974.

Henry, L. G., McManus, J. F., Curry, W. B., Roberts, N. L., Pi-
otrowski, A. M., and Keigwin, L. D.: North Atlantic ocean cir-
culation and abrupt climate change during the last glaciation,
Science, 353, 470–474, https://doi.org/10.1126/science.aaf5529,
2016.

Hoffman, P. F., Kaufman, A. J., Halverson, G. P., and Schrag,
D. P.: A Neoproterozoic snowball earth, Science, 281, 1342–
1346, 1998.

Hogg, A. M. C.: Glacial cycles and carbon dioxide:
A conceptual model, Geophys. Res. Lett., 35, 1–5,
https://doi.org/10.1029/2007GL032071, 2008.

Huybers, P.: Glacial variability over the last two million years: an
extended depth-derived agemodel, continuous obliquity pacing,
and the Pleistocene progression, Quaternary Sci. Rev., 26, 37–55,
https://doi.org/10.1016/j.quascirev.2006.07.013, 2007.

Huybers, P.: Pleistocene glacial variability as a chaotic re-
sponse to obliquity forcing, Clim. Past, 5, 481–488,
https://doi.org/10.5194/cp-5-481-2009, 2009.

Huybers, P.: Combined obliquity and precession pacing
of late Pleistocene deglaciations, Nature, 480, 229–232,
https://doi.org/10.1038/nature10626, 2011.

Huybers, P. and Langmuir, C. H.: Delayed CO2 emissions
from mid-ocean ridge volcanism as a possible cause of late-
Pleistocene glacial cycles, Earth Planet. Sc. Lett., 457, 238–249,
2017.

Imbrie, J. and Imbrie, J. Z.: Modeling the Climatic Response to Or-
bital Variations, Science, 207, 943–953, 1980.

Imbrie, J. and Imbrie, K. P.: Ice Ages: Solving the Mystery, 2nd
edn., Harvard University Press, ISBN 9780674440753, 1986.

Imbrie, J. Z., Imbrie-Moore, A., and Lisiecki, L. E.: A phase-space
model for Pleistocene ice volume, Earth Planet. Sci. Lett., 307,
94–102, https://doi.org/10.1016/j.epsl.2011.04.018, 2011.

Isaacson, E. and Keller, H. B.: Analysis of numerical methods,
Dover Publications, Inc., New York, NY, ISBN 9780486137988,
2012.

Jackson, E. A.: Perspectives of Nonlinear Dynamics, Cambridge
University Press, New York, ISBN 9780198596219, 1991.

Jordan, D. W. and Smith, P.: Nonlinear Ordinary Differential Equa-
tions – An Introduction for Scientists and Engineers, 2nd edn.,
Oxford University Press, Oxford/New York, ISBN 0-19-859657-
X, 1987.

Källén, E., Crafoord, C., and Ghil, M.: Free oscillations in a climate
model with ice-sheet dynamics, J. Atmos. Sci., 36, 2292–2303,
1979.

Kwasniok, F.: Analysis and modelling of glacial climate transitions
using simple dynamical systems, Philos. T. Roy. Soc. A, 371,
https://doi.org/10.1098/rsta.2011.0472, 2013.

Landau, L. D. and Lifshitz, E. M.: Mechanics, vol. I of Course on
Theoretical Physics, Pergamon Press, Oxford, 1960.

Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A., and
Levrard, B.: A long-term numerical solution for the insolation
quantities of the Earth, Astron. Astrophys., 428, 261–285, 2004a.

Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M.,
and Levrard, B.: Computation of various insolation quantities
for Earth, IMCCE, Observatoire de Paris/CNRS [data set], http:
//vo.imcce.fr/insola/earth/online/earth/online/index.php (last ac-
cess: 13 April 2022), 2004b.

Lenssen, N. J. L., Schmidt, G. A., Hansen, J. E., Menne, M. J.,
Persin, A., Ruedy, R., and Zyss, D.: Improvements in the GIS-

