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Abstract. Earth system models (ESMs) participating in the
Coupled Model Intercomparison Project Phase 5 (CMIP5)
showed large uncertainties in simulating atmospheric CO2
concentrations. We utilize the Earth System Model Evalua-
tion Tool (ESMValTool) to evaluate emission-driven CMIP5
and CMIP6 simulations with satellite data of column-average
CO2 mole fractions (XCO2). XCO2 time series show a large
spread among the model ensembles both in CMIP5 and
CMIP6. Compared to the satellite observations, the mod-
els have a bias of +25 to −20 ppmv in CMIP5 and +20
to −15 ppmv in CMIP6, with the multi-model mean biases
at +10 and +2 ppmv, respectively. The derived mean atmo-
spheric XCO2 growth rate (GR) of 2.0 ppmv yr−1 is over-
estimated by 0.4 ppmv yr−1 in CMIP5 and 0.3 ppmv yr−1 in
CMIP6 for the multi-model mean, with a good reproduc-
tion of the interannual variability. All models capture the
expected increase of the seasonal cycle amplitude (SCA)
with increasing latitude, but most models underestimate the
SCA. Any SCA derived from data with missing values can
only be considered an “effective” SCA, as the missing val-
ues could occur at the peaks or troughs. The satellite data
are a combined data product covering the period 2003–2014
based on the Scanning Imaging Absorption Spectrometer for
Atmospheric Chartography (SCIAMACHY)/Envisat (2003–
2012) and Thermal And Near infrared Sensor for carbon Ob-
servation Fourier transform spectrometer/Greenhouse Gases
Observing Satellite (TANSO-FTS/GOSAT) (2009–2014) in-
struments. While the combined satellite product shows a

strong negative trend of decreasing effective SCA with in-
creasing XCO2 in the northern midlatitudes, both CMIP en-
sembles instead show a non-significant positive trend in the
multi-model mean. The negative trend is reproduced by the
models when sampling them as the observations, attribut-
ing it to sampling characteristics. Applying a mask of the
mean data coverage of each satellite to the models, the ef-
fective SCA is higher for the SCIAMACHY/Envisat mask
than when using the TANSO-FTS/GOSAT mask. This in-
duces an artificial negative trend when using observational
sampling over the full period, as SCIAMACHY/Envisat cov-
ers the early period until 2012, with TANSO-FTS/GOSAT
measurements starting in 2009. Overall, the CMIP6 ensem-
ble shows better agreement with the satellite data than the
CMIP5 ensemble in all considered quantities (XCO2, GR,
SCA and trend in SCA). This study shows that the availabil-
ity of column-integral CO2 from satellite provides a promis-
ing new way to evaluate the performance of Earth system
models on a global scale, complementing existing studies
that are based on in situ measurements from single ground-
based stations.

1 Introduction

The Intergovernmental Panel on Climate Change (IPCC)
Fifth Assessment Report (AR5) concluded that since 1950
many of the observed changes in the climate system have
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been unprecedented in the instrument record, confirming an
unequivocal warming of the climate system (IPCC, 2013).
Increasing emissions of greenhouse gases (GHGs) are the
key drivers of anthropogenic climate change. The most im-
portant anthropogenic greenhouse gas is carbon dioxide
(CO2), with CO2 emissions contributing more than half of
the total global radiative forcing in 2011 relative to 1750
(IPCC, 2013). It is therefore important to monitor the long-
term changes in atmospheric CO2 concentrations, to under-
stand the sources and sinks of carbon and to provide reliable
projections of future CO2 concentrations under various sce-
narios.

Photosynthesis causes a net uptake of atmospheric CO2
and thus declining atmospheric CO2 concentrations in the
growing season. Conversely, atmospheric CO2 concentra-
tions rise throughout the dormant season when there is a net
release of CO2 from the land due to decomposition of or-
ganic matter in soils. This uptake and release of carbon by
the terrestrial biosphere throughout the year causes a sea-
sonal cycle of atmospheric CO2 (Keeling et al., 1989). The
seasonal cycle amplitude (SCA) has been increasing over
the last 50 years, with higher increases in higher latitudes
(Barnes et al., 2016; Graven et al., 2013; Yin et al., 2018;
Keeling et al., 1995; Keeling et al., 1996; Myneni et al.,
1997; Piao et al., 2018). A number of studies have explored
the effects of CO2 fertilization, land-use change and climate
warming on the SCA (Bastos et al., 2019; Zhao et al., 2016;
Fernández-Martínez et al., 2019). Although models do not
agree unanimously, the dominant effects are a positive trend
in SCA due to the CO2 fertilization combined with a nega-
tive trend due to climate warming. Some models, however,
show a large positive trend due to climate warming (Zhao et
al., 2016). Land use is found to be a weaker effect in com-
parison to CO2 fertilization and climate warming (Bastos et
al., 2019; Fernández-Martínez et al., 2019).

Most long-term measurements of CO2 are from ground-
based stations. In situ ground-based measurements at Mauna
Loa (Hawaii, USA) started in 1958, providing the first evi-
dence that fossil fuel combustion leads to a measurable in-
crease in atmospheric CO2 concentrations (Keeling et al.,
1976). Other observatories around the globe now also mea-
sure atmospheric CO2, reporting an increase of about 45 %
since pre-industrial times (Ciais et al., 2013; Friedlingstein
et al., 2019).

Satellite measurements of CO2, with first near-
infrared/short-wave-infrared (NIR/SWIR) nadir-based
(downward-looking) satellite retrievals starting in 2002, can
complement the ground-based measurement network and
provide regional and spatial distributions of CO2. The quan-
tity obtained from measurements with NIR/SWIR satellite
instruments is the column-average dry-air mole fraction of
atmospheric CO2, denoted as XCO2. XCO2 is a dimension-
less quantity defined as the vertical column of CO2 divided
by the vertical column of dry air (i.e., all air molecules
except water vapor) often given in ppmv (parts per million

per volume). An analysis of growth rates (GRs) and SCA
from satellite data and their sensitivity to growing season
temperature anomaly presented in Schneising et al. (2014)
shows a negative correlation between SCA and growing
season temperature anomaly for the period 2003–2011,
which was confirmed by Yin et al. (2018) for SCA anomaly
in this timeframe. Satellite XCO2 products are often used
in combination with atmospheric transport inverse modeling
approaches to obtain information on surface fluxes by using
a global or regional transport model with free fit parameters
(Basu et al., 2013; Houweling et al., 2015; Reuter et al.,
2014; Chevallier et al., 2014). The satellite data can also
be used to constrain process parameters of a terrestrial
biosphere model, e.g., as part of the Carbon Cycle Data
Assimilation System (CCDAS; e.g., Kaminski et al., 2013),
and have been used for the evaluation of chemistry–climate
models (Hayman et al., 2014; Shindell et al., 2013). In the
last few years, satellite data have also been used in direct
comparison to output from climate models (e.g., Calle et
al., 2019), characterizing rise and fall segments in seasonal
cycles from GOSAT and comparing them to model output.

A large ensemble of climate model simulations for differ-
ent type of experiments under common forcings is provided
by the Coupled Model Intercomparison Project (CMIP), with
output available for CMIP5 (Taylor et al., 2012) and more
recently phase 6 (CMIP6; Eyring et al., 2016a). Earth sys-
tem models (ESMs) produce a large range in projected atmo-
spheric CO2, as a result of uncertainties in the future evo-
lution of natural fluxes (Arora et al., 2013; Friedlingstein
et al., 2006). Overall CMIP5 models overestimate the car-
bon content of the atmosphere (Friedlingstein et al., 2014;
Hoffman et al., 2014). The largest uncertainties are associ-
ated with the response of the land carbon cycle to changes
in climate and atmospheric CO2 (Friedlingstein et al., 2014;
Hajima et al., 2014). The ability of ESMs to simulate the
land and ocean contemporary carbon cycle has previously
been investigated by Anav et al. (2013). They showed that
most models were able to correctly reproduce the main cli-
matic variables and their seasonal evolution but found weak-
nesses in reproducing specific biogeochemical fields, such as
a general overestimation of leaf area index and photosynthe-
sis. However, the magnitude of the global photosynthesis is
not well constrained by observations, with estimates ranging
between 112 and 169 PgC yr−1 (Ryu et al., 2019), and the
dataset used by Anav et al. (2013) is on the lower end of
this range. For CMIP6, Arora et al. (2020) analyzed simu-
lations with a CO2 increase of 1 % per year to quantify the
carbon–climate feedbacks. They found no significant change
in behavior from CMIP5 to CMIP6 but lower absolute values
for models which included a nitrogen cycle.

