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Abstract. New cloud property datasets based on measurements from the passive imaging satellite sensors
AVHRR, MODIS, ATSR2, AATSR and MERIS are presented. Two retrieval systems were developed that in-
clude components for cloud detection and cloud typing followed by cloud property retrievals based on the
optimal estimation (OE) technique. The OE-based retrievals are applied to simultaneously retrieve cloud-top
pressure, cloud particle effective radius and cloud optical thickness using measurements at visible, near-infrared
and thermal infrared wavelengths, which ensures spectral consistency. The retrieved cloud properties are fur-
ther processed to derive cloud-top height, cloud-top temperature, cloud liquid water path, cloud ice water path
and spectral cloud albedo. The Cloud_cci products are pixel-based retrievals, daily composites of those on a
global equal-angle latitude–longitude grid, and monthly cloud properties such as averages, standard deviations
and histograms, also on a global grid. All products include rigorous propagation of the retrieval and sampling
uncertainties. Grouping the orbital properties of the sensor families, six datasets have been defined, which are
named AVHRR-AM, AVHRR-PM, MODIS-Terra, MODIS-Aqua, ATSR2-AATSR and MERIS+AATSR, each
comprising a specific subset of all available sensors. The individual characteristics of the datasets are presented
together with a summary of the retrieval systems and measurement records on which the dataset generation were
based. Example validation results are given, based on comparisons to well-established reference observations,
which demonstrate the good quality of the data. In particular the ensured spectral consistency and the rigorous
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uncertainty propagation through all processing levels can be considered as new features of the Cloud_cci datasets
compared to existing datasets. In addition, the consistency among the individual datasets allows for a potential
combination of them as well as facilitates studies on the impact of temporal sampling and spatial resolution on
cloud climatologies.

For each dataset a digital object identifier has been issued:
Cloud_cci AVHRR-AM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-AM/V002
Cloud_cci AVHRR-PM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V002
Cloud_cci MODIS-Terra: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Terra/V002
Cloud_cci MODIS-Aqua: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Aqua/V002
Cloud_cci ATSR2-AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V002
Cloud_cci MERIS+AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MERIS+AATSR/V002

1 Introduction

Satellite-based datasets of geophysical variables are crucial
for climate research as they represent observations of the
Earth’s climate system, which can be used for both the analy-
sis of the climate and its variability as well as guidance for at-
mospheric model developments. These datasets evolve peri-
odically by mainly two activities: (1) extending and improv-
ing the underlying radiance record by adding new satellite
recordings and applying new inter-calibration to the entire
record, and (2) the development and application of more ad-
vanced retrieval systems and the utilization of additional or
more frequent auxiliary data which often undergo regular up-
dates themselves.

In the last few decades, activities to process and reprocess
global, high-quality cloud property datasets based on long-
term satellite measurement records have been undertaken
with increased effort. The backbone of most of the multi-
decadal climate datasets of cloud properties has been the
National Oceanic and Atmospheric Administration (NOAA)
Polar Operational Environmental Satellites (POES) series.
The Advanced Very High Resolution Radiometer (AVHRR)
has been on board the NOAA satellites since the end of
the 1970s (i.e. NOAA-5 and beyond). AVHRR is a passive
imaging sensor, where the source of measured radiation is
not emitted by the instrument. Instead, the upwards reflected
solar and emitted thermal radiation is measured at the top
of the atmosphere (TOA). This is done in abutting pixels
that assemble a seamless image. With its four to six spec-
tral channels, AVHRR allows the retrieval of key cloud prop-
erties. AVHRR has been a significant contributor to many
global cloud climatologies, e.g. the International Satellite
Cloud Climatology Project (ISCCP; Schiffer and Rossow,
1983; Rossow and Schiffer, 1999), the Pathfinder extended
dataset (PATMOS-x; Heidinger et al., 2014) and the Cli-
mate Monitoring Satellite Application Facility’s (CM SAF)
cloud, albedo and radiation dataset (CLARA-A1/A2; Karls-
son et al., 2013, 2016).

Since the 1990s the National Aeronautics and Space Ad-
ministration (NASA) and the European Space Agency (ESA)

have launched research satellite missions, e.g. Terra, Aqua,
the European Remote Sensing Satellite (ERS-1/2) and the
Environmental Satellite (Envisat), that carry AVHRR her-
itage sensors. These are the Moderate Resolution Imaging
Spectroradiometer (MODIS), the Along-Track Scanning Ra-
diometers (ATSR-1/2) and the Advanced Along-Track Scan-
ning Radiometer (AATSR), which provide an increased num-
ber of spectral channels as well as higher spatial resolution
(≤ 1 km footprint size) than AVHRR. The cloud datasets de-
rived from these measurement records cover more than one
decade and are thus becoming useful for climate studies. Ex-
amples of related cloud property datasets are the Global Re-
trieval of ATSR cloud Parameters and Evaluation (GRAPE;
Sayer et al., 2011) for ATSR/AATSR, the NASA MODIS
Collection 5 (Platnick et al., 2003; King et al., 2003) and
Collection 6 (Baum et al., 2012; Platnick et al., 2015, 2017;
Marchant et al., 2016). The MODIS and ATSR/AATSR sen-
sors include the spectral channels of AVHRR but have ad-
ditional ones in the visible, near-infrared and, in the case of
MODIS, also in the thermal infrared. However, even when
restricted to the AVHRR heritage channels, their increased
spatial resolution as well as their contribution to increasing
the observation frequency motivates their consideration in
climate research, in particular in conjunction with AVHRR.

Most of the aforementioned cloud property datasets have
improved over the years and have now reached quality lev-
els that facilitate qualitative and quantitative assessments of
clouds in the Earth’s climate system (e.g. Norris et al., 2016;
Sun et al., 2015; Enriquez-Alonso et al., 2015; Carro-Calvo
et al., 2016; Terai et al., 2016), including studies to un-
derstand cloud processes and the evaluation of atmospheric
models. However, there is still potential for advancing such
datasets.

A common shortcoming of existing datasets is the absence
of uncertainty information for pixel-level retrievals (Level-
2 data) as well as for daily and monthly averages (Level-3
data). These uncertainties should be derived using a math-
ematically sound framework with uncertainty propagation.
Another improvement to cloud property datasets is to ensure
that the properties retrieved using mainly shortwave mea-

Earth Syst. Sci. Data, 9, 881–904, 2017 www.earth-syst-sci-data.net/9/881/2017/

https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-AM/V002
https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V002
https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Terra/V002
https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Aqua/V002
https://doi.org/10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V002
https://doi.org/10.5676/DWD/ESA_Cloud_cci/MERIS+AATSR/V002


M. Stengel et al.: Cloud_cci datasets 883

surements are radiatively consistent with those mainly based
on thermal infrared measurements. This is known as spectral
consistency and is important to ensure that subsequent simu-
lations of TOA radiances using these retrieved cloud prop-
erties match the measured radiances in all spectral bands.
The same can be inferred for TOA broad-band fluxes pro-
duced using the retrieved parameters. Spectral consistency is
not maintained in existing cloud retrievals (e.g. Ham et al.,
2009) despite being of particular importance to, for example,
studies investigating the impact of cloud properties and their
change on TOA broadband fluxes and latent heating rates.

