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Abstract Superpressure balloon data of unprecedented coverage from Loon LLC is used to investigate
the seasonal and latitudinal variability of lower stratospheric gravity waves over the entire intrinsic
frequency spectrum. We show that seasonal variability in both gravity wave amplitudes and spectral slopes
exist for a wide range of intrinsic frequencies and provide estimates of spectral slopes in five latitudinal
regions for all four seasons, in five different frequency windows. The spectral slopes can be used to infer
gravity wave amplitudes of intrinsic frequencies as high as 70 cycles/day from gravity waves resolved in
model and reanalysis data. We also show that a robust relationship between the phase of the quasi-biennial
oscillation and gravity wave amplitudes exists for intrinsic frequencies as high as the buoyancy frequency.
These are the first estimates of seasonal and latitudinal variability of gravity wave spectral slopes and
high-frequency amplitudes and constitute a significant step toward obtaining observationally constrained
gravity wave parameterizations in climate models.

1. Introduction
Gravity waves (GWs) play a substantial role in controlling the stratospheric and tropospheric circulations.
They play a leading order role in driving the middle atmosphere circulation (Fritts & Alexander, 2003)
and have a large influence on its variability in both tropical (Baldwin et al., 2001) and polar regions (e.g.,
de la Cámara et al., 2016). They are responsible for ubiquitous temperature fluctuations (Gary, 2006) which
impact the formation (Dinh et al., 2016; Jensen et al., 2016; Spichtinger & Krämer, 2013) and evolution
(Podglajen et al., 2018) of upper-tropospheric cirrus clouds, as well as polar stratospheric cloud formation
(Alexander et al., 2013; Hoffmann et al., 2017). Finally, their breaking generates turbulence which con-
tributes to tracer transport (Pavelin et al., 2002; Podglajen et al., 2017).

Although important for atmospheric dynamics and circulation, GWs on scales of 102–105 m and periods
shorter than an hour are typically not available in data from conventional observational systems such as
satellites nor properly resolved in atmospheric models (e.g., Alexander et al., 2010). In models, these waves
must therefore be estimated, or parameterized, from the resolved flow. Current state-of-the-art parameter-
izations are severely limited by computational necessity and the scarcity of observations. Uncertainties in
GW momentum transport limit our ability to predict the response of the tropospheric and stratospheric
circulation to global warming (e.g., Karpechko & Manzini, 2012; Polichtchouk et al., 2018; Sigmond &
Scinocca, 2010; van Niekerk et al., 2018). They also impact subseasonal-to-seasonal forecasts (e.g., Alexander
et al., 2019). Available observations are limited by different observational filters and are generally insuffi-
cient to constrain GW momentum fluxes; estimates of GW drag are uncertain by a factor of 10 or more
(Geller et al., 2013). Hence, there is a great need for new observational constraints on the GW field.

Superpressure balloons (SPBs) provide a unique way to characterize the entire GW spectrum and its variabil-
ity. SPBs fly in the lower stratosphere where they are advected by the winds, and measurements of the SPBs
are therefore done in the frame of reference of disturbances (i.e., the SPBs measure the intrinsic frequency
of perturbations). SPBs have been used to measure GW activity in the Arctic (Hertzog et al., 2002;
Pommereau et al., 2002), Antarctic (Hertzog et al., 2007, 2008; McDonald & Hertzog, 2008; Rabier
et al., 2013), and tropical (Podglajen et al., 2016; Pommereau et al., 2011) regions; assess the accu-
racy of reanalyses in the lower stratosphere (e.g., Boccara et al., 2008; Friedrich et al., 2017; Podglajen
et al., 2014); measure vertical wind and temperature fluctuations in the lower stratosphere associated with

RESEARCH ARTICLE
10.1029/2020JD032850

Key Points:
• Loon LLC superpressure balloons

can be used to infer lower
stratospheric gravity wave (GW)
motions over most latitudes and all
seasons

• Seasonal and latitudinal variability
is found in GW spectral slopes and
amplitudes over the full intrinsic
frequency spectrum

• GW amplitudes are higher during
positive QBO phases compared
to negative phases for intrinsic
frequencies up to the buoyancy
frequency

Supporting Information:
• Supporting Information S1

Correspondence to:
E. A. Lindgren,
erikanderslindgren@gmail.com

Citation:
Lindgren, E. A., Sheshadri, A.,
Podglajen, A., & Carver, R. W. (2020).
Seasonal and latitudinal variability
of the gravity wave spectrum in
the lower stratosphere. Journal of
Geophysical Research: Atmospheres,
125, e2020JD032850. https://doi.org/
10.1029/2020JD032850

Received 31 MAR 2020
Accepted 27 AUG 2020
Accepted article online 30 AUG 2020

©2020. American Geophysical Union.
All Rights Reserved.

LINDGREN ET AL. 1 of 15

 21698996, 2020, 18, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020JD

032850 by C
ochrane France, W

iley O
nline L

ibrary on [27/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://publications.agu.org/journals/
https://orcid.org/0000-0003-4666-0787
https://orcid.org/0000-0002-9828-9484
https://orcid.org/0000-0001-9768-3511
https://doi.org/10.1029/2020JD032850
https://doi.org/10.1029/2020JD032850
https://doi.org/10.1029/2020JD032850
https://doi.org/10.1029/2020JD032850
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2020JD032850&domain=pdf&date_stamp=2020-09-12


Journal of Geophysical Research: Atmospheres 10.1029/2020JD032850

GWs (Podglajen et al., 2016; Schoeberl et al., 2017); assess the representation of the GW spectrum in
(re)analyses (Podglajen et al., 2020); improve data assimilation systems (Coy et al., 2019; Dharmalingam
et al., 2019); and investigate the inertial peak in stratospheric wind and horizontal kinetic energy spectra in
the Southern Hemisphere (SH) (Conway et al., 2019).

