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Abstract. Bimodality and other types of non-Gaussianity
arise in ensemble forecasts of the atmosphere as a result of
nonlinear spread across ensemble members. In this paper,
bimodality in 50-member ECMWF ENS-extended ensem-
ble forecasts is identified and characterized. Forecasts of 2 m
temperature are found to exhibit widespread bimodality well
over a derived false-positive rate. In some regions bimodality
occurs in excess of 30 % of forecasts, with the largest rates
occurring during lead times of 2 to 3 weeks. Bimodality oc-
curs more frequently in the winter hemisphere with indica-
tions of baroclinicity being a factor to its development. Ad-
ditionally, bimodality is more common over the ocean, es-
pecially the polar oceans, which may indicate development
caused by boundary conditions (such as sea ice). Near the
equatorial region, bimodality remains common during either
season and follows similar patterns to the Intertropical Con-
vergence Zone (ITCZ), suggesting convection as a possible
source for its development. Over some continental regions
the modes of the forecasts are separated by up to 15 ◦C. The
probability density for the modes can be up to 4 times greater
than at the minimum between the modes, which lies near the
ensemble mean. The widespread presence of such bimodality
has potentially important implications for decision makers
acting on these forecasts. Bimodality also has implications
for assessing forecast skill and for statistical postprocessing:
several commonly used skill-scoring methods and ensemble
dressing methods are found to perform poorly in the presence
of bimodality, suggesting the need for improvements in how
non-Gaussian ensemble forecasts are evaluated.

1 Introduction

The atmosphere is a highly chaotic system that is not eas-
ily predicted. An important development has been the use of
ensemble forecasts in order to develop a probabilistic view-
point of the future state of the atmosphere. An ensemble is
a grouping of multiple forecasts initialized at the same time,
each slightly perturbed relative to one another. These per-
turbations result in the divergence over time of the individual
members (Lorenz, 1963), producing a diversity of point fore-
casts from which a probabilistic forecast can be generated.
A great deal of attention has focused on the use of the en-
semble mean and variance of the ensemble, explicitly or im-
plicitly assuming that the distributions are Gaussian. While
there are technical and practical reasons for doing so, treat-
ing all ensemble forecasts as such for the entirety of their
predictions is not always appropriate and may miss valuable
distributional information available, especially in larger en-
sembles. This work focuses explicitly on one specific type of
non-Gaussianity: bimodality.

Bimodal distributions occur when some of a forecast’s en-
semble members form a distinct cluster, separate from the
rest of the ensemble. Depending on the methodology, this can
result in generating a corresponding probability density func-
tion (PDF) that contains two (or more) modes. This paper
quantifies the presence of bimodality in ensemble forecasts
of 2 m temperature from the extended 46 d, 50-member fore-
casts produced by the European Centre for Medium-Range
Weather Forecasts (ECMWF). The focus of this work is on
assessing the frequency and character of bimodality in these
forecasts.

Forecast errors arise both from our imperfect knowledge
of the initial conditions and from imperfect forecast mod-
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els. The growth of these errors is not uniform (Palmer, 2000;
Leutbecher and Palmer, 2008), so that there is great practi-
cal value in assessing the certainty associated with any given
forecast. Although other approaches exist, ensembles have
become the method of choice to produce these probabilis-
tic forecasts (Buizza, 2018). By perturbing each member in
some appropriate way, the range of outcomes across the en-
semble can be used to construct a probabilistic assessment of
plausible future outcomes.

However, there are many challenges in constructing these
probabilistic forecasts from a raw ensemble. The phase space
of possible future atmospheric states is extremely high di-
mensional, so that a full representation of the “true” multi-
variate PDF representing a given forecast is unattainable for
ensembles of finite size (see Kalnay, 2019, and references
therein).

The perturbations applied to each member must be con-
structed appropriately, so that the spread across the ensem-
ble can nonetheless capture the most salient parts of this
true distribution. In practice, a key measure is the spread
of the ensemble. Historically, “underdispersion” is a ma-
jor difficulty, meaning that validating observations are of-
ten found outside the range of the forecast ensemble (Wang
et al., 2018). Considerable effort has gone into appropriate
initialization schemes to mitigate this issue; for instance, the
ECMWF forecasts use singular vectors over a defined time
interval, chosen to maximize ensemble spread (Leutbecher
and Palmer, 2008).

Several examples of ECMWF ensemble forecasts of 2 m
temperature at selected grid points are shown in Fig. 1. The
gray lines in Fig. 1a show the 50 individual ensemble mem-
bers of the same forecast in Fig. 1b. The ensemble members
are initially tightly clustered around the mean when the dif-
ferences caused by the initialization perturbations are small;
the members then disperse over time. The validation observa-
tions for each forecast are represented with yellow lines. Ob-
servations are based on ERA-Interim reanalysis (Dee et al.,
2011). The tendency of forecasts to be underdispersed can be
seen in Fig. 1a and b; this feature is prevalent in the first 10 d
of the forecast. The nonuniform nature of forecast spread
(Palmer, 2000; Leutbecher and Palmer, 2008) is also appar-
ent: in one case (Fig. 1c) the spread remains relatively small
throughout the forecast, whereas in another forecast for the
same location (Fig. 1d) the spread grows much more rapidly.
The spread is nonuniform in space as well; compare Fig. 1b
and d, which show two forecasts initialized on the same fore-
cast date but at different locations.

Figure 1d presents a case in which the ensemble spread
is strongly non-Gaussian. The shading indicates a forecast
PDF generated by a kernel density estimate (KDE) (Wilks,
2011), suggesting the presence of bimodality; the lead times
at which this bimodality is present according to a statistical
test (described in Sect. 2) are indicated with green dashes.
In these cases the ensemble mean lies near a local minimum
in the bimodal forecast PDF. The bimodality of the forecast

suggests instead that there are two potential scenarios that
may occur and that the spread about these two modes is con-
siderably less than the standard deviation of the ensemble as
a whole might suggest. Those lead times whose validation
observations would have been predicted with a higher proba-
bility with a KDE PDF compared to a Gaussian PDF occur in
quite a few of the lead times (blue dashes). These lead times
also commonly align with bimodality in the distribution (red
dashes). This work shows that such bimodality in forecasts
of 2 m temperature is in fact reasonably common.