The ESA Cloud_cci project covers the cloud component
within ESA’s Climate Change Initiative (Hollmann et al.,
2013). The overarching aim of the ESA Cloud_cci project
has been the generation of state-of-the-art cloud property
datasets based on European and non-European satellite mis-
sions including the investigation of their synergistic capabil-
ities. This was achieved by

– characterizing and advancing measurement records of
passive sensors of ESA and non-ESA satellite missions
(Karlsson and Johansson, 2014);

– developing physical retrieval systems for cloud proper-
ties with spectral consistency over all utilized spectral
bands (see above for definition of spectral consistency
and see Sect. 2.1 for the set of the spectral bands that
have been utilized for each sensor considered);

– generating multi-decadal global cloud datasets, based
on both single sensors and on a synergistic use of mul-
tiple sensors, including uncertainty estimates which are
propagated through all processing levels.

The retrieval systems presented in this paper are based on
the optimal estimation (OE) technique (e.g. Rodgers, 2000)
and are used to derive a set of cloud variables simultaneously
using the visible, near-infrared and thermal infrared measure-
ments. The retrieval systems were used to generate cloud
property datasets spanning the entire available measurement
record from 1982 until 2014. In the first phase of Cloud_cci
project, prototype versions of the datasets (version 1.0) were
generated. In this paper, version 2.0 of the Cloud_cci datasets
is introduced by presenting a concise overview of the most
important technical and scientific aspects. Section 2 gives an
overview of the Cloud_cci datasets. This includes a descrip-
tion of the underlying measurement records, the retrieval sys-
tems used, the cloud variables produced at different process-
ing levels, and the propagation of the Level-2 uncertainties.
In Sect. 3 selected examples of the datasets are shown and
discussed, and Sect. 4 reports the most important validation
results. Section 6 summarizes the paper.

2 Composition of the Cloud_cci datasets

The following satellites and sensors were used in Cloud_cci:

– AVHRR on board the NOAA POES satellites (NOAA-
7, -9, -11, -12, -14, -15, -16, -17, -18, -19) and on board
the European Organisation for the Exploitation of Mete-
orological Satellites (EUMETSAT) Meteorological op-
erational satellite Metop-A;

– MODIS on board NASA’s Aqua and Terra satellites;

– ATSR-2 and AATSR on board ESA’s research satellites
ERS-2 and Envisat;

– the Medium Resolution Imaging Spectrometer
(MERIS), also on board Envisat.

Considering imaging and orbital characteristics of the sen-
sors processed, six datasets were compiled as given in Ta-
ble . For all datasets digital object identifiers (DOIs) have
been established (also given in Table ). Figure 1 reports the
local Equator-crossing times of all sensors considered.

2.1 The measurement records used

Measurements from the passive imaging sensors AVHRR,
MODIS, ATSR2, AATSR and MERIS sensors were used to
produce the Cloud_cci datasets. Each sensor has different
imaging characteristics, such as differences in swath width,
which leads to varying observation frequency for any given
position on Earth. All sensors operate in a sun-synchronous
polar orbit. Each individual orbit has an ascending and de-
scending part, which roughly corresponds to either daytime
or night-time conditions, which are thus also referred to
as daytime and night-time node. For the MERIS+AATSR
dataset, the night-time observations are ignored. Individual
AVHRR and MODIS sensors cover the globe nearly twice
a day with the daytime and night-time nodes of their orbits.
Due to their narrow swath width, ATSR2 and AATSR need 3
days to cover the full globe with daytime and night-time ob-
servations (Fig. 2). With respect to the local Equator-crossing
time of the daytime node, the AVHRR-carrying satellites
were separated into AM (a.m. – ante meridiem, before noon)
and PM (p.m. – post meridiem, after noon). In the following
sections further characteristics of the measurement data that
form the basis of the Cloud_cci datasets are summarized.

2.1.1 AVHRR

The second and third generations of the AVHRR sen-
sor (AVHRR/2 and AVHRR/3) provide measurements in
two visible, one near-infrared and two thermal infrared
channels with the following (approximate) central wave-
lengths: 0.6, 0.8, 3.7, 10.8 and 12.0 µm. Exceptions are
daytime observations of NOAA-16 in 2001–2003 and the
entire records of NOAA-17 and Metop-A, for which a
1.6 µm channel was switched on during the day and
used instead of the 3.7 µm channel. The AVHRR swath
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Figure 1. Overview of all sensors processed in Cloud_cci and their duration as a function of the daytime Equator-crossing time (AM: ante
meridiem, before noon; PM: post meridiem, after noon). Sensors belonging to the same dataset are shown in the same colour.

Table 1. List of Cloud_cci datasets together with the corresponding retrieval scheme, the sensor(s), satellite(s) used and the time period
covered as well as the digital object identifiers (DOIs) issued.

Cloud_cci
dataset

Retrieval
used

Sensor(s) Satellite(s) Temporal coverage DOI

AVHRR-PM CC4CL AVHRR N-7, 9, 11, 14, 16, 18, 19 1982–2014 doi:10.5676/DWD/ESA_Cloud_cci/AVHRR-
PM/V002

AVHRR-AM CC4CL AVHRR N-12, 15, 17, Metop-A 1991–2014 doi:10.5676/DWD/ESA_Cloud_cci/AVHRR-
AM/V002

MODIS-Aqua CC4CL MODIS Aqua 2002–2014 doi:10.5676/DWD/ESA_Cloud_cci/MODIS-
Aqua/V002

MODIS-Terra CC4CL MODIS Terra 2000–2014 doi:10.5676/DWD/ESA_Cloud_cci/MODIS-
Terra/V002

ATSR2/AATSR CC4CL ATSR2,AATSR ERS2, Envisat 1995–2012 doi:10.5676/DWD/ESA_Cloud_cci/ATSR2-
AATSR/V002

MERIS-AATSR FAME-C MERIS,AATSR Envisat 2003–2011 doi:10.5676/DWD/ESA_Cloud_cci/MERIS-
AATSR/V002

AM: ante meridiem, before noon; PM: post meridiem, after noon; CC4CL: Community Cloud retrieval for CLimate; FAME-C: Freie Universität Berlin AATSR MERIS Cloud retrieval; N: NOAA.

width is 2399 km, which facilitates full global cover-
age (daytime and night-time) twice daily. More infor-
mation about the AVHRR sensor can for example be
found at https://www.wmo-sat.info/oscar/instruments/view/
62. The Cloud_cci AVHRR-AM and AVHRR-PM datasets
are based on measurements from AVHRR/2 and AVHRR/3
on board prime polar-orbiting NOAA POES and Metop
satellites, i.e. AVHRR-PM: NOAA-7, NOAA-9, NOAA-11,
NOAA-14, NOAA-16, NOAA-18 and NOAA-19; AVHRR-
AM: NOAA-12, NOAA-15, NOAA-17 and Metop-A. All
measurements used are global area coverage (GAC) data
with a footprint size of 1.1 km× 4.4 km and a sampling dis-
tance of 3.3 km along track and 5.5 km across track between
the centres of the GAC footprints. GAC data are derived from
the originally measured Local Area Coverage (LAC, foot-
print size: 1.1 km× 1.1 km) data by on-board averaging of
four neighbouring LAC pixels every third scan line. Only the
GAC record is available for AVHRR with global and nearly
seamless temporal coverage since the early NOAA satellites.

The two visible channels and the 1.6 µm channel (if present)
were intercalibrated using MODIS Collection 6 measure-
ments (Heidinger et al., 2017; an update of Heidinger et al.,
2010). For the IR channels no further calibration was per-
formed beyond the on-board blackbody calibration.