Although they have proven invaluable for the study of GW activity, scientific SPB data sets have traditionally
been limited in their spatial and seasonal coverage, with flights typically restricted to a given season and lat-
itude band. For example, Podglajen et al. (2016) used three SPB flights in the tropical pipe (from February to
May) and 19 SPB flights in the decaying southern polar vortex (from September to January) in their analysis.
In contrast, Loon LLC (previously Project Loon; hereafter Loon) has been continuously launching SPBs into
the lower stratosphere since 2013 in their effort to provide worldwide Internet coverage, thus sampling all
seasons and latitudes outside of the polar regions. More than 1,000 Loon SPB flights are currently available
for analysis. Unlike previous SPB data sets, the Loon measurements were not designed for scientific use, and
they require dedicated processing to overcome missing data or vertical maneuvers, which might result in
artifacts, in particular at the highest GW frequencies (Conway et al., 2019). Keeping this limitation in mind,
the unprecedented temporal and spatial SPB coverage still provides a wealth of new information on the GW
field. Four of the above mentioned studies (Conway et al., 2019; Coy et al., 2019; Friedrich et al., 2017;
Schoeberl et al., 2017) made use of Loon data in their analysis; two of them investigated characteristics of
GWs (Conway et al., 2019; Schoeberl et al., 2017).

Spectral slopes of GW disturbances have been shown to obey a power law of format 𝜔̂𝛾 , where 𝜔̂ is intrinsic
frequency and 𝛾 is a constant. This is generally true between frequencies from the inertial frequency
(Coriolis frequency) up to more than 100 cycles/day. For comparison, the Coriolis frequency ranges from
0.5 to 1.5 cycles/day from latitudes of 90◦ to 20◦, while the buoyancy frequency in the lower stratosphere
(N) is generally around 300 cycles/day. Estimates of 𝛾 in this frequency range are typically close to −2, and
the GW power law dependence is thought to be the result of a saturated energy cascade (e.g., Bacmeister
et al., 1996; Dewan, 1994; Smith et al., 1987). This power law dependence has recently been observed in spec-
tra of horizontal kinetic energy (Conway et al., 2019; Hertzog & Vial, 2001; Hertzog et al., 2002; Podglajen
et al., 2016; Schoeberl et al., 2017); potential energy (Podglajen et al., 2016; Schoeberl et al., 2017); and pres-
sure, zonal winds, and meridional winds (Conway et al., 2019). Podglajen et al. (2016) found that the slope
is steeper around the tropics than over Antarctica, which suggests a latitudinal dependence of the spectral
slopes. While seasonality and latitudinal variability in GW flux has been reported in models and observa-
tions (e.g., Alexander et al., 2010; Geller et al., 2013), no investigations into the seasonal influence on GW
intrinsic frequency spectral slopes have been conducted.

The power law dependence evident in spectral slopes of GW disturbances suggests that observations can
be used to estimate GW amplitudes at frequencies too high to be observed or resolved in climate models.
If the spectral slopes of GW disturbances are known as functions of latitude and season, observationally
based high-frequency gravity wave (HFGW) parameterizations can be implemented in models. Examples of
such empirical parameterizations used for the purpose of Lagrangian microphysics and chemistry modeling
can be found in, for example, Podglajen et al. (2016) and Kärcher and Podglajen (2019). Information about
GW spectral slopes is also useful to evaluate process-oriented GW parameterizations used to represent the
drag exerted by GWs on the background flow in general circulation models (GCMs) (e.g., de la Cámara
et al., 2014).

Here we use Loon SPB data from 2014 to 2018 (Candido, 2020) to investigate GW variability over the entire
intrinsic frequency spectrum as functions of latitude and seasonality. We interpolate the observations to 60 s
intervals and divide the flights into 2 day segments, thereby producing 6,811 individual segments capable
of resolving GW motions of periods ranging from 1 to 720 cycles/day, spread over all seasons and latitudes
outside of the polar regions. We calculate horizontal eddy kinetic energy (Ekh), potential energy (Ep), and
vertical kinetic energy (Ekv) spectra; the Ekh spectra are calculated separately for five different latitudinal
regions and four seasons. We fit the Ekh spectra to a 𝜔̂𝛾 power law in five different frequency windows
(expressed in terms of oscillation periods): 12 hr to 10 min, 6 hr to 10 min, 4 hr to 19 min, 13 to 6 min, and 4 to
2 min. The first two frequency windows are chosen for two reasons: first, the values of 𝛾 are reasonably con-
stant in these windows, and second, spectral slope estimates in these frequency windows can be used to infer
unresolved Ekh in GCMs from the resolved part of the GW intrinsic frequency spectrum. Indeed, Podglajen
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et al. (2020) have shown that European Centre for Medium-Range Weather Forecasts (ECMWF) opera-
tional analysis and ERA5 reanalysis have cutoffs in Ekh at about 4 cycles/day (6 hr oscillations) in intrinsic
frequency in the tropics. The other three windows are chosen for comparison with the results obtained by
Podglajen et al. (2016). Estimates of 𝛾 for the five latitudinal regions over the four seasons are obtained in all
five frequency windows, and the statistical significance of slope differences is estimated. Finally, we inves-
tigate the connections between the phase of the quasi-biennial oscillation (QBO) and amplitudes of Ekh,
Ekv, and Ep, as well as the spectral slopes of Ekh. We show that GW amplitudes are higher during positive
QBO phases compared to negative phases for frequencies up to about 200 cycles/day and that spectral
slopes are slightly steeper during positive QBO phases. We discuss the implications of our results for GW
parameterizations in climate models.

