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Abstract

To achieve the goals of the Paris Agreement requires deep and rapid reductions in anthropogenic
CO; emissions, but uncertainty surrounds the magnitude and depth of reductions. Earth system
models provide a means to quantify the link from emissions to global climate change. Using the
concept of TCRE—the transient climate response to cumulative carbon emissions—we can
estimate the remaining carbon budget to achieve 1.5 or 2 °C. But the uncertainty is large, and this
hinders the usefulness of the concept. Uncertainty in carbon budgets associated with a given global
temperature rise is determined by the physical Earth system, and therefore Earth system modelling
has a clear and high priority remit to address and reduce this uncertainty. Here we explore
multi-model carbon cycle simulations across three generations of Earth system models to
quantitatively assess the sources of uncertainty which propagate through to TCRE. Our analysis
brings new insights which will allow us to determine how we can better direct our research
priorities in order to reduce this uncertainty. We emphasise that uses of carbon budget estimates
must bear in mind the uncertainty stemming from the biogeophysical Earth system, and we
recommend specific areas where the carbon cycle research community needs to re-focus activity in
order to try to reduce this uncertainty. We conclude that we should revise focus from the climate
feedback on the carbon cycle to place more emphasis on CO, as the main driver of carbon sinks
and their long-term behaviour. Our proposed framework will enable multiple constraints on
components of the carbon cycle to propagate to constraints on remaining carbon budgets.

1. Introduction

Perhaps the most common question required for mit-
igation policy is ‘by how much do we need to reduce
our carbon emissions?’. It is well accepted that deep
and rapid emissions cuts are required in order to
achieve the UN’s Framework Convention on Climate
Change goal of avoiding dangerous climate change,
but in order to develop quantitative and measur-
able policy targets we must quantify the emissions
compatible with any climate goal. Since the global
community has adopted the Paris Agreement, which
entered into force in November 2016, the requirement
to quantify carbon budgets for low climate targets
has grown.

© 2020 The Author(s). Published by IOP Publishing Ltd

1.1. The transient climate response to cumulative
carbon emissions
A body ofliterature from 2009 found consistently that
warming was much more closely related to the cumu-
lative CO, emissions than the time profile or partic-
ular pathway (Allen et al 2009, Matthews et al 2009,
Meinshausen et al 2009). This relationship between
warming and cumulative emissions was one of the
new and innovative outcomes of the IPCC’s Fifth
Assessment Report (AR5) report (IPCC 2013). AR5’s
Figure SPM.10 showed this relationship—known as
TCRE: the Transient Climate Response to cumulative
carbon Emissions.

The physical basis of TCRE was first hinted at by
(Caldeira and Kasting 1993) who noted that satura-
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tion of the radiative effect of CO, in the atmosphere
could be balanced by saturation of uptake by ocean
carbon leading to insensitivity of the warming to the
pathway of CO, emissions. Literature since then has
put this on a firm footing with numerous authors
showing that trajectories of ocean heat and carbon
uptake have similar effects on global temperature due
to the diminishing radiative forcing from CO, in the
atmosphere and the diminishing efficiency of ocean
heat uptake (Goodwin et al 2015, Macdougall 2016,
Ehlert et al 2017). Although as noted by (Macdougall
2017) that terrestrial carbon uptake is equally import-
ant for the magnitude of TCRE—in fact we will show
here that land and ocean contribute equally to the
magnitude of TCRE and that land dominates over the
ocean in terms of model spread.

1.2. Application of TCRE to quantify carbon
budgets

IPCC AR5 assessed a total carbon budget of 790 PgC
to likely (66% chance) remain below 2 °C above pre-
industrial, of which about 630 PgC has been emit-
ted over the 1870-2018 period (Friedlingstein et al
2019). However, the spread of models means that
the uncertainty in the remaining carbon budget to
achieve 1.5 °C or 2 °C is very large—in fact possibly
larger than the remaining budget itself. This large
uncertainty hinders the potential usefulness of this
simplifying concept to policy makers. All studies and
reports which present estimates of the remaining car-
bon budget (e.g. The IPCC’s Fifth Assessment Report,
its Special Report on Global Warming of 1.5 °C, or the
UNEP Gap Report) have to make an assumption on
how to deal with and present this uncertainty. Some
explicitly describe the chosen assumptions (such as
50% or 66% probability of meeting targets) or tab-
ulate multiple options, but all are hindered in some
way by the precision with which carbon budgets
are known.