Clim. Past, 18, 863–893, 2022 https://doi.org/10.5194/cp-18-863-2022

https://doi.org/10.5194/npg-8-211-2001
https://doi.org/10.1029/2019EA000599
https://doi.org/10.1007/978-1-4612-1052-8
https://doi.org/10.1103/RevModPhys.92.035002
https://doi.org/10.1137/0143067
https://doi.org/10.1002/9781119157052.ch6
https://doi.org/10.1016/j.physd.2008.03.036
https://doi.org/10.1007/978-1-4612-1140-2
https://doi.org/10.1016/0033-5894(88)90057-9
https://doi.org/10.1016/0033-5894(88)90057-9
https://doi.org/10.1175/bams-86-11-1609
https://doi.org/10.1126/science.aaf5529
https://doi.org/10.1029/2007GL032071
https://doi.org/10.1016/j.quascirev.2006.07.013
https://doi.org/10.5194/cp-5-481-2009
https://doi.org/10.1038/nature10626
https://doi.org/10.1016/j.epsl.2011.04.018
https://doi.org/10.1098/rsta.2011.0472
http://vo.imcce.fr/insola/earth/online/earth/online/index.php
http://vo.imcce.fr/insola/earth/online/earth/online/index.php


K. Riechers et al.: Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations 891

TEMP uncertainty model, J. Geophys. Res.-Atmos., 124, 6307–
6326, 2019.

Le Treut, H. and Ghil, M.: Orbital forcing, climatic interactions,
and glaciation cycles, J. Geophys. Res.-Oceans, 88, 5167–5190,
1983.

Le Treut, H., Portes, J., Jouzel, J., and Ghil, M.: Isotopic modeling
of climatic oscillations: Implications for a comparative study of
marine and ice core records, J. Geophys. Res.-Atmos., 93, 9365–
9383, 1988.

Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of
57 globally distributed benthic δ18O records, Paleoceanography,
20, PA1003, https://doi.org/10.1029/2004PA001071, 2005a.

Lisiecki, L. E. and Raymo, M. E.: Pliocene-Pleistocene stack of
globally distributed benthic stable oxygen isotope records, PAN-
GAEA [data set], https://doi.org/10.1594/PANGAEA.704257,
2005b.

Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos. Sci., 20,
130–141, 1963.

Maasch, K. A. and Saltzman, B.: A Low-Order Dynamical Model
of Global Climatic Variability Over the Full Pleistocene, J. Geo-
phys. Res., 95, 1955–1963, 1990.

Marangio, L., Sedro, J., Galatolo, S., Di Garbo, A., and
Ghil, M.: Arnold maps with noise: Differentiability and non-
monotonicity of the rotation number, J. Stat. Phys., 179, 1–31,
https://doi.org/10.1007/s10955-019-02421-1, 2019.

Matteucci, G.: Orbital forcing in a stochastic resonance model of the
Late-Pleistocene climatic variations, Clim. Dynam., 3, 179–190,
https://doi.org/10.1007/BF01058234, 1989.

Milankovitch, M.: Théorie mathématique des phénomènes ther-
miques produits par la radiation solaire, Gauthier-Villars, Paris,
1920.

Mitsui, T. and Aihara, K.: Dynamics between order and chaos in
conceptual models of glacial cycles, Clim. Dynam., 42, 3087–
3099, https://doi.org/10.1007/s00382-013-1793-x, 2014.

Mitsui, T. and Crucifix, M.: Influence of external forcings on abrupt
millennial-scale climate changes: a statistical modelling study,
Clim. Dynam., 48, 2729–2749, 2017.

Mitsui, T., Crucifix, M., and Aihara, K.: Bifurcations and strange
nonchaotic attractors in a phase oscillator model of glacial–
interglacial cycles, Physica D, 306, 25–33, 2015.

Nagumo, J., Arimoto, S., and Yoshizawa, S.: An active pulse trans-
mission line simulating nerve axon, Proceedings of the IRE, 50,
2061–2070, 1962.

National Research Council: Understanding Climatic Change, a Pro-
gram for Action, National Academy of Sciences, Washington,
DC, 239 pp., ISBN 978-0309023238, 1975.

Nicolis, C.: Solar variability and stochastic effects on climate, Sol.
Phys., 74, 473–478, https://doi.org/10.1007/BF00154530, 1981.

Nicolis, G. and Nicolis, C.: Foundations of Complex Systems,
World Scientific, 2nd edn., https://doi.org/10.1142/8260, 2012.

North, G. R.: Analytical solution to a simple climate model with
diffusive heat transport, J. Atmos. Sci., 32, 1301–1307, 1975.

North Greenland Ice Core Project members: High-resolution record
of the Northern Hemisphere climate extending into the last inter-
glacial period, Nature, 431, 147–151, 2004.

Oerlemans, J.: Model experiments on the 100 000-year glacial cy-
cle, Nature, 287, 430–432, 1980.

