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The effects of anthropogenic 
and volcanic aerosols 
and greenhouse gases on twentieth 
century Sahel precipitation
Rebecca Jean Herman 1*, Alessandra Giannini 2,3, Michela Biasutti 4 & 
Yochanan Kushnir 4

There is little scientific consensus on the importance of external climate forcings—including 
anthropogenic aerosols, volcanic aerosols, and greenhouse gases (GHG)—relative to each other and 
to internal variability in dictating past and future Sahel rainfall. We address this query by relating 
a 3-tiered multi-model mean (MMM) over the Climate Model Intercomparison Project phase 5 
“twentieth century” and pre-Industrial control simulations to observations. The comparison of single-
forcing and historical simulations highlights the importance of anthropogenic and volcanic aerosols 
over GHG in generating forced Sahel rainfall variability in models. However, the forced MMM only 
accounts for a small fraction of observed variance. A residual consistency test shows that simulated 
internal variability cannot explain the residual observed multidecadal variability, and points to model 
deficiency in simulating multidecadal variability in the forced response, internal variability, or both.

The Sahel—the boundary between the North African Savanna and the Sahara Desert—experienced dramatic, 
long-term rainfall variability in the twentieth century which was unparalleled in the rest of the world. This vari-
ability was marked by a striking decline in rainfall between about 1960 and the early 1980s, including devastating 
droughts and famine in the early 1970s and 80s, which left 100,000 people dead and 750,000 dependent on food 
 aid1. Scientific work immediately began to explore potential relationships between Sahel rainfall and a wide 
variety of  local2,3 and  global4,5 climatic factors. Giannini, et al.6 confirmed the importance of global over local 
processes by showing that an atmospheric model forced with observed global sea surface temperature (SST) 
alone could reproduce the profile of the first principal component of Sahel twentieth century rainfall variability, 
if not the amplitude, at a correlation of approximately 0.7. Studies since then have continued to focus on various 
global processes, reinforcing the connections between the Sahel and the temperature of ocean basins across the 
globe, and establishing links to internal variability—such as the El Niño-Southern Oscillation (ENSO)7–9 and the 
Atlantic Multidecadal Oscillation (AMO)9,10—and external forcing—such as greenhouse gases (GHG)11–16 and 
volcanic and anthropogenic  aerosols13,17,18. However, the relative importance of internal variability and different 
sources of external forcing remain unclear.

There is a developing consensus in the literature that anthropogenic aerosols have contributed to the Sahel 
drought, though there is disagreement over the prominence of this contribution and the physical mechanism 
that governs  it10,11,13,16–26. The magnitude of the contribution is somewhat contentious because of disagreement 
about the strength of the indirect aerosol  effects27–29, which may influence SSTs and global precipitation much 
more than the direct radiative  effect30–32, and which may cause non-linear interactions affecting both the spatial 
pattern (i.e. Polson et al.18 on the Asian monsoon) and even the  mean33 of the precipitation and temperature 
responses to other sources of forcing. The role of greenhouse gases (GHG) is even more widely debated—not 
just in the twentieth  century12–17,22,26,30, but even in the future when GHG forcing  dominates11,12,15,19. Some argue 
that there are also non-linear interactions between different effects of increasing  GHG34,35 or between GHG and 
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other external  forcings16 and internal  processes36. Finally, many studies claim that SST and Sahel rainfall varia-
tion are primarily of internal  origin37–39.

Many of the above studies on the Sahel focus on one or two types of forcing or on one model, or are limited to 
 CMIP340, in which most models did not include indirect aerosol effects. Some, such as Giannini and  Kaplan16, use 
a storyline approach—focusing on proposing physically-consistent pathways in order to avoid underestimating 
regional  impacts41.  Others18,23 use fingerprinting, extracting distinct spatial and/or temporal patterns associated 
with different forcings and scaling the model response to match observations in order to correct sensitivity biases 
and avoid compensating errors in the  models42.