2. Methods
2.1. Data

We use observations from Loon SPBs active from April 2014 to December 2018. The SPBs record a number
of parameters during their flights, and we make use of the latitude, longitude, pressure, meridional wind,
and zonal wind output. The measurement errors are ±2.5 m for position and ±1 hPa for pressure (horizontal
winds are calculated from position data measured by GPS). Data are sampled at 1 Hz on the balloon and
downloaded at intervals ranging from 10 s to 20 min, with the most frequent interval being 60 s. The mean
SPB pressure level is 72 hPa with a standard deviation of 17 hPa, and 5th and 95th percentiles of 52 and
104 hPa, respectively. There are 1,182 unique SPB flights in our data set, and 828 of these are over 2 days
long. The spread in flight duration is large, with 122 flights lasting over 100 days and the longest one lasting
197 days.

2.2. Data Processing

We focus our attention on the 828 flights exceeding 2 days in length, since these flights can be used to
obtain GW spectra of periods of 1 day and shorter. The data from these flights are extensively processed
before analysis; the processing includes replacing missing or unrealistic (corrupted) measurements, knitting
together the data stream temporally, and interpolating the data linearly onto a regular time grid. The knitting
together of the data stream is necessary to obtain segments of sufficient length; however, the process creates
a discontinuity in the tendency of the data stream which may introduce a bias in high-frequency measure-
ments. Spectral amplitudes of periods shorter than 10–15 min should be interpreted with caution. The data
processing is described in detail in Text S1 of the supporting information.

At the end of the data processing the 828 flights have been separated into 6,811 two-day segments containing
horizontal wind and pressure measurements every 60 s. Of these 6,811 segments 4,490 contain reliable,
high-frequency pressure measurements. For data with reliable pressure measurements the mean pressure
level is 77 hPa with a standard deviation of 10 hPa, and 5th and 95th percentiles of 61 and 95 hPa, respectively.
The corresponding numbers for all 6,811 segments are 71, 13, 52, and 93 hPa. Figure 1 shows the mean
locations of the 2 day segments in these two categories and illustrates the wealth of measurements available
in the data set. There is exceptional seasonal coverage in the tropics over the Americas and good longitudinal
coverage between 20◦S and 60◦S when reliable pressure measurements are not needed (Figure 1a). Most of
the segments with reliable pressure measurements are located in the tropics (Figure 1b).

2.3. Analysis

We calculate the power spectral densities (PSDs) of u, v, and 𝜁𝜃 for each 2 day segment using a Morlet wavelet
transform with 𝜔0 = 6 and 𝛿t = 60 s (Torrence & Compo, 1998). u is zonal wind, v is meridional wind, and
𝜁𝜃 is the isentropic wave-induced vertical displacement. The vertical displacement is estimated as 𝛼𝜁 ′

𝜃
= 𝜁 ′b,

where 𝜁 ′b is the balloon displacement and 𝛼 is taken to be equal to 0.3 (Podglajen et al., 2014; Vincent &
Hertzog, 2014). 𝜁b is calculated from log-pressure height using a scale height specific to each 2 day segment
n, equal to Hn = RTn∕g. R is the gas constant for dry air, g is acceleration due to gravity, and Tn is the
mean temperature over the duration of the segment, over the range of latitudes and longitudes covered,
and interpolated to the mean pressure level of the segment. Tn is obtained from 8 times daily MERRA-2
reanalysis data (Gelaro et al., 2017).

To limit edge effects, the segments are padded with zeros before the wavelet transform; the zeros are removed
afterward. A global mean over all local wavelet spectra is then taken (i.e., a mean of the spectra at each time
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Figure 1. Distribution of (a) all 6,811 two-day segments and (b) the 4,490 two-day segments where reliable pressure measurements are available. The color
coding shows the month of year for each individual segment.

step in the original time series). The signals at low frequencies and at local spectra close to the end points are
attenuated due to edge effects, something that can be accounted for by calculating a cone of influence (COI)
which shows where this attenuation becomes important. We have chosen not to do this: We are primarily
interested in the amplitudes in the middle of the frequency spectra, and excluding 40% of the local spec-
tra (the 20% closest to the end points in the beginning and end of the original time series; well outside any
COI) has very limited impact on the global mean spectra (not shown). It is also worth noting that GWs are
intermittent and that their amplitudes can vary strongly on time scales of a few wave periods (e.g., Hertzog
et al., 2012; Plougonven et al., 2013); global means over all local wavelet spectra will therefore underesti-
mate the amplitudes of individual wave packets. Although our study is not focused on GW intermittency,
it should be noted that the statistical results of the spectra presented here hold despite this intermittency
of the GW field. In particular, besides mean spectra in different conditions, we examine the dispersion of
all 2 day average individual wavelet coefficients. The amplitudes obtained from global means provide use-
ful constraints for HFGW parameterizations in GCMs, where mean wave activity is largely indicative of the
influence on the overall circulation.

From our PSD calculations we know u′2, v′2, and 𝜁 ′2
𝜃

as functions of intrinsic frequency (𝜔̂). Following
Podglajen et al. (2016), we calculate horizontal eddy kinetic energy (Ekh), potential energy (Ep), and vertical
kinetic energy (Ekv) for the segments to characterize GW variability. The quantities are defined as

Ekh = 1
2
(

u′2 + v′2
)
, (1)

Ep = 1
2

N2𝜁𝜃
′2, (2)

Ekv =
(
𝜔̂

N

)2
Ep. (3)

The buoyancy frequency (N) is calculated with MERRA-2 temperature data, and like in the case of Tn, a
mean over the duration and horizontal extent is calculated and interpolated to the mean pressure level of
the segment. Ekh is calculated for all 6,811 two-day segments, while Ep and Ekv are only calculated for the
4,490 segments with reliable pressure measurements.