The AR5 Synthesis Report quoted a value of
400 GtCO; (110 GtC) remaining budget from 2011
for a 66% chance to keep warming below 1.5 °C. It is
now clear that this was an underestimate as this would
mean a remaining budget of about 20 GtC from
2020. Since AR5 there has been extensive literature on
the application of the TCRE concept and its limita-
tions including the choice of temperature metric and
baseline period and issues of biases in Earth system
models (ESMs). Some studies accounted for climate
model biases by relating warming from present day
onwards to the remaining carbon budget (e.g. Millar
et al 2017, Tokarska and Gillett 2018). Other studies
have used the historical record to constrain TCRE and
the remaining budget using simple models (Good-
win et al 2018) or attribution techniques (Millar and
Friedlingstein 2018). Both these approaches find a
substantial increase in the remaining carbon budget
for 1.5 °C compared to the IPCC AR5 SPM approach.
Further studies have tried to additionally account
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for non-CO, warming. (Matthews et al 2017) show
CO,-only TCRE budgets are a robust upper limit but
taking account of non-CO; forcing results in lower
allowable emissions. (Smith etal 2012 and Allen
etal 2018) have proposed techniques for combin-
ing emissions rates of short-lived climate pollutants
with long-term CO, cumulative emission budgets.
In light of these advances, the IPCC Special Report
on Global Warming of 1.5 °C (SR15, Rogelj et al
2018) quotes a value of 420 GtCO, remaining car-
bon budget for a 66% chance to keep warming below
1.5 °C—a value very similar to the AR5 value from
5 years earlier.

There is also a lot of focus on how to achieve such
carbon budgets and the increasing realisation of the
need for carbon dioxide removal and research into
the feasibility and implications of negative emissions
technology. The discussion around carbon dioxide
removal (CDR) requires more detailed assessment of
the magnitude and timing of any requirement for
negative emissions technology and hence more pre-
cise estimates of remaining carbon budgets (Fuss et al
2016). While Peters (2018) argues that large uncer-
tainty in budget estimates may be used to ‘justify fur-
ther political inaction’, (Sutton 2018) argues for care-
ful consideration of the full range of climate pro-
jections, including ‘physical plausible high impact’
outcomes in the tails of the likelihood distribu-
tion. The same argument applies to TCRE and car-
bon budgets: we need information on best estim-
ates but also possible extremes however unlikely. For
example, (Kriegler et al 2018) show that the feasib-
ility of achieving 1.5 °C without net negative emis-
sions depends on the remaining budget being at the
high end of current estimates. Knowing the like-
lihood of the range as well as central estimate is
required to inform the debate on requirements for
negative emissions.

SR15 and (Rogelj et al 2019) present a framework
to breakdown individual contributions to uncertainty
in carbon budgets. They separately assess: (i) the his-
torical human induced warming to date; (ii) the likely
range of TCRE, (iii) the potential additional warming
after emissions reached zero (zero-emissions com-
mitment, ZEC); (iv) the warming from non-CO, for-
cing agents (such as other greenhouse gases and aero-
sols); (v) carbon emissions from Earth system feed-
backs not yet represented in ESMs (such as carbon
release from thawing of permafrost). While there are
multiple ways of decomposing this issue, an unavoid-
able conclusion is that our imperfect ability to model
the climate-carbon cycle system plays a dominant role
in uncertainty surrounding assessment of the remain-
ing carbon budget.