1.1 Why identify bimodality in forecasts?

There are several motivations for considering whether
episodes of bimodality similar to that suggested by Fig. 1d
occur regularly. Forecasts with high skill have great eco-
nomic value for a multitude of sectors, and many millions of
dollars could be saved by further improving forecasts (Katz
and Murphy, 1997; Nurmi et al., 2012). Minimizing the false
positives and false negatives of critical weather events is es-
sential to the productivity, as well as safety, of much of the
public. Stakeholders often take action in response to a fore-
cast probability of surpassing a critical threshold (Richard-
son, 2000). The forecast is useful if the stakeholder bene-
fits from this action (Richardson, 2000; Chatrchyan et al.,
2017). For example, in the agricultural sector, proper fore-
casts of when subfreezing temperatures occur are needed so
that managers can treat their crops accordingly. However,
false-positive identification of freeze events will result in un-
needed crop protection and thus an economic loss (Lave,
1963; Katz et al., 1982). Fitting a Gaussian PDF to a non-
Gaussian distribution such as that illustrated in Fig. 1d can
assign very different probabilities to surpassing a specific
threshold.

Identifying systematic bimodality in ensemble forecasts
may also provide a means of studying weather regimes
(Birchfield et al., 1990; Morrison et al., 2012; Fallah and
Sodoudi, 2015). Michelangeli et al. (1995) described weather
regimes as states of the atmosphere that exhibit the proper-
ties of recurrence and persistence and are quasi-stationary.
One reason for systematic bimodality may be that different
members of the forecast ensemble enter and reside in dis-
tinct regimes; thus, identifying this bimodality may provide
a new way of identifying and studying these regimes. For
instance, the bimodal forecast exhibited in Fig. 1d is for a lo-
cation in the Southern Ocean. The warmer of the two modes
lies close to the freezing point of water, suggesting that in
this state there may be no sea ice, while in the colder mode
sea ice could be present, insulating the air from the warmer
ocean below. The likelihood and accurate representation of
the possibility of each of these scenarios is vital and has im-
portant implications for studying ocean–atmosphere interac-
tions (Zippel and Thomson, 2016).

Finally, accounting for bimodality in the error statistics
of the forecast also has technical implications for the de-
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Figure 1. The time evolution in days of three different ECMWF ensembles and their respective observation values. Forecasts are 6-hourly 2 m
temperature values. Forecast initialization dates are in the upper left, and forecast location is in the upper right. (a) The individual ensemble
members as a function of lead time in gray. (b–d) The kernel density estimate (KDE) of the ensemble distribution as colored contours, where
darker shades of red indicate a high number of ensemble members near that temperature (±2.5 ◦C). Note that panel (b) depicts the same
forecast as panel (a). The mean and 1 standard deviation of the distribution at a given lead time are in white. The yellow line represents the
validation at a given lead time. Purple axis ticks in panels (a) and (b) represent observation values that lie outside the warmest or coolest
ensemble member at that lead time. Blue tick marks in panel (d) represent a KDE that predicts the validation with a greater probability than a
Gaussian fit, KDE distributions who are bimodal are marked with green, and those lead times when these two conditions coincide are marked
in red.

sign of the forecast and data assimilation system (Dovera and
Della Rossa, 2011; Miller and Ehret, 2002), as well as in the
assessment of the relationship between forecast spread and
the skill of the forecast system (Wilks, 2002). The identifi-
cation of specific weather regimes may allow for better bias
corrections in forecasts that align with these regimes (Allen

et al., 2019), leading to improved forecast scores and better
understanding of model biases.

This paper is organized as follows: Sect. 2 presents a statis-
tical test for bimodality. In Sect. 3 these methods are applied
to an ECMWF dataset and results are presented. Discussion
of these results takes place in Sect. 4. Section 5 explores and
illustrates difficulties and deficiencies of current skill-scoring
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methods when applied to non-Gaussian distributions; these
results indicate the need for revised ensemble scoring meth-
ods to assess and account for bimodality. Finally, Sect. 6 con-
cludes.

2 Ensemble fitting and defining bimodality

There are several ways ensemble forecasts, which are made
up of discrete points, can be “dressed”, meaning a contin-
uous PDF is fit to the ensemble. As mentioned previously,
a Gaussian PDF using the mean and standard deviation of
the ensemble is quite common, especially due to its com-
putational efficiency. However, this proves to be insufficient
for the current study due to its unimodal constraint. For this
study, a non-Gaussian dressing method, the kernel density
estimate, is used. Explicitly, this is a Gaussian kernel density
estimate (KDE) (Silverman, 1981) whose resulting PDF can
be written

PKDE(T )=
1

√
2πnh

n∑
i=1

exp
−

1
2

(
T−Ti
h

)2

, (1)

where n represents the number of members in the ensem-
ble and h represents the bandwidth, a smoothing parameter.
h was determined using Scott’s rule (Scott, 2015). The rel-
ative minima (Tm,i) and maxima (TM,i) of this distribution
are identified by applying a root-finding method to the first
derivative of the PDF.

The main requirement to detect bimodality is of course the
presence of two relative maxima. However, the presence of
bimodality in an estimated PDF may be a result of sampling
error due to a finite ensemble size. To reduce the frequency
of such false positives while also minimizing false negatives
in the presence of bimodality, two other criteria were also
required to be met before a forecast was determined to be bi-
modal. The first criterion involves the “mode probability ra-
tios”, defined as the ratios of the probability of the two local
maxima PKDE(T = TM,i), relative to the probability of the
local minimum PKDE(T = Tm,i). Values of the mode proba-
bility ratios for two example multimodal distributions shown
in Fig. 2a are indicated in the legend. Note that, for a bimodal
case, this ratio depends on which mode in the distribution you
measure against.

The second criterion involves the membership of each
mode. To define which ensemble members belong to which
mode in a multimodal distribution, the relative minimum is
used as a cutoff point. Using a bimodal distribution as an
example, an ensemble member belongs to mode 1 if the tem-
perature is in the range (−∞,Tm,1); it belongs to mode 2 if it
is in the range (Tm,1,+∞). This is illustrated in Fig. 2b with
two modes separated by the minimum location (black dotted
line). Members belonging to mode 1 are indicated in blue,
and those belonging to mode 2 are in red.

Figure 2. (a) Synthetic data representing how the magnitude of the
mode probability ratio has been quantified for two distributions. The
mode probability ratio will vary depending on which mode you are
measuring against. (b) How ensemble members have been assigned
to a mode based on if they are less than the local minimum value in
the PDF of the distribution (blue) or greater than the local minimum
(red).

2.1 Selection of bimodal criteria

To choose appropriate thresholds for these two criteria, a se-
ries of tests were applied to synthetic 50-member forecasts
drawn from a Gaussian mixture model:

PGM(T )=
1
2
N (T ;−δ/2,1)+

1
2
N (T ;δ/2,1), (2)

with increasing values of δ. Here N (T ;µ,σ 2) is a Gaussian
distribution with mean µ and variance σ 2. Note that values
of δ from 0 to about 2 result in an underlying distribution that
is unimodal; the true modes of this distribution are indicated
in Fig. 3a.