In this paper, we focus on evaluating the growth rate and
the seasonal cycle amplitude of simulated CO2, converted
to XCO2, from CMIP ESMs which performed emission-
driven simulations with satellite observations in CMIP5 and
CMIP6. The paper is structured as follows: the data prod-
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ucts used in this study are introduced in Sect. 2. Section 3
describes the methods used, including the calculation of all
derived quantities. A comparison between CO2 flask mea-
surements and XCO2 measurements at different locations is
given in Sect. 4. The evaluation of CMIP simulations with
satellite data is presented in Sect. 5, divided into sections fo-
cusing on the models’ ability to simulate XCO2 time series,
growth rate and seasonal cycle amplitude. A summary and
conclusion are given in Sect. 6.

2 Data

2.1 Observational datasets

2.1.1 Satellite XCO2

We use the Observations for Model Intercomparisons Project
(Obs4MIPs) version 3 (O4Mv3) XCO2 satellite data (Buch-
witz et al., 2017a, 2018). Obs4MIPs hosts observationally
based datasets which have been formatted according to the
CMIP model output requirements (e.g., variable definitions,
coordinates, frequencies) in order to facilitate an easier com-
parison between observations and models (Ferraro et al.,
2015; Teixeira et al., 2014; Waliser et al., 2020). The satellite
product used here is a gridded (level-3) monthly data product
with a 5◦×5◦ spatial resolution following the Obs4MIPs for-
mat, produced as part of the Copernicus Climate Change Ser-
vice (C3S). The O4Mv3 product is retrieved from two satel-
lite instruments: Scanning Imaging Absorption Spectrometer
for Atmospheric Chartography/Envisat (Bovensmann et al.,
1999; Burrows et al., 1995) and the Thermal And Near in-
frared Sensor for carbon Observation Fourier transform spec-
trometer/Greenhouse Gases Observing Satellite (TANSO-
FTS/GOSAT) (Kuze et al., 2009).

This monthly mean XCO2 satellite dataset covers a 14-
year time span (2003–2016). It is obtained by gridding the
level-2 product (individual soundings) generated with the en-
semble median algorithm (EMMA; Reuter et al., 2013), in
this case EMMA version 3.0 (EMMAv3; Reuter et al., 2017).
EMMA combines several different XCO2 level-2 satellite
data products from SCIAMACHY/Envisat (2003–2012) and
TANSO-FTS/GOSAT (2009–2016) and includes a bias cor-
rection to all products during overlap phases, resulting in a
good agreement during the overlap period. This product was
validated against Total Carbon Column Observing Network
(TCCON; Wunch et al., 2011) ground-based observations of
XCO2, revealing a +0.23 ppmv global bias, a relative accu-
racy (defined as standard deviation of the station-to-station
biases) of 0.3 ppmv and a very good stability in terms of a
linear bias trend (−0.02± 0.04 ppmv yr−1) (Buchwitz et al.,
2017b). While the dataset ends in 2016, our evaluation only
goes up to the year 2014 because the historical simulations
for CMIP6 end in 2014 and scenarios from the emission-

driven simulations that could be used to extend the runs are
not yet available for all considered models.

The number of observations depends significantly on the
location with most points over locations with low cloud
cover, high surface reflectivity and (at least) moderate to high
Sun elevation. Coverage over ocean is sparse as ocean re-
trievals are only included from GOSAT Sun-glint mode ob-
servations – outside of glint conditions, the reflectivity of wa-
ter is very low in the NIR/SWIR spectral region. Figure 1
shows the mean monthly coverage of the dataset for 2003–
2014. In Sect. 5, we will show that taking into account this
sampling in the evaluation of ESMs is essential for a proper
comparison.

The dataset also contains uncertainty estimates for each
grid cell, with a mean value of 0.92 ppmv, accounting for
both statistical uncertainties from the individual soundings
and uncertainties from potential regional and temporal biases
(Buchwitz et al., 2017a). However, the overall uncertainties
are small compared to inter-model differences (see Sect. 3.1)
and are therefore neglected in our analysis.

2.1.2 Surface CO2 measurements

For the comparison of satellite XCO2 and surface CO2 data
in Sect. 4, we have obtained surface flask measurements
from the NOAA ESRL Carbon Cycle Cooperative Global
Air Sampling Network (Dlugokencky et al., 2020). Measure-
ment sites at locations with no available satellite data were
excluded from the analysis, which ruled out the four baseline
observatories in Mauna Loa and Samoa, as well as the South
Pole and Point Barrow sites. Furthermore, sites which did
not collect data during the period from 2003–2014 were dis-
carded. From the remaining sites, a sample of five sites was
chosen which had the best coverage of different latitudes,
and when latitudes were similar, different longitudes were
selected for increased spatial coverage. The selected sites are
listed in Table 1.

2.2 Model simulations

We use monthly mean output data from 10 CMIP5 and 10
CMIP6 models which performed emission-driven simula-
tions, with three of the CMIP5 and five of the CMIP6 models
including a nitrogen cycle. Tables 2 and 3 list all the CMIP5
and CMIP6 models used in this paper along with their at-
mosphere, land and ocean model component, respectively.
Only models with an interactive carbon cycle are able to per-
form the emission-driven simulations, in which the emissions
rather than the concentrations of the greenhouse gases are
prescribed (Taylor et al., 2012; Eyring et al., 2016a). This
allows the carbon cycle in the models to react to changes
in climate and atmospheric CO2 by adjusting their carbon
fluxes to the new climate conditions and providing the at-
mospheric CO2 concentration as an output (Friedlingstein et
al., 2014). In order to facilitate the comparison between the
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Figure 1. Mean fractional coverage of monthly satellite data for 2003–2014. A value of 0 (white) signifies no available data, while a value
of 1 (dark green) means that this grid cell contains data for all years of this month.

Table 1. List of active NOAA surface flask measurement sites used in this study.

Code Location Latitude [◦] Longitude [◦] Altitude [m] Start year

ASK Assekrem, Algeria 23.2625 5.6322 2710 1995

CGO Cape Grim, Australia −40.6800 144.6800 94 1984

LEF Park Falls, United States 45-945 269.7300 868 1994

HUN Hegyhátsál, Hungary 46.950 16.650 248 1993

WIS Ketura, Israel 30.8595 34.7809 482 1995

satellite data and the CMIP5 emission-driven simulations,
the historical simulations (1850–2005) were extended be-
yond 2005 with simulations from Representative Concentra-
tion Pathway (RCP) 8.5 (2006–2100), for which most ESM
simulations are available. Since the period of observations
only extends a decade beyond the historical runs, the choice

of emissions scenario has a negligible impact on the results
that we present below. For CMIP6, only the historical sim-
ulations are used, which end in 2014. For CMIP5, only one
model had more than one ensemble member performing the
emission-driven RCP8.5 simulation, and thus only one en-
semble member for each model has been used. In CMIP6,

Biogeosciences, 17, 6115–6144, 2020 https://doi.org/10.5194/bg-17-6115-2020



B. K. Gier et al.: Spatially resolved evaluation of Earth system models 6119

several models have three or more ensemble members. We
consider all of them in Fig. 3 for the time series to show the
models’ intrinsic variability but then proceed with the anal-
ysis with only the first ensemble member for each model.
The different initial value ensemble members perform sim-
ilarly to each other for the analysis presented in this paper,
and using an ensemble mean would reduce the interannual
variability found in each individual member.

