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A Century of Nonlinearity in the Geosciences

Michael Ghil1,2

1Department of Geosciences and Laboratoire de Météorologie Dynamique (CNRS and IPSL), Ecole Normale
Supérieure, PSL Research University, Paris, France, 2Department of Atmospheric and Oceanic Sciences, University of
California, Los Angeles, CA, USA

Abstract This paper provides a thumbnail sketch of the evolution of nonlinear ideas in the
mathematics and physics of the geosciences, broadly construed, over the last hundred or so years. It
emphasizes the mathematical concepts and methods and outlines simple examples of how they were, are,
and maybe will be applied to the solid Earth—that is, the crust, mantle, and core—and its fluid
envelopes—that is, the atmosphere and oceans.

Plain Language Summary Nonlinearity has become a buzzword, along with chaos, complexity,
fractals, networks, tipping points, turbulence, and other concepts associated with modern science. We
outline here what it all means and how it has affected the progress of the geosciences over the past century,
mostly over the last six decades or so.

1. Introduction and Motivation
As we are celebrating 100 years since the founding of the American Geophysical Union, it is timely to
consider the way that nonlinear concepts and methods have modified the way that we are practicing the
geosciences today and may practice them over the next century.

While nonlinear approaches have rapidly expanded over the last half century, it is clear that their roots go
back much further. One of the oldest nonlinear problems in the geosciences is certainly drawing a right angle
on the face of the Earth, for example, between a meridian and a parallel: this problem is equivalent to solving
the Diophantine equation a2 +b2 = c2. It is conjectured that the ancient Egyptians applied this equivalence,
commonly called Pythagoras's theorem, to build their pharaonic projects, from the basis up; specifically,
that they used the simplest solution—namely, (a, b, c) = (3, 4, 5)—by tying 12 = 3 + 4 + 5 equidistant knots
into a rope and used it in order to build the great pyramids of Giza, and many other temples, palaces, and
tombs (e.g., Cooke, 2011).

But that is, of course, not what we all have in mind when discussing nonlinearity in the sciences in general
and in the geosciences in particular. Linear approaches dominated the physical sciences in the nineteenth
century; the explosion of a variety of methodologies that deviate from them is well illustrated by the saying,
often attributed to Stanislaw Ulam (Gleick, 1987), that linear dynamics is akin to elephant zoology, or words
to that effect. What we mean by tracing back the rapid rise of nonlinear dynamics, nonlinear sciences, or
what not to some time after World War II, is the following fact: according to the well-known story of the
lamppost, and of attempts to find the forlorn keys in its circle of light, a superb development of methods for
solving linear algebraic and differential equations in the nineteenth century led to great emphasis on solving
problems formulated in terms of such equations in the first half of the twentieth century.

Basically, linear problems are easily separable, and hence solvable, due to the superposition principle, projec-
tion onto orthonormal bases, and so on. Thus, many such problems were solved over the last 200 years, most
often analytically, that is, with pencil and paper or with very rudimentary computational devices. And these
methods are still of great use to us, in deriving and determining the properties of tangent linear equations,
adjoint operators, and many other mathematical approximations of real-world problems.

It is the rise of more-and-more powerful computational devices after World War II that changed our way of
thinking about what the solution to the mathematical formulation of a physical problem really is, that is,
not necessarily an analytical expression but an algorithm for obtaining information about such a solution
with prescribed accuracy. The improvement in observational methods—in the geosciences and elsewhere,
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whether in vitro, that is, in the lab, or in vivo, that is, outdoors—has also contributed greatly to our appetite
for going beyond linear approximation to model, simulate, understand, and predict the complexity of the
phenomena under study.

The nonlinear way of thinking about problems, in the geosciences and many other sciences—physical sci-
ences in general, biosciences, and socioeconomic sciences—still needs to operate within the circles of light
projected into the night of our ignorance by a certain number of lampposts. These lampposts include the
theory of dynamical systems, statistical mechanics, scale invariances, the theory of localized coherent struc-
tures, and several others. Some lampposts that have been added or whose light circle has expanded in the
last decade or so are network theory and the theory of nonautonomous and random dynamical systems.

The remainder of this paper will examine some of these lampposts and their respective circles of light, fol-
lowing and thoroughly updating two decades later Ghil et al. (1991) and Ghil (2001). Clearly, the bounds on
the length of the paper—combined with the author's tastes and other limitations—have affected the selec-
tion of topics and the length to which each one of them could be treated. Moreover, the author is not a
historian of science and the paper does not claim, nor can anyone else, to provide a fully complete and accu-
rate description of the rich web of influences among many researchers active in the fields upon which this
review is touching, however lightly.

With these disclaimers being stated, let us proceed. In the next section, we outline with a broad brush how
linear results provided first insights into the behavior of fluid motions, around the turn of the nineteenth
into the twentieth century, and how nonlinear ones completed our knowledge after World War II.

Sections 3 and 4 examine in somewhat greater detail the dynamical systems and the scale invariance lamp-
post, respectively. Each section starts with a sketch of the basic concepts and methods, in sections 3.1 and 4.1,
respectively; each then follows up with some key applications. Thus, in section 3.2 we discuss the mechan-
ics of vacillation, multiple weather regimes in the atmosphere, and multiple flow regimes in the oceans,
while in section 4.2 we cover succinctly fractals in dynamical systems, as well as scale invariance in general
three-dimensional (3-D), two-dimensional (2-D), and geostrophic turbulence.

A few additional lampposts are examined in section 5, each subsection starting again with theoretical foun-
dations, followed by selected applications. Section 5.1 covers network theory, including both topology and
dynamics, in particular that associated with Boolean delay equations (BDEs); the applications illustrated
are to earthquake and climate networks. In section 5.2 we discuss fluctuation-dissipation theory, outlin-
ing the classical theory for thermodynamic equilibrium, as well as the more recent out-of-equilibrium
generalizations; applications to the climate system's response to natural and anthropogenic forcing are
emphasized.

In section 5.3, we cover the extension of dynamical systems theory to nonautonomous and random dynam-
ical systems; the applications are the stochastically perturbed Lorenz (1963a) model and the oceans'
wind-driven circulation subject to time-varying wind stress. This subsection ends with an introduction to
climate sensitivity and the use of Wasserstein distance to generalize the traditional concept of equilibrium
sensitivity.

Section 6 presents two meanings of prediction as touchstones of progress in the nonlinear geosciences:
(i) forecasting, that is, prediction in time of the quantitative realization of known phenomena and (ii)
theoretical prediction of qualitatively new phenomena. The former meaning is illustrated by forecasting
atmospheric and oceanic phenomena on longer and longer time scales, from days through seasons and on
to several decades. The latter one is presented in the context of predicting an ice-covered Earth by simple
energy balance models (EBMs) and leading to the current arguments about a snowball Earth. Section 7
concludes this review paper with a brief coda. All acronyms used in the text appear in Appendix A.

2. From Linear to Nonlinear Thinking: A Quick Review
A paradigmatic success of linear concepts and methods at the beginning of the twentieth century is the
explanation by Lord Rayleigh (1916) of the striking patterns found in the thermal convection experiments
of James Thomson (1882) and of Henri Bénard (1900). The word “paradigm” is used here advisedly in the
sense of Thomas Kuhn (1962): it is easy to see how the transition from a linear—and for quite a while
very successful—mode of thinking to a nonlinear one is not just an evolutive generalization but a genuine
revolution.
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In the next section, we will consider a few key traits of the nonlinear mode of thinking. In many applications
to the physical sciences, like fluid dynamics, the linear mode involves linearizing the equation of motion
about a suitably symmetric steady state, most often a state of rest (Rayleigh, 1916, p. 534). The stability of
the resulting linear operator is examined and the spatial pattern of the most rapidly growing unstable mode
can then be compared to observations. While Lord Rayleigh only examined a rectangular domain, subse-
quent work led to the study of convective rolls and hexagons as the most often occurring spatial patterns
near equlibrium (e.g., Busse, 1978; Krishnamurti, 1973). It is interesting, though, that Rayleigh, (1916, pp.
529–530) does describe the irregular transitions between two types of flow regimes. Pursuing an explanation
thereof was clearly beyond the reach of the linear methodology available to him.

Be that as it may, linear methodology led to many other successes during the first half of the twentieth
century, in explaining flow patterns observed in the laboratory, in industry, and in nature. Thus, when
we see parallel cloud streaks in the sky, we know that they are the result of either Rayleigh-Bénard or
Kelvin-Hemholtz instability. Possibly the crowning success of this approach was the discovery of a truly 3-D
instability of great importance for atmospheric and oceanic flows, namely, baroclinic instability, by Jule G.
Charney (1947) and, independently, by Eric T. Eady (1949).

Charney's and Eady's results on baroclinic instability and variations thereupon managed to explain various
features of the initial stages of development of midlatitude storms in the atmosphere and of mesoscale mean-
ders in the oceans. But they could not explain the finite-amplitude interactions between separate storms
nor help very much in predicting weather beyond 1–2 days. In fact, Eady, (1949, pp. 51–52) already had a
pretty clear vision of the difference between theoretically identifying recognizable initial patterns in a stor-
m's development and “the formidable task facing theoretical meteorology — that of discovering the nature
of and determining quantitavely [sic] all the forecastable regularities of a permanently unstable (i.e., per-
manently turbulent) system.” It is here that the paradigmatic jump from linear to nonlinear concepts and
methods has to occur.

3. The Dynamical Systems Lamppost
3.1. The Theory
The mathematical theory of dynamical systems deals with modeling the behavior of systems that evolve on
long time scales, sufficiently long, that is, for assuming that solutions of the models exist for all times, from
−∞ to +∞. This theory does not distinguish, in principle, linear from nonlinear systems but has much to
say about the latter; it does not distinguish either between natural systems—whether physical, biological,
or socioeconomical—and human-made systems, but we will be interested here in the natural ones. Some
basic facts of nonlinear life are outlined below, from the dynamical systems perspective, following Ghil et
al. (1991).

1. The equations of continuum mechanics are nonlinear. Surprisingly, many phenomena can be explained
by linearization about a particular fixed basic state. Many more cannot; see section 2 above.

2. Behavior of solutions to the nonlinear equations changes qualitatively only at isolated points in
phase-parameter space, called bifurcation points. Behavior along a single branch of solutions, between
such points, is modified only quantitatively and can be explored by linearization about the basic state,
which changes as the parameters change. That is, nonlinear dynamics is much like linear dynamics, only
more so (Ghil & Childress, 1987; Lorenz, 1963a, 1963b).

3. Bifurcation trees lead from the simplest, most symmetric states, to highly complex and realistic ones,
with much lower symmetry in either space or time or both. These trees can be explored partially by
analytic methods (Jin & Ghil, 1990; Jordan & Smith, 2007) and more fully by numerical ones, such as
pseudo-arclength continuation (Dijkstra, 2005; Legras & Ghil, 1985).

4. The truly nonlinear behavior near bifurcation points involves robust transitions, of great generality,
between single and multiple fixed points (saddle-node, pitchfork, and transverse bifurcations), fixed
points and limit cycles (Hopf bifurcation), limit cycles, and strange attractors (“routes to chaos”:;
Eckmann, 1981; Guckenheimer & Holmes, 1983). As the complexity of the behavior increases, its
predictability decreases (Ghil, 2001).

5. Behavior in the most realistic, chaotic regime can be described by the ergodic theory of dynamical sys-
tems. In this regime, statistical information similar to, but more detailed than for, truly random behavior
can be extracted and used for predictive purposes (Eckmann & Ruelle, 1985; Ghil & Robertson, 2000; Mo
& Ghil, 1987).

GHIL 1009



Earth and Space Science 10.1029/2019EA000599

6. Chaos and strange attractors are not restricted to low-order systems. They can be shown to exist for the
full equations governing continuum mechanics (Constantin et al., 1989; Temam, 2000). The detailed
exploration of finite- but high-dimensional attractors is in full swing (Dijkstra, 2005; Ghil, 2017; Legras
& Ghil, 1985).

7. Single time series (Takens, 1981) and single numbers derived from them (e.g., Grassberger, 1983) have
been used to describe chaotic behavior. This very simple and straightforward use of a nonlinear concept
has attracted considerable attention to deterministically chaotic dynamics, including in the geosciences
(Nicolis & Nicolis, 1984; Tsonis & Elsner, 1988). The use of single time series, while exciting in theory,
is not very promising when the series are short and noisy (Ruelle, 1990; Smith, 1988). The increasing
availability of a large number of similar series at different points in space, combined with physical insight,
is compensating more and more for the shortcomings of each individual time series in describing the
complexity of many phenomena in the geosciences, as well as advancing their prediction (Ghil et al.,
2002).

3.2. Some Results
The mechanics of vacillation. Two steps beyond linear theory, in the direction already outlined by Eady
(1949), were taken by Edward N. (1963a, 1963b). The first one of the two was stimulated by the work on
convection mentioned in section 2 above and revisited by Barry Saltzman (1962). This step yielded the
paradigmatic strange attractor of Lorenz (1963a), too well known to be reviewed here yet another time;
see Sparrow (1982), Guckenheimer and Holmes (1983), and Ghil & Childress, 1987 (1987, section 5.4).
The contributions of this paper to the understanding of predictability in atmospheric sciences and in many
other areas of the physical, biological, and socioeconomic sciences are covered in this Special Issue by
Krishnamurthy (2019) and by McWilliams (2019).