We attempt to enrich the debate about the influence of external forcing and internal variability on Sahel 
rainfall over the twentieth century by performing an attribution study using the Coupled Model Intercompari-
son Project phase 5 (CMIP5)43, which is the first large ensemble of coupled models to include aerosol indirect 
effects and run “single-forcing” model simulations, in which one external source of radiative forcing—such as 
greenhouse gases (GHG), anthropogenic aerosols (AA), or natural forcing (which includes volcanic aerosols and 
solar and orbital variations, NAT)—varies historically while the other external forcings are held at constant pre-
Industrial values. We compare the evolution of spatially- and seasonally-averaged July–September (JAS) observed 
Sahel rainfall to that of the twentieth century single-forcing and “historical” simulations, in which all external 
forcings vary simultaneously (ALL). We determine the forced responses via a weighted, tiered multi-model mean 
(MMM) of CMIP5 simulations (see “Methods” for details), and then calculate correlation coefficients and root 
mean squared errors (RMSE, expressed as fraction of observed variance) to estimate the contributions of differ-
ent external forcings to observed precipitation variability, using bootstrapping methods to estimate uncertainty 
in those statistics. To estimate noise in the MMM and significance, we use the long preindustrial control (piC) 
simulations, in which all external radiative forcings are held at constant preindustrial values. We employ spectral 
analysis of individual twentieth century and piC simulations to estimate the contribution of internal variability 
to observed precipitation variability at multidecadal time scales.

Results
Multi-model mean performance. For each forcing experiment, we compute the MMM as follows: (1) 
an average across individual runs gives the ensemble mean (EM) for each CMIP5 model, (2) a weighted aver-
age across EMs gives the institution mean (IM) for each participating research institution, (3) and a weighted 
average across IMs gives the multi-model mean (MMM). The weights are designed to counteract attenuation of 
noise in ensemble and institution means that include more runs and EMs, respectively, so that they will not be 
underrepresented in the MMM relative to their noisier and more variable counterparts. For a formula and its 
derivation, see “The multi-model mean” under “Methods”.

In Fig. 1a,b, we compare Sahel twentieth century precipitation anomalies for the ALL MMM (blue line) to 
individual ALL runs (blue-grey lines, background) and IMs (cyan lines), and to observations from the Global 
Precipitation Climatology  Center44 (GPCC, black line) and the Climatic Research  Unit45 (CRU, red dotted line). 
Despite disagreement in the first three years, the spatial averages of the two observational records look similar 
enough that uncertainty in area-averaged Sahelian precipitation is considered small, and only GPCC is used 
throughout the rest of the paper. Despite the spread of the IMs, the standardized anomalies (Fig. 1a) reveal a 
striking similarity between observations and the MMM, which captures much of the observations’ multi-decadal 
variation by reproducing the drought of the 70s and 80s and its recovery, and even many episodes of dramatic 
interannual rainfall changes, most notably near 1984, the driest year in observations. Assuming the averaging 
was successful in preferentially filtering out internal variability present in individual model simulations, the 
MMM represents a consensus, forced Sahelian rainfall profile which is recognizable in the observations (Fig. 1a). 
However, the actual rainfall anomalies (Fig. 1b) reveal substantial attenuation of variance in the ALL MMM 
compared to individual simulations and to the observations.

The remaining panels of Fig. 1 display the correlations (Fig. 1c) and the RMSE (Fig. 1d) of individual IMs 
(cyan histogram) and of the MMM (blue dot) with observations. The blue curves show probability density func-
tions (PDF) from bootstrapping over the IMs (see “Methods”), and represent how those statistics might change 
with a slightly different set of models. The correlation measures the similarity in the shape of one time series 
with respect to the other but is independent of relative amplitude, whereas the RMSE estimates the difference in 
amplitude of the simulated and observed yearly rainfall time series.

The MMM performs as well as or better than most individual IMs in both metrics, consistent with previous 
studies which compared other versions of multi-model means to individual  models46. Though some research 
institutions may appear to outperform the MMM in correlation and RMSE with twentieth century observations 
(notably, GISS outperforms the MMM in both), as we are comparing only one variable (precipitation) to one 
realization of observations in which forced and internal variability are indistinguishable, it is unclear whether 
these models truly capture the underlying mechanisms better than the ensemble. The RMSE values for the MMM 
and the IMs are near 100% of observed variance, partially reflecting the severe attenuation seen in Fig. 1b.