A KDE was applied to each synthetic forecast, and the rel-
ative extrema were found. To be identified as bimodal, the
KDE must have two modes, the mode probability ratio must
meet a minimum threshold, and each mode must contain a
minimum number of members. As a base case, the two addi-
tional criteria were omitted. This case proved to have a rel-
atively large false-positive percentage. By including the two
additional criteria, the false-positive likelihood was reduced.

In order to determine the appropriate combination of re-
strictions, the requirement for a minimum number of mem-
bers, m, in the smaller of the two modes was first added. Un-
less the distribution satisfied this additional requirement, it
was not considered bimodal. Values for m ranging from 1
to 25 were considered. This process allows one to derive
false-positive and false-negative occurrences associated with
each membership restriction. Requiring a minimum of five
members in each mode was found to greatly reduce the false-
positive rate, while also keeping the false-negative rate low
(not shown).

The five-member requirement was then combined with
minimum mode probability ratio requirements ranging
from 1 to 10. There are two possible ratios for each mini-
mum depending on whether the local maximum to the left
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Figure 3. (a) The local maximum location(s) for a series of bimodal distributions with increasing δ according to the PDF of that distribution.
(b) The false-positive (black dotted) and false-negative (blue) rate that is associated with various minimum mode probability ratio require-
ments in order to classify the bimodality of a subsampled 50-member sample fit with a KDE for three different underlying distributions
(solid, dotted, dot-dashed) (the mode probability requirement is in combination with a 5-member minimum mode requirement). The mode
probability requirement used in panel (c) is demarcated by a vertical gray line. (c) The bimodal fit percentage for a 50-member sample fit with
a KDE. Vertical dashed line represents when the underlying distribution truly transitions from unimodal to bimodal. The correspondingly
colored dotted line represents the percentage of time the KDE classified bimodal with only a two-mode requirement. The correspondingly
colored solid line represents the same statistic except while using the following restrictions: two modes, either mode probability ratio must
be greater than 1.18, and a five-member minimum for each mode. The blue distribution represents the distribution in panel (a). The red
distribution represents the same distribution as panel (a) but with a weight of the lower mode 3 times that of the higher mode; for many
values of δ this would be representative of a skewed distribution. The green distribution represents the same as panel (b), but the greater
weighted mode has a standard deviation of 2 instead of 1; for many values of δ this results in a highly skewed distribution.

or to the right is chosen. In order to be considered bimodal,
three possibilities were considered: either ratio must exceed
the requirement, both ratios must exceed the requirement, or
the average of the two ratios must exceed the requirement.

An example of these tests is illustrated in Fig. 3b. This
depicts the false-positive and false-negative percentages for
a five-member minimum in combination with the require-
ment that either mode probability ratio exceed the specified
value. Three different underlying distributions drawn from
Fig. 3a are represented – a distribution on the cusp of uni-
modal and bimodal (solid blue), a bimodal distribution with
a relatively large δ (blue dash-dot), and a distribution in the
middle (blue dashed). The false-positive rate associated with
a normal Gaussian distribution is also indicated (black dot-
ted).

Based on these tests, the following requirements were
adopted for identifying a distribution as bimodal: the sam-
ple must have two relative maxima separated by one rela-
tive minimum, each mode must contain at least five ensem-
ble members, and at least one of the mode probability ratios
must exceed a value of 1.18. A mode probability ratio of 1.18
represents a minimum that has a probably at most of 85 % of
one of the maxima. The mode probability ratio of 1.18 is

highlighted in Fig. 3b. This value was chosen because it is
near the inflection point of the false-positive curve, reduc-
ing incorrect detection of bimodality, while also staying to
the left of the false-negative curves, where missed detections
quickly rise. How well the combination of these three criteria
performs on predicting the modality of all the distributions
in Fig. 3a can be found in blue in Fig. 3c. These metrics are
quantified from 10 000 randomly drawn 50-member ensem-
bles. The vertical blue dashed line represents when the dis-
tribution switches from unimodal to bimodal. It can be seen
that for values of δ less than about 1, this test identifies nearly
95 % of the forecasts as unimodal, corresponding to a false-
positive rate of 5 % (blue solid). This is well improved from
a test that only has a two-mode requirement which results
in a false-positive rate of 20 % (blue dotted). For values of δ
greater than about 4, the three-criteria test identifies nearly all
forecasts as bimodal. Distributions on the cusp of bimodality
for which δ lies between 2 to 4 present a greater difficulty.

Two other distributions were tested in a similar fashion:

PGM(T )=
3
4
N (T ;−δ/2,1)+

1
4
N (T ;δ/2,1), (3)

which is shown in red in Fig. 3c, and
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PGM(T )=
3
4
N (T ;−δ/2,2)+

1
4
N (T ;δ/2,1), (4)

which is shown in green. The distribution represented by
Eq. (3) becomes bimodal near δ ≈ 4, while Eq. (4) becomes
bimodal near δ ≈ 5.5. These two additional distributions are
used to determine the robustness of these restrictions to vary-
ing degrees of skew. Figure 3c shows that for δ less than
about 2, these distributions also have false-positive identi-
fication rates of about 5 %.

Correctly identifying the presence of bimodality for val-
ues of δ near where the underlying distribution transitions
from unimodal to bimodal is more challenging, particularly
for distributions which have greater skew. In this portion of
parameter space a greater proportion of false positives and
false negatives would be expected.

2.2 Application to a more sophisticated system

The analysis of these criteria may be expanded upon by test-
ing the false-positive and false-negative rate on a more so-
phisticated system. The Lorenz 1963 model allows for the
representation of a chaotic system with three degrees of free-
dom (Lorenz, 1963). This model has often been used as a
simplistic representation of the atmosphere. For this study of
bimodal detection, the system is initialized with a very large
ensemble (10 000 members) where members are perturbed
relative to one another. Since the flow is chaotic, the model
is sensitive to initial conditions and thus the ensemble mem-
bers will spread. This large ensemble may be used as the true
distribution for which the modality of the “atmosphere” at
that point in time may be found. Then, similar to the previ-
ous synthetic study, 50-member ensembles at discrete time
steps can be drawn, where each is fit with a KDE and the
derived bimodal criteria are applied to get an approximation
of the false-positive and false-negative detection rate. Fig-
ure 4 depicts the time evolution of a univariate variable in a
Lorenz 63 system. This example, and more generally most
ensemble forecasts of the atmosphere, may be broken into
three main sections or periods: (1) just after initialization
when the ensemble is still tightly clustered around the true
state (roughly lead times 0–5 in the case of Fig. 4); (2) after
the ensemble has begun to spread, where non-Gaussian char-
acteristics may or may not be present (leads 5–25 in Fig. 4);
and (3) at long lead times when the ensemble approaches
the climatological distribution (leads 25+ in Fig. 4). While
bimodality can be present in the climatological distribution
itself, the bimodality that this paper is primarily concerned
with identifying would be expected to occur in the second
period and not necessarily persist into the third. Figure 4b
has a sample distribution and the evaluated false-positive and
false-negative rate from each of these three periods. These
rates correspond well to the previous synthetic study. In this
example, there is a larger false-positive rate associated with
the climatological distribution, which has greater spread than