The global wavelet spectrum of each segment provides estimates of GW amplitudes as a function of intrin-
sic frequency. The spectral slopes are fitted to a 𝜔̂𝛾 power law through a linear fit in log-log space, in five
different frequency windows (expressed throughout the manuscript in terms of oscillation periods): 12 hr to
10 min (12h-10m), 6 hr to 10 min (6h-10m), 4 hr to 19 min (4h-19m), 13 to 6 min (13m-6m), and 4 to 2 min
(4m-2m). At periods shorter than about 10 min the slope is no longer linear in log-log space (see Figure 2),
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Figure 2. Amplitude spectra of Ekh, calculated for (a) five latitudinal regions without distinguishing seasons, and
seasonal means for latitudes (b) 40◦N to NP, (c) 20–40◦N, (d) 20◦S to 20◦N, (e) 40–20◦S, and (f) SP to 40◦S. The number
of 2 day segments in each category (n) is displayed. The thick, vertical, solid lines mark a buoyancy frequency of
N = 0.024 s−1, while the thick, vertical, dashed lines mark Coriolis frequencies at 30◦ (c and e) or 50◦ (b and f). The
thin, vertical lines mark frequencies between which slopes were estimated, with dotted lines marking oscillation
periods of 12 hr, 6 hr, and 10 min; solid lines 4 hr and 19 min; dashed lines 13 and 6 min; and dot-dashed lines 4 and
2 min.

and this can be considered an upper frequency limit when inferring GW characteristics from low-frequency
measurements. The 12h-10m and 6h-10m slopes largely obey a power law with constant 𝛾 , and by obtain-
ing slope estimates in these frequency windows one can infer GW amplitudes at oscillation periods down to
10 min from measurements or models resolving GWs of intrinsic frequencies of 2 and 4 cycles/day. In other
words, these slopes can be used to infer HFGW amplitudes from intrinsic frequencies resolved in typical
reanalysis data (Podglajen et al., 2020).

The latter three windows are based on those found in Podglajen et al. (2016) and are included to facilitate
comparisons with their results. The 4h-19m slopes are generally similar to those found for 12h-10m and
6h-10m, while the other two regions show slopes at frequencies just below N (13m-6m) and at frequencies
just above N (4m-2m).
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The segments are then separated by season and latitude to investigate the seasonality and latitudinal variabil-
ity of GWs. In addition, we separate tropical spectra by QBO phase, where the QBO phases are determined
from monthly zonal mean zonal winds at 30 hPa obtained from the National Oceanic and Atmospheric
Administration (NOAA, 2020). Although the QBO phase is defined at a higher altitude than the mean
balloon locations, the GW activity inferred from the balloons provide information about wave activity prop-
agating upward into the stratosphere (Haynes et al., 1991). Means and standard deviations of the slopes are
calculated for each subdivision, providing us with estimates of GW amplitudes and spectral slopes as a func-
tion of latitude, season, and, in the case of the tropics, QBO phase. The statistical significance of differences
between the slopes of different regions, seasons, or QBO phases is estimated with a bootstrap resampling
method that is described in detail in Text S2 of the supporting information. The results of the statistical
significance tests are displayed in Table S2.

3. Results
3.1. Horizontal Kinetic Energy Spectra

Figure 2 shows the spectral amplitudes of Ekh as functions of intrinsic frequency, sorted into five latitudinal
regions and grouped by season. Thin, vertical lines mark the regions where spectral slopes have been fitted
to a 𝜔̂𝛾 power law. The values of 𝛾 , along with the standard deviations of the fits, can be found in Tables 1 (for
the 12h-10m, 6h-10m, and 4h-19m regions) and S1 (for the 13m-6m and 4m-2m regions). Table S2 shows
the statistical significance of differences between the slopes.

Figure 2a displays the mean spectra of all measurements in the five latitudinal regions and shows that all
regions except South Pole (SP) to 40◦S have similar spectral amplitudes in the entire frequency range. It
is important to note that the means of all measurements are not true annual means, since the seasonal
sampling is not evenly distributed. The SP to 40◦S region is particularly biased with 89% of the segments
occurring during hemispheric winter and spring, where amplitudes are significantly higher than other
months (see Figure 2f). The segments are more evenly distributed and the seasonal variability is lower in
the other four regions.

The spectral slopes in the 12h-10m and 6h-10m windows are of greatest interest, since they can be used
to infer GW amplitudes of periods down to 10 min from intrinsic frequencies resolved in reanalysis data
(Podglajen et al., 2020). Slope fits in these regions generally vary little, with standard deviations for fits in
different regions and seasons never exceeding 0.17 (see Table 1). When disregarding seasonal distributions,
the 12h-10m slopes are all between 𝛾 = −1.96 and 𝛾 = −1.94, except in the SP to 40◦S region, where the
slope is significantly shallower with 𝛾 = −1.86. The mean slope in the 12h-10m region over all latitudes
and seasons is 𝛾 = −1.94, with a standard deviation of 0.14. The same latitudinal dependence can be seen
in the 6h-10m window, with all slopes excluding the SP to 40◦S region reaching values between 𝛾 = −1.95
and 𝛾 = −1.92; the slope in the SP to 40◦S region is 𝛾 = −1.81. The mean slope in the 6h-10m region over
all latitudes and seasons is 𝛾 = −1.92, with a standard deviation of 0.15.