Of the five components described above, three
are directly linked to coupled climate-carbon cycle
modelling: TCRE, ZEC and missing feedbacks. These
are being addressed. For example, a new initiative—
ZECMIP (Jones et al 2019)—was launched to address
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uncertainty in the zero-emission commitment and
initial results (MacDougall et al 2020) suggest that
SR15 assumptions of no significant further warming
after CO, emissions cease is consistent with the multi-
model mean. Similarly, CMIP6 and ever increasingly
sophisticated ESMs (e.g. Sellar etal 2019, Séférian
etal 2019) begin to include additional Earth system
feedbacks into models—e.g. coupled terrestrial nitro-
gen cycle is now expected in approximately half of
CMIP6 ESMs and some also begin to include per-
mafrost carbon (Arora et al 2019). However, the ele-
phant in the room is that past generations of mod-
els has not seen a decreased spread in TCRE (Fried-
lingstein et al 2006, Arora et al 2013, 2019) and rarely
does adding complexity reduce this. Much longer
experience on assessment of the climate sensitivity to
increasing CO, (ECS, equilibrium climate sensitivity;
Flato et al 2013) suggests little GCM convergence with
a persistent large range of about 3 °C (from about 1.5
to about 4.5 °C) since the Charney report (1979).

It is therefore required to understand at a process
level where the uncertainty in TCRE comes from in
order to target observational constraints and priorit-
ise model development and associated evaluation.

Here we perform a new analysis of three gen-
erations of Earth System Model results, spanning
over a decade, to examine whether or not existing
simulations and analyses are well placed to answer
the increasing requirements of policy makers on the
carbon cycle research community. In section 2 we
present a new analytical framework which allows us
to quantify sources of uncertainty in carbon budgets
to land or ocean response to CO, or climate. Analysis
of results in section 3 shows that it is the carbon cycle
response to CO,, rather than its response to climate,
which dominates the uncertainty in TCRE and hence
carbon budgets. We conclude with recommendations
for the carbon cycle research community.

2. Framework for uncertainty propagation

At a very broad level the global carbon cycle can be
characterised by two strong and opposing responses:
how it responds to rising CO, concentration and how
it responds to a changing climate. Firstly, as atmo-
spheric CO, increases, natural carbon reservoirs act
to take up carbon from the atmosphere, inducing car-
bon sinks. Secondly, as the world warms, this climate
change also affects these carbon sinks, for example
through changes in vegetation growth or ocean strat-
ification. This paradigm has become a widely-used
framework for carbon cycle analyses with the former
(carbon cycle response to CO,) often referred to
as ‘concentration-carbon feedback’ and denoted 3,
while the latter is often termed ‘climate-carbon feed-
back’ and denoted by y (Friedlingstein et al 2006,
Gregory et al 2009, Arora et al 2013).

There are some clear and obvious similarities
between feedbacks in the physical climate system and
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the carbon cycle system, which have aided deriva-
tion of this carbon cycle feedback framework but may
also have mis-directed carbon cycle research atten-
tion. A radiative imbalance which warms the planet
in turn increases the amount of outgoing energy radi-
ated by the Earth and so represents a very strong neg-
ative (stabilising) feedback. On top of this stabilising
response there are many feedbacks within the climate
system caused by physical components responding to
the change in global temperature. The response of
clouds is commonly acknowledged to be the largest
source of model spread but others include ice and
snow-albedo feedbacks, water vapour or atmospheric
lapse rate (Bony et al 2006, Soden et al 2008).

However, in the case of climate feedbacks, the
stabilising negative response (Planck response) is
extremely well known and almost all of the uncer-
tainty in the overall climate sensitivity comes from
the multitude of additional physical feedbacks within
the climate system (see Gregory et al 2009, figure 2),
whereas in the carbon cycle case the stabilising neg-
ative response—carbon sinks induced by elevated
CO,—is not quantitatively well known. (Gregory
etal 2009) showed that in fact it is both stronger
and more uncertain than the carbon cycle response
to climate.

These similarities between carbon cycle and cli-
mate feedback formalisms led early analyses to focus
on the positive feedbacks in the system. These were
analogies to the climate feedbacks and were often
seen as the largest source of uncertainty (Matthews
et al 2005, Raddatz et al 2007). Even before the first
generation of C4MIP modelling results, (Friedling-
stein et al 2003) derived an uncertainty analysis to
show that the carbon cycle response to climate (“y’)
contributes the majority of the differences between
the first Hadley Centre and IPSL carbon cycle feed-
back experiments (Cox et al 2000, Friedlingstein et al
2001). While this remains true: y contributes most
of the uncertainty in the climate carbon cycle gain,
it neglects the underlying uncertainty in the unmod-
ified sinks themselves.