3 Methods

3.1 Sampling of observations and models

For comparison of model and satellite data, first the CO2 data
of the models were converted to XCO2 data. The model data
were interpolated to the grid of the satellite dataset using a
bilinear interpolation scheme and grid cells with missing val-
ues in the satellite data were also set to missing values in the
model fields. Further sampling considerations are discussed
in more detail in Sect. 5.3.2 and in Appendix B.

Most analysis is carried out with regional averages cov-
ering several grid cells. Unless specifically stated otherwise,
these are calculated by taking the arithmetic averages over all
grid cells weighted by their area for each month.

3.2 Calculation of growth rate, seasonal cycle
amplitude and growing season temperature
anomaly

We compute the GR following the method described in
Buchwitz et al. (2018). Monthly resolved annual growth rates
are calculated by subtracting the XCO2 value 6 months in the
future from the one 6 months in the past. Then these monthly
resolved growth rates are averaged to a yearly GR for a cal-
endar year, and any year with less than 7 months of data is
flagged as missing. The addition of the 7-month data avail-
ability was introduced to be consistent with the constraint on
SCA as explained below.

We define the SCA as the peak-to-trough amplitude in a
calendar year of the detrended time series. The time series is
detrended with the cumulative sum of monthly growth rates,
using the annual mean growth rates as substitution for miss-
ing values where necessary. The SCA is calculated by sub-
tracting the minimum from the maximum value for each year
with a minimum data availability of 7 months. When investi-
gating the seasonal cycle of observationally sampled simula-
tions at higher latitudes, the maximum value of the time se-
ries was generally only accounted for if more than 7 months
of data were available. We therefore introduce the cutoff of
7-month data availability to preserve as many peaks as pos-
sible without restricting the data too much. However, as peak
preservation cannot be guaranteed when any missing values
are present, we can only speak of an effective SCA. The ab-
solute SCA is not as important in our comparison, because

we use the same sampling for both the model and observa-
tions.

The growing season temperature anomaly 1T is calcu-
lated from the NASA Goddard Institute for Space Studies
(GISS) Surface Temperature Analysis (GISTEMP) version
4 (Hansen et al., 2010) temperature anomaly map following
Schneising et al. (2014). The data are masked to include only
vegetated areas, using the MODIS land cover classification
(Friedl et al., 2010a). Surface temperature anomalies are cal-
culated with respect to their monthly climatologies. The data
are averaged over the growing season if they cover only one
hemisphere (April–September for the Northern Hemisphere;
December to May for the Southern Hemisphere). Addition-
ally, if the data cover both hemispheres, the whole year is
taken into account. The growing season averages are taken
because the temperature has a large influence on the plant
growth and the resulting biospheric CO2 fluxes, which in
turn drive both the SCA and interannual variability of the
GR (Schneising et al., 2014).

3.3 Earth System Model Evaluation Tool
(ESMValTool)

All figures in this paper were produced with the Earth Sys-
tem Model Evaluation Tool (ESMValTool) version 2.0 (v2.0)
(Righi et al., 2020; Eyring et al., 2020; Lauer et al., 2020).
Since its first release in 2016 (Eyring et al., 2016b), the
ESMValTool has been further advanced, facilitating anal-
ysis of many different ESM components, providing well-
documented source code and scientific background of im-
plemented diagnostics and metrics, and allowing for trace-
ability and reproducibility of results (provenance). ESMVal-
Tool v2.0 has been developed as a large community effort
to specifically target the increased data volume of CMIP6
and the related challenges posed by analysis and evaluation
of output from multiple high-resolution and complex ESMs.
For this, the core functionalities have been completely rewrit-
ten in order to take advantage of state-of-the-art computa-
tional libraries and methods to allow for efficient and user-
friendly data processing (Righi et al., 2020). Common oper-
ations on the input data such as regridding or computation of
multi-model statistics are now centralized in a highly opti-
mized preprocessor written in Python. ESMValTool v2.0 in-
cludes an extended set of large-scale diagnostics for quasi-
operational and comprehensive evaluation of ESMs (Eyring
et al., 2020), new diagnostics for extreme events, regional
model and impact evaluation and analysis of ESMs (Weigel
et al., 2020), as well as diagnostics for emergent constraints
and analysis of future projections from ESMs (Lauer et al.,
2020). For the study here, a new ESMValTool recipe has been
developed that can be used to reproduce all plots of this pa-
per.

https://doi.org/10.5194/bg-17-6115-2020 Biogeosciences, 17, 6115–6144, 2020



6120 B. K. Gier et al.: Spatially resolved evaluation of Earth system models

Table
2.C

M
IP5

m
odels

analyzed
in

this
study.D

stands
form

odels
including

dynam
ic

vegetation,and
N

stands
form

odels
including

nitrogen
cycles.

M
odel

Institute
A

tm
osphere

m
odel

L
and

m
odel

O
cean

m
odel

C
om

m
ent

M
ain

reference

B
N

U
-E

SM
C

ollege
ofG

lobalC
hange

and
E

arth
System

Science,
C

A
M

3.5
C

oL
M
+

B
N

U
-D

G
V

M
M

O
M

4p1
+

IB
G

C
N

,D
Jietal.(2014)

C
anE

SM
2

C
anadian

C
enterforC

lim
ate

M
odeling

and
A

nalysis,
B

C
,C

anada

C
anA

M
4

C
L

A
SS2.7

+
C

T
E

M
1

C
M

O
C

A
rora

etal.(2011)

C
E

SM
1-B

G
C

N
ationalC

enterfor
A

tm
ospheric

R
esearch

B
oulder,

C
O

,U
SA

C
A

M
4

C
L

M
4

PO
P2
+

B
E

C
N

G
entetal.(2011),

L
indsay

etal.(2014)

FIO
-E

SM
T

he
FirstInstitute

of
O

ceanography,SO
A

,C
hina

C
A

M
3.0

C
L

M
3.5
+

C
A

SA
PO

P2.0
+

O
C

M
IP-2

B
ao

etal.(2012),
Q

iao
etal.(2013)

G
FD

L
-E

SM
2G

G
eophysicalFluid

D
ynam

ics
L

aboratory,U
nited

States
A

M
2

L
M

3.0
G

O
L

D
+

TO
PA

Z
2

D
D

unne
etal.(2012),

D
unne

etal.(2013)

G
FD

L
-E

SM
2M

G
eophysicalFluid

D
ynam

ics
L

aboratory,U
nited

States
A

M
2

L
M

3.0
M

O
M

4.1
+

TO
PA

Z
2

D
D

unne
etal.(2012),

D
unne

etal.(2013)

M
IR

O
C

-E
SM

Japan
A

gency
forM

arine-E
arth

Science
and

Technology,Japan;
A

tm
osphere

and
O

cean
R

esearch
Institute,Japan

M
IR

O
C

-
A

G
C

M
+

SPR
IN

TA
R

S
M

A
T

SIR
O
+

SE
IB

-D
G

V
M

C
O

C
O

3.4
+

N
PZ

D
D

W
atanabe

etal.(2011)

M
PI-E

SM
-L

R
M

ax
Planck

Institute
for

M
eteorology,H

am
burg,

G
erm

any

E
C

H
A

M
6

JSB
A

C
H
+

B
E

T
H

Y
M

PIO
M
+

H
A

M
O

C
C

5
D

G
iorgetta

etal.(2013)

M
R

I-E
SM

1
M

eteorologicalR
esearch

Institute,Japan
M

R
I-

A
G

C
M

3.3
+

M
A

SIN
G

A
R

m
k-2
+

M
R

I-C
C

M
2

H
A

L
M

R
I.C

O
M

3
D

A
dachietal.(2013),

Y
ukim

oto
etal.(2012),

Y
ukim

oto
etal.(2011)

N
orE

SM
1-M

E
N

orw
egian

C
lim

ate
C

enter,N
orw

ay
C

A
M

4-O
slo

C
L

M
4

H
A

M
O

C
C

5
N

T
jiputra

etal.(2013)

Biogeosciences, 17, 6115–6144, 2020 https://doi.org/10.5194/bg-17-6115-2020



B. K. Gier et al.: Spatially resolved evaluation of Earth system models 6121

Ta
bl

e
3.