The spectral slopes fitted over all seasons in the 4h-19m window are steepest in the tropics (𝛾 = −1.96),
shallower in the extratropics, and shallowest furthest poleward (𝛾 = −1.88 and −1.81 for north and south,
respectively). That the slopes are steepest in the tropics and shallower poleward is in qualitative agreement
with the measurements obtained by Podglajen et al. (2016) in this frequency window: They found slopes
of 𝛾 = −1.96 in the tropics and 𝛾 = −1.78 in the polar region. The equatorial balloons used by Podglajen
et al. (2016) were active between February and May, while the SH balloons flew between September and
January. Taking seasonality into account (see below), comparable slopes from our balloons would be around
−1.94 and close to −1.9 for the tropics and SH, respectively. An inverted latitudinal dependence is found in
the 13m-6m window, where the slopes are shallowest in the tropics (𝛾 = −1.5) and steepest further poleward
(𝛾 = −2.0 and −1.8 for north and south, respectively). Podglajen et al. (2016) also found that the slopes in
this region were shallow in the tropics (𝛾 = −0.48) and steeper in the SH polar region (𝛾 = −1.58), although
their slopes were much shallower. The slopes in the 4m-2m window range between 𝛾 = −3.3 and −2.9,
with large standard deviations (up to 0.7). These slopes are also shallower than those found by Podglajen
et al. (2016) in equivalent regions. Possible causes for the discrepancies in the slope estimates in these two
windows of higher frequencies are addressed in section 4. The differences between most of the slopes in
these three windows are statistically significant at a 95% significance level (see Table S2).
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Table 1
Values of 𝛾 and Its Standard Deviation (𝜎) for Fits in the 12h-10m, 6h-10m, and 4h-19m
Windows as Functions of Latitudinal Region and Season

12h-10m 6h-10m 4h-19m Segments (n)
40◦N to NP 251
DJF −1.87± 0.15 −1.83± 0.13 −1.78± 0.14 10
MAM −2.02± 0.14 −1.98± 0.13 −1.91± 0.14 26
JJA −1.96± 0.13 −1.93± 0.13 −1.89± 0.15 166
SON −1.91± 0.11 −1.89± 0.12 −1.84± 0.13 49
20–40◦N 497
DJF −1.93± 0.14 −1.92± 0.14 −1.90± 0.17 113
MAM −1.99± 0.10 −1.98± 0.11 −1.98± 0.15 89
JJA −1.96± 0.12 −1.94± 0.12 −1.94± 0.14 142
SON −1.91± 0.13 −1.90± 0.15 −1.86± 0.17 153
20◦S to 20◦N 3,900
DJF −1.93± 0.11 −1.93± 0.12 −1.95± 0.14 881
MAM −1.93± 0.13 −1.94± 0.14 −1.94± 0.17 1,221
JJA −1.97± 0.12 −1.97± 0.13 −1.98± 0.16 1,052
SON −1.98± 0.12 −1.98± 0.13 −1.99± 0.15 746
QBO+ −1.96± 0.14 −1.97± 0.15 −1.97± 0.17 1,820
QBO− −1.94± 0.11 −1.94± 0.12 −1.96± 0.15 2,080
40–20◦S 1,157
DJF −1.98± 0.12 −1.95± 0.12 −1.95± 0.15 150
MAM −1.99± 0.11 −1.96± 0.11 −1.93± 0.13 147
JJA −1.91± 0.16 −1.87± 0.17 −1.87± 0.19 498
SON −2.00± 0.14 −1.96± 0.15 −1.95± 0.19 362
SP to 40◦S 1,006
DJF −2.01± 0.16 −1.97± 0.17 −1.95± 0.20 96
MAM −2.03± 0.13 −2.02± 0.10 −1.99± 0.11 15
JJA −1.81± 0.13 −1.76± 0.12 −1.76± 0.15 631
SON −1.93± 0.15 −1.87± 0.13 −1.85± 0.16 264
All seasons 6,811
40◦N to NP −1.96± 0.13 −1.92± 0.13 −1.88± 0.14 251
20–40◦N −1.94± 0.13 −1.93± 0.14 −1.91± 0.16 497
20◦S to 20◦N −1.95± 0.12 −1.95± 0.13 −1.96± 0.16 3,900
40–20◦S −1.95± 0.15 −1.92± 0.16 −1.91± 0.18 1,157
SP to 40◦S −1.86± 0.15 −1.81± 0.15 −1.81± 0.17 1,006
All latitudes −1.94± 0.14 −1.92± 0.15 −1.92± 0.17 6,811

Note. The number (n) of 2 day segments used for each fit can be found in the rightmost
column. Divide 𝜎 by

√
n to obtain standard error of the mean.

The seasonality of GW amplitudes is evident when the segments are grouped by season and latitude
(Figures 2b–2f and 3). There is little to no seasonality in the 20–40◦N (Figure 2c), 20◦S to 20◦N (Figure 2d),
and 40–20◦S (Figure 2e) regions, but the amplitudes poleward of 40◦ (Figures 2b and 2f) are significantly
higher during hemispheric winter. The weakest amplitudes in the Northern Hemisphere (Figures 2b and
2c) occur during spring (March–May, MAM), during the time of the stratospheric final warming (e.g.,
Butler et al., 2019). The seasonality is most pronounced in the SP to 40◦S region (Figure 2f), where JJA
(June–August) and SON (September–November) amplitudes are highest and DJF (December–February)
amplitudes lowest. These results make sense intuitively, since the SH stratospheric final warming usually
occurs in early November to late December (e.g., Haigh & Roscoe, 2009). Jewtoukoff et al. (2015) found
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Figure 3. Ekh amplitudes for 3 hr, 1 hr, 20 min, and 5 min oscillations as a function of latitude, for (a) DJF, (b) MAM,
(c) JJA, and (d) SON. Black circles (plus signs) show 5◦ latitude means (median values) for each period. The number of
2 day segments (n) in each panel is shown.

that GW momentum flux in the SH polar region, measured both from SPBs and ECMWF operational anal-
yses, decreased significantly from October to November and, in particular, December. Using the same SPBs
and ECMWF analysis, as well as a mesoscale SH model, Plougonven et al. (2017) found a robust relation-
ship between GW momentum fluxes and wind strength. They argued that their results were consistent with
main GW sources being located in the tropospheric jet and lateral propagation of GWs into regions of strong
winds. While these studies focused on GW momentum flux, one can expect that a similar dependence on
wind strength should also be expected for other GW quantities, based on the polarization relations which
relate perturbation amplitudes of different variables with one another (Fritts & Alexander, 2003). Since the
zonal wind strength in the SH stratosphere is greatest during JJA and SON, and very weak immediately after
the polar vortex collapse in DJF, the observed seasonality and latitudinal dependence in GW amplitudes
may be partly explained by the relationship between GW variability and background wind magnitude.