Two previous examples of chaotic behavior in a low-dimensional system were particularly important,
namely, the periodically forced Duffing (1918) and Van der Pol, 1920 (1920, 1926) oscillators; see, for
instance, Guckenheimer & Holmes (1983, Chapter 2), as well as Cartwright and Littlewood (1945) and
Pierini et al. (2018, Appendix A). Still, once the broader community of dynamical systems theorists (Li &
Yorke, 1975) and mathematical physicists (McLaughlin & Martin, 1975) became aware of this third and
most intriguing example of chaotic behavior, the contributions of Lorenz (1963a) and of his many followers
played a key role in showing the road to understanding deterministic chaos in low-dimensional systems.
The fractal dimension of the Lorenz (1963a) attractor will be treated in section 4.2 below.

The second step, taken by Lorenz (1963b), was going beyond the linear theory of baroclinic instability and
was stimulated by the rotating-annulus experiments with differential heating of David Fultz (e.g., Fultz et
al., 1959) and Raymond Hide (Hide & Mason, 1975, and references therein); see also Ghil et al. (2010). In
this step, Lorenz (1963b) showed how to proceed from the initial baroclinic instability of Charney (1947), via
successive bifurcations, to the so-called index cycle of atmospheric mid-latitude variability. Namias (1950)
described this cycle of the zonal index as a recurrence of changes in intensity of the prevailing westerlies,
with a rough periodicity of 4–6 weeks.

Lorenz, (1963b, Figure 3) reproduced key features of this phenomenon—such as the changes in strength,
latitude, and meandering of the westerly jet—by associating them with the tilted-trough vacillation in
the rotating annulus experiments. The corresponding bifurcation tree appears as Figure 5.8 in Ghil and
Childress (1987).

Multiple weather regimes.Charney (1947) and Eady (1949) followed the linear approach outlined in sections
1 and 2 and assumed small perturbations about a stationary midlatitude state of zonally symmetric flow. But
observational meteorologists knew already that predominantly zonal flow is only one of the midlatitudes'
persistent states and that episodes of so-called blocked flow—with large deviations from zonality—can per-
sist for fairly long times (e.g., Baur, 1947; Namias, 1968). “Long” here is defined as longer than the life cycle
of a typical midlatitude storm, which is 5–7 days, while blocking events can last for up to a month (e.g., Dole
& Gordon, 1983); see also Ghil & Childress, 1987 (1987, Figure 6.1).

Charney and DeVore (1979) studied a low-order barotropic model with merely three modes in a
𝛽-channel—that is, in a rectangular domain on a tangent plane to the sphere (e.g., Gill, 1982; Pedlosky,
1987)—that had two stable stationary solutions: one with features similar to zonal flow, the other resem-
bling blocked flow; see the bifurcation diagram in Ghil & Childress (1987, Figure 6.5). Charney et al. (1981)
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and Benzi et al. (1986) provided observational evidence for the existence of blocked-vs.-zonal bimodal-
ity in the Northern Hemisphere extratropics, while Mo and Ghil (1987) also found bimodality in the
Southern Hemisphere extratropics. The latter bistability involved different amplitudes and phases of a dom-
inant wavenumber-three, quasi-stationary wave; a third quasi-stationary pattern, of regional rather than
hemispheric extent, was called by Mo and Ghil (1987) the Pacific-South-American (PSA) pattern.

Legras and Ghil (1985) showed that, using just 25 modes of a barotropic model on the sphere, one could go
well beyond two stable fixed points, to obtain not only more realistic zonal and blocked flow but also stable
limit cycles and deterministically chaotic behavior. In the latter regime, depending on the Rossby number
Ro that determines the relative importance of the planet's rotation (see section 4.2 for further details), it is
either a zonal, a blocked, or an intermittent regime that dominates. In the presence of intermittency, the
relative time spent in zonal and blocked episodes changes smoothly as Ro increases Ghil & Childress (1987,
Figure 6.14). Weeks et al. (1997, Figure 5B) used a barotropic rotating annulus with topography and found
that the dependence of persistence times of zonal versus blocked flow on the experiment's Rossby number
exhibited marked similarities to the numerical results of Legras and Ghil (1985).

The existence of several weather regimes in the Northern Hemisphere's atmosphere is statistically pretty
well established now by a number of distinct clustering methods and their application to several data sets;
see, for instance, Table 1 in Ghil et al. (2018), and references therein. Even so, the exact number of such
regimes supported by the data, as well as their description and dynamical explanation, remains a matter
of debate. Moreover, high-resolution numerical weather prediction (NWP) models—which are otherwise
quite skillful at predicting weather a few days in advance—still have difficulties in predicting the onset of
blocking and transitions between it and zonal flow (Dawson & Palmer, 2014).

Multiple flow regimes in the oceans. The horizontal extent of storms in the atmosphere and of eddies in the
oceans is given by the Rossby radius of deformation R (Ghil & Childress, 1987; Gill, 1982; Pedlosky, 1987)
that determines the so-called synoptic scale. Because of the differences in stratification between the two
fluid media, Roc ≃ 100 km ≪ Ratm ≃ 1, 000 km. Thus, when first discovered, oceanic eddies have been
erroneously called “mesoscale eddies,” since 100 km is termed the mesoscale in the atmosphere. Be that as
it may, the name has stuck (e.g., McWilliams, 2011).

While the diameter of oceanic eddies is much smaller than that of the atmospheric ones, their life cycle is
much longer: months rather than days. Thus, low-frequency variability (LFV) in the oceans is on the scale
of years-to-decades, while in the atmosphere it is subseasonal-to-seasonal, 10–100 days. In the oceans, one
tends to distinguish between two types of causes of LFV: the wind-driven circulation and the thermohaline
(THC) or meridional-overturning circulation. The former is predominantly in a horizontal plane, driven by
atmospheric momentum fluxes, and contributes to the interannual LFV of the oceans, while the latter is
predominantly in a meridional plane, driven by buoyancy fluxes and contributes to the interdecadal LFV
(Dijkstra & Ghil, 2005).

Important contributions to the nonlinear understanding of oceanic LFV are roughly contemporaneous to, or
even earlier than, the pioneering contributions of Lorenz, (1963a, 1963b) for the atmosphere. Henry Stom-
mel (1961) obtained two stable stationary solutions in a simple two-box model of the THC. He was originally
interested in the seasonal reversal of local THCs, such as in the Red Sea or the Eastern Mediterranean Stom-
mel, (1961, p. 225) but did note on p. 228 that “One wonders whether other quite different states of flow are
permissible in the ocean [...] and if such a system might jump into one of these with a sufficient perturbation.
If so, the system is inherently frought with possibilities for speculation about climatic change.” Speculations
on this matter continue apace, and some of the relevant research is reviewed in Dijkstra & Ghil, 2005 (2005,
section 3).

George Veronis (1963) considered the wind-driven ocean circulation in a rectangular basin on the 𝛽-plane,
subject to time-independent wind stress, and truncating the expansion of the barotropic, single-layer stream
function at four sine modes. He obtained two stable steady states, as well as a limit cycle for various
parameter values.

Jiang et al. (1995) introduced a different expansion of the shallow-water equations in the same geometry,
with an exponential multiplier in the zonal, x direction to allow for a western boundary current, as well
as carrying out numerical integrations on an eddy-permitting grid with 𝛥x = 𝛥y = 20 km. They obtained
exact steady states, as well as exactly periodic solutions (Figure 1) for the numerical integrations that used

GHIL 1011



Earth and Space Science 10.1029/2019EA000599

Figure 1. Snapshots from an exactly periodic relaxation oscillation of the Jiang et al. (1995) model; see also Figure 7 (black and white) there. Color indicates
contours of the model's upper-layer thickness, with warm colors for the subtropical gyre and cold ones for the subpolar one; black lines indicate contours of
potential vorticity, with a modified Rossby wave propagating across the basin. Courtesy of Shi Jiang.

15,000 grid variables. These authors also showed that the generation of the nearly mirror-symmetric steady
states in the numerical integrations was well captured by the perturbed pitchfork bifurcation of their highly
idealized, intermediate-order model.

The periodic solutions became more and more anharmonic and sawtooth shaped as the time-constant wind
stress intensity was increased and finally led to aperiodic, intermittent solutions. This transition to chaos can
be followed in Figure 2 via a homoclinic bifurcation for a quasi-geostrophic (QG) model with a resolution of
𝛥x = 𝛥y = 10 km. Dijkstra & Ghil (2005, section 2) provide further details on this particular model, as part of
an entire hierarchy of increasingly detailed and realistic models that confirm its results, and many additional
references. Concerning geostrophy and its effect on turbulent fluid behavior, see section 4.2 below.

Overall, the line of work outlined in the preceding paragraphs has provided fairly convincing evidence
that intrinsic oceanic LFV, even in the absence of variable atmospheric forcing, is an important source
of interannual climate variability. Detailed confrontation of model results with recent reanalysis data for
both atmosphere and oceans supports these ideas, at least in the case of the North Atlantic basin (Groth
et al., 2017), where this mechanism also provides a possible explanation of the North Atlantic Oscillation
(NAO) and of its approximate 7- to 8-year periodicity. The situation for time-dependent wind forcing will be
discussed in section 5.3.

Bifurcations and tipping points. In the applications covered herein, we have limited ourselves to classical
bifurcations (e.g., Arnol'd, 2012; Guckenheimer & Holmes, 1983), which go back to the work of Leonhard
Euler (1757) on buckling of a beam (e.g., Timoshenko & Gere, 1961). Recently, the interest in bifurcations
in the geosciences has greatly increased due to the introduction of the concept of tipping points from the
social sciences (Gladwell, 2000; Lenton et al., 2008). Clearly, a tipping point sounds a lot more threatening
than a bifurcation point, especially when dealing with an earthquake or a dramatic and irreversible climate
change.
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Figure 2. Generic bifurcation diagram for the barotropic quasi-geostrophic model of the double-gyre problem: the
asymmetry of the solution is plotted versus the intensity of the wind stress 𝜏. The stream function field 𝜓 = 𝜓(x, y) is
plotted for a steady-state solution associated with each of the three branches; positive values in red and negative ones
in blue. After Simonnet et al. (2005).

Aside from their rhetorical impact, though, tipping points generalize classical bifurcations in several impor-
tant ways when considering open, rather than closed, systems. The physical difference between the former
and the latter translates into the presence versus absence of explicit time dependence in the right-hand side
or the coefficients of the governing system of evolution equations, be they low, high, or infinite dimensional.

Classical dynamical systems theory deals with closed systems, which are governed by models in which there
is no explicit time dependence whatsoever. These models are called autonomous, and the time independence
property plays a key role in the theory. For instance, given a system of two ordinary differential equations
(ODEs) in the plane, uniqueness of solutions essentially prevents self-intersection of the orbits, which can
only tend to fixed points or limit cycles. It takes either periodic forcing, as is the case for the Duffing or Van
der Pol oscillator, or three autonomous ODEs in Euclidean 3-D space, as for the Lorenz (1963a) model, to
get deterministically irregular, chaotic behavior.

The Earth system, though—as well as its subsystems, such as the solid Earth's core and mantle or its fluid
envelopes' atmosphere and oceans—are open and exchange time-dependent fluxes of mass, energy, and
momentum with each other and with outer space. It is high time, therefore, to start applying more system-
atically the theory of nonautonomous deterministic and of random dynamical systems to the whole Earth
and to its various parts. This will be done in section 5.3 below.

At this point, let us just mention that there are three kinds of tipping points that have attracted recently
considerable attention when studying open systems (Ashwin et al., 2012):
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Figure 3. The sixth-level iteration for obtaining the Sierpiński carpet on the unit square [0, 1] × [0, 1]. The carpet has
topological dimension dT = 1 but Hausdorff dimension dH ≃ 1.893 < 2. From Wikimedia, public domain.

(i) B-Tipping or Bifurcation-due tipping: slow change in a parameter leads to the system's passage through
a classical bifurcation;

(ii) N-Tipping or Noise-induced tipping: random fluctuations lead to the system's crossing an attractor
basin boundary; and

(iii) R-Tipping or Rate-induced tipping: rapid changes lead to the system's losing track of a slow change in
its attractors.

4. The Scale Invariance Lamppost
The light of this lamppost has to do with insights about patterns that appear to keep their spatial structure
at increasing magnification. Such spatial patterns—like the Cantor set on the line and the Peano curve in
the plane—were well known by the late nineteenth century (e.g., Sagan, 2012), but their pervasiveness in
nature and connection to a system's evolution in time only became evident in the second half of the twentieth
century.