C
M

IP
6

m
od

el
s

an
al

yz
ed

in
th

is
st

ud
y.

D
st

an
ds

fo
rm

od
el

s
in

cl
ud

in
g

dy
na

m
ic

ve
ge

ta
tio

n,
an

d
N

st
an

ds
fo

rm
od

el
s

in
cl

ud
in

g
ni

tr
og

en
cy

cl
es

.

M
od

el
In

st
itu

te
A

tm
os

ph
er

e
m

od
el

L
an

d
m

od
el

O
ce

an
m

od
el

C
om

m
en

t
M

ai
n

re
fe

re
nc

e
an

d
da

ta
D

O
I

A
C

C
E

SS
-E

SM
1-

5
C

om
m

on
w

ea
lth

Sc
ie

nt
ifi

c
an

d
In

du
st

ri
al

R
es

ea
rc

h
O

rg
an

is
at

io
n,

A
us

tr
al

ia

U
M

7.
3

C
A

B
L

E
2.

4
w

ith
C

A
SA

-C
N

P
M

O
M

5
+

W
O

M
B

A
T

N
L

aw
et

al
.(

20
17

),
Z

ie
hn

et
al

.(
20

17
),

D
at

a:
Z

ie
hn

et
al

.(
20

19
)

C
an

E
SM

5
C

an
ad

ia
n

C
en

te
rf

or
C

lim
at

e
M

od
el

in
g

an
d

A
na

ly
si

s,
B

C
,C

an
ad

a

C
an

A
M

5
C

L
A

SS
-C

T
E

M
N

E
M

O
3.

4.
1.
+

C
M

O
C

Sw
ar

te
ta

l.
(2

01
9a

),
D

at
a:

Sw
ar

te
ta

l.
(2

01
9c

)

C
an

E
SM

5-
C

an
O

E
C

an
ad

ia
n

C
en

te
rf

or
C

lim
at

e
M

od
el

in
g

an
d

A
na

ly
si

s,
B

C
,C

an
ad

a

C
an

A
M

5
C

L
A

SS
-C

T
E

M
N

E
M

O
3.

4.
1.
+

C
an

O
E

Sw
ar

te
ta

l.
(2

01
9a

),
D

at
a:

Sw
ar

te
ta

l.
(2

01
9b

)

C
N

R
M

-E
SM

2-
1

C
N

R
M

-C
E

R
FA

C
S,

Fr
an

ce
A

R
PE

G
E

-C
lim

at
v6

.3
+

SU
R

FE
X

v8
.0

IS
B

A
+

C
T

R
IP

N
E

M
O

v3
.6
+

G
E

L
A

TO
+

PI
SC

E
Sv

2

Sé
fé

ri
an

et
al

.(
20

19
),

D
at

a:
Se

fe
ri

an
(2

01
9)

G
FD

L
-E

SM
4

G
eo

ph
ys

ic
al

Fl
ui

d
D

yn
am

ic
s

L
ab

or
at

or
y,

U
ni

te
d

St
at

es
A

M
4.

1
L

M
4.

1
O

M
4

M
O

M
6
+

C
O

B
A

LT
v2

D
D

un
ne

et
al

.(
20

20
),

D
at

a:
K

ra
st

in
g

et
al

.(
20

18
)

M
IR

O
C

-E
S2

L
M

IR
O

C
,J

ap
an

M
IR

O
C

-A
G

C
M
+

SP
R

IN
TA

R
S

V
IS

IT
-e

&
M

A
T

SI
R

O
6

C
O

C
O
+

O
E

C
O

v2
N

H
aj

im
a

et
al

.(
20

20
b)

,
D

at
a:

H
aj

im
a

et
al

.(
20

20
a)

M
PI

-E
SM

1-
2-

L
R

M
ax

Pl
an

ck
In

st
itu

te
fo

r
M

et
eo

ro
lo

gy
,H

am
bu

rg
,

G
er

m
an

y

E
C

H
A

M
6.

3
JS

B
A

C
H

3.
2

M
PI

O
M

1.
6
+

H
A

M
O

C
C

6
N

,D
M

au
ri

ts
en

et
al

.(
20

19
),

D
at

a:
W

ie
ne

rs
et

al
.(

20
19

)

M
R

I-
E

SM
2-

0
M

et
eo

ro
lo

gi
ca

lR
es

ea
rc

h
In

st
itu

te
,J

ap
an

M
R

I-
A

G
C

M
3.

5
+

M
A

SI
N

G
A

R
m

k-
2r

4c
+

M
R

I-
C

C
M

2.
1

H
A

L
M

R
I.C

O
M

v4
Y

uk
im

ot
o

et
al

.(
20

19
a)

,
D

at
a:

Y
uk

im
ot

o
et

al
.(

20
19

b)

N
or

E
SM

2-
L

M
N

or
w

eg
ia

n
C

lim
at

e
C

en
te

r,
N

or
w

ay
M

od
ifi

ed
C

A
M

6
C

L
M

5
H

A
M

O
C

C
N

Se
la

nd
et

al
.(

20
20

),
D

at
a:

Se
la

nd
et

al
.(

20
19

)

U
K

E
SM

1-
0-

L
L

M
et

O
ffi

ce
H

ad
le

y
C

en
tr

e,
U

ni
te

d
K

in
gd

om
U

ni
fie

d
M

od
el

JU
L

E
S-

E
S-

1.
0

N
E

M
O
+

M
E

D
U

SA
-2

N
,D

Se
lla

re
ta

l.
(2

01
9)

,
D

at
a:

Ta
ng

et
al

.(
20

19
)

https://doi.org/10.5194/bg-17-6115-2020 Biogeosciences, 17, 6115–6144, 2020



6122 B. K. Gier et al.: Spatially resolved evaluation of Earth system models

4 Comparison of XCO2 and surface CO2

Until recent years, most model–observation comparisons
have been carried out using in situ surface CO2 data (e.g.,
Wenzel et al., 2016). As such, it is interesting to compare
the differences between XCO2 and surface CO2 at different
locations. Figure 2 shows a comparison of time series be-
tween both kinds of observations and the multi-model mean
for both XCO2 and surface CO2 for CMIP6 (top) and CMIP5
(bottom) models. The multi-model mean for both XCO2 and
surface CO2 is offset to have the same mean value as the
satellite data, and this offset is noted above each time series
panel. It is interesting to note that the offset appears to be
larger at higher latitudes, thus showing a different latitudinal
gradient between the models and the satellite data, indicat-
ing potential issues with surface fluxes or transport in the
models. The multi-model mean and satellite data are aver-
aged between all grid cells covering a 5◦× 5◦ radius around
the stations, which results in a maximum of four grid cells
to be considered. The mean and growth rate of XCO2 and
surface CO2 are in very good agreement, while the multi-
model mean overestimates both variables at all sites, with the
overestimated mean XCO2 arising from the effect of higher
growth rates over time. Furthermore, the offset from the mod-
eled surface CO2 is higher than that of XCO2, while this
difference is smaller for CMIP5. This might be due to the
fact that the CMIP5 offset for multi-model mean XCO2 was
larger overall with approximately 10 ppmv compared to the
CMIP6 offset of approximately 2 ppmv.