Figure 4. (a) The time evolution of a 10 000-member ensemble in a
Lorenz 1963 system. xo = (−4.11,−1.29,26.37), r = 28, p = 10,
and b = 8/3. Shading indicates the kernel density estimate (KDE)
of the univariate ensemble distribution. Darker shades of red indi-
cate a high number of ensemble members near that value. Red tick
marks on the x axis indicate time steps when the ensemble has two
modes. Blue tick marks indicate those distributions who are signifi-
cantly similar to the climatological distribution according to a two-
sided Kolmogorov–Smirnov test (α = 0.025). Climatology was de-
termined by integrating the model until t = 200. (b) Discrete distri-
butions drawn from the time series in panel (a). Dots indicate where
the maxima occur. The legend indicates the false-positive (negative)
detection rate of unimodal (bimodal) distributions according to re-
peatedly drawn 50-member ensembles with the bimodal criteria de-
rived from Fig. 3 applied.

the initialization period. Note that this example also reflects
how although a forecast may experience a brief period of bi-
modality (leads 6–10), it does not necessarily mean that this
bimodality will persist for the entirety of the second charac-
terized period (leads 10–25).

On the basis of Figs. 3 and 4, if this test identifies bimodal-
ity in approximately more than 5 % of forecasts, one can
safely conclude that non-Gaussian distributions are systemat-
ically present. For distributions that are sufficiently skewed,
there is a greater potential for false positives and false nega-
tives, especially near the transition between unimodality and
bimodality. However, it is difficult to quantify this potential
for the forecast system of interest without knowing before-
hand the appropriate family of possible distributions that the
forecasts may exhibit. Nonetheless, as seen in a later section,
estimates of δ in forecasts that are found to be bimodal with
this test are often well above the transition region indicated
in Fig. 3c.

2.3 Transient versus climatological bimodality

Before this procedure is applied, however, one may wish to
understand to what extent the bimodality that is captured
could be a result of the climatological distribution itself (pe-
riod three from Fig. 4) versus a specific atmospheric state at
the time of the forecast (period two from Fig. 4). If the oc-
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currence of bimodality is a result of the climatological distri-
bution itself, one would expect occurrence rates to asymptote
at very long forecast lead times as the forecasts approach the
climatological distribution. However, if bimodality is occur-
ring due to particular atmospheric states, one would expect
there to be some peak in bimodal frequency at some function
of lead time prior to an asymptotic behavior; this peak period
would be representative of the second period in Fig. 4.

Using the forecast location from Fig. 1d, it is found that
even at the longest lead times offered by the ECMWF dataset
(more than 4 weeks) the forecast distributions at this lo-
cation are still significantly different from that of clima-
tology (according to a two-sided Kolmogorov–Smirnov test
with α = 0.025). This indicates that there may be some low-
frequency variability that could contribute to potential fore-
cast skill even at these very long lead times. This also means
that the ensemble forecast bimodality that is expressed (for
example in Fig. 1d) is at least partially due to a more tran-
sient process rather than just a sampling of the climatology
itself. More work has gone into uncovering this on a broader
scale, and similar conclusions have been found; however, the
complete presentation of this work is beyond the objectives
of the current paper.

3 Bimodality statistics

The detection and quantification of bimodality, as derived
from the tests defined in Sect. 2, was applied to real forecast
data. The dataset used is the ECMWF Atmospheric Model
Ensemble extended forecast (ENS extended). This dataset in-
cludes 46 d, 50-member forecasts every Monday and Thurs-
day (Haiden et al., 2019). Forecasts extend from 3 Decem-
ber 2015 until 28 January 2021. This study will limit its anal-
ysis to the identification of bimodality in 2 m temperature.
Furthermore, the analysis will be focused on three main fac-
tors: the occurrence of bimodal forecasts, the separation be-
tween the two modes of bimodal forecasts (δ), and the greater
of the two mode probability ratios of bimodal forecasts.

Figure 5 shows the occurrence rate of bimodality as a func-
tion of the lead time of the forecast. Three different sets of
forecast leads are considered based on what lead time they
are valid for: week one, weeks two and three, and weeks four
and five. The color scale is set so that any shaded region in-
dicates more than 5 % of forecasts at these lead times ex-
hibit bimodality. The darkest shades of blue represent 30 %
or more of forecasts that are bimodal. At all three time pe-
riods, values of bimodal occurrence for much of the globe
are well over the expected false-positive rate of 5 % deter-
mined from synthetic testing; this suggests that bimodality is
systematic and widespread in forecasts of 2 m temperature.

Generally, the occurrence of bimodality in forecasts in-
creases from week one to weeks two and three. Interestingly,
though, the occurrences also become more localized; there
are almost no locations that are below the 5 % threshold in

Figure 5. (a) The average occurrence of forecasts that are consid-
ered bimodal in the first week of lead times, (b) in weeks two to
three, and (c) in weeks four to five for the ECMWF 2 m tempera-
ture dataset.

the first week (Fig. 5a); however, this occurs more widely
during weeks two and beyond (Fig. 5b and c), especially over
the eastern parts of extratropical ocean basins. At weeks four
and five, the global occurrence rate decreases from weeks
two and three, and the spatial area of those regions that ex-
perience less than 5 % bimodality grows larger. These prop-
erties are expressed in the global mean and standard devia-
tion of the bimodal forecast occurrence as well. Week one
of forecasts has a mean occurrence of 9.1 % with a standard
deviation of 2.6 %. Weeks two and three of forecasts have
a mean occurrence of 10.2 % with a standard deviation of
5.2 %. Weeks four and five have a mean occurrence of 8.9 %
with a standard deviation of 5.2 %. With the exception of the
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eastern ocean boundaries, the occurrence of bimodal fore-
casts is generally larger over the oceans as compared to land.

Figure 6 shows the evolution of δ and the mode probabil-
ity ratio as a function of lead time. The δ between bimodal
distributions’ modes generally increases as a function of lead
time. δ is generally larger over the land versus the ocean.
An interesting property that develops in the mode probabil-
ity ratio is the decreased spatial extent of the lower proba-
bility ratios after the first week of lead times (represented
by the decreased occurrence of purple contours in Fig. 6b as
compared to Fig. 6a). Probability differences become greater
in magnitude but more localized after the first week of lead
times. δ values and local maxima in mode probability ratio
continue to grow into weeks four and five of lead times. It is
important to note that the δ and mode probability ratios are
averaged only over those forecasts which are considered bi-
modal. Thus, the localization pattern just expressed may be a
result of smaller sample sizes associated with the first week
of forecasts (Fig. 5a) and perhaps not from the properties of
the forecasts themselves. An example of where this may be
the case is in the Southern Ocean near 60◦ S, 60◦ E.