4.1. The Theory
Probably the best known set with strange properties that arise by an iterative construction is the Cantor
ternary set. Consider the closed unit interval 0 = [0, 1] of length 𝓁0 = 1 on the real line R and remove the
open middle third (1∕3, 2∕3), which leaves the set 1 = (0∕3) ∪ (2∕3 + 0∕3) = [0, 1∕3] ∪ [2∕3, 1] of length
𝓁1 = 2∕3. Removing inductively the open middle third of the two closed intervals left, then of the four ones
left at the next stage and so on, one gets

n =
n−1

3
∪
(

2
3
+

n−1

3

)
, (1)

of length 𝓁n = (2∕3)𝓁n−1 = (2∕3)n. This construction is perfectly self-similar and scale invariant.

Clearly, 𝓁n → 0, so that the limit set ∞ =  has length 𝓁∞ = 0. But the deep result is that there is a
one-to-one correspondence between the points in the set  of zero Lebesgue measure and those in the unit
interval 0; that is, the two sets have the same uncountable cardinality || = |0|, which equals also the
transfinite cardinality ℵ1 of the real line itself. The former result was stated by Georg Cantor (1887) without
proof; the modern proof is based on what became known as the Cantor-Schröder-Bernstein theorem, with
Felix Bernstein and Ernst Schröder having almost simultaneously given two different proofs in 1897, as did
Felix Dedekind. The 2-D generalization of the Cantor set in the plane R2 is called the Sierpiński (1916)
carpet; see Figure 3.
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Many mathematicians at the time were not comfortable with transfinite numbers nor with statements like
the inequality ℵ0 < ℵ1, where ℵ0 is the cardinality of natural, integer, and rational numbers, among other
countable sets, nor did physicists in the late nineteenth century appreciate functions that were not con-
tinuously differentiable everywhere. This inequality and the absence of any cardinals between ℵ0 and ℵ1
depended on difficult issues raised by the axiomatization of mathematics (e.g., Suppes, 1972) that were not
that palatable for most mathematicians and almost all physicists. This fact transpires even in Cantor's choice
of journal for his 1887 paper, namely, a philosophical rather than a standard mathematical one.

The situation was as bad or worse with respect to functions that were not continuously differentiable any-
where. Bernard Bolzano and Augustin-Louis Cauchy had given early definitions of continuity in 1817 and
1823, respectively, and Karl Weierstrass had given the better known (𝜖 − 𝛿) definition a few decades later.
As discussed in section 2, physicists were extensively using ordinary and partial differential equations
(ODEs and PDEs) around the turn of the nineteenth into the twentieth century and lack of continuous
differentiability was considered a mathematical oddity of little use in studying natural phenomena.

Benoît Mandelbrot (1967) had an important role in stressing that this was not so. Hugo Steinhaus (1954) had
already discussed what we now call fractional dimension, when Lewis Fry Richardson (1961) pointed out
the “coastline paradox” and provided the polygonal method for correctly overcoming this paradox; see also
Hunt (1998). Essentially, the length L of a coastline, river (e.g., Steinhaus's Vistula), or geographic border
depends on the scale G used to approximate it by a polygon. Based on several examples available at the
time, Richardson, (1961, Figure 17) proposed the approximation L(G) = 𝜅G1−D, where 𝜅 is a constant and
D ≥ 1 is the fractional dimension; the latter equals unity if the curve is smooth. Quite recently, Losa et al.
(2016) found “[… ] that among many fractal analysis techniques, only Richardson's method enables correct
calculation of the length of an object's border or irregular line.”

The basic ingredients of Mandelbrot's development of fractal concepts and methods became available in the
early twentieth century. First, Felix Hausdorff (1918) provided a generalization of dimension that allowed
one to evaluate it for the kinds of odd sets we discussed above, cf. Figure 3; it is now called the Haussdorf
dimension, and it can take on noninteger values. Second, the same year, Gaston Julia (1918) considered a
class of iteratively defined sets in the complex plane C that have the right oddity.

Speaking loosely, for a given holomorphic (i.e., complex analytic) function f(z), with z = x + iy, the Julia
set  (𝑓 ) and the Fatou (1919) set  (𝑓 ) are complements of each other, with  ( 𝑓 ) being the set of points
on which repeated iterations of z → f(z) diverge, while on  (𝑓 ) these iterations behave similarly. In other
words, f is regular on  (𝑓 ) and chaotic on  ( 𝑓 ). As for the Cantor set  above, we only outline here the
simplest case, namely, that of quadratic polynomials, written as fc(z) = z2 + c, with c ∈ C. It is this case that
Benoît (Mandelbrot, 2013, and references therein) made famous in the late twentieth century.

For c = 0, the Julia set is simply the unit circle {z ∶ |z| = 1}, and the two Fatou sets are its interior and
exterior, with iterations that converge to 0 and ∞, respectively. In general, though, the Julia set  (𝑓c) is
much more complicated and Mandelbrot (1977) introduced the term “fractals” for such complicated sets.
A beautiful illustration of the self-similarity that characterizes many fractals is given by the Mandelbrot set
(𝑓 ), defined as the set of points c in the complex plane for which the iterates

{zn+1(c) = 𝑓 (zn; c);n = 0, …}

stay bounded as n increases, when starting at z0 = 0. The most often studied and cited case is that of f(z; c) =
fc(z) = z2 + c.

While there is no definitive consensus on how best to define a fractal, there are two key ingredients: (i) a
degree of self-similarity and (ii) a Hausdorff dimension dH that exceeds the classical, topological dimension
dT. The rigorous mathematical definition of the latter is also laborious, but its integer values are obvious
for the usual Euclidean spaces, namely, dT = n for Rn; the former is often an irrational number, although
a “fractal dimension,” while often used, is an obvious misnomer: it is the set that is a fractal, while the
dimension is a simple scalar in all cases, and a fraction in many.

Both Julia sets, defined for a fixed c as z varies, and Mandelbrot sets, defined for a fixed z0 = 0 as c varies, have
fascinating properties and there are interesting connections between the two. Peitgen and Richter (2013)
provide both mathematical substance and beautiful illustrations on these topics. Figure 4 illustrates just one
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Figure 4. Mandelbrot set, with cr on the abscissa and ci on the ordinate. The white rectangles indicate the domain of
the zoom in the next panel. Created by Wolfgang Beyer with the program Ultra Fractal 3 (https://commons.wikimedia.
org/wiki/File:Mandel_zoom_00_to_01.png); Steps 4–8 of the iteration are reproduced here as panels (a)–(d) of the
figure, under the Creative Commons Attribution-Share Alike licence (https://creativecommons.org/licenses/by-sa/2.5/
deed.en).

such case, but for this set, the scale invariance is more qualitative: things look roughly the same rather than
exactly the same at different scales.

4.2. Some Results
Fractals in dynamical systems. A number of factors concurred in the second half of the twentieth century to
greatly increase the circle of light of this lamppost, as well as the interest in it. First, there was the increase
of interest in dynamical systems and their applications, as reviewed in sections 2 and 3 herein. Next, like in
the case of dynamical systems, it was the great progress in computing power and storage capacity.

It is great fun computing Julia or Mandelbrot sets on your laptop, as it is computing the strange attractor of
the Lorenz (1963a) model. Moreover, this attractor is a fractal for a broad range of parameter values, that is,
when you drill through it perpendicular to the tangent manifold, anywhere except at the origin, you get a
Cantor-like set.

Before discussing the dimension of this strange attractor, a few comments are in order on the concept in
general, and on the role of this particular attractor in the general theory. A good overview is given by David
Ruelle, (1995, pp. ix–xvii); the book also contains a collection of the author's papers on the related topics of
chaos, strange attractors and turbulence.

The concept of a strange attractor was introduced by Ruelle and Takens (1971a) and Ruelle and Takens
(1971b) added to the former paper a list of references from the Soviet literature made available to them
after the previous paper was published. Neither paper cites Lorenz (1963a) and, in fact, Ruelle, (1995, p. ix)
specifically states that
“Based on a computer study, Edward Lorenz [3] identified in 1963 a time evolution
with sensitive dependence on initial conditions (the Lorenz attractor). He also
rediscovered Poincaré's idea that weather predictions are limited by sensitivity
to initial conditions. Just as Lorenz was unaware of Poincaré, physicists and
mathematicians were largely unaware of the findings of Lorenz (a meteorologist)
until the mid 1970's.”
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References [1] and [2] in the introduction to Ruelle (1995) are Hadamard (1898) and Poincaré (1908). Both
these references were well known to mathematicians and physicists working on dynamical systems and
their ergodic theory in the 1960s and 1970s (e.g., Smale, 1967). Note, by the way, that the journal in which
Hadamard's work was published is the same as that of Julia (1918), 20 years later, whose work was discussed
in section 4.1 above. It is McLaughlin and Martin (1975) and Li and Yorke (1975), already mentioned at the
beginning of section 3.2, who made “physicists and mathematicians [aware] of the findings of Lorenz [in]
the mid 1970's.”

This being said, it is time to return to the dimension of the fascinating Lorenz (1963a) attractor. For the
standard nondimensional parameter values illustrated in the original Lorenz (1963a) paper—namely, the
Rayleigh number 𝜌 = 28, the Prandtl number 𝜎 = 10, and the wavenumber 𝛽 = 8∕3—are dH = 2.06 ±
0.01 > 2 = dT and its volume is zero, as for the Cantor set. Please see, again, Sparrow (1982), Guckenheimer
and Holmes (1983), and Ghil & Childress, 1987 (1987, section 5.4), as well as Krishnamurthy (2019) and
McWilliams (2019) in this issue for further details.

While several metric dimensions have been defined for dynamical systems (e.g., Farmer et al., 1983), a par-
ticularly useful one is the Lyapunov dimension. It is given by the Lyapunov spectrum of the underlying
system and is also called the Kaplan-Yorke dimension (Kaplan & Yorke, 1979):

dKY ≡ k + Σk
𝑗=1

𝜆𝑗

𝜆k+1
; (2)

here k is the maximum integer such that the sum of the k largest exponents is still nonnegative. We shall
return to the Lyapunov spectrum in section 6 below. Leonov et al. (2016) obtained the following remarkable
formula for the Lyapunov dimension dKY of the global attractor of the Lorenz (1963a) model:

dKY = 3 − 2(𝜎 + 𝛽 + 1)
𝜎 + 1 + ((𝜎 − 1)2 + 4𝜌𝜎)1∕2 < 3 . (3)

Dynamical systems and weak turbulence. Of course, it is one thing to describe numerically and study math-
ematically fractals in dynamical systems and quite another thing to do so in natural phenomena. As
already indicated in section 1, the improvement in making and in analyzing observations, with their rapidly
increasing number and accuracy, has also greatly accelerated the uses of scale invariance in the natural
environment.

A particularly stimulating example is given by turbulence in general and by geophysical turbulence more
specifically. Turbulent flow arises in many areas of engineering, as well as in nature, from blood flow to
galactic evolution. Its presence and intensity is characterized by the Reynolds number R ≡ UL∕𝜈, where
U, L, and 𝜈 are a characteristic velocity, length, and kinematic viscosity of the flow and the fluid: the higher
U or L and the smaller 𝜈, the more turbulent the flow.

Understanding and predicting turbulent behavior is probably the hardest problem in continuum physics.
Compared to huge progress throughout the twentieth century in quantum and relativistic physics, progress
in turbulence studies has been more moderate.

In fact, in the opening article of the Annual Reviews of Fluid Mechanics, Sydney Goldstein (1969) attributes
to Sir Horace Lamb the following statement “I am an old man now, and when I die and go to Heaven there
are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the
turbulent motion of fluids. And about the former I am really rather optimistic.” The “old man,” of course,
was a leader in fluid dynamics at the turn of the nineteenth into the twentieth century and the author of
the Lamb (1932) book on which the generation of S. Goldstein, Ludwig Prandtl, and Theodor von Kármán
had grown up. Goldstein's comment on this quote is, “Lamb was correct on two scores. All who knew him
agreed that it was Heaven that he would go to, and he was right to be more optimistic about quantum
electrodynamics than turbulence.” Goldstein's prediction still holds 50 years later, although we do mention
some interesting glimpses of progress below.

Before addressing the application of scale invariance to various kinds of turbulence, it is important to touch
upon the change in perspective brought by the application of dynamical systems ideas. The standard view
of the onset of turbulence in fluids until the time of the Goldstein (1969) review was that of Landau and
Lifshitz (1959). In this view, successive Hopf bifurcations lead to an increasing number of oscillatory modes
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with rationally unrelated periodicities, which give rise to quasiperiodic and thus fairly irregular behavior in
time (e.g., Hopf, 1948).

Ruelle and Takens (1971a) proposed, instead, that a much shorter bifurcation tree leads to what they called
a turbulent or strange attractor. Until that time, bifurcations had mostly been studied for low-dimensional
systems (e.g., Andronov et al., 1966). But a number of pioneering experiments with fluids convinced the
community that a sequence of just a few bifurcations (cf. Eckmann, 1981) can lead to irregular, aperiodic
behavior in continuous media. Some of these exciting developments are covered in Swinney (1978) and Ghil
et al. (1985), and references therein.