Oerlemans, J.: On the origin of the ice ages, in: Milankovitch
and Climate: Understanding the Response to Astronomical Forc-

ing, vols. I & II, edited by: Berger, A., Imbrie, J., Hays, J.,
Kukla, G., and Saltzman, B., D. Reidel Publ. Co., 607–611,
https://doi.org/10.1007/978-94-017-4841-4, 1984.

Omta, A. W., Kooi, B. W., van Voorn, G. A., Rickaby, R. E., and
Follows, M. J.: Inherent characteristics of sawtooth cycles can
explain different glacial periodicities, Clim. Dynam., 46, 557–
569, 2016.

Paillard, D.: The timing of Pleistocene glaciations from a simple
multiple-state climate model, Nature, 391, 378–381, 1998.

Paillard, D.: Glacial cycles: Toward a new paradigm, Rev.
Geophys., 39, 325–346, https://doi.org/10.1029/2000RG000091,
2001.

Paillard, D. and Parrenin, F.: The Antarctic ice sheet and the trig-
gering of deglaciations, Earth Planet. Sci. Lett., 227, 263–271,
https://doi.org/10.1016/j.epsl.2004.08.023, 2004.

Parrenin, F. and Paillard, D.: Amplitude and phase of glacial cycles
from a conceptual model, Earth Planet. Sci. Lett., 214, 243–250,
https://doi.org/10.1016/S0012-821X(03)00363-7, 2003.

Parrenin, F. and Paillard, D.: Terminations VI and VIII (∼ 530 and
∼ 720 kyr BP) tell us the importance of obliquity and preces-
sion in the triggering of deglaciations, Clim. Past, 8, 2031–2037,
https://doi.org/10.5194/cp-8-2031-2012, 2012.

Pelletier, J. D.: Coherence resonance and ice ages, J. Geophys. Res.,
108, 1–14, https://doi.org/10.1029/2002jd003120, 2003.

Pierini, S. and Ghil, M.: Climate tipping points induced by parame-
ter drift: an excitable system study, Sci. Rep., in press, 2022.

Pierini, S., Ghil, M., and Chekroun, M. D.: Exploring the pullback
attractors of a low-order quasigeostrophic ocean model: The de-
terministic case, J. Climate, 29, 4185–4202, 2016.

Pierini, S., Chekroun, M. D., and Ghil, M.: The onset of chaos
in nonautonomous dissipative dynamical systems: a low-order
ocean-model case study, Nonlin. Processes Geophys., 25, 671–
692, https://doi.org/10.5194/npg-25-671-2018, 2018.

Pierrehumbert, R. T.: High levels of atmospheric carbon dioxide
necessary for the termination of global glaciation, Nature, 429,
646–649, https://doi.org/10.1038/nature02640, 2004.

Pikovsky, A., Rosenblum, M. G., and Kurths, J.: Synchronization, A
Universal Concept in Nonlinear Sciences, Cambridge University
Press, Cambridge, https://doi.org/10.1017/CBO9780511755743,
2001.

Pikovsky, A. S. and Kurths, J.: Coherence resonance in a
noise-driven excitable system, Phys. Rev. Lett., 78, 775–778,
https://doi.org/10.1103/physrevlett.78.775, 1997.

Poincaré, H.: Méthodes nouvelles de la Mécanique céleste, vols.
I–III, Gauthier-Villars, https://doi.org/10.3931/e-rara-421, 1892–
1899.

Pollard, D.: A coupled climate-ice sheet model applied to the Qua-
ternary ice ages, J. Geophys. Res.-Oceans, 88, 7705–7718, 1983.

Quinn, C., Sieber, J., Von Der Heydt, A. S., and Lenton, T. M.:
The Mid-Pleistocene Transition induced by delayed feedback
and bistability, Dynamics and Statistics of the Climate System,
3, dzy005, https://doi.org/10.1093/climsys/dzy005, 2018.

Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt,
S. L., Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen,
S. J., Fischer, H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe,
J. J., Pedro, J. B., Popp, T., Seierstad, I. K., Steffensen, J. P.,
Svensson, A. M., Vallelonga, P., Vinther, B. M., Walker, M. J.,
Wheatley, J. J., and Winstrup, M.: A stratigraphic framework for
abrupt climatic changes during the Last Glacial period based on

https://doi.org/10.5194/cp-18-863-2022 Clim. Past, 18, 863–893, 2022

https://doi.org/10.1029/2004PA001071
https://doi.org/10.1594/PANGAEA.704257
https://doi.org/10.1007/s10955-019-02421-1
https://doi.org/10.1007/BF01058234
https://doi.org/10.1007/s00382-013-1793-x
https://doi.org/10.1007/BF00154530
https://doi.org/10.1142/8260
https://doi.org/10.1007/978-94-017-4841-4
https://doi.org/10.1029/2000RG000091
https://doi.org/10.1016/j.epsl.2004.08.023
https://doi.org/10.1016/S0012-821X(03)00363-7
https://doi.org/10.5194/cp-8-2031-2012
https://doi.org/10.1029/2002jd003120
https://doi.org/10.5194/npg-25-671-2018
https://doi.org/10.1038/nature02640
https://doi.org/10.1017/CBO9780511755743
https://doi.org/10.1103/physrevlett.78.775
https://doi.org/10.3931/e-rara-421
https://doi.org/10.1093/climsys/dzy005


892 K. Riechers et al.: Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations

three synchronized Greenland ice-core records: refining and ex-
tending the INTIMATE event stratigraphy, Quaternary Sci. Rev.,
106, 14–28, 2014.

Rial, J. A. and Yang, M.: Is the frequency of abrupt climate change
modulated by the orbital insolation?, Geophys. Monog. Ser., 173,
167–174, https://doi.org/10.1029/173GM12, 2007.

Riechers, K.: kriechers/Orbital-Insolation-Variations-Intrinsic-
Climate-Variability-and-Quaternary-Glaciations: Video Su-
plement to: Orbital Insolation Variations, Intrinsic Climate
Variability, and Quaternary Glaciations (1.0), Zenodo [video],
https://doi.org/10.5281/zenodo.6346211, 2022.

Roberts, A. and Saha, R.: Relaxation oscillations in an ideal-
ized ocean circulation model, Clim. Dynam., 48, 2123–2134,
https://doi.org/10.1007/s00382-016-3195-3, 2017.

Rocsoreanu, C., Georgescu, A., and Giurgiteanu, N.: The FitzHugh-
Nagumo model: bifurcation and dynamics, 1st edn., Springer,
Dordrecht, https://doi.org/10.1007/978-94-015-9548-3, 2000.

Rousseau, D.-D., Antoine, P., Boers, N., Lagroix, F., Ghil, M., Lo-
max, J., Fuchs, M., Debret, M., Hatté, C., Moine, O., Gauthier,
C., Jordanova, D., and Jordanova, N.: Dansgaard–Oeschger-
like events of the penultimate climate cycle: the loess point
of view, Clim. Past, 16, 713–727, https://doi.org/10.5194/cp-16-
713-2020, 2020.

Rousseau, D.-D., Bagniewski, W., and Ghil, M.: Abrupt cli-
mate changes and the astronomical theory: are they related?,
Clim. Past, 18, 249–271, https://doi.org/10.5194/cp-18-249-
2022, 2022.

Ruddiman, W. F. and McIntyre, A.: The North Atlantic Ocean dur-
ing the last deglaciation, Palaeogeogr. Palaeocl., 35, 145–214,
1981.

Rulkov, N. F., Sushchik, M. M., Tsimring, L. S., and Abar-
banel, H. D. I.: Generalized synchronization of chaos in direc-
tionally coupled chaotic systems, Phys. Rev. E, 51, 980–994,
https://doi.org/10.1103/physreve.51.980, 1995.

Saltzman, B. and Maasch, K. A.: Carbon cycle instability as a cause
of the late Pleistocene ice age oscillations: modeling the asym-
metric response, Global Biogeochem. Cy., 2, 177–185, 1988.

Saltzman, B. and Maasch, K. A.: A first-order global model
of late Cenozoic climatic change, Transactions of the
Royal Society of Edinburgh: Earth Sciences, 81, 315–325,
https://doi.org/10.1017/S0263593300020824, 1990.

Saltzman, B. and Maasch, K. A.: A first-order global model of
late Cenozoic climatic change II. Further analysis based on a
simplification of CO2 dynamics, Clim. Dynam., 5, 201–210,
https://doi.org/10.1007/BF00210005, 1991.

Saltzman, B. and Sutera, A.: The mid-Quaternary climatic transi-
tion as the free response of a three-variable dynamical model, J.
Atmos. Sci., 44, 236–241, 1987.

Saltzman, B., Sutera, A., and Evenson, A.: Structural stochastic sta-
bility of a simple auto-oscillatory climatic feedback system, J.
Atmos. Sci., 38, 494–503, 1981.