Next the seasonality of bimodality is analyzed. Only lead
times from 2 to 3 weeks are focused on since this pe-
riod exhibits the greatest occurrence of bimodality (Fig. 5b).
Nonetheless, the other lead times represented in Fig. 5 ex-
hibit very similar properties in seasonality.

In Figs. 7 and 8 the same information from Figs. 5b and 6b
is being shown, but now only for those forecasts initialized
during Northern Hemisphere extended winter (November
through March) (Fig. 7) or Northern Hemisphere extended
summer (May through September) (Fig. 8). There is clear ev-
idence of increased bimodality in forecasts that occur in the
winter hemisphere, represented by darker greens and more
blue regions in the Northern Hemisphere in Fig. 7a and in the
Southern Hemisphere in Fig. 8a. As seen previously, greater
bimodality occurs over the ocean as compared to over land in
both hemispheres for both the warm and cold season. How-
ever, there are localized patches of bimodality maxima that
reach up to 30 % over some continental regions such as near
Morocco and east of the Andes during MJJAS. Examples
of high land occurrences during NDJFM include Australia,
Canada, western Alaska, and the southeastern US. Regions
near the Equator appear to have relatively high occurrences
in bimodality during the warm and cold seasons. Conversely,
bimodality minima persist through both extended summers
and winters in the midlatitudes off the western edge of most
of the continents.

Although values of δ are typically largest over the land as
compared to the ocean, there is a stronger dependence on sea-
son for forecasts over land versus those over the ocean. δ val-
ues are generally largest over land in the winter hemisphere
but are somewhat comparable no matter the season over the
oceans outside of the polar regions. In many areas, average
δ values of over 15 ◦C are evident in land forecasts that are bi-
modal. This includes much of Canada, regions east of Green-

Figure 6. Shading represents the average δ between the two modes
of forecasts deemed bimodal. Darker shades of red indicate greater
separation of temperature between the two modes. Contours rep-
resent the mode probability ratio of the absolute maximum com-
pared to the relative minimum of forecasts deemed bimodal. Purple,
blue, and yellow contours represent 2 times, 3 times, and 4 times as
likely, respectively. Panel (a) is for lead times in week one, panel (b)
in weeks two to three, and panel (c) in weeks four to five of the
ECMWF 2 m temperature dataset.

land, much of northern Russia, and some of Australia dur-
ing boreal winter. Forecasts with large δ values during bo-
real summer include central South America and almost the
entirety of Antarctica. Sea ice regions in both hemispheres
exhibit especially large values of δ. As with the nonseasonal
pattern (Fig. 6), values of δ continue to increase into weeks
four and five of forecast lead times.
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Figure 7. (a) The average occurrence of forecasts that are consid-
ered bimodal for all Northern Hemisphere extended winter months
(November, December, January, February, March) in the ECMWF
dataset. (b) The accompanying average delta between the two
modes (shaded) and the relative probability of the absolute max-
imum compared to the relative minimum for forecasts that are
bimodal (contour). Purple, blue, and yellow contours represent
2 times, 3 times, and 4 times as likely, respectively.

Unlike occurrence and δ, the mode probability ratios do
not exhibit as pronounced of a seasonal dependence. There
is some variation in the maxima that occur in the Southern
Ocean, southern Australia, and west coast of Africa, which
are greater in austral summer than in austral winter. How-
ever, this may be affected to some extent by seasonal changes
in the occurrence frequency. Regardless of season, there are
persistent maxima to the west of South America, near the
Gulf of Mexico, and in southern Australia.

Finally, note in particular those locations that experience
both large δ as well as large mode probability ratios. These
areas represent not only forecasts that have very widely
spaced modes, but also forecasts with PDFs that may con-
tain very distinctly separated modes, or relative minima that
are very near a probability of 0. From properties presented
previously (Fig. 1d), these minima will commonly be near
where a Gaussian fits the greatest probability. Additionally,

Figure 8. (a) The average occurrence of forecasts that are con-
sidered bimodal for all Northern Hemisphere extended summer
months (May, June, July, August, September) in the ECMWF
dataset. (b) The accompanying average δ between the two modes
(shaded) and the relative probability of the absolute maximum com-
pared to the relative minimum for forecasts that are bimodal (con-
tour). Purple, blue, and yellow contours represent 2 times, 3 times,
and 4 times as likely, respectively.

since the δ is so large, the Gaussian will have a very large
variance. Hence in these regions assumptions of Gaussian-
ity are the most problematic. Examples of these locations
include the southern coast of Australia and western Alaska
during boreal winter.

4 Discussion

With only a local, univariate analysis, it is difficult to deter-
mine the cause of the patterns reported in the previous sec-
tion. However, based on the regional patterns and structures
some hypotheses can be made.

The increase in the occurrence rate of bimodality beyond
lead times of 1 week is consistent with the idea that non-
linear spread requires time to develop. Given the tendency
for these forecasts to be underdispersed at these lead times
(e.g., Fig. 1a), it is all the more remarkable that there are
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still indications of bimodality at these early lead times. Addi-
tionally, because the occurrence peaks during weeks two and
three of the forecasts and then decreases, it is unlikely that
the bimodality in these forecasts is simply a result of the ap-
proach to a climatological distribution. If this were the case,
one would expect to see the occurrence frequency asymptote
at longer lead times.

In both hemispheres, bimodality occurs more frequently
over the ocean than over land. This suggests an important
role for boundary layer processes in coupling the atmosphere
to the ocean (Chelton, 2013). This is especially evident in the
Gulf Stream area off the northeast coast of the United States,
the southern Indian Ocean, as well as in polar regions off
the eastern coast of Greenland and in the Southern Ocean.
However, there seems to be a greater seasonal dependence in
bimodality occurrence for these polar regions as compared
to the Gulf Stream and the Indian Ocean regions. This fur-
ther suggests a role for sea ice in the polar regions where
bimodality occurs in nearly 30 % of forecasts, with average
values of δ of over 15 ◦C. The high occurrence rates of bi-
modality in the Gulf Stream or regions with sea ice may be
due to uncertainty associated with advection of surface winds
over strong ocean temperature gradients. Whether the ensem-
ble members predict surface winds pointing from the warm
to cold region or vice versa has wildly different outcomes on
the 2 m temperature.