2.1.2 MODIS

MODIS is a 36-channel passive imaging sensor with a swath
width of 2330 km. More information on the MODIS sensor
is available at https://www.wmo-sat.info/oscar/instruments/
view/296. Out of the original 36 spectral channels, mea-
surements from 5 of them (the AVHRR heritage channels,
MODIS channel numbers 1, 2, 20, 31, 32) were used to re-
trieve cloud properties from MODIS-Terra (in 2000–2014)
and MODIS-Aqua (in 2002–2014). The MODIS sensor is
calibrated on board. The calibration approach employs radio-
metric, spatial, and spectral calibrators and the moon as ref-
erence (Xiong and Barnes, 2006). MODIS sensors are well
known for their high calibration accuracy. MODIS Level-
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Figure 2. Daily Level-3U cloud mask composites for 22 June 2008 demonstrating the spatial coverage of the daytime nodes of selected
sensors within 24 h. See Table 3 for definition of Level-3U.

1b data of the Collection 6 release were obtained from
NASA. The Collection 6 Level-1 data are expected to show
several improvements over Collection 5 data due to im-
proved calibration methodologies (see for example http://
mcst.gsfc.nasa.gov/calibration/collection_6_info). The foot-
print size of the MODIS Level-1 data is 0.25 km× 0.25 km
to 1 km× 1 km (depending on channel); here we used data at
1 km× 1 km resolution for all channels.

2.1.3 ATSR2 and AATSR

The passive imaging sensors ATSR2 and AATSR have
seven spectral channels in the solar, near-infrared and ther-
mal infrared range with central wavelengths between 0.55
and 12 µm, of which five (the AVHRR heritage channels;
ATSR2/AATSR channel numbers 2, 3, 5, 6, 7) were used.
At nadir the ATSR2 and AATSR pixel resolution is ap-
proximately 1 km× 1 km with a swath width of 500 km.
The sensor is designed to be self-calibrating. Two integrated
thermally controlled blackbody targets are used for cali-
bration of the thermal channels, while an opal visible cal-
ibration target illuminated by sunlight is used for calibra-
tion of visible and near-infrared channels. More information
about the ATSR-2 and AATSR sensors is available at https:
//www.wmo-sat.info/oscar/instruments/view/56 and https://
www.wmo-sat.info/oscar/instruments/view/2. Version 3.1 of
the ATSR2 and AATSR Level-1 data was used. The available
ATSR2 Level-1 record covers 1995–2002, while the AATSR
Level-1 record covers 2002–2012.

2.1.4 MERIS

MERIS is a passive imaging sensor whose measurements
were synergistically combined with AATSR measurements
in this study, making use of the fact that both sensors are

mounted on the same platform (Envisat) but have comple-
mentary spectral characteristics. The pixels of both sensors
were spatially matched. MERIS measurements outside
the AATSR swath width (500 km, which is narrower than
the MERIS swath width of 1150 km) were not used. The
collocated synergy product has a swath width of 493 pixels.
This is related to collocating the curved AATSR grid
with the MERIS grid. More information on the matching
procedure can be found in (Gómez-Chova et al., 2009). The
spatial resolution of the MERIS reduced resolution mode is
1.2 km× 1 km and thus very similar to AATSR. More infor-
mation about the MERIS sensor is available at https://www.
wmo-sat.info/oscar/instruments/view/277. MERIS Level-1
data of the third reprocessing has been used (https://earth.
esa.int/documents/700255/707222/A879-NT-017-ACR_
v1.0.pdf/6fa86bec-9945-4e39-808e-3801f2e3962b). In
addition to the above-mentioned AVHRR heritage channels
of AATSR, MERIS channel 11 (spectrally located in the
oxygen-A absorption band around 761 nm) and channel 10
(a nearby window channel located around 753 nm) were
used. An empirical stray-light correction was applied to
the reflectance of the MERIS oxygen-A absorption band
channel (Lindstrot et al., 2010). For this correction, the
spectral smile effect in the MERIS measurements (Bourg
et al., 2008), which is the variation in the channel centre
wavelength along the field of view, as well as the amount of
stray light in the MERIS oxygen-A absorption band channel,
was determined.

2.2 Retrieval systems

Based on a comprehensive comparison to existing cloud
property retrieval systems applicable to passive imaging
sensors (Stengel et al., 2015), the two Cloud_cci algo-
rithms were further developed and then used to generate
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the Cloud_cci climate records. For datasets derived from
AVHRR and from the AVHRR heritage channels of MODIS,
ATSR-2 and AATSR, the Community Cloud retrieval for
CLimate (CC4CL; Sus et al., 2017; McGarragh et al., 2017b)
retrieval system was employed. For the MERIS+AATSR
dataset, the Freie Universität Berlin AATSR MERIS Cloud
(FAME-C; Carbajal Henken et al., 2014) retrieval sys-
tem was employed. Common to both systems is the OE
technique, which uses a Levenberg–Marquardt (Levenberg,
1944; Marquardt, 1963; Rodgers, 2000) non-linear inversion
method to iteratively fit simulated TOA radiances to the mea-
sured TOA radiances. The ability to include a prior knowl-
edge of the retrieved quantities is built into the method. The
OE technique supports comprehensive error propagation, al-
lowing measurement error, forward model error (due to ap-
proximations and assumptions, which are made in the mod-
elling of TOA radiance) and uncertainties in a priori knowl-
edge to be combined to give a rigorous estimate of the uncer-
tainty on retrieved values on a pixel-by-pixel basis.

CC4CL and FAME-C were employed to primarily retrieve
the following cloud properties: cloud mask (CMA), cloud
phase (CPH), cloud optical thickness (COT), cloud effec-
tive radius (CER) and cloud-top pressure (CTP). From these
properties, cloud-top temperature (CTT), cloud-top height
(CTH), liquid water path (LWP), ice water path (IWP) and
cloud albedo (CLA) were also determined. A short descrip-
tion of all cloud properties is given in Table 2. The next
two subsections briefly summarize the main characteristics
of CC4CL and FAME-C with in-depth details to be found in
the references given therein.

2.2.1 CC4CL

The CC4CL retrieval system has three main components:
cloud detection to retrieve CMA; cloud typing to retrieve
CPH; and an OE retrieval of COT, CER and CTP. The three
components are framed by a pre-processing (e.g. spatio-
temporal mapping of all data fields and clear-sky radiative
transfer simulations) and a post-processing (e.g. merging,
consistency check, quality control). The cloud detection is
performed by applying an artificial neural network (ANN)
that uses the AVHRR heritage channel measurements, illu-
mination, scan angles, and auxiliary data as input. The ANN
was trained to mimic the COT of the Cloud-Aerosol Li-
dar with Orthogonal Polarization (CALIOP; Winker et al.,
2009), which is the main payload of the Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observations (CALIPSO)
satellite. Cloudy pixels are identified where the ANN-
estimated COT exceeds pre-defined thresholds (with the re-
maining pixels classified as clear), thus defining the CMA.
Based on CALIOP data in the ANN training set, a cloud
mask uncertainty is determined. The cloud typing is based
on a threshold decision tree documented in (Pavolonis and
Heidinger, 2004) and (Pavolonis et al., 2005). Various cloud
types exist for either liquid or ice phase, which allows the