Here we derive analytical expressions to substan-
tially extend the analysis of (Friedlingstein et al 2003)
and allow us to quantify the contribution of uncer-
tainty in carbon cycle components to different quant-
ities of interest. We show that TCRE and the airborne
fraction (AF, the ratio of atmospheric CO, increase to
anthropogenic CO, emissions) can be derived from
process-level feedback metrics and that although the
derivation assumes linearity (as per Friedlingstein
et al 2003, 2006) our framework can accurately repro-
duce TCRE and AF of two generations of ESMs and
therefore can be used to identify sources of uncer-
tainty in these quantities.

The linearized feedback framework adopted by
C4MIP in (Friedlingstein et al 2006) was first derived
by (Friedlingstein ef al 2003). They defined o, (3, vy
such that:



10P Publishing

Environ. Res. Lett. 15 (2020) 074019

AT = a/AC,, (D

AC = BAC, + VAT, )

where T, C and C, are global mean temperature, land
plus ocean carbon stock and atmospheric CO, con-
centration, respectively. The carbon store, and {3 and
7y terms can be split into land and ocean components
often denoted by ‘L’ and ‘O’ suffices respectively (e.g.
Cy or o) but here we combine into a single term for
clarity.

They also showed that the carbon cycle feed-
back gain, g, could be expressed in terms of these
quantities:

oy

1+ )
This applies to quantities expressed in common
units, such as PgC, PgC/K, PgC/PgC. More com-
monly, land and ocean carbon stores are expressed in
PgC while atmospheric CO; is in ppm, and sensitivit-
ies to itin ppm~'. Hence the expression for g requires
an additional constant, k, to account for unit conver-

sion: k = 2.12 PgC ppm ™!, giving:

ary
- k+B ®
Further manipulation of these metrics (see Methods)
allows us to express other quantities in terms of indi-
vidual feedbacks. Cumulative airborne fraction, AF,
defined as the increase in atmospheric CO, per unit
emission (both in units of mass of carbon) is given by:

k

AF= —.
k+ B+ ay

(5)
Finally, TCRE, defined as the warming per unit emis-
sion of mass of carbon, is simply related to the air-
borne fraction by the climate sensitivity parameter:

o)

TCRE = P (6)
Crucially, our framework can be extended to also
quantify propagation of uncertainty in component
feedback parameters to gain, AF and TCRE. Identi-
fication of sources of uncertainty is important if we
are to target model development and evaluation on
aspects of performance which most affect the out-
comes we care about. For derivation see Methods, but
we show that the variance in gain, AF and TCRE can
be given by:

1 1 1

AF*
dAF* = = (Vdo? +dB* + o*dy?),  (8)
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,_ AP

d(TCRE)’ = =

((kJrﬁ)zdozz + a?dp* + a4d’yz) .
9)

If required, these equations can be broken down fur-
ther into land and ocean components of 3 and y.

3. Results

3.1. Synthesis across multiple C4MIP generations
In order to develop and test the framework we
assemble feedback metrics and related quantities
from the three generations to date of coupled
climate-carbon cycle models: ‘C4MIP’ (first gener-
ation C4MIP simulations, from circa 2006; docu-
mented in Friedlingstein et al 2006), ‘CMIP5’ (car-
bon cycle ESMs from CMIP5, documented in Arora
etal 2013) and ‘CMIP6’ (simulations and results
documented in Jones et al 2016a; Arora etal 2019
respectively). Individual values from the models con-
tributing to those studies and the values we use in
this analysis are shown in supplementary inform-
ation (stacks.iop.org/ERL/15/074019/mmedia), table
SL.1. There are multiple choices of CMIP5 feedback
metrics that we could use. In the supplementary
information we discuss the implications of these and
explain our choice of using feedback metrics derived
from CMIP5 models at a level of 2 x CO,, rather
than 4 x CO,.