Schneider, S. H. and Dickinson, R. E.: Climate modelling, Rev.
Geophys. Space Ge., 25, 447–493, 1974.

Seierstad, I. K., Abbott, P. M., Bigler, M., Blunier, T., Bourne,
A. J., Brook, E., Buchardt, S. L., Buizert, C., Clausen,
H. B., Cook, E., Dahl-Jensen, D., Davies, S. M., Guille-
vic, M., Johnsen, S. J., Pedersen, D. S., Popp, T. J.,
Rasmussen, S. O., Severinghaus, J. P., Svensson, A., and
Vinther, B. M.: Consistently dated records from the Green-

land GRIP, GISP2 and NGRIP ice cores for the past 104 ka
reveal regional millennial-scale δ18O gradients with possi-
ble Heinrich event imprint, Quaternary Sci. Rev., 106, 29–
46, https://doi.org/10.1016/j.quascirev.2014.10.032, 2014 (data
available at: https://www.iceandclimate.nbi.ku.dk/data/, last ac-
cess: 3 April 2022).

Sellers, W. D.: A global climatic model based on the energy balance
of the Earth atmosphere, J. Appl. Meteorol., 8, 392–400, 1969.

Sergin, V. Y.: Numerical modeling of the glaciers-ocean-
atmosphere global system, J. Geophys. Res.-Oceans, 84, 3191–
3204, 1979.

SMIC: Inadvertent Climate Modification: Report of the Study of
Man’s Impact on Climate, The MIT Press, Cambridge, Mass.,
308 pp., ISBN 9780262191012, 1971.

Talento, S. and Ganopolski, A.: Reduced-complexity model for the
impact of anthropogenic CO2 emissions on future glacial cycles,
Earth Syst. Dynam., 12, 1275–1293, https://doi.org/10.5194/esd-
12-1275-2021, 2021.

Toggweiler, J.: Origin of the 100,000-year timescale in Antarc-
tic temperatures and atmospheric CO2, Paleoceanography, 23,
PA2211, https://doi.org/10.1029/2006PA001405, 2008.

Tziperman, E. and Gildor, H.: The stabilization of the thermohaline
circulation by the temperature–precipitation feedback, J. Phys.
Oceanogr., 32, 2707–2714, 2002.

Tziperman, E., Raymo, M. E., Huybers, P., and Wunsch, C.: Conse-
quences of pacing the Pleistocene 100 kyr ice ages by nonlinear
phase locking to Milankovitch forcing, Paleoceanography, 21, 1–
11, https://doi.org/10.1029/2005PA001241, 2006.

Van der Pol, B.: On relaxation-oscillations, The London, Edinburgh
and Dublin Phil. Mag. and J. Sci., 2, 978–992, 1926.

Vannitsem, S., Demaeyer, J., and Ghil, M.: Extratropical
low-frequency variability with ENSO forcing: A reduced-
order coupled model study, J. Adv. Model. Earth Syst.,
13, e2021MS002530, https://doi.org/10.1029/2021MS002530,
2021.

Varadi, F., Runnegar, B., and Ghil, M.: Successive refinements in
long-term integrations of planetary orbits, Astrophys. J., 592,
620–630, 2003.

Verbitsky, M. Y. and Crucifix, M.: π -theorem generalization
of the ice-age theory, Earth Syst. Dynam., 11, 281–289,
https://doi.org/10.5194/esd-11-281-2020, 2020.

Verbitsky, M. Y., Crucifix, M., and Volobuev, D. M.: A theory of
Pleistocene glacial rhythmicity, Earth Syst. Dynam., 9, 1025–
1043, https://doi.org/10.5194/esd-9-1025-2018, 2018.

Vettoretti, G., Ditlevsen, P., Jochum, M., and Rasmussen, S.
O.: Atmospheric CO2 control of Spontaneous Millennial-Scale
Ice Age Climate Oscillations, Nat. Geosci., 15, 300–306,
https://doi.org/10.1038/s41561-022-00920-7, 2022.

Vissio, G., Lembo, V., Lucarini, V., and Ghil, M.: Evaluat-
ing the performance of climate models based on Wasser-
stein distance, Geophys. Res. Lett., 47, e2020GL089385,
https://doi.org/10.1029/2020GL089385, 2020.

Wang, B.: Random attractors for the stochastic FitzHugh-Nagumo
system on unbounded domains, Nonlinear Anal.-Theor., 71,
2811–2828, https://doi.org/10.1016/j.na.2009.01.131, 2009.