simplification to a binary CPH information. The central part
of CC4CL is an OE estimation of COT, CER and CTP, which
is based on earlier developments of the Oxford RAL retrieval
of Aerosol and Cloud retrieval (ORAC; Poulsen et al., 2012;
Watts et al., 1998) but has undergone major updates since
then. As mentioned above, a cloud model is iteratively mod-
ified to fit the simulated radiances to the measurements. For
this, a fast forward radiative transfer model is included us-
ing scalar reflectance, transmission and emission operators.
These operators interact with (1) the direct beam solar source
and/or the diffuse thermal source from above and (2) both
direct and diffuse surface reflectance from a bidirectional re-
flectance distribution function (BRDF) surface in the solar
channels, as well as diffuse atmospheric and surface emission
in the thermal channels from below. The operators are a func-
tion of the state vector elements COT and CER, and solar and
instrument geometry and compiled in look-up tables (LUTs)
precalculated using the DIScrete Ordinates Radiative Trans-
fer (DISORT; Stamnes et al., 1988) solver. The simulations
were done separately for liquid and ice clouds. Liquid clouds
are represented with a modified gamma distribution (Hansen
and Travis, 1974) and ice cloud single-scattering properties
are taken from (Baran et al., 2005).

Clear-sky transmittance and radiance profiles are com-
puted using the Radiative Transfer for Television Infrared
Observation Satellite Program (TIROS) Operational Verti-
cal Sounder (TOVS) (RTTOV; Eyre, 1991; Saunders et al.,
1999) model version 11.3 (Hocking et al., 2014). For each it-
eration the above-cloud and below-cloud clear-sky transmit-
tances and radiances are interpolated from the correspond-
ing RTTOV profiles as a function of CTP. From the derived
state vector variables, the properties CTT, CTH, CLA, LWP
and IWP are inferred with LWP and IWP calculations being
based on (Stephens, 1978) for all cloudy conditions. A full
list of retrieved cloud variables is given in Table 2. The reader
is referred to (Sus et al., 2017) and (McGarragh et al., 2017b)
for more details on CC4CL. The CC4CL system was used
for the generation of the Cloud_cci datasets AVHRR-PM,
AVHRR-AM, MODIS-Aqua, MODIS-Terra and ATSR2-
AATSR.

2.2.2 FAME-C

FAME-C is an OE-based retrieval system for cloud proper-
ties using TOA radiance measurements from AATSR and
MERIS. As an initial step a cloud detection is performed
as described in (Hollstein et al., 2015). This is followed
by the cloud typing procedure of (Pavolonis et al., 2005)
and (Pavolonis and Heidinger, 2004), which is additionally
simplified to provide binary liquid-ice information. For day-
time pixels identified as cloudy and assigned with a cloud
type, an OE-based retrieval of COT and CER is performed.
The OE retrieval was initially based on developments doc-
umented in (Walther and Heidinger, 2012). Required LUTs
for mapping cloud properties to visible and near-infrared re-
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flectances were composed through radiative transfer simu-
lations utilizing the Matrix Operator Model (MOMO; Fis-
cher and Grassl, 1984; Fell and Fischer, 2001). From the
retrieved COT and CER, LWP and IWP are computed us-
ing (Stephens, 1978) for liquid clouds and optically thick
ice clouds. For optically thin ice clouds, the conversion of
(Heymsfield et al., 2003) is applied. Using the retrieved CPH
and COT, a cloud-top temperature retrieval is conducted us-
ing the AATSR thermal infrared channels. Radiative transfer
simulations for AATSR are done using RTTOV version 11.2.
The CTT is further converted to CTH and CTP using collo-
cated numerical weather prediction (NWP) profiles of pres-
sure, temperature and height. These CTP values are provided
as first guess to a second CTP retrieval based on MERIS
measurements in an oxygen-A absorption band channel and a
nearby window channel. The difference in sensitivity of both
cloud height retrievals to different kinds of cloudy situations
was analysed in (Carbajal Henken et al., 2015).

The full list of retrieved cloud properties using the FAME-
C system largely overlaps with the CC4CL output and is
thus also given in Table 2. The reader is referred to (Car-
bajal Henken et al., 2014) for more details on the FAME-
C. The FAME-C system was used for the generation of the
Cloud_cci MERIS+AATSR dataset.

2.3 Product definitions

The full suite of Level-2 cloud properties derived from both
retrieval systems is CMA, CPH, CTP, CTH, CTT, COT, CER,
CWP, and CLA (at two wavelengths), where CWP represents
either LWP in pixels with liquid clouds or IWP in pixels with
ice clouds. Nearly all of these properties are accompanied by
uncertainty measures that are direct outputs of OE (or derived
from them). Exceptions are CC4CL CMA, for which the un-
certainty is empirically estimated from validation work (Sus
et al., 2017). Furthermore, CMA from FAME-C and CPH
from both retrieval systems are not accompanied by uncer-
tainty information yet. Besides Level-2, two additional pro-
cessing levels exist: Level-3U and Level-3C, which are ex-
plained in Sect. 2.4.

2.4 From pixel-based retrieval data (Level-2) to daily
and monthly properties (Level-3)

Level-2 data were the input to the Level-3 processing and
underwent a spatio-temporal sampling and averaging. Level-
3U products are global composites, defined on a latitude–
longitude grid at 0.05◦× 0.05◦ resolution. Level-3U fields
hold Level-2 data which were sampled into the Level-3U grid
within a 24 h time window. The most important aspects of
this sampling procedure are as follows: (1) only that Level-
2 pixel that has the lowest satellite zenith angle is kept in
each Level-3U grid cell and (2) the actual footprint size of
each pixel is considered (which depends on the sensor and
scan angle), which can lead to more than one Level-3U grid

cell being filled by one single Level-2 pixel observations.
The Level-3U composition was done for each day, keeping
the ascending and descending nodes of the orbits in separate
fields, which roughly corresponds to separating daytime and
night-time observations. The Level-3U products also hold a
variety of ancillary data information apart from the retrieved
cloud properties. Taking advantage of the high spatial reso-
lution of the MODIS sensor, additional Level-3U products
were produced for MODIS for a 0.02◦× 0.02◦ grid covering
the European area within 15◦W to 45◦ E and 35 to 75◦ N (not
shown).

Level-3C products are defined on a latitude–longitude grid
with 0.5◦× 0.5◦ resolution and hold monthly summaries of
the Level-2 data, such as averages and standard deviation. In
addition, monthly histograms were composed for CTP, CTT,
CER, COT, CWP, CLA, each separated into liquid and ice
clouds, and for combinations of COT and CTP (joint cloud
property histogram, JCH). Table 3 summarizes most impor-
tant characteristics of all processing levels. The binning of
the Level-3C histograms is given in Table 5. Table 4 reflects
the available cloud properties for each processing level.

Due to differences in spatial resolution and swath width
between the considered sensors, the spatio-temporal observa-
tion frequency is very different. The effect of this on monthly
scale is demonstrated in Fig. 3 by the number of daytime ob-
servations per 0.5◦ grid cell per month.