Figure 3 shows scatter plots of spectral amplitudes at four different intrinsic frequencies as functions of sea-
son and latitude, and like Figure 2, it shows the seasonality of GW amplitudes at high latitudes (especially in
the SH). However, Figure 3 also highlights the robustness of the latitude-amplitude relationship over a range
of intrinsic frequencies: The fractional spread of amplitudes is similar for all oscillation periods, and the lat-
itudinal variations follow the same patterns. Furthermore, Figure 3 includes 5◦ latitude mean and median
values for the given intrinsic frequencies. Although the mean values tend to be higher than the median val-
ues, particularly where few data points exist, the mean and median values do not show strong latitudinal
or seasonal discrepancies. This indicates that the observed seasonal and latitudinal variabilities are caused
by mean shifts in GW amplitudes, rather than changes in the frequency of intermittent, high-amplitude
GWs. The seasonal and latitudinal variations of Ekh amplitudes exhibit similar tendencies at all intrinsic fre-
quencies and stand out of the internal variability in each season/latitude band. As a consequence, Figure 3
shows that good approximations of the latitudinal variability of HFGW amplitudes can be obtained from
measurements at lower frequencies if the spectral slopes are known.
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Figure 4. Spectral slopes (red dots) between oscillations of 12 hr and 10 min (leftmost and rightmost dotted lines in
Figure 2) as a function of latitude, for (a) DJF, (b) MAM, (c) JJA, and (d) SON. Black circles and bars show 5◦ latitude
means ±1 standard deviation. The number of 2 day segments (n) in each panel is shown. Outliers more than 3 standard
deviations from the mean are excluded for display purposes.

In addition to the latitudinal variability mentioned above, the GW spectral slopes also exhibit some seasonal
variability (Table 1). The slopes in the 12h-10m, 6h-10m, and 4h-19m windows show consistent seasonal
variability close to the poles with shallower slopes during hemispheric winter: The JJA slopes are shallowest
in the 20–40◦S and SP to 40◦S regions, while the DJF slopes are shallowest in the 40◦N to NP (North Pole)
region. The JJA and SON slopes in the SP to 40◦S region are significantly shallower than their DJF and MAM
counterparts; once again that is consistent with a SH final warming in late November or early December,
thereby making SON winter-like in terms of stratospheric winds. The majority of the seasonal slopes in these
windows are different from one another at a 95% confidence level, more so in the SH and the tropics than
in the Northern Hemisphere, where observations are more sparse (see Table S2).

Scatter plots of 12h-10m spectral slopes as functions of latitude and season are shown in Figure 4. Slopes
with magnitudes more than 3 standard deviations removed from the mean are not shown in the figure.
The seasonality in the SH is evident. Spectral slopes for individual segments rarely deviate from the mean
latitudinal values by more than about 0.3, and there is no clear latitudinal dependence on the spread of the
slope values.

The seasonal spectral slopes in the 13m-6m and 4m-2m regions can be seen in Table S1. The standard devi-
ations associated with the 13m-6m and 4m-2m slopes (around 0.5 and 0.7, respectively) are much larger
than those in the 12h-10m, 6h-10m, and 4h-19m windows (none of which exceeds 0.20), and no consistent
seasonal patterns can be seen. The shallowest 13m-6m slopes in both the 40◦N to NP and SP to 40◦S regions
can be found in JJA, and the shallowest slope outside the tropics are during MAM in the 20–40◦N region
(𝛾 = −1.4). As mentioned previously, the slopes are generally shallowest in the tropics. Although the slopes

LINDGREN ET AL. 9 of 15

 21698996, 2020, 18, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020JD

032850 by C
ochrane France, W

iley O
nline L

ibrary on [27/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Atmospheres 10.1029/2020JD032850

Figure 5. Mean amplitude spectra of Ekh, Ep, and Ekv for all 4,490 segments containing reliable pressure
measurements. The solid vertical line mark a buoyancy frequency of N = 0.024 s−1.

in the 20◦S to 20◦N region vary by season, this variability is likely due to the QBO rather than seasonal-
ity, since the slope differences between the individual seasons are smaller than those between positive and
negative QBO phases. The role of the QBO in tropical GW spectra is discussed below.

3.2. Potential Energy Spectra

The spectra of Ekh and Ep should be similar to one another if the disturbances measured by the balloon are
caused by GWs, through the GW polarization relations (Podglajen et al., 2016):

Ep =
(

N2

N2 − 𝜔̂2

)(
𝜔̂2 − 𝑓 2

𝜔̂2 + 𝑓 2

)
Ekh. (4)

To check that the Ekh measurements are in fact associated with GWs, we calculate Ekh, Ep, and Ekv from the
segments that contain reliable pressure measurements. Seventy-nine percent of these segments are found
in the tropics (see Figure 1b). The results are shown in Figure 5, which displays the mean Ekh, Ep, and Ekv
spectra for all 4,490 segments with reliable pressure measurements. The Ekh and Ep spectra are well matched
up to frequencies of about 70 cycles/day (or periods around 20 min). Neutral, vertical balloon oscillations
add to the Ep and Ekv spectra as the intrinsic frequency approaches that of N, and these spectra exhibit local
maxima around the buoyancy frequency. Figure 5 shows that although log-log linearity extends down to
periods as short as 10 min in Ekh, this type of behavior is only observed down to 20 min for Ep, in accord
with previous campaigns (Podglajen et al., 2016).