It was in the next decade that fluid dynamicists realized that these transitions to, or the onset of, turbulence
represent only the beginning of the story. Hence, the type of flows that resulted after traveling the roads to
turbulence discussed so far were dubbed “weak turbulence” (e.g., Libchaber, 1985). Fully developed turbu-
lence lay farther along the road, and at considerably higher Reynolds or Rayleigh numbers, depending on
the nature of the flow, whether isothermal or thermally active (e.g., Benzi & Biferale, 2009; Ravelet et al.,
2008).

Fractals in fully developed turbulence. Rapid technological progress still obliged engineers and other prac-
titioners to find empirical results even in the absence of deeper understanding of the causes of turbulence
and the behavior of turbulent flows. In particular, once the crucial role of boundary layers in mediating the
transition between the fairly frictionless flow far from a wall and the necessity of a viscous fluid to be at rest
at the boundary was understood, several empirical formulas were developed. Schlichting & Gersten, 2016
(2016, and earlier editions) are a good source for this important subfield of turbulent fluid dynamics.

Thus, assumptions about the phenomena at play that appear at first sight rather strong, along with dimen-
sional analysis (e.g., Barenblatt, 1996), lead to the well-known “law of the wall.” Let U be the (nearly
constant) velocity outside the boundary layer, 𝜏w the shear stress at the solid surface, y the distance perpen-
dicular to the surface, u𝜏 = (𝜏w∕𝜌)1∕2, with 𝜌 the density of the fluid, 𝜇 its molecular viscosity, and 𝜈 = 𝜇∕𝜌 its
kinematic viscosity. The law is then given by U∕u𝜏 = f((u𝜏y)∕𝜈) and it holds for the “inner layer” y ≤ 0.2𝛿,
where 𝛿 is the total thickness of the boundary layer.

Based on work variously attributed to Lev Landau in the former Soviet Union and to L. Prandtl and Th. von
Kármán in the western literature, the form of the function f above is logarithmic, resulting in the log-law

U
u𝜏

= 1
𝜅

ln
u𝜏𝑦

𝜈
+ C ; (4)

see Bradshaw & Huang, 1995 (1995, and references therein). Extensive experimental work shows that
equation (4) holds for 𝜅 ≃ 0.41 and C ≃ 5.0, provided the pressure gradient parallel to the wall is not too
large, within the region 30𝜈∕u𝜏 ≤ y ≤ 0.1𝛿. The goodness of fit of the log-law above decreases as the
pressure gradient increases and one approaches separation of the boundary layer.

Such semiempirical relations, based on physical approximations and dimensional analysis, served practi-
tioners well. Still, there was an increasing need for fundamental understanding of the complexities involved
in fully turbulent flows.

A truly major step forward was due to the development of the energy cascade concept and of the statistical
theory of turbulence. In his pioneering study of NWP, L. F.Richardson, (1922, p. 66) formulated the key idea
of a turbulent cascade via the verse “Big whirls have little whirls that feed on their velocity, and little whirls
have lesser whirls and so on to viscosity—in the molecular sense.”

This idea was refined first by distinguishing between the largest scales in a fluid that are most energetic
and are affected by the geometry of the domain, and the smallest ones, at which energy input from non-
linear interactions and the energy drain from viscous dissipation are in exact balance. The latter have high
frequency and are locally isotropic and homogeneous (e.g., Batchelor, 1953). In between these two scales,
geometric and directional information is lost in the A. N. Kolmogorov (1941) inertial cascade, between the
large scales L and the Kolmogorov scale 𝓁K, provided the Reynolds number R is sufficiently high.

The value of 𝓁K is given again merely by dimensional arguments and the physical assumption that the
statistics of the small scales are universally and uniquely determined by the rate of energy dissipation 𝜖 and
the kinematic viscosity 𝜈, as R → ∞,

𝓁K =
(
𝜈3∕𝜖

)1∕4
.
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Figure 5. Energy and enstrophy cascades in (a) three-dimensional (3-D) and (b) two-dimensional (2-D) turbulence.
The latter panel also characterizes the dual cascades in quasi-geostrophic turbulence. Courtesy of Niklas Boers.

Between L and 𝓁K, instabilities break up the larger eddies into smaller ones that interact nonlinearly, while
viscous effects are negligible. Once more, these assumptions and dimensional analysis lead—for scalar
wavenumbers k = 2𝜋∕r and L > r > 𝓁K, where r = |r| and r is the distance in the physical space R3—to the
kinetic energy spectrum E = E(k), namely,

E(k) = C𝜖2∕3kp, (5)

with p = −5∕3 and C a presumably universal constant.

Frisch (1995) presents this statistical theory of 3-D turbulence elegantly and reviews the experimental evi-
dence, which confirms broadly the theory. This so-called direct energy cascade appears in Figure 5a. There
are two related difficulties, though. First, to cite again Goldstein (1969), “[… ] distinguished mathematical
statisticians, some of whom had hopes of contributing to the theory of turbulence, [when] they saw the phys-
ical, rather than mathematical, nature of Kolmogorov's contribution [… ] decided that such research was
not for them.” Indeed, to this day—and in spite of considerable progress in the mathematical theory of the
Navier-Stokes equations that govern fluid dynamics (e.g., Temam, 2001)—there is no rigorous derivation of
the Kolmogorov (−5∕3) law.

Second, the Kolmogorov (1941) theory implicitly assumes that 3-D turbulence is statistically self-similar
at different scales in the inertial range. Thus the flow velocity increments 𝛿u(r) = u(x + r) − u(x), when
scaled by 𝜆 > 0, should behave as 𝛿u(r) ≃ 𝜆𝛽𝛿u(r), with 𝛽 independent of r, where ≃ stands for equality in
distribution. It follows that the structure functions of order n, that is, the nth-order statistical moments of
the flow velocity increments 𝛿u, should scale as⟨

(𝛿u(r))n⟩ = Cn(𝜖r)n∕3, (6)

where the brackets denote the statistical average, and the Cn are universal constants.

More generally, given 1 < |p| < 3 in equation (5), one can show that the second-order structure function,
that is, n = 2 in equation (6) behaves like rp−1. Since the latter is easier to measure accurately,

⟨
(𝛿u(r))2⟩ ∝

r2∕3 implies that p = 5∕3, confirming Kolmogorov (1941) theory. In fact, experimental differences are of the
order of 2% (Mathieu & Scott, 2000). So far, so good.

Higher-order structure functions, though, deviate more and more from the scaling predicted by equation
(6), as they become a sublinear function of n, and the constants Cn are far from universal, according to
both laboratory and numerical experiments. The main reason for the observed deviations is the lack of
homogeneity in the turbulent flow field, in either time or space; this feature of turbulence is referred to as
intermittency and Mandelbrot (1969) highlighted its role: he conjectured that, as R → ∞, the dissipation of
the energy, far from being uniform, tends to concentrate on a fractal set with dH < 3. Lagrangian coherent
structures play an important role in reducing dissipation, producing intermittency in turbulent flows, and
increasing their predictability (e.g., Haller, 2015).

Geophysical turbulence. Large-scale atmospheric and oceanic flows are characterized by the key role of rota-
tion and shallowness (e.g., Ghil & Childress, 1987; Gill, 1982; Pedlosky, 1987). The theoretical study of such
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flows is referred to as geophysical fluid dynamics (GFD) and an important tool in this study is the QG
approximation; see Ghil & Childress (1987, Chapter 4) for a succinct introduction.

Shallowness is due to the small aspect ratio 𝛿 ≡ H∕L ≪ 1, where H is the characteristic height—with
H ≃ 10 km in the atmosphere and even smaller in the oceans—and L the characteristic horizontal extent,
with L ≃ 103 km in the atmosphere and L ≃ 102 km in the oceans. The dominant role of planetary rotation
is due to the smallness of the Rossby number Ro ≡ U∕fL ≪ 1, where U is a characteristic horizontal velocity,
𝑓 = 2Ω sin𝜙 is the Coriolis parameter that measures the local angular velocity, while 𝛺 is the planet's
angular velocity of rotation around its axis and 𝜙 the latitude.

QG flows are hydrostatic, that is, vertical accelerations are negligible due to the flows' shallowness, and they
are dominated by geostrophic balance between the Coriolis force and the pressure gradient. These two fea-
tures result in QG flows being 2-D to a good first approximation, which suggests that geostrophic turbulence
should also have 2-D features (e.g., Cushman-Roisin & Beckers, 2011; McWilliams, 2011; Salmon, 1998). We
start by rapidly reviewing the differences between 2-D and 3-D turbulence.

The key difference is the existence of two quadratic invariants, enstrophy and kinetic energy, rather than
energy alone; see the references in Charney, (1971, pp. 1087-1088), with enstrophy Z being the mean-squared
vorticity. In 3-D turbulence, the conservation of the kinetic energy E(k) leads to the direct cascade from large
to small scales, cf. equation (5), as illustrated in Figure 5; the slope of the E(k) spectrum over the inertial
range L ≤ k ≤ 𝓁K equals approximately −5∕3.

In 2-D turbulence, the existence of the two separate, positive-definite quadratic invariants, kinetic energy
E and enstrophy Z(k), leads to two cascades. Indeed, Fjørtoft (1953) showed that an energy transfer from
k to k + 𝛥k must, to conserve Z(k), be accompanied by a larger transfer of energy to k − 𝛥k; this follows,
essentially, from Z(k) ∝ k2E(k). Based on this crucial fact, Kraichnan (1967) showed that, in 2-D turbulent
flows, there are two inertial ranges: one with a reverse energy cascade and zero enstrophy flux, between L
and L∗, the other with a direct enstrophy cascade and zero energy flux, between L∗ and 𝓁K. The slope of the
energy spectrum in the former is (−5∕3), and it is (−3) in the latter, as illustrated in Figure 5b.

Charney (1971) noted atmospheric observations (e.g., Wiin-Nielsen, 1967) and numerical simulations (e.g.,
Manabe et al., 1970) of a k−3

z energy spectrum, where 7 ≤ kz ≤ 20 is the zonal wavenumber, with a corre-
sponding range of linear scales from 1,500 to 4,000 km. He emphasized, though, that the previously accepted
analogies between 2-D and QG flows are not really sufficient to argue for a similarity of the turbulent physics,
given the fact that the baroclinic instability that injects energy at L∗ ≃ 103 km is highly 3-D.

Charney (1971) argued that a deeper reason for the k−3
z spectrum is the possibility, in geostrophic turbulence,

to combine its two quadratic invariants into a single one, which he termed “pseudo-potential vorticity,” fol-
lowing previous work of his own. In 1971, no sufficiently accurate observations or simulations were available
for distinguishing among several hypotheses for the atmospheric spectrum beyond kz = 20. As such obser-
vations did become available, Nastrom and Gage (1985) showed that (i) all the way down to 2.6 km, there
are no spectral gaps; and (ii) in fact, the k−3

z spectrum associated with the k−3
z enstrophy cascade is followed

by yet another (−5∕3) slope, as the flow becomes 3-D at the smallest scales; see Figure 6.

Subsequent work, reviewed by Rhines (1979), Salmon (1998), and McWilliams (2011), among others, has
greatly refined understanding of both atmospheric and oceanic turbulence, including the role of intermit-
tency in deviating from simple −5∕3 and −3 laws. The interest of GFD practitioners for 2-D turbulence,
combined with the computationally much easier task of carrying out high-resolution, high-R calculations
in 2-D led to an important discovery linking localized coherent structures with intermittency and increased
predictability (Legras et al., 1988; McWilliams, 1984).

These structures were shown to be stable nonlinear solutions of the 2-D Euler equations. They represent,
therewith, a depletion of nonlinearity in the turbulent flow field, locally inhibit the direct enstrophy cascade,
and can survive for long times. As a result, the predictability time of large-scale dynamics increases, being
no longer limited as much by the small-scale fluctuations; see the recent review of Haller (2015).

Sakuma and Ghil (1991) also reviewed some of the pertinent GFD literature, as well as proving stability
for such localized coherent structures in the shallow-water equations, and emphasizing the analogies with
magnetohydrodynamics (MHD). These analogies arise from the similarity between the role of the magnetic
field vector B in the latter and the angular rotation vector𝛺 in GFD (e.g., Ghil & Childress, 1987; Hide, 1989).
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Figure 6. Wavenumber spectra of zonal and meridional velocity composited from three groups of flight segments of
different lengths; these groups were selected from over 6,000 commercial aircraft flights. The three types of symbols
(blue, red, and yellow) show results from each group. The least squares-fitted straight lines indicate slopes of (−3) and
(−5∕3). The meridional wind spectra are shifted one decade to the right for greater legibility. The actual observational
results show the typical deviations from straight lines in log-log coordinates. After Nastrom and Gage (1985).
©American Meteorological Society; used with permission.

Helicity H is an additional quadratic invariant in both 3-D and 2-D turbulence (Chorin, 2013, and references
therein), but it is not sign-definite and hence does not have the same effect as enstrophy on balancing energy
transfers. Still, it does give rise to both inverse and dual cascades, which are important in GFD as well as
in MHD. Helicity dynamics and bidirectional cascades are discussed in this issue by Pouquet et al. (2019).
A particularly important application is to astrophysics in general and to the solar wind in particular (e.g.,
Pouquet et al., 2017).