Model response to different forcing experiments. Figure 2 displays the MMMs for the three differ-
ent single-forcing experiments: AA for anthropogenic aerosols (pink, Fig. 2b), NAT for natural forcing (brown, 
Fig. 2c), and GHG for greenhouse gases (green, Fig. 2d); and compares them to observations (black). Figure 2a 
again displays the ALL MMM (blue). Note that the observations correspond to the black ordinates on the left, 
while forced and piC model outputs (colors, including yellow) correspond to the colored ordinates on the right, 
which have a scale a quarter the range to facilitate comparison. The blue, pink, brown, and green shaded areas 
are the 95% range of bootstrapped forced MMMs. They represent agreement in the forced signal between the 
institutions, even though, due to small sample size, they do not fully capture the magnitude of noise in the 
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MMM caused by coincident simulated internal variability (see “Uncertainty and significance: bootstrapping 
and randomized bootstrapping” under “Methods”). The yellow shaded areas are also a 95% confidence interval, 
but they are obtained using randomly-chosen continuous subsequences of the piC runs in place of the histori-
cal simulations, where the piC simulations are taken from the same set of research institutions which provided 
simulations for that historical forcing experiment. The yellow shading captures the magnitude of noise in the 
MMM; however, it is worth note that it may be a slight overestimate since the MMM is less effective at filtering 
noise when there are fewer runs per model, and there is almost always only one piC run per model.

The variance of the forced MMMs over time (solid lines) and of the bootstrapped forced MMMs and rand-
omized bootstrapped piC MMMs in a given year (shaded areas) vary from panel to panel inversely (though not 
proportionally) with the square root of the number of research institutions which simulated each forcing experi-
ment (N), and are all roughly a quarter of observed variance, consistent with many precipitation fingerprinting 
studies, which often scale simulated precipitation up by a factor of 3–518,23,42,47. Aside from a few exceptions, the 
yearly magnitudes of the forced MMMs are not significant, as they do not surpass the yellow zone consistent 
with noise in the MMM; this limits the detail with which we can examine the MMM directly. However, NAT 
(Fig. 2c) and ALL (Fig. 2a) are both significantly dry in 1982 (the year of the El Chichón eruption, near the dri-
est observed year in 1984), and AA (Fig. 2b) and ALL both display multi-decadal variability in the second half 
of the century (including a partial recovery) which is characteristic of the observations and uncharacteristic of 
NAT and GHG (Fig. 2d).

Figure 3 displays the mean padded power spectra (PS, lines) and 95% confidence intervals (shaded areas) 
of the bootstrapped forced MMMs (colors other than yellow), and compares them to that of the randomized 
bootstrapped piC MMMs (yellow). We calculate the piC MMM using the reduced set of models that contributed 
the AA experiment. With only 8 contributing research institutions, the AA MMMs filter out less noise from 
modelled internal variability—and thus have more power at all frequencies—than the MMMs associated with 
the other experiments. Thus, using this reduced set of models provides a conservative estimate of the spectral 
noise in all four forcing experiments. Figure 3 shows that the multi-decadal variability in AA (pink) and ALL 

Figure 1.  MMM Performance: Standardized (a) and actual (b) departures from climatology of twentieth 
century Sahel precipitation in individual ALL runs (blue–grey solid lines), ALL institution means (IMs, cyan), 
the ALL MMM (blue), and observations from GPCC (black) and CRU (red dotted line). Histogram (cyan) of 
correlations (c) and RMSE (d) between GPCC observations and the IMs, actual correlation (c) and RMSE (d) of 
the MMM with GPCC observations (blue dot), and the bootstrapping PDFs (blue curve) of the correlation (c) 
and RMSE (d) between the ALL MMM and GPCC observations.
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(blue) is distinct from noise (yellow). It also confirms that the high-frequency variability in GHG is consistent 
with noise. Episodic volcanic forcing should not give rise, per se, to spectral peaks, though the observed pattern 
of large eruptions at the beginning and at the end of the century (see Fig. 2c) may induce some spectral power 
at multidecadal timescales. Since we do not detect any meaningful spectral peak in the NAT PS (brown) associ-
ated with solar variability at 11 years, we interpret the NAT MMM to be mostly the result of volcanic aerosols.