3.3. Changes in Tropical Spectra Associated With the QBO

The QBO refers to the periodic reversals of zonal mean zonal wind observed in the equatorial lower strato-
sphere, something that occurs roughly every 28 months. The QBO dominates lower stratospheric wind
variability in the tropics and has been shown to affect midlatitude circulation by altering the conditions
for wave propagation into the stratosphere (Holton & Tan, 1980). The periodicity of the QBO comes from
two-way interactions between propagating tropical waves and the mean flow: The phase speed of the waves
and the strength and direction of the mean flow determine the propagation of the waves, while the momen-
tum deposition of the waves at high altitudes affects and eventually reverses the direction of the mean flow
(Plumb, 1984). The region of maximum wave convergence descends with time, thereby causing the wind
reversal to migrate downward. When the equatorial wind at lower altitudes has reversed sign, waves of
the opposite phase speed can propagate into the stratosphere, thereby starting the cycle again. The QBO is
partially driven by GWs (e.g., Baldwin et al., 2001; Gray, 2013), and numerous studies have found correla-
tions between the QBO phase and GW amplitudes (de la Torre et al., 2006; Ern et al., 2008; Krebsbach &
Preusse, 2007; Wu & Eckermann, 2008) as well as GW momentum flux and drag (Ern et al., 2014) in satel-
lite data. The wealth of measurements in our data set provides us with a unique opportunity to investigate
GW spectral slopes and amplitudes at high frequencies during positive and negative phases of the QBO.
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Figure 6. Amplitude spectra during positive (QBO> 0) and negative QBO (QBO< 0) phases in the 20◦S to 20◦N
region. (a) Ekh for all 2 day segments, and (b) Ekh, Ep, and Ekv for segments with reliable pressure measurements. The
number of 2 day segments (n) in each category is shown in panel a. Solid lines in panel b show positive QBO phases
(n = 1, 769), while dashed lines show negative QBO phases (n = 1, 767). Vertical lines are equivalent to those in
Figure 2. QBO phase is considered positive if monthly zonal mean zonal wind at the equator and 30 hPa is positive, and
negative otherwise.

Figure 6 shows amplitude spectra in the 20◦S to 20◦N region separated by positive and negative phases of the
QBO. The Ekh, Ep, and Ekv amplitudes are higher for frequencies up to about 200 cycles/day during positive
QBO phases compared to negative phases. The differences are highly statistically significant: t tests of slope
differences between Ekh amplitudes at frequencies between 1 and 100 cycles/day give p values ranging from
about 10−4 to 10−10, depending on the frequency chosen.

During positive QBO phases the slopes in all five windows (Tables 1 and S1) are steeper than during negative
QBO phases. These differences are statistically significant in all windows except the 4h-19m window. The
slope differences are small (e.g., 𝛾 = −1.96 and 𝛾 = −1.94 in 12h-10m window) with the exception of the
13m-6m window, where the slopes during positive and negative QBO phases are 𝛾 = −1.7 and 𝛾 = −1.3,
respectively. The slope in the 13m-6m window during negative QBO phases is shallower than any slope
found when the segments in the region are separated by season only.

Although little seasonal variability is to be expected in the tropics, it is possible that seasonally biased sam-
pling could affect the amplitudes and slopes attributed to the QBO. Figure 2d does show some seasonal
variability in Ekh amplitudes, with slightly higher amplitudes during MAM and, to a smaller extent, DJF.
However, it seems more likely that these differences are due to the QBO rather than actual seasonality.
Figure S1 displays the number of segments during positive and negative QBO phases in the region by season
and shows that most segments in DJF and MAM occur during positive QBO phases, while most segments
in JJA and SON occur during negative QBO phases.

These results demonstrate a robust relationship between the QBO and GW activity in the lower stratosphere
over two full QBO cycles. This relationship holds true for both vertical (Ep and Ekv) and horizontal (Ekh) GW
motions and is persistent over a wide range of GW frequencies almost all the way up to that of the buoyancy
frequency.

4. Discussion
In this manuscript we have used Loon SPB data obtained from 2014 through 2018 to characterize GW vari-
ability over the entire intrinsic frequency spectrum in the lower stratosphere. The latitudinal and seasonal
coverage provided by these balloons is unprecedented for such frequency ranges, and from these obser-
vations we have obtained some of the first seasonal and latitudinal estimates of GW variability at high
frequencies. We use the observations to calculate slopes in Ekh spectra in five different frequency windows.
Two of these windows (12h-10m and 6h-10m) can be used to extrapolate GW amplitudes to oscillation peri-
ods as short as 10 min from GWs resolved in current (re)analysis data sets (Podglajen et al., 2020). Since the
slopes are calculated for different frequency windows and latitudinal regions, seasonally and latitudinally
dependent extrapolations can be performed. This work therefore provides a concrete basis for estimating
HFGW behavior over different seasons and latitudes.
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The remaining three windows (4h-19m, 13m-6m, and 4m-2m) are included for comparison with results
obtained from the SPB data analyzed by Podglajen et al. (2016). The 4h-19m window exhibits similar slopes,
as well as seasonal and latitudinal variability, to the 12h-10m and 6h-10m windows, and our slope fits in
the 4h-19m region are comparable to those obtained by Podglajen et al. (2016): We find mean slopes of
−1.96± 0.16 in the tropics and −1.81± 0.17 for SP to 40◦S, compared to the slopes of −1.96 around the
equator and −1.78 poleward of 60◦S obtained by Podglajen et al. (2016). The balloons used by Podglajen
et al. (2016) were active between February and May (for equatorial flights) and September and January (SH
flights). Taking seasonality into account, comparable slopes from our balloons would be around −1.94 and
close to −1.9 for the tropics and SH, respectively. Note that Podglajen et al. (2016) did not provide standard
deviations of the slope fits, only uncertainties in the fits of the mean slopes, so our standard deviations should
not be compared to their estimated errors. Our slopes in the 13m-6m and 4m-2m regions are significantly
different from those obtained by Podglajen et al. (2016), with Podglajen et al. (2016) finding shallower slopes
between 12 and 6 min and steeper slopes between 4 and 2 min. We find no clear seasonality in these slopes,
but a latitudinal dependence consistent with the results of Podglajen et al. (2016), with shallower (steeper)
slopes in the tropics and steeper (shallower) slopes poleward for the 13m-6m (4m-2m) window. However, the
standard deviations of these slopes are very large at about 0.5 and 0.7 for 13m-6m and 4m-2m, respectively.
The discrepancies between our results and those of Podglajen et al. (2016) could be due to the different
methods used to obtain GW spectra: Podglajen et al. (2016) used Fourier transforms to obtain their spectra,
while we used wavelet transforms. The extensive processing of our data is another potential explanation,
especially since the data processing disproportionately affects high-frequency measurements. Discrepancies
due to differences in balloon or instrument design are also possible.