More generally, one reason for the seasonal dependence
on bimodality occurrence may be the presence of stronger
meridional temperature gradients in the winter hemisphere.
These gradients lead dynamically to increased baroclinic in-
stability, and the effects of advection around these gradients
can produce strong non-Gaussianity. In a simple case, take
a series of ensemble members whose initialization results in
a similarly structured cyclone that produces warm air advec-
tion to the east of the cyclone. In contrast, the rest of the
members do not predict the formation of a cyclone, and no
anomalous advection takes place. This will result in the de-
velopment of two modes in the forecast distribution: one un-
perturbed mode and one anomalously warm mode. Now con-
sider that in the winter hemisphere these cyclones can de-
velop faster, become stronger, and have a greater magnitude
in anomalous temperature advection for the region. This may
act to more quickly and dramatically separate modes in the
forecast distribution. This greater separation would not only
lead to higher occurrence of bimodality in the winter hemi-
sphere but also greater values of δ, both of which are sup-
ported by the patterns seen in Figs. 7 and 8. Tamarin-Brodsky
et al. (2019) depicted climatological skewness that develops
in ensemble forecasts of temperature near storm track regions
as a result of nonlinear meridional advection. Consistent sep-
aration of smaller modes in forecasts, such as those pre-
sented in the previous hypothetical case, may express them-
selves in the climatological distribution as skewness, which
would be consistent with the findings from Tamarin-Brodsky
et al. (2019). That being said, there are clear distinctions be-

tween the spatial distribution of temperature skewness found
in Tamarin-Brodsky et al. (2019) (their Fig. 1c) and the distri-
bution of bimodality exhibited in the current study. Examples
of uniqueness for boreal winter include west of South Amer-
ica (minima in bimodality but large skew), east of Greenland
(maxima in bimodality but little skew), and west of Australia
(minima in bimodality but large skew). This indicates that
while the processes which lead to each may be related, there
are some distinctions. The relationships between increased
baroclinicity, its effects on weather events, and the associated
forecast uncertainty in the form of ensemble spread and non-
Gaussianity remain a popular topic of study (Vallis, 1983;
Scher and Messori, 2019; Linz et al., 2020).

Persistent bimodality minima off the western edges of con-
tinents may be associated with high-pressure systems typi-
cally sitting over these regions (Aguirre et al., 2019) which
can suppress convective activity and reduce ensemble spread,
mitigating non-Gaussianity in forecasts. However, it is inter-
esting that the occurrence of bimodality in these regions is
larger during the first week of forecasts than at longer lead
times.

Smaller values of δ over the ocean as compared to con-
tinental regions are also consistent with the importance of
air–sea interactions. The larger heat capacity of the ocean as
compared to land surfaces is likely to reduce possible fluctu-
ations in 2 m temperature. This may also explain why there
seems to be very little seasonality of δ over the ocean relative
to the high seasonality of δ over land.

High bimodality occurrences surrounding the Equator
may be associated with convective activity near the ITCZ
which may lead to non-Gaussianity in forecast distributions.
The area of enhanced occurrence near the Equator appears to
shift slightly north of the Equator during boreal summer and
slightly south of the Equator during boreal winter, which is
consistent with the positioning of the ITCZ. This is further
reinforced by looking at a region such as the northern Bay
of Bengal. This region switches from below 5 % occurrences
to nearly 20 % depending on the season; however, this maxi-
mum in occurrence is achieved in the region’s warm season,
a property that is opposite of most of the globe. The seasonal
location of this maximum, however, is consistent with the
seasonal ITCZ position, where the ITCZ position is based
off of rainfall climatology (Souza and Cavalcanti, 2009). Bi-
modality in this region during boreal summer may be also
in part due to the timing of the monsoon circulation. When
this circulation sets up or breaks down and whether ensem-
ble members predict it or not will lead to largely diverging
atmospheric states.

5 Ensemble scoring

Bimodality clearly occurs quite frequently in these forecasts.
One may now wish to understand what effect this has on
forecasting skill when it is present. Do such cases lead to
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worse forecasts? Can the use of non-Gaussian dressing meth-
ods improve forecast skill relative to Gaussian approaches
in these cases? How does bimodality affect postprocessing
techniques that are also often based on assumptions of Gaus-
sianity? This final section will be devoted to answering these
types of questions.

The use of postprocessing in ensemble forecasts can re-
duce systematic biases in the forecast model (Vannitsem
et al., 2018). This process involves scoring the ensemble
against validating observations using some standard metric.
On the basis of these scores, systematic corrections can be
applied, such as a shifting the mean or dispersion of the fore-
cast ensembles. The use of appropriate scoring methods is
needed for this postprocessing to be successful. It is neces-
sary to use a scoring metric which is proper (Gneiting and
Raftery, 2007) and which can assess metrics of interest in an
ensemble distribution.

Two well-known scoring rules are compared: the continu-
ous ranked probability score (CRPS) and the ignorance score
method (IS). In short, the CRPS is based on the cumulative
density function (CDF) of the ensemble: the CRPS is defined
as the squared difference in area above and below the CDF
curve according to where the validation point lies. This is
defined explicitly as

CRPS(F,x)=

∞∫
−∞

(F (y)−H(y− x))2dy, (5)

where F is the CDF of a probabilistic forecast, H is the
Heaviside step function, and x is the validation value. In con-
trast, the IS is based on the PDF of the ensemble: it is defined
as the negative log of the ensemble PDF at the value of the
validating observation. Defined explicitly as

IS(P,x)=− logP(x), (6)

where P is the probability density function of a probabilistic
forecast and x is once again the validation value.

For both quantities, low scores correspond to more skill-
ful forecasts. Both scoring systems have usefulness such that
they can decompose a forecast system’s reliability, resolu-
tion, and uncertainty (Hersbach, 2000; Tödter and Ahrens,
2012). The ability to measure these metrics is attractive for
those looking to formally evaluate forecasting skill. Exten-
sive information can be found on both of these scoring meth-
ods (Vannitsem et al., 2018; Siegert et al., 2019).

5.1 Scoring metrics’ ability to resolve modes

How these two scores assess ensemble forecasts of a syn-
thetic bimodal process is considered in this section. First
a “perfect model” Monte Carlo test is performed with an
underlying bimodal distribution, representative of the flow
state, from which 50-member synthetic ensembles are drawn.
These forecasts are then dressed, which can then be used to

compute the CRPS and IS. Two dressing methods are then
compared: (i) fitting either a Gaussian PDF using the mean
and standard deviation of the ensemble or (ii) using a Gaus-
sian kernel density estimate as defined in Sect. 2.

The underlying true distribution is taken to be a mixed
Gaussian, consisting of two unequally weighted modes with
unit standard deviation, centered at ±3. The mode at −3 has
a weight of 0.75, while the mode at +3 has a weight of 0.25.
In order to resolve the two modes, the skill score should re-
ward forecasts if the validating observation lies close to the
modes, while penalizing them if the validating observation
lies at the minimum between the two modes.