Weertman, J.: Rate of growth or shrinkage of non-equilibrium ice-
sheets, J. Glaciol., 6, 145–158, 1964.

Weertman, J.: Milankovitch solar radiation variations and ice-age
ice-sheet sizes, Nature, 261, 17–20, 1976.

Clim. Past, 18, 863–893, 2022 https://doi.org/10.5194/cp-18-863-2022

https://doi.org/10.1029/173GM12
https://doi.org/10.5281/zenodo.6346211
https://doi.org/10.1007/s00382-016-3195-3
https://doi.org/10.1007/978-94-015-9548-3
https://doi.org/10.5194/cp-16-713-2020
https://doi.org/10.5194/cp-16-713-2020
https://doi.org/10.5194/cp-18-249-2022
https://doi.org/10.5194/cp-18-249-2022
https://doi.org/10.1103/physreve.51.980
https://doi.org/10.1017/S0263593300020824
https://doi.org/10.1007/BF00210005
https://doi.org/10.1016/j.quascirev.2014.10.032
https://www.iceandclimate.nbi.ku.dk/data/
https://doi.org/10.5194/esd-12-1275-2021
https://doi.org/10.5194/esd-12-1275-2021
https://doi.org/10.1029/2006PA001405
https://doi.org/10.1029/2005PA001241
https://doi.org/10.1029/2021MS002530
https://doi.org/10.5194/esd-11-281-2020
https://doi.org/10.5194/esd-9-1025-2018
https://doi.org/10.1038/s41561-022-00920-7
https://doi.org/10.1029/2020GL089385
https://doi.org/10.1016/j.na.2009.01.131


K. Riechers et al.: Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations 893

Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C.,
Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., Vleeschouwer,
D. D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A.
E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M.,
Pälike, H., Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and
Zachos, J. C.: An astronomically dated record of Earth’s climate
and its predictability over the last 66 million years, Science, 369,
1383–1387, 2020.

Wetherald, R. T. and Manabe, S.: The effects of changing the solar
constant on the climate of a general circulation model, J. Atmos.
Sci., 32, 2044–2059, 1975.

Wilkinson, L. and Friendly, M.: The History of
the Cluster Heat Map, Am. Stat., 63, 179–184,
https://doi.org/10.1198/tas.2009.0033, 2009.

Willeit, M., Ganopolski, A., Calov, R., and Brovkin, V.: Mid-
Pleistocene transition in glacial cycles explained by declin-
ing CO2 and regolith removal, Sci. Adv., 5, eaav7337,
https://doi.org/10.1126/sciadv.aav7337, 2019.

Yamakou, M. E., Tran, T. D., Duc, L. H., and Jost, J.: The stochas-
tic Fitzhugh–Nagumo neuron model in the excitable regime em-
beds a leaky integrate-and-fire model, J. Math. Biol., 79, 509–
532, https://doi.org/10.1007/s00285-019-01366-z, 2019.

Zhang, G., Liu, Z., and Ma, Z.: Generalized synchro-
nization of different dimensional chaotic dynami-
cal systems, Chaos Soliton. Fract., 32, 773–779,
https://doi.org/10.1016/j.chaos.2005.11.099, 2007.

https://doi.org/10.5194/cp-18-863-2022 Clim. Past, 18, 863–893, 2022

https://doi.org/10.1198/tas.2009.0033
https://doi.org/10.1126/sciadv.aav7337
https://doi.org/10.1007/s00285-019-01366-z
https://doi.org/10.1016/j.chaos.2005.11.099

	Abstract
	Introduction and motivation
	Self-sustained climate oscillators
	A simple mechanism for climate oscillations
	Intrinsic climate oscillations and the mid-Pleistocene transition (MPT)

	Time-dependent forcing, NDSs, and RDSs
	Orbital forcing of a climate oscillator
	Basic facts of NDS and RDS life
	Autonomous and non-autonomous systems
	Pullback attractor (PBA)
	Random attractor

	Application to Dansgaard–Oeschger (D-O) events
	The FitzHugh–Nagumo (FHN) model of fast–slow oscillations
	A pullback attractor of a periodically forced FHN model
	A random attractor of a periodically and stochastically forced FHN model
	An FHN model of the NGRIP record


	An NDS for the Quaternary glaciations
	Conclusions
	Appendix A: Low-order dynamical-system models of glacial cycles
	Appendix B: PBA for a limit cycle with sinusoidally modulated radius
	Code and data availability
	Video supplement
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