Dubrulle (2019), largely based on recent very high-resolution direct numerical simulations (DNSs) of 3-D
flows, has pointed out that the homogeneity assumptions of the Kolmogorov (1941) scaling break down at
the small-scale end 𝓁K of the energy cascade. To account for this loss of symmetry, she proposes a novel
approach to fully developed turbulence, in which the singularities introduced by Onsager (1949) play a key
role. Once again, this is but the beginning of a road but it is a promising one.

5. A Few More Lampposts
So far we have covered, to the extent allowed by the constraints of this special issue, some fundamental
concepts, methods, and results of dynamical systems theory in section 3 and of scale invariance in section
4. We will sketch now, even more briefly, the skeleton of three additional lampposts that increasingly are
helping shed some light on nonlinear effects in the geosciences.

5.1. The Network Lamppost
We live in a world that is more and more dependent on networks of computing devices, as well as of people.
Network theory thus is playing a bigger role in both understanding and modifying this world. Its applications
extend to a rapidly growing number of areas, which include of course the geosciences.

Arguably, it is the Burridge and Knopoff (1967) model of friction along a fault that is the first and still one
of the most important models of this kind in the geosciences. The model consists of a string of blocks con-
nected by springs and can also be thought of as a modification of the Fermi et al. (1955) model with differing
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Figure 7. Schematic diagram of the network classes studied by Colon and Ghil (2017). Simple network motifs:
(a) linear networks; (b) trees; (c) isolated loops; (d and e) two interacting loops, connected through a pivotal node;
(f and g) three interacting loops. More complex classes of directed graphs, with n = 100 nodes and connectivity c = 4:
(h) directed Erdős-Rényi (ER) networks; (i) scale-free networks with the specific, production-network distribution of
in- and out-degree based on the Fujiwara and Aoyama (2010) data set; (j) random acyclic networks in which
production moves upward; and (k) a network of two interdependent RA networks—in the network at left, production
moves upward, while it moves downward in the one at right. Reproduced from Colon and Ghil (2017). Economic
networks: heterogeneity-induced vulnerability and loss of synchronization, Chaos, 27, 126703, doi: 10.1063/1.5017851,
with the permission of AIP Publishing.

nonlinear spring laws and the addition of nonlinear friction forces. It provided an understanding of the grad-
ual accumulation and sudden release of potential energy associated with slow preseismic buildup and rapid
displacement along an earthquake fault. The Burridge-Knopoff model, by its simple-model explanation of
a baffling phenomenon, played a role in nonlinear solid-Earth studies that resembles that of the Lorenz
(1963a) model in nonlinear atmospheric studies.

Network theory. More generally, network theory is a field of graph theory. A graph is an object with nodes that
are connected by edges. The nodes and edges have certain attributes, for example, the physics at each node
may be described by an ODE, while the link between two nodes may correspond to couplings between their
ODEs. Such a network could then correspond to the method of lines being applied to a PDE (e.g., Schiesser,
2012).

A much simpler network could be a geometrically linear one, each of its nodes having an identical Boolean
expression attached to it while being instantaneously connected to neighboring nodes. Such a network is
called a cellular automaton (e.g., Von Neumann, 1951; Wolfram, 1983). For illustration purposes, Figure 7
shows a number of network classes recently studied by Colon and Ghil (2017).

A graph may be undirected, meaning that there is no distinction between the two nodes associated with
each edge, or its edges may be directed from one node to another. The latter can be the case of river net-
works (Zaliapin et al., 2010, and references therein), supplier-producer networks (e.g., Colon & Ghil, 2017;
Fujiwara & Aoyama, 2010), and many others (e.g., Albert & Barabási, 2002; Newman, 2010). A good exam-
ple of the former is an Ising model on a 2-D lattice in statistical mechanics (e.g., Onsager, 1944) or a forest
fire model of lesser (Malamud et al., 1998) or greater (Spyratos et al., 2007) complexity.

The topology of a network can be described by its adjacency matrix A = (aij), where the entry aij equals 1
or 0 depending on whether an edge does exist between the nodes i and j or not. Much of network theory
concentrates on various topological features, and on measures of centrality (Albert & Barabási, 2002; New-
man, 2010, and references therein). Each of these measures aims to rank nodes by their importance, and
they differ in how this importance is defined.

The simplest measure of centrality is the number of edges that it participates in, which is called the degree
k. For directed graphs, one also distinguishes between the in- and out-degree. The distribution of degrees
can be uniform, for example, k ≡ 1 for either a linear graph or a simple cycle and k ≡ 2 for a braid (e.g.,
Coluzzi et al., 2011); it can be fully connected, k ≡ N − 1, where N is the number of nodes; it can be fully
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Figure 8. Schematic diagram of the distinct classes of dynamical systems, in terms of the state x and time t. Note the
links: the discretization of time t can be achieved by the Poincaré map (P-map) or a time-one map, leading from Flows
to Maps. The opposite connection is achieved by suspension. To go from Maps to Automata one has to discretize the
statetion and smoothing lead in the opposite direction. Similar connections lead from BDEs to Automata and to Flows,
respectively. Please see the glossary in Table A1 for acronyms. Modified after Mullhaupt (1984). ODE = ordinary
differential equation; PDE = partial differential equation; FDE = functional differential equation; DDE = delay
differential equation; SDE = stochastic differential equation; BDE = Boolean delay equation.

random, in which case the mean degree is z = k̄ > N∕2; or it can be scale-free, that is, it obeys a power law,
with p(k) ≃ k−𝛼 , with 𝛼 > 0.

The dynamics on a network depends on the mathematical description of the state of each node, its set of
linked neighbors, and on the nature of the links, that is, on the coupling between the nodes. The state of each
node can be described by a time series of real- or Boolean-valued variables; such time series, in turn, can
either be provided by observations or be the result of evolution equations, be they systems of ODEs, PDEs,
or of Boolean equations. The links, as previously mentioned, can be directed or not; they can also change in
time in an evolving network.

Network applications. I: BDEs. We will give here an application to earthquake modeling and prediction. First,
we introduce the framework of BDEs to describe the state of the nodes and the nature of the links.

A system of BDEs is a semidiscrete dynamical model with Boolean-valued variables that evolve in continu-
ous time (Dee & Ghil, 1984; Ghil & Mullhaupt, 1985). The place occupied by BDEs in the world of dynamical
systems is illustrated in Figure 8.

Systems of BDEs can be classified into conservative or dissipative, in a manner that parallels the classifica-
tion of ODEs or PDEs. Solutions to certain conservative BDEs exhibit growth of complexity in time; such
BDEs can be seen therefore as metaphors for biological evolution or human history. Dissipative BDEs are
structurally stable and exhibit multiple equilibria and limit cycles, as well as more complex, fractal solution
sets, such as Devil's staircases and “fractal sunbursts” (Ghil et al., 2008, and references therein).

More generally, Figure 8 raises the question of which one of the various types of dynamical systems therein
apprehends best the complexities of the world surrounding us? Clearly, the amount of detail provided by
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Figure 9. Regimes of subharmonic, frequency-locked and chaotic solutions in the (𝜇, 𝛿s) parameter plane; here 𝜇 is the
local ocean-atmosphere coupling parameter and 𝛿s is an ocean mixed layer parameter that determines the model's
intrinsic periodicity, in the absence of the annual cycle. Black areas represent regions where no interannual signal is
present. Color scale represents the frequency ratio of the interannual oscillation to the annual cycle in regimes that are
frequency locked; for example, 0.25 indicates one ENSO cycle every 4 yeas, 0.222 indicates two ENSO cycles repeating
every nine years. Chaotic regimes are plotted in gray. Courtesy of Fei-Fei Jin. ENSO = El Niño/Southern-Oscillation.

each increases as we move from the Automata at the bottom to the Flows at the top of the rhomboid in the
figure.

Thus, one level at which one can read the figure is as an illustration of the hierarchy of models discussed
further in section 6. But there is also another way of reading it. In fact, each one of the downward-pointing
arrows between a class of models and an adjacent one below it represents a perfectly self-consistent simplifi-
cation, obtained as one discretizes either time t or space x. We all know how to obtain an ordinary or partial
difference equation (O𝛥E or P𝛥E) from an ODE or PDE respectively, by discretizing time. The extent to
which the solutions of the O𝛥E so obtained converge to those of the corresponding ODE depend on certain
stability and consistency properties of the ODE's right-hand side (e.g., Isaacson & Keller, 2012).

In the case of a P-map, topological properties are preserved as one goes from a Flow to a Map, and maps are
easier to study. Under certain technical assumptions dealing with smoothness and one-to-oneness, one gets
most of what one wants from studying the map, since the suspension that goes back from the Map one has
studied to the Flow can be proven to have the right properties. For instance, a periodic solution of the Flow
will appear as a point in the Map and vice versa.

Can similar equivalence results be proven for other pairs of arrows in Figure 8? There exists numerical
evidence, at least, to suggest that it might be true under suitable circumstances. Two such examples of, at
least partial, equivalences are given below.

Saunders and Ghil (2001) provided a thorough BDE treatment of the El Niño/Southern-Oscillation (ENSO)
mechanism postulated by J.Bjerknes (1969). Their Figure 7 of the “Devil's bleachers” shows the dependence
of the model ENSO's periodicity on two model parameters that characterize the wave propagation along the
equator and the local ocean-atmosphere heat exchanges, respectively; see also Ghil et al. (2008, Figure 6).
The projection of the latter 3-D axionometric plot on its 2-D parameter plane is strikingly similar to Figure 9
herein.

This similarity is the first example of good numerical correspondence between two adjacent vertices of the
rhomboid in Figure 8, since the “Devil's terrace” in Figure 9 is based on the intermediate model of Jin et al.
(1994, 1996). The latter model is governed by a system of nonlinear PDEs in one space dimension, namely,
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Figure 10. Three seismic regimes in the internal dynamics of the Boolean delay equation model, for a tree depth of
L = 6, that is, for n = 1 093 nodes. The panels show the density 𝜌 = 𝜌(t) of broken elements in the system. See Figures 7
and 8 in Zaliapin et al. (2003a) for loading and healing parameter values and other details. (a) Regime H, (b) Regime I,
and (c) Regime L. Note the difference in vertical scale for the three panels. Reproduced from Zaliapin et al. (2003a)
with kind permission of Springer Science and Business Media.

longitude along the equator, with the parameters𝜇 and 𝛿s that appear in Figure 9 here; the two play a roughly
similar role in the PDE model to that of the two parameters, local and global, in Ghil et al. (2008, Figure 6).

The early applications of BDEs to the climate sciences only used small systems of a few variables (e.g., Darby
& Mysak, 1993). The first BDE application on a network was to a very simple model of seismic activity. The
model consists of a ternary tree with a direct cascade of loading from a top node that represents a major
plate, down to smaller and smaller plates. This direct cascade collides with an inverse cascade of failures
that starts with the bottom nodes and travels up to larger and larger plates, possibly all the way to the top,
depending on the delayed effects of healing (Zaliapin et al., 2003a, 2003b, and references therein).

Clearly, to analyze extensively and systematically systems of 3L ODEs would be fairly prohibitive, even for
a tree depth L as small as 6 or 7. Fairly surprisingly, though, the BDE model could be easily analyzed as a
function of the loading and healing parameters, yielding the three well-known seismic regimes of high (H),
low (L), and intermittent (I) seismicity, as shown in Figure 10.

The three regimes are characterized, respectively, by the following key features:

H: a cyclostationary behavior, with the maximum earthquake intensity reached on every cycle;
I: a highly intermittent behavior, with irregular intervals between major earthquakes and high, but not

necessarily maximum intensity of the latter; and
L: a fairly low and nearly constant level of white noise-like seismic activity overall.

These features are present in observations (e.g., Romanowicz, 1993; Press & Allen, 1995), as well as in much
more detailed and sophisticated models (Ben-Zion, 2008, and references therein). On the whole, it is the
intermittent behavior that is most widespread, but a particular region can also change regime over time,
as parameter values that affect the collective behavior of earthquakes and faults change. This is the second
numerical example of at least partial equivalence between a BDE model and a Flow.

Network applications.II: Teleconnections and centrality. A very different network-theoretical setting was
applied to climatic variability, and we discuss it now very succinctly herein, following Tsonis and Swanson
(2008) and Donges et al. (2009). The idea that meteorological, oceanographic or coupled climatic variabil-
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ity might involve “centers of action” that are widely separated in space goes back to Hildebrandsson and
Teisserenc de Bort (1898) and to G. Walker's “teleconnections” between them (Walker & Bliss, 1932). The
statistical and dynamical study of such teleconnections engaged many important figures in the history of
these disciplines over the last century (Bjerknes, 1969; Hoskins & Karoly, 1981; Wallace & Gutzler, 1981).

One of the main approaches used by A. A. Tsonis and colleagues (e.g., Tsonis et al., 2007), as well as by the
groups around J. Kurths (e.g., Donges et al., 2009) and around S. Havlin (e.g., Gozolchiani et al., 2011), was
labeled complex networks (CNs) and essentially consists in identifying the strongest correlations among
time series at different locations. Boers et al. (2013) review relevant climate network literature and provide
an application to the South American Monsoon System and to the spatial patterns associated with syn-
chronization of extreme rainfall events; see also Boers et al. (2019) for a global analysis of extreme-rainfall
teleconnections.