Figures 9a and b show the CRPS and IS as a function
of the validating observation for both of the dressed ensem-
bles that each contain 50 members, averaged over 1000 fore-
casts. Also shown are the skill scores for a forecast distribu-
tion equal to the true distribution. The Gaussian distribution
places the maximum weight at the mean of the ensemble,
which tends to lie close to the mean of the underlying distri-
bution, near the minimum in the true PDF between the two
modes. Validating observations near this point are given bet-
ter scores than those that lie near the modes of the under-
lying distribution. The KDE distribution produces a better
approximation to the underlying bimodal distribution; how-
ever, there is still no local minimum in CRPS resolved at 3 or
a local maximum in skill score resolved at 0. In fact, should
a validation of 3 occur, according to CRPS, the forecast will
be scored worse than if a validation of 0 occurs, despite the
mode at 3 in the true distribution. Even when using the true
distribution, the only way in which the mode at 3 is reflected
in the distribution of CRPS scores is through the rate of
change in scores surrounding 3: scores increase (indicating
worse skill) at a lower rate when transitioning from the mode
at−3 to 3 as compared to validation values that lie beyond 3.
Note that for outliers in the tails of the distribution, there is
little difference in the scoring of the three forecast distribu-
tions.

The IS, in contrast, can more clearly resolve the presence
of bimodality. The Gaussian dressed distribution again is
scored most favorably if the validation observation lies close
to the distribution mean. However, the KDE dressed distri-
bution has local minima in skill score at both modes, with
a maximum near the ensemble mean. The minima are even
more clearly resolved if the true distribution is used; this is
due to the known tendency for Scott’s rule to overestimate
the appropriate bandwidth for bimodal distributions. How-
ever, the outliers in the tails of the distribution are penalized
much more severely for the KDE fit (or even more so for the
true distribution) than for the Gaussian fit. While all three
distributions have Gaussian tails and thus will show quadratic
growth in IS, the growth is much slower in the Gaussian case.
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Figure 9. The comparison of two skill-scoring methods, CRPS and IS, as well as Gaussian and KDE dressing methods. The underlying
distribution that 50-member samples were repeatedly drawn from is listed at the top. (a, b) The validation value is representative of what
these 50 sized samples were scored against using the respective skill-scoring method. Lower scores are representative of higher skilled
ensembles. Ensembles dressed with a Gaussian distribution are in red. Ensembles dressed with a KDE are in blue. Score values evaluated
using the true underlying distribution are shown in black. Absolute minimum values for each distribution are demarcated with dashes on the
x axis. (c, d) How using CRPS and IS to postprocesses ensembles affects the ability of a biased forecast distribution to be corrected towards
the true distribution represented in panels (a) and (b). Postprocessed distributions are in dashed lines; raw forecast distributions are in solid
lines.

5.2 Scoring metrics’ ability for bias correction

The consequences of these scores on the postprocessing and
scoring of imperfect forecasts can further be explored. Here
an underlying forecast distribution that is biased relative to
the true process is considered: a mixed Gaussian distribution
with the same distribution represented in Fig. 9a and b but
with each mode shifted to the left by 1.5 units and with a
reduced standard deviation of 1 unit. The forecast and true
distributions are shown in faint solid lines in Fig. 9c and d.
Then 2000 sets of 50-member ensembles are drawn from the
forecast distribution, and 2000 validation observations from
the true distribution are drawn; from these an optimal cal-
ibration to the mean and dispersion is computed based on
each scoring and fitting method. Explicitly, this involves op-
timizing one parameter which shifts the mean as well as one
parameter which shifts the dispersion, where the optimiza-
tion minimizes the fit distribution’s skill score. This results
in four sets of postprocessed distributions: a Gaussian and
KDE fit optimized with CRPS (dashed red and blue lines, re-
spectively, in Fig. 9c) and a Gaussian and KDE fit optimized
with IS (dashed red and blue lines, respectively, in Fig. 9d).

From the distributions, it can be seen that since CRPS fails
to resolve the second peak but instead has a slower drop-off
in skill between 0–3 than to the left of −3 or right of +3,
both postprocessed distributions are shifted to the right. The
mean of the Gaussian distribution moves from the true distri-
bution’s largest mode to near the true distribution’s local min-
imum as a result of the postprocessing. After postprocessing,
the KDE’s left and right modes are biased and skewed pos-
itive. Both distributions become overdispersed using CRPS
for bias correction as compared to what the dispersion is of
the true distribution.

In contrast, using the IS to postprocess the distributions
gives better results. Due to the unimodal nature of the Gaus-
sian fit, the mean is once again placed near the true dis-
tribution’s local minimum, giving a similar result to the
CRPS case. However, the postprocessed KDE distribution
approaches very nearly the true distribution. Note, however,
that the degree of agreement is somewhat sensitive to the ex-
act nature of the bias in the raw forecast distributions.
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5.3 Number of forecasts required to approach true
distribution

Next the efficiency for each dressing method to reconstruct
the forecast PDF and how close it comes to the scoring of
the true distribution is evaluated. The “True” column in Ta-
ble 1 shows the “perfect” score for the two different skill
score metrics, where this score is evaluated using the true
distribution (black from Fig. 9). The “Gaussian” and “KDE”
columns in Table 1 show the average scores (of 50 000 draws)
for postprocessed distributions fit with each of the respec-
tive dressing methods for both evaluation and for the post-
processing procedure. For example, the “Gaussian” column
for the “CRPS” row is showing what the mean evaluated skill
score is for a Gaussian dressed ensemble that is corrected by
a postprocessing procedure, where the postprocessing min-
imized the CRPS of a Gaussian dressed ensemble. For the
present bimodal distributions, the KDE performs better than
the Gaussian fit for both scores, achieving an average score
closer to that obtained if the true distribution is used. How-
ever, the improvement in the case of CRPS is very slight and
requires a large sample to detect. This is illustrated by the
“No. required” column, which shows the number of 100-set,
50-member forecasts required to score before the KDE and
Gaussian scores can be distinguished at a confidence level of
95 %. Explicitly this is testing the required number of fore-
casts, for each of the 100 sets, before the two fitting methods
are significantly different based on the variance of the mean
of the 100-set forecasts. More than 16 000 forecast sets are
required to demonstrate that the KDE is a better choice, de-
spite the bimodality of the underlying distribution. In con-
trast, if IS is used, roughly 70 forecast sets are required to
demonstrate that the KDE is a better choice. Further tests
indicate that the choice of score used to perform the postpro-
cessing is more important than the score used to evaluate the
forecasts (not shown).