We showed that there is a strong seasonality in Ekh amplitudes close to the poles over a range of GW fre-
quencies, with highest amplitudes during hemispheric winter. Although it is well documented that GW
amplitudes have a strong seasonality close to the poles (e.g., Geller et al., 2013; Jewtoukoff et al., 2015), our
results demonstrate that this seasonal variability holds for the whole GW frequency range. Similarly, we
show that spectral slopes in the 12h-10m, 6h-10m, and 4h-19m windows exhibit significant seasonality close
to the poles, with shallower slopes during hemispheric winter. The seasonal differences, in terms of both
amplitudes and slopes, are strongest in the SP to 40◦S region. When spectral slopes are grouped by latitude
over all seasons, the 12h-10m, 6h-10m, and 4h-19m slopes are steeper in the tropics and shallower closer
to the poles (with the exception of the 12h-10m 40◦N to NP slope). It is possible that this latitudinal depen-
dence is underestimated in the 40◦N to NP region, where the majority of measurements occur in summer
(when slopes are steeper), and overestimated in the SP to 40◦S region, where the majority of measurements
occur in winter and spring (when slopes are shallower).

Furthermore, we estimated the variability in GW amplitudes and slopes in the 20◦S to 20◦N region with
respect to the QBO. From over 3,500 two-day segments over two QBO cycles, we could show that Ekh, Ekv
and Ep amplitudes were higher during positive QBO phases compared to negative phases for frequencies
up to about 200 cycles/day. The spectral slopes are steeper in all five frequency windows investigated, and
the differences are statistically significant at a 95% confidence level in all windows except the 4h-19m win-
dow. These clear correlations between GW amplitudes and spectral slopes and the QBO phase highlight the
importance of accurate GW parameterizations in climate models which aim to resolve the QBO. The scope
of this study encompassed GW amplitudes and spectral slopes, but detailed interactions between GWs and
the QBO need to be investigated by calculating GW drag under different QBO phases as well as vertical
shears (e.g., Ern et al., 2014). Estimates of GW drag from Loon data is the subject of an ongoing study.

In this paper, we have focused on describing the mean wave activity as a function of intrinsic frequency.
Although mean activity is the primary parameter for the forcing of the overall circulation and an important
constraint for models, it has been shown that intermittent, large-amplitude waves can in some cases be the
main contributors to overall GW momentum flux (e.g., Hertzog et al., 2012). Similar to scientific balloon
data sets (e.g., Hertzog et al., 2012; Jewtoukoff et al., 2015; Plougonven et al., 2013; Podglajen et al., 2020),
the Loon data contains important information on GW intermittency which should be investigated in
future studies.

In agreement with previous studies (e.g., Podglajen et al., 2016), we find that the spectra of Ekh and Ep
were well matched up to frequencies around 70 cycles/day (20 min oscillations). At higher frequencies, close
to the buoyancy frequency, neutral balloon oscillations affect the Ep and Ekv spectra. However, given the
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similarities of Ep and Ekh spectra up to frequencies of 70 cycles/day, the spectral slopes can be used to infer
Ep and Ekv amplitudes to intrinsic oscillation periods as low as 20 min.

Although Loon measurements cover large parts of the SH and tropics, the lack of measurements over Eurasia
is a potential source of bias in estimates of Northern Hemisphere GW variability. It is likely that HFGWs have
a strong longitudinal dependence in the Northern Hemisphere due to the presence of large-scale topography;
this influence can be seen in measurements of GWs of larger scales and lower frequencies (e.g., Alexander
et al., 2010; Geller et al., 2013). While much of the tropics are covered by Loon SPBs, there are very few
observations over the Indian Ocean and western Pacific, which could be a source of bias in measurements
of tropical GW variability.

The Loon data set is complementary to scientific balloon campaigns, which have the advantage of pro-
viding more reliable data (particularly at high frequencies), but lack the global coverage offered by Loon.
Together, the two growing data sets will continue to provide a refined view of the intrinsic GW spectrum
in the lower stratosphere in terms of both high-frequency waves and spatial and temporal variability of the
spectrum, which will serve to improve parameterizations. Work using Loon measurements for producing
physics-based HFGW parameterizations using ray-tracing and deep learning techniques is ongoing.

Data Availability Statement
The data are publicly available and archived on Zenodo (Candido, 2020). MERRA-2 reanalysis
data are available through NASA Goddard Earth Sciences Data and Information Services Center
(https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/).
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