Many of the dynamical studies of the atmosphere's LFV that involve teleconnections have used the highly
simplified geometry of a so-called 𝛽-channel with periodicity in longitude and solid walls along parallels
to the north and south of the channel, away from both the North Pole and the equator (Ghil & Childress,
1987; Pedlosky, 1987); see also section 3.2 herein. (Colon & Ghil, 2017, and references therein) showed that
signal propagation in networks with distinct topologies in the plane can have very different properties; these
properties are quite likely to be entirely different, in turn, from those of networks on the sphere. It is the
latter that are most relevant to dynamical studies on a spherical domain, whether linear (e.g., Hoskins &
Karoly, 1981) or nonlinear (e.g., Legras & Ghil, 1985). Thus, BDE models in such geometrically different
settings as shown in Figure 7 here, on the plane and on the sphere, might complement or even guide further
network-based investigations of teleconnections and climate variability.

5.2. The Fluctuation-Dissipation Lamppost
Fluctuation-dissipation theory (FDT) has its roots in the classical theory of statistical mechanics of many
particle systems in thermodynamic equilibrium. The idea is very simple: the system's return to equilibrium
will be the same whether the perturbation that modified its state is due to a small external force or to an
internal, random fluctuation (e.g., Kubo, 1966, and references therein). We outline below the simplest cases,
and point to the generalization to systems out of equilibrium, such as the climate system or a network of
seismic faults.

FDT. Like so many other ideas in the physical sciences, FDT goes back to Einstein and his Annus mirabilis,
1905. Einstein (1905) formulated the problem of the Brownian motion of a large particle immersed in a fluid
formed of many small ones as follows. The presentation here follows Ghil & Childress, 1987 (1987, section
10.3), where further details can be found.

Consider the large particle as moving on a straight line with velocity u = u(t), subject to a random force 𝜂(t)
and to linear friction −𝜆u, with coefficient 𝜆. The equation of motion is

du = −𝜆udt + 𝜂(t) . (7)

The random force 𝜂(t) is assumed to be a “white noise”; that is, it has mean zero [𝜂(t;𝜔)] = 0 and auto-
correlation [𝜂(t;𝜔)𝜂(t + s;𝜔)] = 𝜎2𝛿(s), where 𝛿(s) is a Dirac function, 𝜎2 is the variance of the white noise
process, 𝜔 labels the realization of the random process, and  is the expectation operator, which averages
over the realizations 𝜔. Alternative notations for the latter are the overbar, in climate sciences, and the angle
brackets, in quantum mechanics, [F] ∶= F̄ ∶= ⟨F⟩.
Equation (7), with 𝜂 = 𝜎dW, is a linear stochastic differential equation of a form that is now referred to
as a Langevin equation, where W(t) is a normalized Brownian motion or Wiener process. The necessary
stochastic concepts are explained at a comfortable level in Dijkstra, (2013, Chapter 3). Einstein's main results
are that

[u2] = 𝜏∗

2𝜆
, [x2] = 𝜏∗

𝜆2 t , (8)

with x(t) = x0 + ∫ t
0 u(s)ds the displacement of the particle and 𝜏∗ = ∫ +∞

−∞ 𝜎2𝛿(s)ds. There are two remarkable
features in equation (8) above. First, the fact that the variance [x2] of the displacement is proportional to
time. This leads to the mathematical theory of stochastic differential equations distinguishing between the
time differential dt and the stochastic differential dW, since ∫ t

0 ds = t, while ∫ t
0 dW(s) = t2; in other words,

dW ∝ (dt)1/2.
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Second, the friction coefficient 𝜆 characterizes in this simple case a dissipation of the fluctuations, since
[u(t)] = [u0] exp(−𝜆t). More generally, as Kubo, (1966, section 2) points out, the dissipation constant is
D = limt→∞ [

(x(t) − x(0))2], and one gets

𝜇 = D
kT

= 1
kT ∫

∞

0
[u(t0)u(t0 + t)]dt ; (9)

here 𝜇 = 1∕𝜆 is the mobility of the particles, T is the temperature of the thermal bath, and k is the Boltzmann
constant. And voilà, you have the original and simplest version of FDT, where the acronym also stands for
the fluctuation-dissipation theorem.

FDT in general can thus be used either to infer the statistics of thermal fluctuations from the drag law (e.g.,
Nyquist, 1928) with known 𝜆 or the reverse (e.g., Onsager, 1931). The former is more practical in labora-
tory or industrial situations, like an electric circuit, where it is relatively easy to measure the admitttance or
impedance of the system and we are not that interested in details of what happens at such-and-such a loca-
tion in an individual wire. It is the latter, though, that is more useful for natural systems, like the climate
system, where we have many observations localized in time and space, and wish to estimate future response
to as-yet-unknown forcings.

All of the above apply, however, to systems in thermodynamic equilibrium, and most natural
systems—including, of course, the climate system—are not. As Kubo (1966) notes, it is precisely for this
reason that FDT has attracted much greater attention “recently”—that is, in the middle of the twentieth
century—due to its being extended to “nonequilibrium states [and to] irreversible processes in general.”

FDT applications. At this stage, one should note that nonequilibrium and nonlinearity are, in principle,
totally distinct concepts, neither of which implies or includes the other. But, in practice, both of them are
often pertinent to the study of complex systems and that is the case for the Earth system as a whole, as well
as for its various components.

Thus, for instance, Cecil E. (“Chuck”) Leith (1975) showed that FDT applies to a 2-D or QG turbulent flow
with two integral invariants, kinetic energy E and enstrophy Z, under additional assumptions of normal
distribution of the realizations and stationarity. Such flows were reviewed in section 4.2 herein. Subject to
the above assumptions (Leith, 1975), the unperturbed covariance matrix U and the average response matrix
G are then related by the FDT relation

U(𝜏) = G(𝜏)U(0) , (10)

where 𝜏 is the interval over which we wish to estimate the response of the system to an arbitrary external
forcing. Noting that the regression matrix R for linear prediction of the stationary multivariate time series
with lagged covariance matrix U equals G, one then gets that

R(𝜏) = U(𝜏)U−1(0) . (11)

Since the problem of estimating the response of the climate system to both natural and anthropogenic forc-
ing on multidecadal time scales is becoming scientifically, as well as socioeconomically, more and more
important, equations (10) and (11) present a huge advantage over conventional methods of attacking this
problem. Indeed, successive assessment reports of the Intergovernmental Panel on Climate Change (IPCC,
e.g., IPCC, 2007; Houghton et al., 1990) carried out ensembles of high-end global climate model simulations
with a number of prescribed scenarios of such forcings but were limited by the enormous computational
expense of such simulations.

In comparison, the linear response of equation (11) can be computed, at least in a reduced subspace of lead-
ing eigenvectors of the covariance matrix U—the so-called empirical orthogonal functions (EOFs; Jolliffe
& Cadima, 2016; Preisendorfer, 1988)—relatively easily. And, once that is done, changes in any prescribed
scalar or vector observable, say, in the globally averaged surface air temperatures or in the entire sea surface
temperature field {Tij(t)}, can be evaluated in turn for arbitrary small forcings 𝛿f(t).

Let Û and R̂ be the reduced versions of U and R, respectively, with {û𝛼} the EOFs of Û, and {T𝛼(t)} the
projection of said temperature field onto the corresponding EOFs. Component-wise, we can write, following
Leith (1975), that
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𝛿T𝛼(t) = ∫
t

−∞

∑
𝛽

R̂𝛼𝛽𝛿𝑓𝛽(s)ds . (12)

Once more, this is all very helpful for systems in thermodynamic equilibrium and normally distributed
stochastic processes, which turbulent fluids and other subsystems of the climate system are not. Given a
normal distribution of an initial state, nonlinearity will break that happy state of affairs to a greater or lesser
degree.

Generalizations to systems out of equilibrium have been developed since the early 1950s (e.g., Callen &
Welton, 1951) and many references appear in Kubo (1966). But a particularly fruitful change in point of view
was provided by D. Ruelle, (1998, 2009), who considered the problem in the setting of dynamical systems
theory, rather than that of statistical mechanics. The former point of view is justified in this context by
the so-called chaotic hypothesis (e.g., Gallavotti & Cohen, 1995), which states, in rough terms, that chaotic
systems with many degrees of freedom possess a physically relevant invariant measure 𝜈 such that averaging
with respect to this measure is equivalent to averaging in time over the system's attractor. This property
suffices for using the measure 𝜈 in evaluating changes in any observable of the system with respect to any
small perturbation, and we return to this point in section 5.3 below.

In the footsteps of Leith (1975), several applications of FDT to climate (e.g., Abramov & Majda, 2008; Gritsun
& Branstator, 2007) and ocean (Wirth, 2018) models have been carried out. It is V. Lucarini and colleagues,
though, who have systematically applied Ruelle's linear response theory to generalize both equilibrium and
transient climate sensitivity (Lucarini et al., 2016; Ragone et al., 2015); they also obtained the resonant
response and its spatial patterns in one or more frequency bands for time-dependent forcing (Lucarini et al.,
2014, and references therein).

The study of resonant response is made possible by the study of the susceptibility operator S̃, which is given
by the Fourier transform of the linear response operator G̃. The latter operator requires a generalization of
the response matrix G defined in equation (10) to the nonequilibrium setting, for which we refer to the work
of Ruelle, (1998, 2009) and of Lucarini et al. (2014).

5.3. The RDS lamppost
In section 3, we have considered mainly the deterministically nonlinear approach to apprehend the com-
plexities of geosciences in general and climate variability in particular. In the previous subsection, we have
also hinted, via the Langevin equation (7), at the complementary approach of stochastically linear dynamics
to climate variability and change, due largely to K. Hasselmann (1976). (Imkeller & Von Storch, 2001, and
references therein) give a broader view of this approach.

In the present subsection, we briefly outline a promising unification of these two complementary approaches
to climate variability and change, via the theory of nonautonomous and of random dynamical systems. This
theory is also, as indicated in section 3.2, the proper setting for the study of tipping points, as the open-system
generalization of bifurcations (e.g., Ditlevsen & Ashwin, 2018).

The theory of nonautonomous (NDS) and random (RDS) dynamical systems. As a result of sensitive depen-
dence on initial data and on parameters, numerical weather forecasts, as well as climate projections, are
both expressed these days in probabilistic terms. It is, in fact, more convenient—and becoming more and
more necessary—to rely on a model's (or set of models') probability density function (PDF) rather than on
its individual, pointwise simulations or predictions.

We summarize here results on the surprisingly complex statistical structure that characterizes stochas-
tic nonlinear systems. This complex structure does provide meaningful physical information that is not
described by the PDF alone; it lives on a random attractor, which extends the concepts of a strange attractor
and of the invariant measure that is supported by it, from the deterministic to the stochastic framework. It
is this extension that we describe, in the simplest possible terms, forthwith.

On the road to including random effects, one needs to realize first that the climate system, as well as any
of its subsystems, is not closed: it exchanges energy, mass and momentum with its surroundings, whether
other subsystems or the interplanetary space and the solid earth. Typical applications of dynamical systems
theory to climate variability so far have only taken into account exchanges that are constant in time, thus
keeping the model—whether governed by ODEs, PDEs, or other differential equations—autonomous; that
is, the models had coefficients and forcings that were constant in time.
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Succinctly, one can write such a system as
.
X = f(X;𝛍) , (13)

where X now may stand for any climate or other geophysical field, while f is a smooth function of X and
of the vector of parameters 𝜇 but does not depend explicitly on time. Being autonomous greatly facilitated
the analysis of a model's solutions. For instance, two distinct trajectories, X1(t) and X2(t), of a well-behaved,
smooth autonomous system cannot pass through the same point in phase space, which helps describe the
system's phase portrait. So does the fact that we only need to consider the behavior of solutions X(t) as we
let time t tend to +∞: the resulting sets of points are—possibly multiple— stationary solutions, periodic
solutions, and chaotic sets.

We know only too well, however, that the seasonal cycle plays a key role in climate variability on many time
scales, while orbital forcing is crucial on the Quaternary time scales of many millennia, and now anthro-
pogenic forcing is of utmost importance on interdecadal time scales. How can one take into account such
time-dependent forcings and analyze the nonautonomous systems written succinctly as

.
X = f(X, t;𝛍) , (14)

to which they give rise? In equation (14), the dependence of f on t may be periodic, f(X, t + P) = f(X, t), as
in various ENSO models, with P = 12 months, or monotone, f(X, t + 𝜏) ≥ f(X, t) for 𝜏 ≥ 0, as in studying
scenarios of anthropogenic climate forcing.