Figure 1 summarizes these numbers graphically
to help visualize changes in feedback metrics over
the three model generations. Although the original
C4MIP analysis made use of a different scenario of
CO, (SRES A2) and simulations were emissions-
driven instead of concentration-driven, the compar-
ison is useful to see, but we note especially for ocean 3
and y the reduced spread is more likely due to experi-
mental design differences than due to model changes.
Since the adoption of the 1% p.a. simulation results
are much more directly comparable between CMIP5
and CMIP6 generations.

Comparing specifically between CMIP5 and
CMIP6 we find that o has the same mean value
but a larger spread (table 1), 3 has similar mean
value but smaller spread. vy values have decreased
slightly between CMIP5 and CMIP6. (Arora et al
2019) discuss reasons for the changes, espe-
cially on land, where the introduction of a ter-
restrial nitrogen cycle in approximately half the
models has reduced values of both 3 and vy in
those models.

3.2. Reconstructing gain, AF and TCRE

Figure 2(a) shows the successful reconstruction of
gain across C4MIP and CMIP5 generations of mod-
els with R? of 0.89 for the correlation of actual and
reconstructed values of ¢ (no gain values are available
for CMIP6). Figures 2(b) and (c) show similar suc-
cess of our framework to reconstruct AF and TCRE
from all three multi-model ensembles (R*> = 0.85,
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Figure 1. Comparison of ESM carbon cycle feedback metrics by generation (C4MIP, CMIP5, CMIP6). Metrics shown are:
response of climate to elevated CO, (o: red axis); response of carbon sinks to CO, ([3: green axis) split into land (left hand side of
axis) and ocean (right hand side); response of carbon sinks to climate (y: blue axis) split into land (left hand side of axis) and

ocean (right hand side).

Table 1. Compiled mean and standard deviation of feedback metrics for the 3 generations of model ensembles and across all models.

{3 ocean (PgC ppm_l) v land (PgC K™Y vy ocean (PgC K™

x (K ppm_l) f3 land (PgC ppm_l)
C4AMIP 0.0061 £ 0.0012 1.34 £+ 0.58
CMIP5 0.0069 £ 0.0010 1.14 £+ 0.56
CMIP6 0.0069 £ 0.0015 1.22 £+ 0.38
All models 0.0066 + 0.0013 1.24 £+ 0.52

1.04 +0.24 —78.6 £43.7 —30.9 £ 155
0.93 £ 0.07 —42.0 £ 26.7 —92+£25
0.91 £ 0.09 —34.1 £ 36.6 —8.6+28
0.96 £ 0.17 —52.2+41.9 —16.7 £ 14.2

0.89, respectively). For the same reasons (see sup-
plementary information) that using feedback metrics
diagnosed at 2 x CO, gave a better fit to AF and
TCRE, it also means we get a worse fit to gain, g, which
was diagnosed for CMIP5 at 4 x CO,.

The agreement of our reconstruction is strong—
each component is accurately reproduced not only in
its mean but also its spread (shown here as standard
deviation) (table 2). This gives us confidence not only
that we can reconstruct the global behavior of these
models from their component sensitivities, but also
that we can reconstruct and understand their vari-
ance and hence reliably test the dependence of these
aggregate quantities on their components.

As with the individual feedback metrics, it is
illustrative to look at changes in gain, AF and
TCRE over the generations of coupled climate car-
bon cycle modelling (figure 3). As before, the differ-
ent experimental design and scenario make precise

5

comparison impossible back to the original C4MIP
but possible between CMIP5 and CMIP6. We see that
AF has decreased slightly in magnitude and markedly
in spread between the two most recent generations.
This change in mean and variance is captured by our
reconstruction allowing us to probe the underlying
reasons, as discussed below. Conversely, TCRE has
not changed systematically between the two gener-
ations either in magnitude or spread. We note here
that AF is defined and calculated when CO, reaches
2x pre-industrial levels in the 1% p.a. simulation and
as such has different values from, and should not
be compared to, observational airborne fraction of
approximately 45% derived over the recent historical
record (Friedlingstein et al 2019).

3.3. Quantified sources of uncertainty
In order to quantify sources of uncertainty in g,
AF and TCRE, we apply our framework to this
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Figure 2. Actual and reconstructed values of (a) gain; (b) Airborne fraction, AF; (c) TCRE using ensemble output from C4MIP
(2006) CMIP5 (2013) and CMIP6 (2019) listed in supplementary information, table SI.1. The black dashed line is the one-to-one

line for illustration.