Figure 4 again displays the values (dots) and PDFs (curves) of correlation (Fig. 4a) and RMSE (Fig. 4b) 
between observations and the bootstrapped ALL MMMs from Fig. 1c, d (blue) and compares them to the 
values (dots) and PDFs (curves) for individual forcing experiments (solid curves distinguished by color) and 
the piC PDFs associated with the ALL experiment (dotted yellow curves). The piC PDFs corresponding to the 
three individual forcing experiments (which make use of only the models contributing to that experiment) are 
sufficiently similar to the ALL piC PDF that they are not plotted separately, with the exception of the AA piC 
RMSE PDF (pink dotted curve in Fig. 4b), which is wider and centered at a higher RMSE than those of the other 
experiments, reflecting the high variance in the yearly values seen in the yellow shaded area in Fig. 2b. Despite this 
difference, the p = 0.05 significance levels are still sufficiently similar for all four experiments for both correlation 
and RMSE that they are represented by a single vertical grey dashed line at the p = 0.05 significance level of the 
ALL experiment. As the NAT and GHG MMMs contain mostly high-frequency variability—which is difficult 
to distinguish from noise remaining in the MMM (see Fig. 3)—their PDFs are wider than the PDFs for the AA 
and ALL MMMs, which exhibit low-frequency variability uncharacteristic of noise in the MMM.

While the GHG MMM is not significantly better than noise at matching observations in both correlation 
(r = 0.06) and RMSE (100% of observed variance), ALL (r = 0.36, RMSE = 0.96), AA (r = 0.26, RMSE = 0.97), and 
NAT (r = 0.23, RMSE = 0.98) all achieve significance at p = 0.05. The discrepancy between the ALL MMM and 
NAT and AA individually under both metrics suggests that both anthropogenic and volcanic aerosols contribute 

Figure 2.  Forced MMMs: Forced MMM Sahel precipitation anomalies (colored lines; right, colored ordinates) 
and their yearly 95% confidence intervals from bootstrapping (colored shaded areas; right, colored ordinates) 
over observed Sahel precipitation anomalies (black lines; left, black ordinates) and the 95% confidence interval 
of the piC runs from randomized bootstrapping (yellow shaded areas; right, colored ordinates). N are the 
number of research institutions which performed each forcing experiment. Panel (c) additionally identifies the 
dates of large volcanic eruptions which had different effects on the aerosol optical depth in the northern and the 
southern hemispheres, as well as the sign of that  difference17.
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substantially to the performance of the ALL MMM. Because the metrics for both AA and NAT fall within the 
other’s bootstrapping confidence interval, according to this analysis, AA and NAT contribute roughly equally to 
the performance of the observed ALL MMM.

The ALL MMM has limited predictive power as it is nearly constant, and, according to the RMSE, it leaves 
96% of the variance unexplained. This unexplained variance could be due either to model deficiency or internal 
variability, since the MMM is designed to filter out internal variability—which will have similar characteristics 
but different phase across individual simulations—in favor of forced variability. Since observations include both 
internal and forced variability, no MMM would be able to match observations exactly. In this light, the ALL 
MMM correlation with observations of 0.36 is substantial. For comparison, we may liken this to simulations 
forced with observed SST, which reflect as best as possible observed internal climate variability as well as forced 
variability. As reported in Giannini et al.6, the correlation of the unsmoothed observations with the unsmoothed 
mean over version 1 of the atmospheric general circulation model developed at NASA’s Goddard Space Flight 
Center in the framework of the Seasonal-to-Interannual Prediction Project (NSIPP1) from 1930–2000 is 0.60; 
the correlation of the ALL MMM with observations over the same period is not far behind at 0.47, suggesting 
that a large fraction of the variability that SST-forced climate models can capture is externally forced.

Figure 3.  Forced MMM power spectra: mean (lines) and 95% confidence intervals (shaded areas) of padded 
power spectra (PS) of bootstrapped forced MMMs (ALL—blue, NAT—brown, AA—pink, GHG—green) and 
randomized bootstrapped AA piC MMMs (yellow).
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Figure 4.  Performance of forced MMMs: probability density function (PDF) of correlations (a) and RMSE (b) 
of bootstrapped forced MMM twentieth century Sahel precipitation (colored curves: blue = ALL, pink = AA, 
brown = NAT, green = GHG) and of randomized bootstrapped piC MMM Sahel precipitation corresponding 
to the ALL experiment (dotted yellow curves) and the AA experiment (dotted pink curve, b) with observed 
twentieth century Sahel precipitation. Actual forced MMM values are represented with colored dots on the 
PDFs. One-sided 95% confidence level represented with grey vertical dashed lines.
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Residual consistency. To test the role of internal variability in the CMIP5 fully coupled models, we can-
not use the MMM, because internal variability will have differing phase across different simulations. Instead, 
we examine power at different frequencies in individual coupled runs. Figure 5a compares the padded power 
spectrum (PS) of twentieth century observed Sahel precipitation (solid black) to the padded PS of the ALL 
simulations, first estimated for individual runs, then averaged across ensemble members for each model. They 
are colored by the difference in the modelled and observed rainfall climatology from 1901 to 2003, where brown 
is used for models which are drier than observations, grey is used for models whose climatologies are near the 
observed climatology, and turquoise is used for models which are wetter than observations. As the individual 
ALL runs are single realizations, compounding forced and internal variability like observations, they are directly 
comparable to observations.