2.4.1 Propagating the uncertainties

Different metrics can be used to represent the uncertainty of
monthly mean Level-3C products. A simple and often used
metric is the standard deviation σSD (Eq. 1) calculated over
the same set of retrieved pixels (xi) that is used for the calcu-
lation of the mean (〈x〉):

σ 2
SD =

1
N

N∑
i=1

(xi −〈x〉)2, (1)

with N being the number of pixels.
The OE approach provides pixel-based retrieval uncertain-

ties (σi) that are based on mathematically consistent propa-
gation of the uncertainties of the input data (e.g. auxiliary
data, measurement data, background errors) into the Level-
2 product space (see for example McGarragh et al., 2017b,
and Sus et al., 2017). For the Cloud_cci datasets, the Level-2
uncertainties were further propagated into Level-3C products
by two measures: the mean of the pixel-based uncertainties
(〈σi〉, Eq. 2) and the mean of the squares of the pixel-based
uncertainties (〈σ 2

i 〉, Eq. 3).

〈σi〉 =
1
N

N∑
i=1

(σi) (2)

〈σ 2
i 〉 =

1
N

N∑
i=1

(σ 2
i ) (3)

www.earth-syst-sci-data.net/9/881/2017/ Earth Syst. Sci. Data, 9, 881–904, 2017



888 M. Stengel et al.: Cloud_cci datasets

Table 2. List of generated cloud properties. See Sect. 2.4 for more information on the processing levels Level-2, Level-3U and Level-3C.

Variable Abbreviation Definition

Cloud mask
Cloud fractional cover

CMA
CFC

A binary cloud mask per pixel (Level-2, Level-3U)
Subsequently calculated monthly total cloud fractional cover (Level-3C); also separated
into three vertical classes (high, mid-level, low clouds) following ISCCP classification
of (Rossow and Schiffer, 1999).

Cloud phase
Liquid cloud fraction

CPH The thermodynamic phase of the cloud (binary: liquid or ice; in Level-2, Level-3U)
The monthly liquid cloud fraction (Level-3C) using the binary cloud phase information.

Cloud optical thickness COT The line integral of the absorption and the scattering coefficients along the vertical in
cloudy pixels.

Cloud effective radius CER The projected-area-weighted mean radius of the cloud drop and crystal particles, re-
spectively.

Cloud-top pressure
Cloud-top height
Cloud-top temperature

CTP
CTH
CTT

The air pressure at the top of the uppermost cloud layer – direct output of OE.
Height of cloud top, inferred from CTP using ERA-Interim (Dee et al., 2011) profiles.
Air temperature at the cloud top, inferred from CTP using ERA-Interim profiles.

Cloud water path (containing
ice and liquid water path)

CWP
(LWP, IWP)

The vertically integrated liquid/ice water content in a cloudy column; derived from CER
and COT following (Stephens, 1978).

Joint cloud property histogram JCH A spatially resolved two-dimensional histogram of combinations of COT and CTP for
each spatial grid cell (Level-3C only).

Spectral cloud albedo at 0.6 µm
Spectral cloud albedo at 0.8 µm

CLA_vis006
CLA_vis008*

The black-sky albedo derived for channel 1 (0.67 µm) and 2 (0.87 µm∗), respectively
(experimental product).

∗ For FAME-C, the cloud albedo is derived at 1.6 µm instead of 0.87 µm.

Table 3. Processing levels of Cloud_cci data products. The footprint refers to the area on the Earth’s surface that is covered by one sensor
pixel at nadir view.

Processing level Footprint size Description

Level-2
(pixel data)

MODIS: 1 km
AATSR: 1 km
AVHRR: 5 km
MERIS+AATSR: 1 km

Retrieved cloud properties at the same resolution and location
as the native sensor measurement (Level-1)

Level-3U
(daily composites)

Global equal-angle, latitude–longitude
grid with 0.05◦ resolution
(MODIS-Europe: 0.02◦)

Cloud properties of Level-2 data granules sampled to a global
grid without combining any observations from overlapping or-
bits. Only sampling is done. Common alternative notations for
this processing level are Level-2B or Level-2G. Temporal cov-
erage of this product is 1 day.

Level-3C
(monthly averages
and histograms)

Global equal-angle, latitude–longitude
grid with 0.5◦ resolution

Cloud properties combined (averaged) from a single sensor into
a global grid; sampled for the histograms. Temporal coverage
of this product is 1 month.

With these measures it is possible to include the OE-based
Level-2 uncertainties when quantifying both the true, natural
variability (σtrue) of the observed geophysical variable (Eq. 4)
and the uncertainty of the calculated mean (σ〈x〉, Eq. 5).

σ 2
true = σ

2
SD− (1− c)〈σ 2

i 〉 (4)

σ 2
〈x〉 =

1
N
σ 2

true+ c〈σi〉
2
+ (1− c)

1
N
〈σ 2
i 〉 (5)

These equations assume a bias-free Gaussian distribution
for both the Level-2 uncertainties and the retrieved variables.
This assumption is inaccurate for many variables of the pre-

sented properties, which introduces some limitations to the
presented approach. Hence, the propagated uncertainties are
meant to be experimental for these dataset versions. Assum-
ing Gaussian and bias-free distributions, the estimated natu-
ral variability represents the standard deviation (thus the in-
ner 68 % percentile) of the distribution around the true mean.
Furthermore, the estimated uncertainty of the monthly mean
represents the 68 % confidence interval around the calculated
monthly mean.

The given framework was applied to all cloud properties
and their OE-based uncertainties in the generation of the
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Table 4. Cloud_cci product portfolio, also featuring day/night and liquid/ice separation for some properties. All products listed exist for each
dataset.

Level-2
pixel level

Level-3U
daily composites

Level-3C
monthly averages

Level-3C
monthly histograms

CMA/CFC
√ √ √

(day/night high/mid/low) –
CTP, CTH, CTT

√ √ √ √
(liquid/ice)

CPH
√ √ √

(day/night) –
COT

√ √ √
(liquid/ice)

√
(liquid/ice)

CER
√ √ √

(liquid/ice)
√

(liquid/ice)
LWP

√
(as CWP)

√
(as CWP)

√ √

IWP
√

(as CWP)
√

(as CWP)
√ √

CLA
√

(0.6/0.8 µm∗)
√

(0.6/0.8 µm∗)
√

(0.6/0.8 µm∗)
√

(liquid/ice)
JCH N/A N/A N/A

√
(liquid/ice)

∗ For FAME-C, the cloud albedo is derived at 1.6 µm instead of 0.87 µm.

Table 5. Bin borders of Cloud_cci Level-3C histograms of cloud-top pressure (CTP), cloud-top temperature (CTT), cloud optical thickness
(COT), cloud effective radius (CER), liquid and ice water path (CWP), cloud albedo (CLA), and joint cloud property histogram (JCH).

Cloud_cci variable Bin borders in Level-3C monthly histograms

CTP (hPa) 1, 90, 180, 245, 310, 375, 440, 500, 560, 620, 680, 740, 800, 875, 950, 1100
CTT (K) 200, 210, 220, 230, 235, 240, 245, 250, 255, 260, 265, 270, 280, 290, 300, 310, 350
COT 0, 0.3, 0.6, 1.3, 2.2, 3.6, 5.8, 9.4, 15, 23, 41, 60, 80, 99.99, 1000
CER (µm) 0, 3, 6, 9, 12, 15, 20, 25, 30, 40, 60, 80
CWP (gm−2) 0, 5, 10, 20, 35, 50, 75, 100, 150, 200, 300, 500, 1000, 2000, 100 000
CLA_vis006/008∗ 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.9, 1
JCH See COT and CTP bins

∗ For FAME-C, the cloud albedo is derived at 1.6 µm instead of 0.87 µm.