Table 2. Actual and reconstructed values of gain, AF and TCRE and also their uncertainty. Shown here as mean and standard deviation
across the available models. Gain and AF are expressed without units, TCRE is in units of K per Exagram of carbon (1 EgC = 10'° gC).

Gain (g) Airborne fraction TCRE (K EgC_l)
C4MIP Actual 0.149 £+ 0.073 0.554 £ 0.084 1.58 £ 0.37
Reconstructed 0.150 £ 0.075 0.566 + 0.085 1.62 £ 0.39
CMIP5 Actual 0.106 £ 0.048 0.563 £+ 0.071 1.81 +0.33
Reconstructed 0.084 £ 0.047 0.556 £+ 0.074 1.82 £ 0.32
CMIP6 Actual — 0.532 £+ 0.031 1.78 +0.39
Reconstructed — 0.534 £ 0.031 1.75 £ 0.39
All models Actual 0.130 £ 0.067 0.548 £+ 0.067 1.72 £0.38
Reconstructed 0.099 £ 0.068 0.552 £ 0.068 1.72 £ 0.38

3-generation multi-model ensemble. When we use
calculated variances of «, 3 and 'y from the ensembles
we can quantify the uncertainty in each of gain, AF
and TCRE due to each feedback term. Figure 4 shows
the contribution to variance in these terms which
arises from model spread in «, 3 and y. We find,
as expected, that the carbon cycle response to cli-
mate (y: blue bars) is indeed the primary driver of
uncertainty in the climate carbon cycle gain, g. How-
ever, this is not the case for the more policy relev-
ant quantities of cumulative airborne fraction (AF)
and TCRE. We find that the response to CO, (f3:
green bars) is a much greater source of uncertainty
in the other quantities, being the dominant uncer-
tainty controlling AF and jointly dominating TCRE
with the climate response to CO, (o red bars). Model

spread of y plays very little role in the ultimate spread
of TCRE.

For both 3 and y we show that spread in ter-
restrial ecosystem response is much greater than the
ocean response and therefore contributes much more
to resultant uncertainty in AF and TCRE. How-
ever, we stress that this refers only to the con-
tribution of components to uncertainty (or more
strictly, model spread) in g, AF and TCRE from the
given sets of models available here. But of course
oceans, as well as land, are still vitally important in
determining the overall magnitude of the feedback
responses: the ocean contributes almost exactly the
same as land to (3 and a significant fraction to y
(figure 5). Only in the uncertainty terms does land
dominates.
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Figure 3. Comparison of ESM sensitivities by generation (C4MIP, CMIP5, CMIP6). Metrics shown are carbon cycle feedback
gain, g (left hand axis), airborne fraction, AF (middle axis) and TCRE (right hand axis).

4. Discussion

We discussed earlier that initial analysis of C4AMIP res-
ults focussed on the climate feedback, v, as the largest
source of uncertainty. While both carbon cycle terms
(B and y) exhibit substantial spread across models,
on land and in the oceans, our results show that the
most important component to constrain depends on
which measure we look at. If we want to know the cli-
mate carbon cycle feedback gain, g, then the biggest
source of uncertainty is indeed y. But, to constrain
the cumulative airborne fraction, we need to con-
strain {3, and to constrain TCRE we need to con-
strain both o« and (. Our results demonstrate that
a change in empbhasis is required in order to target
carbon cycle research more directly at issues associ-
ated with meeting the goals of the Paris Agreement.
Specifically, we argue that there is a need to re-focus
analysis and model evaluation on CO, response and
drivers of sinks. It is this response to CO, that drives
a greater amount of the future behaviour of carbon
sinks under low CO, pathways where climate change
is limited.