While there are three models (MIROC-ESM p1, MIROC-ESM-CHEM p1, and GFDL-ESM2G p1) which 
nearly reach the high power of the observations at a period of 100 years, these models are biased wet, and also 
exhibit over-estimates of high-frequency variability. Figure 5b displays the PS of the estimate of observed inter-
nal variations implied by the MMM, calculated as the residual of observations with respect to the ALL MMM 
(black dashed-dotted line), and compares it to its modeled counterpart, estimated as the mean PS by model of 
the individual piC runs, colored by the same rainfall biases used in Fig. 5a. Since there is often only one piC 
simulation per model, in order to reduce uncertainty in the PS, the long piC runs are divided into continuous, 
non-overlapping sections, and PS are taken separately for each section and then averaged together. We again see 

Figure 5.  Residual consistency: power spectra (PS) of observed twentieth century Sahel rainfall (solid black, a 
and c) and the residual after removing the ALL MMM (black dotted-dashed, b and d). (a) and (b): Mean PS by 
model of individual ALL (a) and piC (b) runs, colored by average JAS rainfall bias of the ALL runs compared 
to twentieth century observations, where observed rainfall is grey, wet models are turquoise, and dry models 
are brown. piC PS (b) are additionally averaged over multiple subsections of the runs. (c) Tiered mean (blue 
dashed line) and 66% and 95% range (blue shading) of mean PS by model of individual ALL runs which were 
first rescaled to match twentieth century observed JAS rainfall. Also displayed are the tiered means over PS of 
individual forced AA, NAT, and GHG runs (colored dashed lines). The black dashed line shows the sum of the 
tiered mean piC PS (from panel d) and the ALL MMM PS (i.e. Fig. 3). (d): Tiered mean (orange dashed line) 
and 66% and 95% range (yellow shading) of mean PS by model of individual piC runs which were first rescaled 
so their corresponding ALL runs match twentieth century observed yearly rainfall, as in (c).
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that wet models overestimate high-frequency variability, and no model matches the low-frequency power of the 
residual, pointing to inconsistency between model simulations, their MMM, and observations. If the models 
underestimate forced variability, or if the MMM underestimates the magnitude of the modelled forced variability, 
this will cause the estimate of observed internal variability to be too large; so while this comparison allows us 
to make a statement about consistency, it does not determine whether it is simulated internal variability or our 
estimate of forced variability that is incorrect. However, it is clear that modelled internal variability does not 
contribute substantial power at low frequencies.

The PS for both the forced and piC runs are clearly stratified by modelled precipitation climatology. To investi-
gate whether any of the models capture the observed distribution of power across different frequencies, in Fig. 5c 
and d we rescale the simulations by model before taking the PS and the mean by model so that the climatology 
of each model’s ALL simulations matches observed rainfall climatology. This mostly destroys the stratification 
in the previous panels (see Figure S1). The distribution of model-mean scaled ALL and piC PS are represented 
by blue and yellow shaded areas in Fig. 5c and d, respectively. The blue and orange dashed lines in Fig. 5c and d 
mark the centers of these distributions with 3-tiered, unweighted means over the PS of the ALL and piC runs, 
respectively. The other colored dashed lines in Fig. 5c mark the tiered means over the PS of all runs in each of 
the three individual forcing experiments (pink = AA, brown = NAT, green = GHG) for comparison.