SCA is higher at higher latitudes and also generally higher
at the surface compared to the column average. This is to be
expected as the processes dominating the seasonal cycle, res-
piration and photosynthesis, take place at the surface, lead-
ing to the higher SCA for station data and surface CO2 from
models compared to the XCO2 values. Mixing of air com-
ing from lower latitudes with lower SCA dampens the SCA
in the column compared to surface SCA. This is evident in
the increasing SCA difference between XCO2 and surface
CO2 going from low-latitude to high-latitude stations, with
no discernible seasonal cycle in the Southern Hemisphere
due to the lack of land and vegetation. The multi-model mean
follows this trend in the observations, although it underes-
timates the higher-latitude SCA, with a larger underestima-
tion at the surface while capturing the XCO2 SCA relatively
well. As this study aims at evaluating model simulations with
satellite data, further analysis is restricted to XCO2.

5 Evaluation of CMIP simulations with satellite data

5.1 XCO2 time series

The globally averaged time series of XCO2 is shown in Fig. 3
in the top panel, with CMIP6 (a) and CMIP5 (b) models sam-
pled as the satellite observations (see Sect. 3.1). The obser-

vational uncertainty is too small to be seen in this plot and is
therefore neglected. The middle panel shows the monthly re-
solved annual growth rate and the bottom panel the detrended
seasonal cycle. All available ensemble members for CMIP6
models are used to show their internal variability. All en-
semble members perform similar to one another. The multi-
model mean is computed using the first ensemble member,
which is also used in the further analysis. As in Fig. 2, an in-
crease of XCO2 with time and a pronounced seasonal cycle
for all models can be seen. The focus here is on the absolute
values, as the trend (GR) and SCA are discussed in dedicated
sections below. The CMIP6 models display a large range of
absolute XCO2 values, ranging from an underestimation by
15 ppmv (MRI-ESM2.0 and MIROC-ES2L) to an overesti-
mation by 20 ppmv (GFDL-ESM4). The model closest to the
observations is CNRM-ESM2-1, which reproduces the mean
value well, with the next closest models being NorESM2-
LM and MPI-ESM1.2-LR, both overestimating XCO2 by
about 5 ppmv. The multi-model mean shows an overestima-
tion by approximately 2 ppmv or equivalently a time shift
of 1 year. While the spread in the models has not decreased
much since CMIP5, the overestimation of the multi-model
mean has decreased from 10 to 2 ppmv. Furthermore, CMIP6
models which have predecessors in CMIP5 show similar
biases as their predecessors, besides the MIROC models,
which overestimated the mean by 15 ppmv in CMIP5 and
underestimates it by that much in CMIP6. Both MRI mod-
els underestimate XCO2 significantly, while GFDL-ESM4
overestimates the atmospheric content even more. The MRI-
ESM1 model was the only model in CMIP5 to underesti-
mate XCO2 with respect to the observations, and this was
by about 20 ppmv. This model underestimates the historical
warming, causing plant and soil respiration to be too low,
which leads to a larger land sink and a reduced atmospheric
CO2 concentration (Adachi et al., 2013). This underestima-
tion has been reduced by about 5 ppmv in CMIP6. The GFDL
models show an overestimation of about 15 ppmv in both en-
sembles, and both CanESM models are 10 ppmv too high.
A minor improvement can be seen for NorESM-LM over
NorESM1-ME, with a decrease of the overestimation from
15 to 10 ppmv.

5.2 Growth rate

The middle panel of Fig. 3 shows that while models cap-
ture the interannual variability of the growth rate quite well,
they overestimate the mean growth rate compared to the ob-
servations. The correlation coefficient for the multi-model
mean is at 0.48 in CMIP6 and 0.07 in CMIP5 which shows
a large improvement in this area. The pronounced feature
in 2009 is due to the introduction of the GOSAT data
which changed the shape of the seasonal cycle and thus
due to its calculation the monthly resolved annual growth
rate. Fortunately, this feature gets averaged out when com-
puting the annual growth rate and does not tangibly affect
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Figure 2. Comparison of time series from satellite XCO2 (black), multi-model mean XCO2 (orange) and surface CO2 (red), and NOAA
surface CO2 station data (blue) at selected sites, with the coordinates noted in brackets above the time series and the altitudes shown in the
map plot (see Table 1). The multi-model mean for both XCO2 and surface CO2 was offset to have the same average value as the satellite
XCO2 for better comparison, and this offset is noted above each time series. CMIP6 and CMIP5 multi-model means are shown in the
top (a) and bottom (b) panels, respectively.

our conclusions. Figure 4 shows the global mean GR of
XCO2 for 2003–2014 and its standard deviation over all
years depicted as error bars, with the observations shown in
black and the multi-model mean in red. The annual mean
GR of the satellite data is 1.9± 0.4 ppmv yr−1, while the
CMIP5 models (right) range from 1.5± 0.4 (MRI-ESM1) to
3.0± 0.9 ppmv yr−1 (CanESM2) with a multi-model mean
of 2.4± 0.4 ppmv yr−1. In CMIP6 (left), the multi-model
mean is slightly lower at 2.3± 0.3 ppmv yr−1, and the spread
has decreased by 0.6 ppmv yr−1, with a range from 1.7± 0.4
(MRI-ESM2.0) to 2.6± 0.7 ppmv yr−1 (GFDL-ESM4). As
expected from Fig. 3, the models – with the exception of
MRI-ESM1, MRI-ESM2.0 and MIROC-ES2L – overesti-
mate the growth rate, leading to an increased XCO2 level in

the present-day atmosphere compared to observations. The
interannual variability of the growth rate for the models is
generally higher than that of the observations but well repro-
duced in the multi-model mean.

Emergent constraints are relationships defined using an
ensemble of models, between a measurable aspect of current
or past climate and an aspect of Earth system feedback in
the future, which can be constrained using observational data
(Eyring et al., 2019). In Appendix C, we have tried to repro-
duce the trend in interannual variability (IAV) of CO2 growth
rate to IAV of tropical temperature used by Cox et al. (2013)
to develop an emergent constraint on the sensitivity of trop-
ical land carbon to climate change but were unable to find a
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Figure 3. (a) Global time series of monthly mean column-averaged carbon dioxide (XCO2) from 2003 to 2014 for the emission-driven
CMIP6 model simulations in comparison to satellite XCO2 data (bold black line). The model output is sampled as the satellite data. The top
panels show the time series, while the middle panels show the computed monthly growth rate, which has been used to detrend the data to
obtain the seasonal cycle shown in the bottom panel. All available ensemble members for each model are shown to demonstrate the intrinsic
variability of the models. (b) Same as Fig. 3a but for CMIP5. Only one ensemble member is shown.

Biogeosciences, 17, 6115–6144, 2020 https://doi.org/10.5194/bg-17-6115-2020
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Figure 4. Global mean and standard deviation over all years of annual growth rate of XCO2 during 2003–2014 for CMIP6 models (a) and
CMIP5 models (b). The black bar represents the satellite observations, while the red bar depicts the multi-model mean.

significant trend for this much shorter satellite-derived time
series.

The spatial variability of the GR is small, as CO2 is long
lived and well mixed in the atmosphere with a 1-year mean
interhemispheric crossing time. Thus, there should be no sig-
nificant regional changes on an annual level. Buchwitz et
al. (2018) found the growth rate of the satellite dataset to
be in agreement with those quoted by NOAA ESRL’s global
and Mauna Loa time series, as well as robust over several
latitude bands. Our own analysis also shows only very small
regional differences in the growth rate (not shown). No sig-
nificant changes to the annual growth rates due to the satellite
spatial coverage were found.

5.3 Seasonal cycle amplitude

This section about the SCA is divided into two subsections,
with the first one taking a closer look at inter-model differ-
ences, while the second subsection is devoted to the impact
of observational sampling.