To illustrate the fundamental character of the distinction between (13) and (14), consider the simple scalar
version of these two equations:

.
X = −𝛽X , (15a)

.
X = −𝛽X + 𝛾t , (15b)

respectively. We assume that both systems are dissipative, that is, 𝛽 > 0, and that the forcing is monotone
increasing, 𝛾 ≥ 0, as would be the case for anthropogenic forcing in the industrial era. Lorenz (1963a)
pointed out the key role of dissipativity in giving rise to strange, but attracting solution behavior, while Ghil &
Childress, 1987 (1987, section 5.4) emphasized its importance and pervasive character in climate dynamics.
Clearly, the only attractor for the solutions of equation (15a), given any initial point X(0) = X0, is the fixed
point X = 0, attained as t → +∞.

For the nonautonomous case of equation (15b), though, this forward-in-time approach yields blowup as
t → +∞, for any initial point. To make sense of what happens in the case of time-dependent forcing, one
introduces instead the pullback approach, in which solutions are allowed to still depend on the time t at
which we observe them and also on a time s from which the solution is started, X(s) = X0; presumably s ≪ t.
With this little change of approach, one can easily verify that

|X(s, t;X0) −(t)| → 0 as s → −∞ , (16)

for all t and X0, where the pullback attractor (PBA) (t) is given explicitly by

(t) =
𝛾(t − 1∕𝛽)

𝛽
. (17)

We thus obtain, in this pullback sense, the intuitively obvious result that the solutions, if started far enough
in the past, all approach the time-dependent attractor set(t), which grows linearly in time and thus follows
the linear forcing.

For the more complicated case of RDSs, where the random attractor  depends on the particular realization
𝜔 of the driving noise,  = (t;𝜔), we refer to Chekroun et al. (2011), Ghil et al. (2008), and Dijkstra, (2013,
Chapter 4). The beauty and complexity of the results is illustrated herein by four snapshots at sucessive
times {t1, … , t4} for the Lorenz (1963a) model perturbed by multiplicative noise; see Figure 11. Note that
the support of the invariant measure 𝜈(t;𝜔) may change quite abruptly, from time t to time t + 𝛥t; see the
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Figure 11. Four snapshots of the stochastically perturbed Lorenz (1963a) model's random attractor (𝜔) and the
invariant measure 𝜈(𝜔) supported on it. The model can be written componentwise as dXi = f(X;𝜇)dt + 𝜎XidW,

i = 1, 2, 3, with X ≡ (X1, X2, X3) ≡ (X, Y, Z) and the parameter values 𝜇 equal to the classical ones—normalized
Rayleigh number r = 28, Prandtl number Pr = 10, and normalized wave number b = 8∕3—while the noise intensity is
𝜎 = 0.5 and the time step is 𝛿t = 5 · 10−3. The color bar used is on a log-scale and quantifies the probability to end up in
a particular region of phase space; shown is a projection of the 3-D phase space (X, Y, Z) onto the (X, Z) plane. Notice
the complex, interlaced filament structures between highly (yellow) and moderately (red) populated regions. The time
interval 𝛥t between two successive snapshots—moving from left to right and from top to bottom—is 𝛥t = 0.0875.
Weakly populated regions cover an important part of the random attractor and are, in turn, entangled with regions that
have near-zero probability (black). (after Chekroun et al., 2011, with permission from Elsevier.)

related short video given as Supplementary Information in Chekroun et al. (2011), as well as at https://
vimeo.com/240039610. This video shows more clearly than a simple sequence of snapshots the interaction
between the nonlinearly deterministic dynamics and the stochastic perturbations.

NDS and RDS applications. We outline here briefly an application of the theory of NDSs to the so-called
double-gyre problem of the wind-driven ocean circulation, following Pierini et al. (2016) and Ghil (2017).
The large-scale, near-surface flow of the midlatitude oceans is dominated by the presence of a larger, anti-
cyclonic and a smaller, cyclonic gyre. The two gyres share the eastward extension of western boundary
currents, such as the Gulf Stream or Kuroshio, and are induced by the shear in the winds that cross the
respective ocean basins. Results for this problem in the presence of a surface wind stress that is constant in
time were reviewed briefly in section 3.2; see, in particular, Figures 11 and 2 there.

The model domain used by Pierini et al. (2016) is rectangular, like those in section 3.2, and the model
equations are based on the equivalent barotropic QG vorticity equation of Simonnet et al. (2005). This PDE
is projected here onto four modes that take into account the presence of a western boundary current by
including an exponentially decaying factor for the stream function field, as suggested by Jiang et al. (1995).
The forcing is deterministic, aperiodic, and dominated by interdecadal variability.
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Figure 12. Mean normalized distance 𝛥 for 15,000 trajectories of the double-gyre ocean model: (a) 𝛾 = 0.96, and (b) 𝛾 = 1.1. Reproduced from Pierini et al.
(2016). ©American Meteorological Society; used with permission.

The autonomous system exhibits a global bifurcation associated with a homoclinic orbit, like the one illus-
trated in Figure 2 herein; it occurs at the value 𝛾 = 1.0 for the parameter 𝛾 that scales the intensity of the
forcing. Pierini et al., 2016 (2016, Appendix) have rigorously demonstrated the existence of a global PBA
for the time-dependent forcing case in the weakly dissipative, nonlinear model under discussion, based on
general results for nonautonomous dynamical systems (Carvalho et al., 2012; Kloeden & Rasmussen, 2011).

Numerically, though, this unique global attractor seems to possess two separate local PBAs, as apparent
from Figure 12. Panels (a) and (b) in the figure refer to parameter values that correspond to subcritical
vs. supercritical values of 𝛾 in the autonomous model, respectively. While formula 16 seems to require an
infinite pullback time, it turns out that convergence to the PBAs in this model only takes about 15 yr.

The mean normalized distance 𝛥 plotted in the figure is defined as Δ = ⟨𝛿n⟩T̃ . Here 𝛿t is the distance, at
time t, between two trajectories of the model that were a distance 𝛿0 apart at time t = t0, and the normalized
distance 𝛿n = 𝛿t∕𝛿0 is averaged over the whole forward time integration T̃ of the available trajectories, with
T̃ = 400 yr.

The maps of 𝛥 in Figure 12 reveal large chaotic regions where 𝛿n ≫ 1 on average (warm colors) and also
nonchaotic regions, in which 𝜎 ≤ 1 (blue) and thus initially close trajectories do remain close on average.
The rectangular regions in the two panels that are labeled by letters A and B and by numbers 1–4 correspond
to subdomains of the initial set 𝛤 (see Pierini et al., 2016, section 5). The numerical evidence in Figure 12
suggests that the boundary between the two types of local attractors has fractal properties.

In the autonomous context, the coexistence of topologically distinct local attractors is well known in the
climate sciences (Dijkstra, 2013; Dijkstra & Ghil, 2005; Ghil & Childress, 1987; Simonnet et al., 2005, and
references therein). The coexistence of local PBAs with chaotic vs. non-chaotic characteristics, within a
unique global PBA, as illustrated by Figure 12 here, seems to be novel, at least in the geosciences literature.

Climate sensitivity and Wasserstein distance. Tamás Tél and associates (Bódai et al., 2011; Bódai & Tél, 2012;
Drótos et al., 2015) have applied NDS and RDS concepts and methods to climate modeling, while emphasiz-
ing the distinctions and advantages of the pullback point of view with respect to the much more common
one of ensemble simulations (IPCC, 2007; Houghton et al., 1990, and references therein). Theoretically
speaking, the latter practice merely approximates the PDF that would be obtained by the forward-in-time
solution of the Fokker-Planck equation associated with a given model, a solution that is impossible to
obtain for high-dimensional climate models (Leith, 1974). An important point raised by the work of these
authors is that, aside from the computational difficulties with ensemble size and the PDF approximation,
the finite-time averages obtained by the ensemble method do not reflect correctly the changes in time of the
climate system's statistics in a transient world.
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Figure 13. Climate sensitivity (a) for an equilibrium model; (b) for a nonequilibrium, oscillatory model; and (c) for a nonequilibrium, chaotic model, including
possibly random perturbations. As a forcing (atmospheric CO2 concentration, say, dash-dotted line) changes suddenly, global temperature (light solid)
undergoes a transition: in panel (a) only the mean temperature changes; in panel (b) the mean adjusts, as it does in panel (a), but the period, amplitude and
phase of the oscillation can also decrease, increase or stay the same, while in panel (c) the entire intrinsic variability changes as well. From Ghil (2017), with
permission from the American Institute of Mathematical Sciences.

Following up on the work of Lucarini and colleagues (e.g., Lucarini et al., 2014) in applying linear response
theory to climate change and on that of Tél and associates above, (Ghil, 2015, 2017) proposed using the
Wasserstein or “Earth mover's” distance 𝛥W to generalize the concept of equilibrium climate sensitivity;
𝛥W𝜈 is the distance between two invariant measures of equal mass, 𝜈1 and 𝜈2, on a metric space, like an
n-dimensional Euclidean space (Dobrushin, 1970; Kantorovich, 2006; Monge, 1781; Wasserstein, 1969).

Roughly speaking, and dropping the subscript “W,” 𝛥𝜈 represents the total work needed to move the “dirt”
(i.e., the measure) from a trench you are digging to another one you are filling, over the distance between the
two trenches. One can also view this use of the Wasserstein distance as the truly nonlinear generalization
of the FDT approach to climate sensitivity, as reviewed in section 5.2 above.

Equilibrium climate sensitivity 𝛾e is usually defined as 𝛾e = 𝜕T̄∕𝜕𝜇, where T̄ is the globally and seasonally
averaged surface air temperature and 𝜇 is a parameter, such as the suitably normalized incoming net radi-
ation. It was introduced by Charney et al. (1979) and used extensively by the IPCC's first three assessment
reports (e.g., Houghton et al., 1990). The associated evolution of T̄(t) for a jump in CO2 concentration in a
scalar linear model is illustrated in Figure 13a.

This picture is clearly oversimplified, given the complex evolution of temperatures in the historical record.
Figure 13b illustrates T̄(t) in a world in which ENSO would be purely periodic, and Figure 13c illustrates
schematically the even more realistic case of temperature evolution in a deterministically chaotic, turbulent
and stochastically perturbed system. For such a system, a better definition of climate sensitivity would be

𝛾cs =
Δ𝜈

Δ𝜇
; (18)

here {𝜈i = 𝜈i(𝜇i) ∶ i = 1, 2} can be the invariant measures on a system's strange attractor, in the autonomous
case, or its PBA, whether deterministically nonautonomous or random, and {𝜈i = 𝜈i(𝜇i) ∶ i = 1, 2} are the
corresponding values of a parameter, such as the forcing parameter 𝛾 in the Pierini et al. (2016) model in
Figure 12. In this sense, one can think of Equation 18 as a generalization of the linear response in Equation
(12).

The Wasserstein distance 𝛥(𝜈1, 𝜈2) between two measures 𝜈1 and 𝜈1 on a metric space X is defined as

Δ(𝜈1, 𝜈2) = inf [m(𝜉, 𝜂)] ; (19)

here m is a metric, the infimum is taken over all possible pairs of random variables 𝜉 and 𝜂 that have the
distributions 𝜈1 and 𝜈2, respectively, and  is the corresponding expectation. When X = R is just the real
line and m the usual Euclidean metric, let Q1 and Q2 be the PDFs of the absolutely continuous measures 𝜈1
and 𝜈2. Then

ΔW(Q1, Q2) = ∫ |G1(x) − G2(x)|dx , (20)
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where G1 and G2 are the cumulative distribution functions of the two PDFs Q1 and Q2, respectively
(Vallender, 1974).

In general, though, the shape of the two trenches as well as the depth along the trench—that is, both the
support of the measure and its density—can differ. Chekroun et al. (2018) have described a so-called critical
transition of this type—essentially a generalized tipping point—for a simple ENSO model with a seasonal
cycle. In such a case, the actual distance calculations require some model reduction to a smaller phase space
(e.g., Kondrashov et al., 2015, and references therein) and they have to rely on more advanced methodologies
in the reduced space (e.g., Villani, 2009).

Robin et al. (2017) have argued that the usual quadratic norms used to judge distance in the phase space of
climate models do not provide an easy interpretation of the dynamics on the attractor. They calculated the
Wasserstein distance between the PBAs of the Lorenz (1984) model subject to summer vs. winter forcings
and showed how this metric does provide a more intuitive discrimination between the two.

Vissio and Lucarini (2018) evaluated the performance of a stochastic parametrization by using the Wasser-
stein distance to measure the difference between the behavior of a full fast-slow system and that of a reduced
system in which the parametrization had replaced the fast subsystem. In their setting, the Lorenz (1984)
model governed the slow behavior and the Lorenz (1963a) model the fast one. Applying the Wouters and
Lucarini (2016) parametrization to the fast component, they showed that “Wasserstein distance provides
a robust tool for assessing the quality of the parametrization, and that meaningful results can be obtained
when considering [a very coarse-grained] representation of the phase space.”

6. The Way Ahead: Prediction and Prediction
There are two important meanings of “prediction” in the physical sciences. First, there is the relatively
straightforward meaning of predicting in time. There are many other areas of science in which one needs or,
at least, wishes to predict: the evolution of an individual illness or of an epidemic, that of human population
numbers, the outcomes of national, ethnic, or class conflicts.