The black dashed line in Fig. 5c shows the sum of the tiered mean piC PS (orange dashed line from Fig. 5d) 
and the PS of the ALL MMM (i.e. the blue line in Fig. 3). If the MMM accurately represented the simulated 
forced power when scaled to the observed climatology, we would expect this sum to match the tiered mean ALL 
PS (blue dashed line). Instead, it falls short at low frequency, suggesting that the ratio of the variance of the ALL 
MMM to observed climatology underestimates the ratios of simulated forced variance to climatological Sahelian 
precipitation in CMIP5 models. This may be because the ensemble is biased dry, or because differing responses to 
forcing between models cause the consensus forced response to have lower variance than exhibited in individual 
models. In addition to any implications for the RMSE calculations displayed earlier, this means that the residual 
spectrum in Fig. 5d is an overestimate of internal variability in observations as implied by the CMIP5 ensemble.

However, it is still clear that even scaled piC simulations do not exhibit any increase in power at low frequency 
(Fig. 5d). Even though the inclusion of external forcing introduces low-frequency variance (Fig. 5c), the CMIP5 
models are unable to capture the scale of the increase in power at low frequency in the observed PS, which 
exceeds the 95th percentile of rescaled ALL PS at periods longer than 65 years. Of the different forced experi-
ments, ALL and AA are the only ones that exhibit substantial multi-decadal variability. Thus, while the variance 
of the ALL MMM is somewhat underestimated, the vast majority of the discrepancy in low-frequency power 
between simulations and observations is not due to attenuation in the MMM, but rather to model deficiency, 
whether in capturing the full magnitude of the forced response to AA, or in detailing the true character and 
magnitude of the other forced responses, low-frequency internal variability, and their interactions.

Discussion
The analysis in this study shows that the consensus response of Sahelian precipitation to twentieth century 
external forcing in CMIP5 simulations, as defined by the 3-tiered multi-model mean (MMM), correlates signifi-
cantly with observations. It further shows that both anthropogenic aerosols (AA) and volcanic aerosols (NAT) 
contribute significantly and substantially to making the CMIP5 MMM similar to observations, with AA mostly 
responsible for the multidecadal forced variability. Given that the performance of the ALL MMM can apparently 
be explained with AA and NAT alone, we conclude that GHG do not contribute to the consensus forced response 
of Sahel seasonal precipitation in CMIP5 models. This does not mean that GHG do not influence Sahelian pre-
cipitation in any way, or that GHG will not play a significant role in the future as the magnitude of the forcing 
increases. While some individual models have indicated a role for GHG in the recovery since the mid  1990s15, 
it is possible that the models as an ensemble do not yet capture the effects of GHG on Sahelian rainfall because 
the magnitude of the forcing is still too small over the historical period. Alternatively, competition between the 
mechanisms linking GHG forcing to Sahelian rainfall may have masked the effects of GHG by cancelling within 
individual  simulations26 or between  models34 in the MMM. Finally, it has been suggested that the response to 
GHG is inherently non-linear (e.g. different circulation responses to different magnitudes of warming in Neupane 
and  Cook36), or interacts non-linearly with other forcings (e.g. the interaction of an “upped ante” and chang-
ing moisture supply, as suggested by Giannini and  Kaplan16). These non-linearities are difficult to test without 
the ability to compare the ALL MMM to “all but GHG” simulations, which are not widely available in CMIP5.

While the root mean squared error (RMSE) of the ALL MMM with observations is also significantly differ-
ent from noise, it is 96% of the observed rainfall variance, meaning that modelled forced variability can hardly 
account for observed variability since the ALL MMM is hardly better than a constant prediction. Our residual 
consistency test showed that while the MMM is somewhat over-attenuated relative to the forced response in 
individual models, the discrepancy between total observed variability and total modelled variability is an order 
of magnitude larger, and modelled internal variability cannot account for the difference between the simulated 
forced response and observations.