These tests were also conducted with smaller ensembles
to evaluate the effectiveness of the two skill-scoring methods
with ensembles of different sizes. Smaller ensembles dressed
with KDEs did not perform as well and had a mean IS fur-
ther away from the perfect IS than larger ensembles fit with
KDEs. The effect on IS for Gaussian fit ensembles was less
noticeable but still had scores further away from the perfect
score as ensemble sizes got smaller. CRPS showed little dif-
ference for Gaussian fit ensembles, no matter the ensemble
size. Interestingly, CRPS for KDE fit ensembles was nearest
the perfect score when the ensemble size was 20; however, it
continued to show decreases in CRPS (more skillful) as the
ensemble size continued to decrease. In any case, CRPS re-
quired fewer forecast sets to establish significant differences
between the two dressing methods as compared to IS as the
ensemble size shrank. It seems ensembles need to contain a
minimum of approximately 15 members in order for IS to
consistently achieve significance before CRPS. However, the
ability of a KDE to resolve the underlying distribution for a

Table 1. The mean score of postprocessed forecast distributions
drawn with varying ensemble sizes. Rows indicate the scoring
method and ensemble size, while columns indicate the forecast dis-
tribution used. The “True” column refers to the perfect score for
each metric, where this is determined by evaluating on the true dis-
tribution (not the drawn ensembles). The “No. required” column in-
dicates how many 100-set forecasts are required before the sample
mean Gaussian and KDE scores are distinct at the 95 % confidence
level for that particular skill score metric. Explicitly this is testing
the variance of the mean of 100-set forecasts, where each set has
the row’s listed number of ensemble members.

Scoring True Members Gaussian KDE No.
method required

CRPS 1.48 50 1.59 1.55 16 601
IS 1.98 50 2.45 2.12 71
CRPS 1.48 20 1.59 1.51 2538
IS 1.98 20 2.46 2.20 144
CRPS 1.48 10 1.60 1.43 658
IS 1.98 10 2.48 2.37 1131

given amount of ensemble members will depend partly on
the distribution itself; thus these results and the effectiveness
of each combination of scoring and dressing methods will
also vary depending on the use case.

To summarize from an application standpoint, Table 1 im-
plies that non-Gaussian dressing methods may not express
any improvement in skill relative to Gaussian methods if
CRPS is used as the scoring metric. The IS is much more
sensitive to the structure of the PDF and can better reveal
improvements from the use of non-Gaussian dressing meth-
ods. However, as illustrated by Fig. 9b, the use of IS with
the non-Gaussian dressing method considered here is much
more sensitive to outliers.

These results highlight the need to choose appropriate
scoring and postprocessing methods to assess the skill in any
bimodal forecast. New methods that are sensitive to distri-
butional shape but do not penalize outliers so severely need
to be developed before bimodality can be critically examined
through a skill-based lens. Due to these difficulties, this study
has not pursued further attempts to formally evaluate the ef-
fect on skill for the large occurrences of bimodality exhibited
in the ECMWF dataset (Sect. 3). Instead, it focuses on identi-
fying the presence of bimodality in the forecasts themselves,
leaving for a future study the difficult question of validating
this bimodality against observations.

6 Conclusions

The atmosphere is a highly chaotic system that is difficult
to predict. While the assumption of Gaussianity leads to
many simplifications, ensemble forecasts often exhibit non-
Gaussian distributions, even in the 2 m temperature field
considered here. This work has systematically identified
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and characterized the presence of a specific case of non-
Gaussianity, bimodality.

A statistical test for the presence of bimodality based on a
KDE approach has been developed. This test identifies a 50-
member forecast drawn from a Gaussian distribution as bi-
modal roughly 5 % of the time, representing a general false-
positive occurrence. Applying this test to 5 years of ECMWF
ENS-extended forecasts, one finds this false-positive rate is
exceeded over much of the globe during the entirety of the
forecast, indicating that bimodality in these forecasts is a sys-
tematic and relatively common occurrence.

It has been found that bimodality is most frequent during
weeks two and three of probabilistic forecasts as well as dur-
ing the winter season, reaching values in excess of 30 % in
multiple regions including central South America, the North
Atlantic, and the Antarctic Peninsula. In select regions such
as around Indonesia and in the North Atlantic, bimodal fore-
casts occur in excess of 10 % even during the first week of
lead times.

The strikingly large occurrences over the Gulf Stream, the
polar oceans, and the equatorial oceans emphasize the im-
portance of the oceanic forcing while also suggesting very
different processes associated with the development of bi-
modality in each region. Baroclinicity, sea ice boundaries,
and convection are possible candidates.

Although bimodal occurrence over land has been found to
be less common than over the ocean, it is associated with
modes that have greater separation in their temperature val-
ues. In fact, regions having an average mode separation of
10–15 ◦C are not uncommon. Furthermore, some of these
regions have modes that are 2 or 3 times as likely as com-
pared to the distribution minimum, where the ensemble mean
may lie. This has potentially drastic implications for bimodal
forecasts fit with Gaussian distributions. Consider, for ex-
ample, forecasts over southern Australia during its summer
season. This region expressed bimodality in roughly 15 %–
20 % of its forecasts, for which the average mode separa-
tion is roughly 10 ◦C and the relative probability ratio is
around 3 or 4. If a wildfire forecast were to be issued, the
non-Gaussian fit’s warmer of the two modes may well sur-
pass a critical temperature threshold representing high risk
of wildfires. However, due to the large mode separation, a
Gaussian distribution will likely have large variance. This
will result in probabilities that are somewhat uniform, and
the risk of wildfires may be predicted to be very low.

It has been found that current ensemble scoring methods
are not appropriate for assessing skill in non-Gaussian en-
semble forecasts. CRPS is very weakly sensitive to the higher
moments of distributions and cannot clearly resolve the dif-
ferences between Gaussian and non-Gaussian dressing meth-
ods even when the underlying process is strongly bimodal.
The ignorance score proves to be a better alternative for non-
Gaussian distributions but is strongly sensitive to the tails of
the distribution and still requires a sufficiently large ensem-

ble to identify a bimodal forecast as better than a Gaussian
forecast when the underlying process is in fact bimodal.

The prevalence of bimodality in these ensemble forecasts
suggests the need for improved methods to evaluate and post-
process forecasts in the presence of bimodality. These are
needed to properly assess and understand the role of bi-
modality and non-Gaussianity in the effective use of ensem-
ble forecasts, especially on subseasonal timescales. Although
non-Gaussian fitting methods prove to exhibit greater predic-
tive power in some forecasts (Fig. 9), to do this for all fore-
casts may be computationally impractical. Thus the identifi-
cation of when bimodality is most likely to occur is critical.
Improved awareness of the nature of weather regimes, whose
commonness may be supported by the high bimodality rates
seen in this study, is a likely step forward to understanding
bimodality in forecasts.
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