5.3.1 Model differences

The lower panel in Fig. 3 shows the detrended global sea-
sonal cycle for all models. Models in CMIP6 (a) show a
strong improvement in their ability to capture both the sea-
sonal cycle amplitude, as well as its phase compared to
CMIP5 (b) but still underestimate the SCA. The correla-
tion coefficient to the observed seasonal cycle is 0.93 in
CMIP5 and 0.98 in CMIP6 for the multi-model mean. The
only model in CMIP6 to significantly underestimate the sea-
sonal cycle amplitude is CNRM-ESM2-1. Two errors have

been identified causing this dampened seasonal cycle: ocean
carbon fluxes are lagged in time, and in the emission-driven
simulations, CO2 is considered as an active tracer and cou-
pled with atmospheric chemistry. These chemical fields are
restored to global mean climatological concentrations at the
model surface, acting as a damping component to the CO2
concentrations (Séférian et al., 2019). Figure 5 shows maps
of the climatological mean SCA (2003–2014) for all models,
with the global mean given in the top right and the zonal aver-
ages shown in the panel attached to the right of the maps. All
CMIP6 models (Fig. 5a) underestimate the SCA compared
to satellite observations (Fig. 6, middle) in the global mean,
with the closest mean SCA being MIROC-ES2L. This un-
derestimation was already present in CMIP5 (Fig. 5b), with
several studies discussing it for surface CO2 SCA (Wenzel et
al., 2016; Graven et al., 2013). In CMIP6, the multi-model
mean has a globally averaged mean SCA of 3.25 ppmv, com-
pared to 2.92 ppmv for CMIP5, while the observations show
an effective SCA of 5.89 ppmv (Fig. 6).

Both models and observations show the well-known in-
creasing SCA with increasing latitude, due to the more pro-
nounced seasonal cycle of the climate at higher latitudes.
Most models show a decreased growth from 0 to 30◦ N,
with higher SCA increases in the lower tropics and north-
ern midlatitudes. Overall, the zonal distribution is quite simi-
lar throughout the models, with UK-ESM1-0-LL showing in-
creased SCA at 30–90◦ S. Tropical land regions in northern
South America, Africa and southeast Asia show increased
SCA values compared to the ocean SCA at this latitude for
the same model. While in the GFDL CMIP5 models this was
so pronounced that these regions showed a higher SCA than
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Figure 5. Maps of mean annual seasonal cycle amplitude for 2003–2014 for the CMIP6 (a) and CMIP5 (b) models. The model name is given
in the top left of each panel, and the top right shows the global average of the mean annual seasonal cycle. The panel to the right of the maps
shows the same zonal mean SCA.

Biogeosciences, 17, 6115–6144, 2020 https://doi.org/10.5194/bg-17-6115-2020
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Figure 6. (a) Maps of mean SCA of the CMIP6 multi-model mean for 2003–2014. Top: SCA of multi-model mean with observational
sampling (left) and without sampling (right). Middle: SCA of the satellite observations. Bottom: difference between observations and sampled
model data (left) and sampled and unsampled model (right).

the higher latitudes (Dunne et al., 2013), this is no longer
the case for GFDL-ESM4 in CMIP6. Dunne et al. (2013) at-
tributed the GFDL problem in CMIP5 to the seasonality of
respiration in the northern latitudes and an Amazonian low-
precipitation bias which reversed the seasonal cycle synchro-
nizing it with the African and Oceanian rain forests. The im-
provement in CMIP6 is due to a reduced ocean–atmosphere
CO2 flux in the Southern Hemisphere, as well as the reduc-
tion of the high tropical land–atmosphere fluxes expressed
over the ocean (Dunne et al., 2020).

The SCA in the CMIP5 MPI-ESM-LR model is on aver-
age twice as large as the observed one. The high SCA has
been discussed in Giorgetta et al. (2013), where it was at-
tributed to a combination of an overestimation of net primary
productivity in ocean and land biology and uncertainties in

atmospheric tracer transport. A particularly severe overes-
timation was seen in the Southern Hemisphere when com-
paring to station data. As shown in Fig. 6, we additionally
find a large overestimation in XCO2 SCA in the Northern
Hemisphere, in particular in the extratropics. For the CMIP6
successor model, MPI-ESM1.2-LR, the SCA is still the high-
est of the model ensemble but is no longer twice as high as
the other models. However, it now shows a more pronounced
SCA over the tropical land regions mentioned above, which
was not as dominant in CMIP5.

It is known that nitrogen limitations tend to suppress CO2
fertilization (Reich et al., 2006). Of the four models with
the lowest overall SCA in CMIP5 (CESM1-BGC, FIO-ESM,
NorESM1-ME and BNU-ESM), three of them – BNU-ESM,
CESM1-BGC and NorESM1-ME – include a nitrogen cy-
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Figure 6. (b) Same as Fig. 6a but for the CMIP5 multi-model mean.

cle. The SCAs of NorESM1-ME and CESM1-BGC are very
similar, which can be attributed to sharing the same land
model (CLM4). FIO-ESM uses the predecessor CLM3.5 and
is also comparable to the other two models. It was found
that CLM4 had an unrealistically strong nitrogen limitation,
which has been reduced in CLM5 (Wieder et al., 2019).
In CMIP6, ACCESS-ESM1.5, MPI-ESM1.2-LR, MIROC-
ES2L, NorESM2-LM and UKESM1.0-LL include a nitrogen
model but none of them share the same land model. While
ACCESS-ESM1.5 has the second lowest overall SCA, MPI-
ESM1.2-LR and MIROC-ES2L have the highest, and thus
the observation from CMIP5 models that N-cycle models
feature a lower SCA no longer stands for CMIP6.

5.3.2 Influence of sampling

There are a number of ways to compare model SCA to
observational SCA, beginning with a grid box comparison.
Figure 6 shows a comparison of the multi-model mean of
CMIP6 (Fig. 6a) and CMIP5 (Fig. 6b) to observations. The
top right shows the unsampled SCA. The top left panel shows
the effective SCA when using observational sampling and the
middle panel the satellite data’s effective SCA. All numbers
are given in ppmv. For an easier comparison, the bottom pan-
els show the absolute difference plots, with the left panel de-
picting the difference between sampled model and observa-
tions, and the right panel the difference between the sampled
and unsampled model. Observational sampling slightly low-
ers the SCA, which is to be expected, as it could lead to mask-
ing out the peaks or troughs. While this effect was minimized
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Figure 7. Trend of SCA with XCO2 for 2003–2014 for the northern midlatitudes (30–60◦ N), including a linear regression with slope and
mean SCA given in the top left of each panel and the Pearson correlation coefficient as well as the p value in the bottom right. Symbols
denote the different years and model colors are consistent with previous figures. The left panels (a) show unsampled CMIP6 models, while
CMIP6 models sampled according to the satellite data are shown on the right (b). Note that the y-axis range for each plot is the same and
only differs by a shift.

by imposing the restriction of only computing the SCA of a
year when at least 7 months of data are available, it is still
a possibility. We therefore classify this SCA as an “effective
SCA”. However, the SCA does not seem to decrease signif-
icantly through sampling and the difference does not follow
a trend in latitude, so a grid box comparison seems feasible.
This paves the way for more comprehensive spatial investi-
gations, which previously relied on data from ground-based
stations with sparse spatial coverage. While the stations pro-
vide data in higher latitudes that the satellite dataset does not
cover, in the tropics and midlatitudes the spatial coverage of
the satellite is superior to the ground-based stations. A down-
side with this approach is the sparsity of the data when using
observational sampling. Furthermore, this becomes a com-

putationally expensive operation, as the SCA will need to be
calculated for each grid box.