Level-3C products. The results are discussed using the ex-
ample of COT from the AVHRR-PM dataset for June 2008.
Figure 4 shows global maps of monthly mean COT and the
corresponding monthly standard deviation (panels a and b)
as calculated from the retrieved Level-2 values. The estimate
of the true variability is shown along with the estimated un-
certainty of the calculated mean (panels c and d) for an un-
certainty correlation (c) of 0.1. Panels (e) and (f) show the
results for an uncertainty correlation of 1.0. The exact corre-
lation is not known and it is likely to have spatial and tem-
poral variability. Due to this, two very different values have
been chosen to illustrate the sensitivity. In this example, re-
gions with high mean COT tend to be characterized by high
spatio-temporal variability in the underlying data, which is
apparent in the increased standard deviation. An exception is
the northern part of the Atlantic and Pacific oceans, where
the standard deviation is low while the mean COT is high.
A noticeable feature is found in the stratocumulus regions,
which are located in the eastern parts of the subtropical ocean
regions. There, the COT is very stable and thus shows low
standard deviations. Another very dominant feature is a band
of rather high mean COT accompanied with high variability,
in the storm track regions of the Southern Ocean.

Now, assuming a rather low uncertainty correlation of 0.1,
the estimated true variability becomes very small (Fig. 4c).

This is due to the second term on the right side of Eq. (4),
in which the mean of the squared retrieval uncertainties is
not significantly reduced when using a correlation of 0.1. In
other words, if the retrieval uncertainties are only slightly
correlated, they contribute to a broadening of the observed
COT distribution, causing only a minor systematic shift of
the distribution. In this scenario, the retrieval uncertainties
can explain a large portion of the observed standard devi-
ation. In some regions the second term of Eq. (4) is even
larger than the first term (the observed variance), which re-
sults in negative values of the estimated natural variability.
Such negative values are non-physical and indicate an im-
proper correlation in corresponding regions. They have been
set to 0 in the plots. The uncertainty of the mean is also rel-
atively small for a correlation of 0.1 (Fig. 4d). This is due
to all three terms of Eq. (5) becoming small: the third term
because of the relatively large N , the second term because
of the low correlation and the first term because of the low
estimated natural variability, additionally minimized by the
division by N . In other words, having small systematic un-
certainties (i.e. a low uncertainty correlation) leads to a low
uncertainty of the mean, which is dominated by sampling un-
certainties decreasing with increasing N .

As a second example, an uncertainty correlation of 1.0
(panels e and f of Fig. 4) is considered. The second term on
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Figure 3. Number of daytime observations (pixels) per 0.5◦ grid cell for June 2008 and (a) AVHRR-PM/NOAA-18, (b) AVHRR-AM/Metop-
A, (c) MODIS-Aqua, (d) MODIS-Terra, (e) AATSR and (f) MERIS+AATSR. For the sake of comparability only the daytime number is
shown because no night-time observations are included in MERIS+AATSR. Grey-shaded areas indicate regions with no daylight and thus
without daytime observations.

the right hand side of Eq. (4) vanishes in this case, leading
to the estimated true variability being equal to the observed
standard deviation. The uncertainty of the mean is also in-
creased, which is in contrast to the previous scenario with
low correlation. A correlation of 1.0 eliminates the third term
of Eq. (5). The first term decreases with larger N , although
the natural variability is now larger than the previous exam-
ple, leaving the second term dominating the uncertainty on
the mean, which is the arithmetical mean of the retrieval un-
certainties. Since for cloud optical thickness the retrieval un-
certainty is usually highest for clouds with high COTs, the
uncertainty of the mean is highest in regions dominated by
such clouds.

The Cloud_cci Level-3C products contain the individual
uncertainty terms σSD, 〈σi〉 and 〈σ 2

i 〉 for each variable in ad-
dition to the mean. This allows posterior calculations of σ〈x〉
and σtrue for any given uncertainty correlation.

3 Product examples

In this section most Cloud_cci products are discussed using
the example of the AVHRR-PM dataset, i.e. (1) Level-3U
data of NOAA-18/AVHRR for 22 June 2008 and (2) Level-
3C data for the month of June 2008. Figure 5 shows CMA,
CFC, CPH, liquid cloud fraction, COT and CER. Figure 6
shows CTP, LWP, IWP and CLA. In Fig. 7 the JCH is pre-
sented in two ways: (1) shown as a global COT-CTP his-
togram aggregated over all grid cells and (2) the relative
fraction of a certain subset of clouds, in this case cumulus
clouds according to the ISCCP definition given in (Rossow
and Schiffer, 1999): clouds with CTP larger than 680 hPa and
with COT lower than 3.6.

In Fig. 8 time series of selected cloud properties are shown
for monthly, latitude-weighted averages (within a 60◦ S–
60◦ N latitude band) of Cloud_cci AVHRR-AM, MODIS-
Terra, ATSR2-AATSR and MERIS+AATSR datasets. All
datasets are relatively stable. However, the time series ex-
hibit some systematic offsets between the datasets. Though
these offsets have not been investigated in detail yet, it is
currently assumed that they are caused by the following three
reasons. (1) Differences in the spectral characteristics of the
AVHRR heritage channels used, i.e. the position and shape
of the spectral response functions, which is only accounted
for empirically in cloud detection and cloud typing schemes.
(2) The applied, but maybe still imperfect, calibration of the
measurement records. (3) Differences in the spatial resolu-
tion of AVHRR (footprint size of 1 km× 4 km) compared
with MODIS and AATSR (1 km× 1 km footprint size) may
have a significant impact. Figure 9 shows the time series for
Cloud_cci AVHRR-PM and MODIS-Aqua datasets. Consid-
ering the time series of all datasets, some inhomogeneities
are found for AVHRR-AM, AVHRR-PM. These are mainly
due to differences in local observation time of the individ-
ual satellites. A significant portion of this is due to a grow-
ing delay in local observation time with satellite lifetime
caused by the drift of the satellite orbit. For AVHRR-AM,
there is an additional jump in local observation time between
the early morning orbits of NOAA-12 and NOAA15 and the
mid-morning orbits of NOAA-17 and Metop-A. Variability
in local observation time means that different parts of a di-
urnal cycle of clouds are sampled. Also, the solar zenith an-
gle and the relative azimuth angle between satellite and sun
change with local observation time and can also lead to inho-
mogeneities in a time series. Statistical correction methods
for mentioned effects exist (e.g. Foster and Heidinger, 2013)
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Figure 4. Monthly standard deviation (a) and monthly mean (b) for cloud optical thickness (COT). Panels (c) and (d) show the estimated
natural variability and uncertainty of the mean (d) for a correlation of 0.1. Panels (e) and (f) are the same as panels (c) and (d) but for an
uncertainty correlation of 1.0. All data are from AVHRR-PM in June 2008.

and should be applied precedent to any trend analysis. The
impact of spectral deviation among the individual AVHRR
sensors of a dataset is assumed to have a smaller impact com-
pared to the satellite drift effect. For ATSR2-AATSR a small
jump in the time series of some cloud properties is found at
the sensor transition. This is primarily driven by differences
in the dynamic range of the 3.7 µm channel. The channel sat-
urates more often for ATSR-2. This is particularly evident for
CFC, LWP and IWP.