Since modelled internal variability does not show substantial low-frequency variability while the AA MMM 
does, it is tempting to attribute the full magnitude of observed multi-decadal variability to AA, as many previous 
studies have done by focusing only on standardized  trends11,  correlations16, or detectability in a fingerprint-
ing  framework18,23. However, such a claim would rely heavily on assumed grid-point linearity of the climate 
response to different forcings, which is disputed for tropical rainfall (i.e. Giannini and  Kaplan16 on GHG and 
anthropogenic aerosols, Polson, et al.18 on the indirect aerosol effect and spatial trend patterns in the Asian 
Monsoon, Lohmann and  Feichter33 on feedbacks involving the indirect aerosol effects, Neupane and  Cook36 
on GHG-induced circulation changes over Africa, and Meehl, et al.48 on non-linear feedbacks between solar 
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forcing and GHG), as well as on the accuracy of simulated forced and internal variability. In fact, it is not pos-
sible to say without further investigation into the physical pathways influencing Sahelian precipitation whether 
the model deficiency is in the modelled response to forcing or in modelled internal variability. Given the strong 
link between Sahelian rainfall and North Atlantic  SST13,14,16,38,49, it is perhaps not a coincidence that models 
lack strong low-frequency variability both in Sahel rainfall and in internally-generated Atlantic Multidecadal 
Variability in SST (AMV)50. The community is currently still debating whether the observed AMV is forced by 
 AA20,22,30 or is an internal phenomenon which is linked to ocean circulation  variability37,51–54 and is dramatically 
underestimated in most  models50.

Future work that focuses on characterizing and quantifying the mechanisms of influence on Sahelian precipi-
tation in simulations and observations and using the next generation of climate  models55 might shed new light 
on whether the model/observation discrepancy documented here is due to an underestimate in the strength of 
the precipitation response to AA or a failure of CMIP5-class climate models to capture low-frequency internal 
variability.

Methods
Data. Our index of Sahel rainfall variability is land-averaged precipitation anomalies for the monsoon season 
(July–September; JAS) over the region 12°–18°N, 20°W–40°E. For precipitation observations we use the Global 
Precipitation Climatology Center (GPCC)  dataset44, which is quite similar to the Climate Research Unit (CRU)45 
dataset in average precipitation over the Sahel. The two are compared in Fig. 1, and GPCC is used for the rest 
of the paper. Model simulations come from the Coupled Model Intercomparison Project phase 5 (CMIP5)43, 
which includes simulations by over 50 models from 20 different research institutions. Not all models contribute 
simulations to all four historical experiments; we use all available runs (between 1 and 10 for a given model) 
from all models (distinct name or physics number) and research institutions that have complete data from 1901 
(where the observed rainfall record begins) to 2003 (where some models stop their historical simulations). There 
are 14 models from 8 institutions that contributed model simulations to the AA experiment, 21 models from 
15 institutions that contributed to the GHG experiment, 22 models from 15 institutions that contributed to the 
NAT experiment, and 51 models from 20 institutions that contributed to the ALL experiment (Table S1). Here, 
if the physics number is changed, it is treated as a different model under the same institution.

The multi-model mean. The MMM is defined as a 3-tiered, weighted average: (1) across individual simu-
lations (runs) to get an ensemble mean (EM) for each model, (2) across EMs to get an institution mean (IM) 
for each research institution, and (3) across IMs to get the multi-model mean (MMM) for that experiment. 
While any averaging helps to filter internal variability from the MMM, the first tier focuses on reducing internal 
variability present in the individual runs, the second tier focuses on reducing variability between models from 
uncertainty in parameter values, and the third tier focuses on reducing variability between institutions from 
uncertainty in parameterization. A simple mean across all model simulations is very similar to the tiered mean 
(not shown), but tiers are used to prevent over-representation of particular parameterizations and parameter 
choices in the MMM and in the uncertainty and significance calculations (which will be described below under 
“Uncertainty and significance: bootstrapping and randomized bootstrapping”).

If a random variable (such as the internal variability component of yearly JAS Sahel precipitation) has a vari-
ance of σ 2 , then the mean over n realizations of that variable will have a variance of σ 2/n . The forced variability 
component may experience some attenuation as well due to differences in the simulated response to forcing 
between models. Given that the forced signal ought to be similar across simulations, we expect attenuation of 
internal variability to overwhelm attenuation in forced variability. Thus, means over models with more runs or 
over institutions with more models will have a higher signal (forced variability) to noise (internal variability) ratio 
than their counterparts. However, they will also have less total variability, causing them to (counterproductively) 
contribute less to the MMM than their more noisy counterparts. We counteract this by using weights which are 
inversely proportional to the expected attenuation of noise in the MMM tiers.