What does this analysis mean for projections for
the 21st century? To date almost all climate-carbon
cycle modelling and feedback analysis has focussed
on high, monotonic CO, scenarios: from 1S92a (Cox

et al 2000) to SRES-A2 (Friedlingstein et al 2006) to
the RCP8.5 and 1% idealised experiments of CMIP5.
These scenarios see rapid and continuous increase
in CO, reaching between 700 and 1100 ppm by
2100 (figure 6). In contrast, however, strong mitig-
ation scenarios aimed at achieving the climate tar-
gets of the Paris Agreement stabilise or peak and
decline at much lower levels: e.g. RCP2.6 peaks CO,
at 443 ppm by 2050, just 30 ppm above 2020 levels.
How do we know, therefore, that our feedback ana-
lysis remains valid under the very difference scenario
characteristics?

Analysis of CMIP5 simulations (Jones ef al 2013)
showed that in future, land, ocean and airborne frac-
tions of emissions were quite different under RCP2.6
than the other scenarios. This is not unexpected—
(Raupach 2013) showed that the near-constancy of
historical airborne fraction was a direct result of
the near-exponential increase in emissions. Deviation
from exponential increase would therefore lead to
deviation from a constant airborne fraction. Other
recent work has shown path-dependence of carbon
cycle response and TCRE. For example, (MacDougall
etal 2015) demonstrate carbon budgets after over-
shoot may be smaller than without overshoot due
to non-linearities in the ocean thermal and carbon
response and permafrost carbon feedbacks. (Tokarska
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et al2019) showed path dependence of the land versus
ocean division of net carbon uptake leading also to
path dependence of impacts on terrestrial and marine
ecosystems, although for limited overshoot cases, car-
bon budgets were similar with and without overshoot.
(Zickfeld et al 2016) explicitly showed non-linearity
of global temperature decrease during rampdown of
CO; and therefore a smaller TCRE to negative emis-
sions, due to the time lag in response to 1% increase
in C02

As the policy focus moves towards low targets,
it seems therefore likely that future emissions will
deviate strongly from continued exponential increase
and therefore that the future airborne fraction will
depart from its historical value of approximately 50%.
Although we know that TCRE and individual ele-
ments of the carbon cycle may behave differently
under low scenarios such as RCP2.6, very little spe-
cific feedback analysis has been conducted on low
stabilisation or peak-and-decline scenarios. Under
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such scenarios which limit global climate change,
focus on the drivers of natural carbon sinks and
their persistence becomes even more important—
for example, (Schwinger and Tjiputra 2018) showed
non-reversibility of components of the ocean car-
bon store in response to CO, reversal. Specific-
ally, for CMIP6 the ScenarioMIP and C4MIP pair
of simulations based around SSP5-3.40S will bring
valuable insights into how feedback metrics change
in time.

The framework we have developed here serves
multiple purposes. Firstly, it allows us to construct
the behaviour of key parts of the Earth system such as
airborne fraction and TCRE from process-level car-
bon feedback components. Secondly it allows us to
attribute uncertainty in these properties to uncer-
tainty in components and therefore focus research
priorities onto the carbon cycle response to CO, (‘3°).
Thirdly, in addition to these, it opens up possibilities
of applying and combining constraints on feedbacks.
For example, if we know o we can calculate how the
value and range of AF, TCRE is constrained. The 3
and y quantities are formed linearly from the contri-
bution at each gridbox (e.g. Roy et al 2011, Ciais et al
2013) and so we could further allocate uncertainty
more regionally such as to ocean basins or on land
in latitude bands. Currently we have no way of per-
fectly constraining these components, but our feed-
back framework would allow partial constraints to be
combined into a stronger one. Literature is emerging
that demonstrates emergent constraints on regional
aspects of carbon feedbacks such as interannual vari-
ability in the tropics (Cox et al 2013) or seasonal cycle
in mid-latitudes (Wenzel et al 2016) as well as on TCR
(Nijsse et al 2020). Further work will apply these con-
straints to reduce spread in AF and TCRE.