Another feature in the AVHRR-PM CFC time series
(Fig. 9) is worth mentioning. In 1982 (and onwards) and
in 1991 (and onwards) positive anomalies are found which
are related to the major eruptions of the El Chichón (Mex-
ico) and Pinatubo (Philippines) volcanoes. A first analysis
revealed that heavy aerosol loadings are sometimes detected
as clouds. As this seems to be a general feature of CC4CL
and FAME-C, cloud detection and cloud-top properties of all

datasets should be used with caution in heavy aerosol condi-
tions.

4 Validation summary

Cloud_cci datasets between 2006 and 2014 were collocated
in space and time with observations from the CALIOP instru-
ment mounted on board the CALIPSO satellite. The active
measurements of CALIOP observations can be considered
as an accurate reference for CMA, CPH and CTH. However,
it is important to note that cloud properties from CALIOP are
physically different to that given by the Cloud_cci products.
For CTH, for example, the active sensor detects where the
density of particles sharply increases – the physical cloud-top
edge. Passive sensors observe the entire atmospheric column
simultaneously. The CTH retrieved from passive sensors is
an effective average through the cloud-top layer. As such, it
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Figure 5. Level-3U (a, c, e, g) and Level-3C (b, d, f, h) of cloud mask/fraction (a–b), cloud phase/liquid cloud fraction (c–d), optical
thickness (e–f) and effective radius (g–h) for the AVHRR-PM dataset for June 2008. For the Level-3U examples, the ascending nodes of the
orbits are shown, which roughly correspond to the daylight portions of the orbits of NOAA-18. COT, LWP, IWP and CLA are only retrieved
during daytime conditions. Areas with no valid retrievals in this day/month are grey-shaded.

is expected that Cloud_cci CTHs are lower than those ob-
served by CALIOP, in particular for clouds containing fuzzy
(semi-transparent) cloud layers. To account for this, various
metrics have been considered for the validation of Cloud_cci
cloud properties, where the CALIOP properties have been
adjusted with respect to the optical depth profile.

The CAL_LID_L2_05kmCLay-Prov product has been
used, which was downloaded from ICARE Data and Ser-
vice Center (http://www.icare.univ-lille1.fr). All collocations

are based on searching for the nearest neighbour in the
Cloud_cci Level-3U data to each CALIOP observation. Due
to the similar orbital characteristics of NOAA-18, NOAA-19
(both are part of AVHRR-PM), Aqua and CALIPSO, a very
large set of collocations between these passive imagers and
CALIOP was found with only short temporal mismatches.
A time window of ±3 min was used in these cases. The or-
bital characteristics of NOAA-17, Metop-A (both are part
of the AVHRR-AM dataset), Envisat (part of the ATSR2-

Earth Syst. Sci. Data, 9, 881–904, 2017 www.earth-syst-sci-data.net/9/881/2017/

http://www.icare.univ-lille1.fr


M. Stengel et al.: Cloud_cci datasets 893

Figure 6. As Fig. 5 but for cloud-top pressure (a–b), liquid water path (c–d), ice water path (e–f), and spectral cloud albedo at 0.6 µm (g–h)
for Level-3U (a, c, e, g) and Level-3C (b, d, f, h) products. Panels (c) and (e) both show the Level-3U cloud water path, which represents
liquid water path in liquid cloud pixels and ice water path in ice cloud pixels.

AATSR and MERIS+AATSR datasets) and Terra deviate
significantly from CALIPSO. Thus, for these satellites the
collocation time window was extended to ±15 min. These
collocations are, however, still limited to the very high lati-
tudes around 70◦ north and south and are thus occasionally
affected by snow and ice as well as low solar-zenith-angle
conditions.

In Table 6 the validation results for CMA are presented,
i.e. the probabilities of correctly detecting cloudy and clear-
sky scenes (Hit rate, PODcloudy, PODclear; see Appendix A

for the definition of these terms), the bias and the number of
considered pixels. In a first set-up, the distinction of clear-sky
and cloudy scenes in CALIOP data was made without apply-
ing any cloud optical depth threshold (upper part of Table 6).
The hit rates (i.e. the fraction of pixels that were correctly
labelled clear or cloudy by the Cloud_cci CMA with regard
to CALIOP) range from 73 to 91 %, with the highest values
for MODIS-Terra. The biases range from −13 to −1 % indi-
cating a slight underestimation of cloudiness, despite the fact
that the PODcloudy is significantly higher than PODclear for all
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Figure 7. (a) Joint cloud property histogram, globally aggregated over all grid cells. (b) Global map of relative occurrence of cumulus clouds
(according to ISCCP definition of Rossow and Schiffer, 1999 with CTP> 680 hPa and COT< 3.6) with respect to all clouds. Data shown
are from AVHRR-PM in June 2008.

Table 6. Summary of cloud mask (CMA) validation results for Cloud_cci datasets when compared against CALIOP. Validation measures
are the probabilities of detecting cloudy and clear scenes (Hit rate, PODliquid, PODice; see Appendix A for the definition of these terms)
and bias. Also given is the number of collocated pixels. The scores are separated into two cloud optical thickness thresholds (COTthres)
representing above which CALIOP COT the CALIOP pixel was classified cloudy.

Score AVHRR-AM AVHRR-PM MODIS-Terra∗ MODIS-Aqua ATSR2-AATSR∗ MERIS+AATSR∗

C
O

D
le

v
=

0.
0 Hit rate (%) 76.2 81.2 91.0 81.6 74.3 73.4

PODcloudy (%) 78.3 79.0 94.4 81.1 80.0 74.6
PODclear (%) 70.4 87.7 70.0 83.1 60.5 69.6
Bias (%) −8.1 −12.6 −1.1 −9.8 −2.6 −12.5
Number 42 119 16 675 575 19 118 16 494 437 94 039 23 098

C
O

D
le

v
=

0.
15 Hit rate (%) 78.3 84.9 89.4 83.5 75.0 75.6

PODcloudy (%) 84.4 87.5 96.5 88.7 86.2 80.3
PODclear (%) 67.6 80.5 51.7 75.0 58.4 66.4
Bias (%) 1.9 −0.5 4.8 2.3 8.5 −1.5
Number 42 119 16 675 575 19 118 16 494 437 94 039 23 098

∗ Time window used for collocations was ±15 min for ATSR2+AATSR, MERIS+AATSR and MODIS-Terra. For all others a ±3 min window was used.

datasets, which can be explained by the higher frequency of
cloudy scenes compared to clear-sky scenes. Removing opti-
cally very thin clouds from the CALIOP data (i.e. classifying
all clouds with optical thickness lower than 0.15 as clear sky
in the CALIOP data) significantly improves the agreement
of Cloud_cci data with CALIOP (lower part of Table 6). The
hit rates are mostly increased (except for MODIS-Terra) and
the biases are reduced (except MODIS-Terra and ATSR2-
AATSR).