Another approach often used in model analysis is area av-
eraging, e.g., over different latitude bands like the tropics or
the northern midlatitudes. Using surface flask measurements,
Wenzel et al. (2016) found an increased SCA with rising
CO2 concentration for CMIP5 using model data from the full
historical simulation (1850–2005) – CO2 fertilization – and
used this to establish an emergent constraint on the fertiliza-
tion of terrestrial gross primary productivity (GPP). Figure 7
shows the SCA trend of CMIP6 models versus XCO2 for
2003–2014 in the northern midlatitudes (30–60◦ N), includ-
ing a linear regression including slope, mean SCA, Pearson
correlation coefficient and p value. The left panel shows the
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Figure 8. Data coverage of the satellite observations for (a) 2003–
2008 containing only SCIAMACHY data, (b) 2009–2012 contain-
ing the overlap of SCIAMACHY and GOSAT data and (c) 2013–
2014 containing only GOSAT data. The patterned area highlights
values above 0.5.

trend in the unsampled models, while the right one shows the
trend when following the sampling of the satellite data. The
SCA was computed after a weighted area average was deter-
mined on the XCO2 time series. While some of the unsam-
pled models show an increasing SCA trend with increasing
XCO2, which is in agreement with the findings from Wen-
zel et al. (2016), others do not show a statistically significant
trend and the multi-model mean shows an insignificant posi-
tive trend. The sampled model data (right) show a significant
negative trend. Calculating the average with a zonal average
before summing up the latitude bands does not change this
result.

To investigate this change in trend due to observational
sampling, Fig. 8 shows the data coverage for different time
periods, 2003–2008 for SCIAMACHY only measurements
(top), the overlap between the two satellites in 2009–2012
(middle) and 2013–2014 for the GOSAT satellite only (bot-
tom), with the pattern marking areas with a coverage of
50 % or above. Above 50◦ N, SCIAMACHY measurements
include more areas with 50 % or more coverage compared
to GOSAT measurements. With a larger SCA in higher lat-
itudes, it implies that SCIAMACHY would have a larger
average SCA over this region compared to GOSAT, hence
artificially generating a decreasing trend in the observed
SCA, when moving from SCIAMACHY to GOSAT. Fig-
ure 9 shows the CMIP6 effective SCA trend with XCO2 us-
ing SCIAMACHY and GOSAT masks obtained from mask-
ing out points with less than 50 % coverage. While the slopes
remain largely the same, the mean effective SCA is higher in
the models using the SCIAMACHY mask than when using
the GOSAT mask. This mean SCA difference is larger than
the total SCA difference within a model using the same sam-
pling for the whole time period. Thus, when considering the
observational time series and its full sampling, the trend in-
trinsic to the model is dominated by the negative SCA differ-
ence going from the SCIAMACHY to the GOSAT data cov-
erage and thus changed to the negative trend seen in the ob-
servations. We can therefore attribute at least part of the neg-
ative trend in the satellite data to the different data coverage
of the two satellites. We are able to reproduce this negative
trend with the models, when these are sampled consistently
with the satellite data. This study on sampling also holds true
for CMIP5 models, with the equivalent figures shown in Ap-
pendix B (Figs. B1 and B2).

Further impacts on CO2 concentrations could come
through temporal sampling, such as the fact that the satel-
lite data only include measurements with low cloud cover
and are limited to 13:00 LT. While cloud cover can impact
photosynthesis, the response can be fundamentally different
for various ecosystems (Still et al., 2009); we expect a larger
effect from the diurnal cycle in CO2 which is included in the
model means but not the satellite data. Due to a lack of CO2
data from models with a higher temporal resolution, this ef-
fect cannot be estimated in this study.

6 Summary and conclusion

In this paper, we have evaluated the performance of CMIP5
and CMIP6 ESMs with interactive carbon cycle (Tables 2
and 3) against column-integral CO2 (XCO2) data from satel-
lite retrievals. Our analysis has compared ESM simulations
to the 2003–2014 Obs4MIPs XCO2 satellite dataset O4Mv3
retrieved from radiance spectra measured by the SCIA-
MACHY/Envisat (2003–2012) and TANSO-FTS/GOSAT
(2009–2014) satellite instruments. The O4Mv3 data product
has a spatial resolution of 5◦× 5◦ and monthly time reso-
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Figure 9. Same as Fig. 7 but with CMIP6 models masked using (a) the SCIAMACHY mask and (b) the GOSAT mask, with the masks
derived from Fig. 8, masking out points with less than 50 % coverage in those time periods.

lution. For CMIP5, the historical simulations covering the
period 2003–2005 were combined with simulations from the
RCP8.5 scenario (2006–2014), and for CMIP6 the historical
simulations were used (2003–2014). The evaluation of the
CMIP models with the satellite data focused on the time se-
ries, the GR and the SCA XCO2. All SCAs computed with
a masked time series are considered to be “effective” SCAs
due to the possibility of masking out peaks and troughs.

The XCO2 time series comparison shows that most mod-
els overestimate the carbon content of the atmosphere rel-
ative to the satellite observations in both model ensembles,
with a lower overestimation for the CMIP6 models of 2 ppmv
for the multi-model mean and a wide range of individual
model differences of −15 to +20 ppmv. The CMIP5 mod-
els overestimate by 5 to 25 ppmv with the exception of the
MRI-ESM1 model, which underestimates by 20 ppmv. The
CMIP5 multi-model mean overestimates by 10 ppmv com-
pared to the observations, which has also previously been
found for surface comparisons (Friedlingstein et al., 2014;

Hoffman et al., 2014). Overall, CMIP6 models follow the
same trends as their CMIP5 counterparts but with reduced
systematic biases.

The XCO2 annual mean growth rate is typically slightly
overestimated compared to the observational value of
1.9± 0.4 ppmv yr−1. CMIP6 models range from 1.7± 0.4
(MRI-ESM2.0) to 2.6± 0.7 ppmv yr−1 (GFDL-ESM4) with
a multi-model mean of 2.3± 0.3 ppmv yr−1. CMIP5 mod-
els have a slightly higher multi-model mean growth rate of
2.4± 0.4 ppmv yr−1 and a larger spread, with the CMIP5
lowest model being MRI-ESM1 at 1.5± 0.4 ppmv yr−1 and
the highest CMIP5 growth rate shown by CanESM2 at
3.0± 0.9 ppmv yr−1.

All models capture the expected increase of the SCA with
increasing latitudes, but most models underestimate the SCA
to differing degrees in different regions. This result is in line
with previous studies (Wenzel et al., 2016; Graven et al.,
2013). Models with similar model components show simi-
lar behavior, with models including a nitrogen cycle gener-
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ally showing a lower SCA in CMIP5, but this influence is
not clear in CMIP6. Finally, the connection between SCA
and XCO2 was investigated in the northern midlatitudes.
Most models from both ensembles show a positive trend, i.e.,
an increase of the SCA with XCO2, consistent with find-
ings for surface CO2 (Wenzel et al., 2016). However, the
satellite product shows a strong negative trend in contrast
to the models and surface based observations. We have at-
tributed this trend reversal to the sampling characteristics of
the satellite products. The average effective SCA is higher
for models sampled according to the SCIAMACHY/Envisat
as opposed to the TANSO-FTS/GOSAT mean data cover-
age. As the early time series is based solely on the SCIA-
MACHY/Envisat data and the last years only use data from
TANSO-FTS/GOSAT, this introduces an artificial negative
trend which dominates the positive trend shown by the un-
sampled models. This demonstrates the importance of equal
sampling of models and observations in model evaluation
studies.