5. Conclusions

The concept of TCRE has been successful in com-
bining the full Earth system response into a single,
simplifying number which can be used to calculate
remaining carbon budgets to help achieve global cli-
mate targets. But in order to understand it and con-
strain its sources of uncertainty we need to break it
apart again. It can be easily split into ‘climate’ and
‘carbon cycle’ terms (although these are not inde-
pendent as they interact) e.g. (Gillett et al 2013). Wil-
liams et al (2017, 2020) focus on the climate aspect
and split TCR into terms of individual feedbacks
and ocean heat uptake. Here we focus on the car-
bon cycle aspect and explore within AF the contri-
bution from carbon-cycle feedback components. The
two approaches are complimentary and find sim-
ilar results—that both climate and carbon responses
are similarly responsible for TCRE, with the balance
of uncertainty varying in time within a simulation
(Williams et al 2017) and between generations of
models (this study). The comparison between gener-
ations of models, however, should be interpreted with
caution due to the small sample of models. Ringer
(2020) shows how even across 30-40 models in CMIP
generations, changes in the distribution of feedbacks
may happen by chance. Our samples here of the order
<10 models per generation are not enough to draw
robust conclusions that changes in uncertainty follow
a systematic change. Therefore, we conclude that both
climate and carbon cycle must remain vital avenues of
research to reduce uncertainty TCRE.

Based on our analysis we make some recom-
mendations for the climate-carbon cycle research
community. These recommendations feed into the
WCRP number-1 question ‘where does the carbon
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go?” (Marotzke et al 2017) and also address the 3 pri-
ority questions of the WCRP Grand Challenge on
carbon cycle feedbacks—what processes drive land
and ocean carbon sinks? how will climate-carbon
feedbacks amplify climate change? and how will it
affect vulnerable carbon stores?

Our primary recommendation is to re-focus
research effort onto understanding and better simu-
lating carbon cycle response, both land and marine,
to CO,. This represents the primary driver of nat-
ural carbon sinks, the largest source of uncertainty in
future airborne fraction and contributes much more
than y to uncertainty in TCRE. If we are to reduce
uncertainty in future carbon budgets this must be our
primary focus. While land contributes most to model
spread, ocean sinks contribute equally to the carbon
sink and have substantial uncertainty at regional level
(Hewitt et al 2016) and become increasingly import-
ant on timescales beyond 2100 (Randerson et al 2015,
Jones et al 2016b).

Secondly, we have shown that reconstruction of
the airborne fraction of CO, emissions and TCRE,
are achieved more precisely using feedback metrics
derived at a level of 2 x CO, in the 1% simula-
tion than at the end (at 4 x CO,). Therefore we
recommend that future feedback analyses quote val-
ues at both of these levels as has been done in (Arora
etal 2019).

Thirdly, research is lacking into the behaviour of
carbon cycle feedbacks in low stabilisation and over-
shoot scenarios. The airborne fraction and sink effi-
ciency are not uniform under different scenarios or
rates of change. We know that TCRE and other com-
ponents of the Earth system can exhibit path depend-
ence, so research must also focus on low stabilisation
or overshoot scenarios. For such low scenarios, both
fully coupled and biogeochemically coupled simula-
tions are required.

Fourthly, we recommend that more effort is
put into understanding the full range of uncer-
tainty within and across models. We have demon-
strated marked differences in the ensemble spread
between CMIP5 and CMIP6 but we do not know
how robust this finding is, nor its full implication,
due to the small set of models available. Perturbed
parameter approaches (e.g. Booth etal 2012, Mac-
Dougall ef al 2016) offer a way to more systematically
explore the uncertainty range of feedback metrics and
their implications for AF and TCRE, and we recom-
mend that more ESM models should consider such
approaches.

Finally, we stress the vital role of evaluation.
As ESMs have developed in complexity, they bring
unprecedented opportunity to simulate these quant-
ities such as AF and TCRE which inform global
negotiations on carbon budgets, but they also
require increasing levels of evaluation to ensure pro-
cess realism (Jones 2020). CMIP6 sees a marked
difference over CMIP5 regarding inclusion of
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terrestrial nitrogen cycle in many models: a key
systematic omission in previous generations. But
whether CMIP6 models will systematically evalu-
ate better than CMIP5 is not yet known. Compar-
ison of models against the growing wealth of eco-
system observations and manipulation experiments
(e.g. Medlyn et al 2015, Walker et al 2015) is crucial.
Posterior constraints on projections can also be very
powerful. Our framework offers an exciting oppor-
tunity to combine existing and new constraints and
make real progress towards reduced uncertainty in
assessing remaining carbon budgets.
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