For a weighted mean 
∑

i wiXi between independent random variables Xi with mean µi , variance aiσ 2 , and 
weight wi, where 

∑

i wi = 1 , we find that:

Thus, to counteract the attenuation from a previous tier, captured in ai, we define the weights as 
wi = a−.5

i /
∑

i a
−.5

i ∝ a−.5

i  . Specifically, let f, i, m, r, Nf, Nfi, and Nfim be such that each forcing experiment f is 
simulated by Nf institutions, with Nfi models from each institution i, and Nfim runs from each model m, and 
assume that the JAS Sahel precipitation in a given year for each run r has a variance of σ 2 . In the first tier, where 
afimr = 1 and wfimr =

1

Nfim
 (an unweighted mean), we find that the variances of the EMs are 

σ 2
EMfim

= σ 2
∑

r
1

N2

fim

= σ 2

Nfim
 , giving afim = 1

Nfim
 for the second tier. To combat this attenuation, in the second tier 
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∑

m
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Nfim is the normalization constant 

for those weights. Using these weights, the variances of the IMs are σ 2
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Approach. MMMs are compared to observations using correlations, which capture similarity in frequency 
and phase, and root mean squared errors (RMSE), which capture differences in magnitude and are expressed 
as a fraction of observed variance. When comparing the observations to themselves, the correlation would be 1 
and the RMSE would be 0; when comparing the observations to a constant prediction, the correlation would be 
0 and the RMSE would be 1 (or 100% of observed variance).

Uncertainty and significance: bootstrapping and randomized bootstrapping. Estimates of sam-
pling uncertainty over all possible model parameterizations are obtained by bootstrapping (resampling with 
replacement) available forced IMs before calculating the MMM and corresponding correlations and RMSE, 
yielding probability density functions (PDF) around the MMM correlation and RMSE. This PDF can also be 
interpreted as a measure of agreement between CMIP5 models.

To test the null hypothesis—that all results from the forced experiments are consistent with noise in the 
MMM derived from modelled internal variability alone—we measure uncertainty in the MMM by repeating the 
bootstrapping procedure once for each of the four forced experiments, using the long, constant-forcing prein-
dustrial control (piC) runs from the set of models contributing historical simulations to that experiment, choos-
ing random, continuous, 103-year subsets before each bootstrap (referred to as “randomized bootstrapping”).

In addition to uncertainty derived from model parameterization, the MMM still contains noise from lingering 
coincident internal variability, and because bootstrapping underestimates variance when sample size is small, 
this procedure does not capture the full magnitude of that uncertainty (when randomizing is not used while 
boostrapping the piC MMMs, for comparison, the piC confidence interval contains high-frequency variability 
similar to that seen around the forced MMMs in Fig. 2, not pictured). However, the length of the piC runs allows 
us to effectively increase the sample size of 103-year runs in the randomized bootstrapping method enough to 
give an accurate estimate of noise uncertainty in the MMM: this is evident from the nearly-uniform confidence 
intervals of the piC MMMs (yellow, Fig. 2), which contain no time-varying signal by construction.

Residual consistency. We evaluate consistency between modelled and observed internal and externally-
forced variability by examining and comparing the power spectra (PS) of individual ALL and piC simulations. 
For increased sampling of frequencies we zero-pad the time series before taking the PS, and for clarity and 
decreased uncertainty, we average across PS from the same model before presenting the PS. This is less effective 
for the piC simulations, which usually contain only one (long) simulation per model. To help reduce uncertainty 
in the piC PS, we divide them into consecutive, non-overlapping segments of 103 years, calculate the PS of the 
segments separately, and average them together. To calculate the rescaled PS, we scale the individual ALL and 
piC runs from a given model by (mean observed twentieth century precipitation)/(mean precipitation from the 
ALL runs for that model) before taking the PS. We then average the PS by model and present the 66% and 95% 
range of the PS. We also present 3-tiered, unweighted means over all simulations of the rescaled ALL, AA, NAT, 
and GHG PS. The mean PS are calculated using an unweighted mean because different realizations of internal 
variability in the simulations do not cause attenuation of the spectral peaks characterizing that variability.

Data availability
Global Precipitation Climatology Center (GPCC)44 observational data is freely available online (see https ://www.
esrl.noaa.gov/psd/data/gridd ed/data.gpcc.html) and  CMIP543 model data is freely available through the Earth 
System Grid (see https ://esgf-node.llnl.gov/proje cts/esgf-llnl/).
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