There are several ways to improve on this analysis in the
future. With more available future scenario simulations, the
analysis can be extended to a longer time series, making use
of longer observational time series, such as the one intro-
duced in Reuter et al. (2020). Higher temporal resolution of
the models would enable studies on the effect of the diur-
nal cycle of CO2 on the monthly mean and also allow for
the construction of a co-located time series with the level-2
satellite data. This could help highlight some of the causes
of model biases by being able to pinpoint time and space
where they occur more precisely. Model biases may also re-
sult from the CMIP experimental design, such as requiring
the climate state to be in equilibrium in 1850 while the real
world may not have been (Bronselaer et al., 2017), or the pa-
rameterizations of biological and physical processes not al-
lowing the system to change rapidly enough (Hoffman et al.,
2014). Along with a longer time series, newer satellites, such
as OCO-2 or the planned Sentinel 7 bring higher resolutions
and more data, potentially helping to fill the gaps and reduce
the impact of the sampling we discussed in Sect. 5.3.2.

Overall, the CMIP6 ensemble shows improved agreement
with the satellite data in all considered quantities (mean
XCO2, growth rate, SCA and trend in SCA), with the biggest
improvement shown in the mean XCO2 content of the atmo-
sphere. The paper demonstrates the great potential of satellite
data for climate model evaluation as this allows us to go be-
yond regional means or single point observations from in situ
data and also enables the investigation of regional effects on
SCA, such as the increase in SCA at higher latitudes.
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Appendix A: Calculation of XCO2

Here, we document the general procedure used to com-
pute model XCO2 for comparison with the satellite-based
Obs4MIPs product following the description in Buchwitz
and Reuter (2016).

XCO2 =

∑
nd · cCO2∑
nd

(A1)

Here, cCO2 represents the modeled CO2 dry-air mole frac-
tion on model layers (i.e., layer centers or full levels) and nd
the number of dry-air particles (air molecules excluding wa-
ter vapor) within these levels. The summations are performed
over all model layers. The number of dry-air particles can be
computed as follows:

nd =
Na ·1p · (1− q)

md · g
. (A2)

Na is the Avogadro constant (6.022140857× 1023 mol−1)
andmd the molar mass of dry air (28.9644×10−3 kgmol−1).
1p is the pressure difference (in hPa) computed from the
model’s pressure levels (i.e., layer boundaries or half levels)
surrounding the model layers, q is the modeled specific hu-
midity (in kg/kg), and g is the gravitational acceleration ap-
proximated by

g =

√
g2

0 − 2 · f ·φ. (A3)

This includes the model’s geopotential φ (in m2 s−2) on
layers, the free air correction constant f = 3.0825959×
10−6 s−2 and the gravitational acceleration g0 on the geoid
approximated by the international gravity formula depend-
ing only on the latitude ϕ:

g0 = 9.780327 ·
[

1+ 0.0053024 · sin2 (ϕ)

− 0.0000058 · sin2 (2ϕ)
]
. (A4)
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Appendix B: Satellite data mean coverage impact on
CMIP5 SCA trend

The analysis from Sect. 5.3.2 on the influence of the satel-
lite data mean coverage on the trend of the SCA was also
performed for CMIP5. Figures B1 and B2 are the CMIP5
equivalent of Figs. 8 and 10. The CMIP5 models support the
analysis of the CMIP6 models and show that the different
satellite data coverage results in a different mean effective
SCA, with a higher mean effective SCA for SCIAMACHY
(2003–2012) than GOSAT (2009–2014) mean data coverage,
which overshadows the positive trend and causes it to flip to
a negative one in most models.

Figure B1. Same as Fig. 7 but for CMIP5 models. The left panels (a) show unsampled models, while models sampled according to the
satellite data are shown on the right (b). Note that the y-axis range is the same and only differs by a shift.
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Figure B2. Same as Fig. B1 but with CMIP5 models masked using (a) the SCIAMACHY mask and (b) the GOSAT mask, with the masks
derived from Fig. 8, masking out points with less than 50 % coverage in those time periods.
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Appendix C: Trend of growing season temperature and
interannual variability of CO2 growth rate

Cox et al. (2013) developed an emergent constraint on the
sensitivity of tropical land carbon to climate change using
the sensitivity of the IAV of CO2 growth rate to the IAV
of tropical temperature, which was later adapted by Wen-
zel et al. (2014) to CMIP5 models. Figure C1 shows the
sensitivity of the IAV of XCO2 growth rate to the tropi-
cal growing season temperature IAV for CMIP6 (left) and
CMIP5 (right) models, both compared with observations.
The observational temperature is taken from the GISTEMP
v4 dataset (Lenssen et al., 2019) and the models use their
own modeled temperature. We find an observational value
of −0.23± 0.70 ppmv yr−1 K−1 for the 2003–2014 period.
However, when using the full span of the satellite data un-
til 2016, the slope increases to 0.75± 0.6 ppmv yr−1 K−1

(not shown), as the additional years show both a high
growing season temperature and GR IAV, coinciding with
a strong El Niño. This shows that the time period 2003–
2014 is not sufficiently long to reproduce the emergent con-
straint, although this may become feasible once CMIP6
emission-driven future simulations are available for a longer
time overlap between models and observations. CMIP5
model values for the timeframe 2003–2014 range from
0.53± 0.51 (NorESM1-ME) to 3.14± 0.63 ppmv yr−1 K−1

(MRI-ESM1), with only CESM1-BGC showing a nega-
tive trend of −0.64± 0.55 ppmv yr−1 K−1. The multi-model
mean has a value of 1.79± 0.80 ppmv yr−1 K−1. In CMIP6,
the range is significantly decreased with a minimum of
1.14± 0.56 ppmv yr−1 K−1 (ACCESS-ESM1.5) to a max-
imum of 3.37± 0.71 ppmv yr−1 K−1 (CanESM5-CanOE)
and a multi-model mean of 1.14± 0.37 ppmv yr−1 K−1.
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Figure C1. Sensitivity of the interannual variability of the XCO2 growth rate in the tropics (30◦ S–30◦ N) to the interannual variability of
tropical growing season temperature for CMIP6 models (a) and CMIP5 models (b). The observational temperature taken from the GISTEMP
temperature anomaly map, while the models use their own simulated temperature. A linear regression is performed on the data for each
dataset. Model colors are the same as in Fig. 3, and symbols denote the years. In the top left of each panel, the regression coefficient and its
uncertainty is shown, while the bottom right states the Pearson correlation coefficient and p value.
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Code and data availability. The O4Mv3 XCO2 data product is
available via the Copernicus Climate Change Service (C3S, https:
//climate.copernicus.eu/, Reuter, 2018) Climate Data Store (CDS)
(https://cds.climate.copernicus.eu/, Reuter, 2018), accessed Au-
gust 2018. The surface flasks measurements were obtained online
(ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/, Dlu-
gokencky et al., 2018), last access: August 2018. Surface temper-
ature anomalies were obtained from the GISTEMP Team, 2020:
GISS Surface Temperature Analysis (GISTEMP) version 4, NASA
Goddard Institute for Space Studies dataset at https://data.giss.
nasa.gov/gistemp/ (GISTEMP Team, 2020, last access: 13 Febru-
ary 2020). The MODIS IGBP land cover type classification was
obtained from http://glcf.umd.edu/data/lc/, Friedl et al., 2010b, last
access: 31 January 2018). CMIP5 data are freely and publicly avail-
able from the Earth System Grid Federation (ESGF, Williams et
al. 2009), with CMIP6 data DOIs given in Table 3. ESMValTool
v2.0 (Eyring et al., 2020; Lauer et al., 2020; Righi et al., 2020)
is released under the Apache License, VERSION 2.0. The lat-
est release of ESMValTool v2 is publicly available on Zenodo at
https://doi.org/10.5281/zenodo.3401363 (Andela et al., 2020a). The
source code of the ESMValCore package, which is installed as
a dependency of the ESMValTool v2, is also publicly available
on Zenodo at https://doi.org/10.5281/zenodo.3387139 (Andela et
al., 2020b). ESMValTool and ESMValCore are developed on the
GitHub repositories available at https://github.com/ESMValGroup,
last access: 30 November 2020. The corresponding recipe that can
be used to reproduce the figures of this paper will be included in
ESMValTool v2 at the time of publication of the paper.
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