In the geosciences, this kind of prediction is clearly of paramount importance: predicting routine weather
progress, as well as extreme weather events, like a hurricane landfall or a flash flood, earthquakes, volcanic
eruptions, global and regional temperatures, and precipitations many years from now. In all these cases, the
usefulness of detailed, physics-based models is largely predicated on the understanding of the phenomena
and processes involved. Thus, good predictions validate the knowledge that entered a specific model or class
of models, while unsatisfactory ones give a sense of the distance still ahead in the field of interest.

Second, there is the sense in which a theoretical model predicts a phenomenon that had not been observed
at the time of the prediction. The paradigmatic example of this kind of prediction is the observational con-
firmation (Dyson et al., 1920) of the Einstein (1916) prediction of light rays' bending in the gravity field of
the Sun. More precisely, the 1919 solar eclipse confirmed that the bending of starlight passing near the Sun
was about twice as much as predicted by using Newtonian gravity alone. This kind of prediction tends to be
rare, and rather undervalued in the geosciences.

Real-time forecasting. The key difficulty in NWP is the instability and chaotic character of large-scale atmo-
spheric flows. As mentioned in section 4.2, Poincaré (1908) already had the insight that sensitive dependence
on initial state will limit the accuracy of weather forecasting. To first order, error growth in the short run is
given by the chaotic flows' leading Lyapunov exponent. Over longer times, the flows' mixing properties and
scale-invariant cascades contribute to the evolution and saturation of the errors (e.g., Kalnay, 2003 Chapter
6, and references therein).

Since its post World War II beginnings in the mid-1950s, NWP skill has steadily improved over the years;
see Thompson (1961) and Kalnay, (2003, Appendix A) for these beginnings. Operational forecasts with
good local accuracy in surface air temperatures for up to 3–5 days are fairly routine, although precipita-
tion forecasts, with their greater dependence on more poorly resolved vertical velocities are typically less
accurate.

Global forecasts of atmospheric fields on larger scales are much of the time rather accurate up to ten days,
thanks to improvements in the physical parametrizations of subgrid-scale phenomena and the assimilation
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of massive amounts of remote-sensing data, along with the substantial increase of spatial resolution due to
huge increases in computing power and storage capacity.

It appears that the NWP situation is well in hand (e.g., Kalnay, 2003), although there is still room for improve-
ment with respect to the theoretical limits of predictability, of 10–14 days, and substantial misses still occur.
Better understanding of the mechanisms associated with the onset, maintenance and termination of block-
ing, as discussed in section 3.2 herein, could help. And so could a better understanding of the interaction
between smaller and larger scales, as reviewed in Palmer and Williams (2009) and in section 4.2 of this
review.

John von Neumann's role in starting these modern developments in NWP is well known (cf. Charney et al.,
1950). What is a little less so is his longer-range outlook on the three levels of difficulty in understanding and
predicting atmospheric and climate phenomena (Von Neumann, 1955): (a) Short-term NWP is the easiest,
since it represents a pure initial-value problem, as formulated by Bjerknes (1904) and L. F.Richardson (1922);
(b) long-term climate prediction is next easiest, since it corresponds to studying the system's asymptotic
behavior, that is, the possible attractors and the statistical properties thereof (Dijkstra & Ghil, 2005; Dijkstra,
2013; Ghil & Childress, 1987); and (c) intermediate-term prediction is hardest, since both the initial data
and the parameter values are important.

In fact, long-term climate prediction is a bit harder than Von Neumann envisaged at the time, because the
forcing changes in time, too, as discussed here in section 5.3. Concerning the intermediate term, matters tend
to get more and more difficult as the prediction horizon is extended further and further, because additional
subsystems, with longer time scales and additional evolution mechanisms have to be accounted for (Ghil,
2001).

Thus, subseasonal-to-seasonal prediction is receiving increased attention and is making good progress
(Robertson & Vitart, 2018, and references therein). Interannual climate variability being dominated by
ENSO, its prediction concentrates on the coupled ocean-atmosphere system in the Tropical Pacific and the
teleconnection therefrom to the extratropics. ENSO prediction has made great strides, with the emphasis
shifting from statistical and stochastic-dynamic models in the 1990s to high-end climate models in the last
decade; compare, for instance, the assessments of real-time ENSO forecast skill in Barnston et al. (1999) vs.
Barnston et al. (2012). And interdecadal climate prediction is becoming the hardest problem of the climate
sciences, and one of humanity's hardest ones as well.

On the other hand, there are areas of the geosciences in which even the possibility of prediction is viewed
with suspicion, for example, earthquake prediction (Geller et al., 1997). In spite of the sustained skepticism,
the approach outlined by Zaliapin et al. (2003b) might deserve some attention. A key obstacle to prediction
is clearly the relative rarity of large earthquakes and of long and accurate earthquake catalogs. One way to
extend the record might be to use a model, albeit a more detailed and complete one than the ternary-tree
model mentioned here in section 5.1, to generate additional, synthetic catalogs of arbitrary length, which
agree in their statistics with existing catalogs of real sequences, as far as the latter go. And then proceed from
there.

The situation with respect to predicting volcanic eruptions is somewhat less controversial than for earth-
quake prediction but still far from being as routine as in NWP. Some volcanoes, like Mount Etna in Sicily,
seem to behave fairly periodically—like the synthetic earthquakes in Figure 10a of section 5.1—and their
infrasound rumblings have been used fairly successfully for automated, real-time forecasts (e.g., Hall, 2018).
Others behave more irregularly, like in Figure 10b, but still may exhibit characteristic relaxation oscillations
of their magma chambers, which could lead to a certain degree of predictability (Walwer et al., 2019).

Predicting new phenomena. The typical way that theory, observation in the field or in the laboratory, and
numerical simulation interact in the geosciences is (i) observation in the field, be it the atmosphere, ocean
or solid Earth, in situ or remotely; (ii) analysis and description of the observations; and (iii) attempts at
explanation of the observed phenomena via competing theories and numerical simulations. Moreover, with
increasing computer power and storage capacity, Ockham's razor is neglected more and more, preference
being given to high-end models with massive details over the simpler and more easily understandable
models.

In fact, philosophical objections do exist to the parsimony principle and it, too, is not infallible. Still, it
is simpler to put the Sun at, or near, the center of the solar system than to keep adding epicycles to the
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geocentric system (e.g., Kuhn, 1962). The main point of applying the principle is that simpler theories cover
more observations and should therefore be easier to falsify, in the terminology of KarlPopper (2005), that is,
as the dictionary antonym of “verify” and synonym of “disprove.” Recall that, according to Popper (2005),
to be scientific, a statement has to be falsifiable.

A way of using more systematically parsimonious models in the geosciences is that of model hierarchies.
Introduced into the climate sciences by Schneider and Dickinson (1974), they extend from simple, low-order
conceptual models, through intermediate ones with one or more space dimensions, all the way to high-end
ones that encompass many processes and have high 3-D spatial resolution. Rather than hurling epithets of
“toy” models toward one end of the hierarchy and “overkill” toward the other, it is important to recognize
the role of the entire hierarchy in developing ideas, concepts and tools, on the one hand, and testing them
against observations, on the other.

More specifically, Held (2005) has argued for the need to use simpler models in order to understand many
aspects of the simulations produced by the more detailed ones. The author of this paper and his colleagues
(e.g., Dijkstra & Ghil, 2005; Ghil, 2001; Ghil & Robertson, 2000) have argued that successive bifurcations
can play the role of Ariadne's thread across the rungs of this hierarchy. An illustration of this role in the case
of the double-gyre problem for the wind-driven ocean circulation was given in section 3.2.

It is important also to remember that when a simpler model and a more detailed disagree, it is not always
the former that is wrong; that is, adding details does not always add realism. Ghil (2015) reviewed a situ-
ation of this type, based on the work of Dijkstra (2007). Inspired by the work of Stommel (1961), a series
of papers using THC models from simple to intermediate and beyond, had obtained bistability of the
meridional-overturning circulation, especially in situations mimicking the Atlantic Ocean; see Dijkstra &
Ghil, 2005 (2005, section 3) and Dijkstra, (2005, Chapter 6) for a review.

High-end ocean models used in the third Coupled-Model Intercomparison Program— on which the
conclusions of the IPCC's Fourth Assessment Report (IPCC, 2007) were based — obtained, how-
ever, results that contradicted this bistability. As shown by Dijkstra (2007), observations of the
evaporation-minus-precipitation fluxes over the Atlantic, between the southern tips of Greenland and
Africa, tend to agree better with the simpler models than with the third Coupled-Model Intercomparison
Program ones; and it is this better agreement that supports the bistability results of the former, simpler
models.

One more interesting story of bistability will shed further light on the correct use of a model hierarchy, as
well as on that of nonlinearity in the geosciences in general. EBMs are fairly simple climate models that
emphasize the role of incoming and outgoing radiative fluxes in determining the atmosphere's temperature
field, while parameterizing the role of the velocity field in the energy fluxes (Budyko, 1969; Sellers, 1969).
Studies of the number and stability of the stationary solutions of these models in the early and mid-1970s
showed that—in spite of various differences in their physical formulation and mathematical details (e.g.,
Ghil & Childress, 1987, Table 10.1)—they exhibited two stable stationary solutions separated in phase space
by an unstable one (Ghil, 1976; Held & Suarez, 1974; North et al., 1979).

The warmer of the two stable fixed points could be identified with something like the present climate or,
more generally, an interglacial one. The colder one corresponds to an ice-covered planet and was labeled at
the time a “deep freeze.” The unstable fixed point (e.g., Bódai et al., 2015) has been explored more recently
by using an edge tracking algorithm (Lucarini & Bódai, 2017).

The presence of the saddle-node bifurcation between the interglacial climate and the unstable one was
promptly confirmed by the results of a simple general circulation model Wetherald & Manabe, 1975 (1975,
Figure 5). In fact, the authors of the latter study commented that “As stated in the Introduction, it is
not, however, reasonable to conclude that the present results are more reliable than the results from the
one-dimensional studies mentioned above simply because our model treats the effect of transport explicitly
rather than by parameterization. [...] Nevertheless, it seems to be significant that both the one-dimensional
and three-dimensional models yields qualitatively similar results in many respects.”

In spite of this encouraging confirmation, the fact that a sharp global temperature drop by tens of degrees
Celsius could occur given very small insolation changes was not taken seriously for quite a while by many
climate scientists. The thinking went that the Sun is a main sequence star and its radiative flux had thus
been larger in the past and not smaller, as required by the models for a deep freeze to set in. More recently,

GHIL 1035



Earth and Space Science 10.1029/2019EA000599

though, considerable evidence has accumulated for Neoproterozoic (1,000–543 Myr ago) glaciations at low
latitudes, which suggest a completely glaciated Earth, labeled “snowball Earth” (e.g., Hoffman et al., 1998).

Considerable disagreement persists as to whether the Neoproterozoic glaciation was total or partial, a slush-
ball rather than a snowball; it seems, moreover, to have consisted of ups and downs in temperatures and ice
cover, somewhat like the Quaternary glaciation cycles, only longer and stronger. Even so, the much greater
difficulty in getting out of a glaciated Earth than into it (e.g., Crowley et al., 2001; Pierrehumbert, 2004) is
in substantial agreement with early EBM results on the hysteresis cycle of transition between the high- and
low-temperature solution branches (e.g., Ghil, 2001 Figure 1). Finally, atmospheric composition and life
clearly played a role not accounted for in the early work on EBMs or Quaternary glaciations (Rothman et
al., 2003; Tziperman et al., 2011, and references therein).

To summarize, simple models can offer predictive insights into phenomena only discovered after such a
prediction. And nonlinear concepts and methods—applied consistently across a hierarchy of models—can
help disentangle the additional complexities to be explained once the phenomena have been identified in
observations and described in greater detail.

7. Coda
We have visited several lampposts that have shed a little light—over the last century, and especially its
more recent decades—into the darkness of phenomena in the geosciences in general, and into Earth's fluid
envelopes and the climate sciences more specifically. In each case, we have tried to outline the basic ideas
and methods that fuel and focus this light, and to give a few examples of successful application of the theo-
retical ingredients to some of the phenomena. It is time to conclude with the hope that more lampposts will
spring up over the coming century and that the overlaps between pairs and triplets of circles of light will
provide even greater clarity.

Appendix A : Acronyms
Given the interdisciplinary nature of this review, all acronyms used in the main text are listed in Table A1.

Table A1
List of Acronyms

Acronym Meaning
BDE Boolean delay equation
CA cellular automaton (sing.) or automata (pl.)
CN s complex networks
DDE delay differential equation
DNS direct numerical simulation
ER Erdős-Rényi (network)
FDE functional differential equation
GFD geophysical fluid dynamics
IPCC International Panel on Climate Change
NAO North Atlantic Oscillation
NDS nonautonomous dynamical system
MHD magnetohydrodynamics
OΔE ordinary difference equation
ODE ordinary differential equation
P-map Poincaré map
PΔE partial difference equation
PDE partial differential equation
PSA Pacific-South American (pattern)
QG quasi-geostrophic (flow, model)
RA Random acyclic (network)
RDS Random dynamical system
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