In Table 7 the validation results for CPH are presented, i.e.
the probabilities of correctly detecting liquid and ice clouds
(Hit rate, PODliquid, PODice; see Appendix A for the defi-
nition of these terms), the bias and the number of consid-
ered cloudy pixels. As for CMA, two validation set-ups have
been used: in the first the CALIOP cloud phase from the
uppermost reported cloud layer was used (upper part of Ta-

ble 7), while in the second set-up the CALIOP cloud phase
was taken at that level in the cloud at which the top-down
cloud optical depth is 0.15 or higher (CODlev = 0.15; lower
part of Table 7). For the first set-up, the probabilities of de-
tecting the correct phase range from 72 to 78 %, with high-
est values for AVHRR-PM and ATSR2-AATSR. All datasets
except MERIS+AATSR and ATSR2-AATSR show a clear
liquid bias, meaning an overestimation of the occurrence of
liquid clouds at the cost of ice clouds. A liquid bias can be
explained by a lack of sensitivity of the passive imager re-
trievals to optically very thin ice cloud layers above liquid
cloud layers. This is supported by the lower PODice val-
ues compared to PODliquid. The hit rates for phase agree-
ment between Cloud_cci datasets and CALIOP increase for
CODlev = 0.15, which is mainly driven by a better detec-
tion of ice phase (increased PODice) while at the same time
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Figure 8. Time series of monthly mean cloud properties of Cloud_cci datasets, with thin lines being (from top to bottom) time series of
monthly mean cloud fraction (CFC), liquid cloud fraction (CPH), cloud-top pressure (CTP), cloud optical thickness (COT), cloud effective
radius (CER), liquid water path (LWP) and ice water path (IWP), overlaid with a running average (thick lines). Shown are those Cloud_cci
datasets that are based on so-called morning satellites. The monthly means are calculated for 60◦ S–60◦ N (latitude-weighted). The time
series shown have not been corrected for satellite drift or diurnal cycle.

the detection efficiency for liquid phase (PODliq) decreases
only slightly. The biases change towards ice (reduced liquid
bias or ice bias instead of liquid bias). The results show that
the correct cloud phase determination for passive imager re-
trieval is very sensitive to phase changes in the uppermost
cloud layers (e.g. between the physical cloud top and 1 op-
tical depth into the cloud). In addition to the CPH compar-
isons presented, the scores were again calculated including
only conditions for which no phase change occurred in the
CALIOP data between the physical cloud top and 1 optical
depth into the cloud (not shown). The agreement between

Cloud_cci datasets and CALIOP data further improves sig-
nificantly. Hit rates increase by 2 to 10 %, mainly driven by
a much better detection probability for ice clouds.

In Table 8 the validation results for CTH are presented,
i.e. standard and mean deviations. The comparisons were
limited to those collocated pixels for which both CALIOP
and the Cloud_cci dataset report clouds and valid retrievals
of cloud phase and cloud-top height. In addition, the data
were restricted to cases where the phase assignment between
CALIOP and the Cloud_cci dataset is in agreement. Remov-
ing this uncertainty in the phase assignment gives a clearer
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Figure 9. As Fig. 8 but for Cloud_cci datasets based on afternoon satellites. The time series shown have not been corrected for satellite drift
or diurnal cycle.

picture of the actual cloud-top height retrieval, since the first
guess of COT, CER and CTP in the Cloud_cci retrieval sys-
tems is a function of the prior determined cloud phase. The
comparisons were separated into liquid and ice cloud con-
ditions and carried out twice using different top-down cloud
optical depth levels (CODlev) at which the reference CTH
was selected from CALIOP profiles. For liquid clouds the
standard deviation between Cloud_cci datasets and CALIOP
is around 1 km and the bias is generally below 0.2 km (ex-
cept MERIS+AATSR with a bias of 0.79 km). These val-
ues do not change significantly when selecting the refer-
ence CALIOP CTH at CODlev = 0.15 (bottom part of Ta-
ble 8), which indicates that water clouds usually do not have
small optical thicknesses. For ice clouds the agreement with

CALIOP is lower as expected. Standard deviations range
from 1.9 to 2.8 km and the bias is generally negative (thus an
underestimation of CTH for ice clouds in Cloud_cci datasets)
between −2.5 and −3.6 km. These negative biases are re-
duced to −1.9 to −2.8 km when the CALIOP CTH is taken
at CODlev = 0.15. Standard deviations are also reduced by
about 0.2 km for this setting. The agreement of the Cloud_cci
ice cloud CTH to CALIOP further improves with increasing
CODlev (not shown). For example, at CODlev = 1.0 the bi-
ases for ice cloud CTHs are decreased to−0.78 to−1.99 km.

LWP retrievals were validated against LWP data derived
from satellite-based, passive microwave (MW) data (O’Dell
et al., 2008). Microwave radiation can normally fully pene-
trate clouds. Thus, MW measurements can provide a direct
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Table 7. Summary of cloud phase (CPH) validation results for Cloud_cci datasets when compared against CALIOP. Validation measures are
probability of detection (POD) and bias of liquid cloud occurrence. Also given is the number of collocated pixels. The scores are separated
into two cloud optical depth levels (CODlev) representing at which top-down COD into the cloud the reference CALIOP CPH was taken.

Score AVHRR-AM AVHRR-PM MODIS-Terra∗ MODIS-Aqua ATSR2-AATSR∗ MERIS+AATSR∗

C
O

D
le

v
=

0.
0 Hit rate (%) 72.0 77.1 74.4 73.7 77.6 72.3

PODliq (%) 71.3 78.0 88.1 82.7 67.7 67.3
PODice (%) 72.5 76.5 65.1 68.1 83.1 76.9
Bias (%) 6.4 5.9 15.9 13.0 −0.6 −3.5
Number 23 151 9 436 914 15 581 9 576 169 50 659 9210

C
O

D
le

v
=

0.
15 Hit rate (%) 76.0 80.6 80.7 79.6 77.8 73.8

PODliq (%) 70.8 74.0 85.7 79.6 64.6 64.2
PODice (%) 81.2 87.4 74.6 79.6 89.7 88.6
Bias (%) −5.1 −6.9 5.0 −0.27 −11.3 −17.3
Number 22 221 8 935 688 15 213 8 951 056 47 527 8770

∗ Time window used for collocations was ±15 min for ATSR2+AATSR, MERIS+AATSR and MODIS-Terra. For all others a ±3 min window was used.

Table 8. Summary of cloud-top height (CTH) validation results for Cloud_cci datasets when compared against CALIOP. Validation measures
are standard deviation (SD) and bias. Also given is the number of collocated pixels. All scores are separated into liquid and ice clouds (both
Cloud_cci dataset and CALIOP had to agree on phase) and into two cloud optical depth levels (CODlev) representing at which top-down
COD into the cloud the reference CALIOP CTH was taken.

Score AVHRR-AM AVHRR-PM MODIS-Terra∗ MODIS-Aqua ATSR2-AATSR∗ MERIS+AATSR∗

C
O

D
le

v
=

0.
0 SDliq (km) 1.04 0.91 0.75 0.97 0.89 1.35

Biasliq (km) 0.17 −0.12 0.04 −0.09 0.11 0.79
Numberliq 6177 2 850 732 5552 4 041 688 12 149 2836
SDice (km) 2.66 2.84 1.91 2.79 2.33 1.90
Biasice (km) −2.66 −2.65 −2.65 −2.57 −2.59 −3.59
Numberice 10 468 4 417 179 6041 4 014 001 27 164 3614

C
O

D
le

v
=

0.
15 SDliq (km) 1.06 0.97 0.85 1.03 0.94 1.35

Biasliq (km) 0.14 −0.09 0.08 −0.06 0.13 0.82
Numberliq 7807 3 335 953 6688 3 596 738 14 508 3300
SDice (km) 2.56 2.59 1.73 2.51 2.04 1.79
Biasice (km) −1.96 −1.94 −2.21 −1.90 −1.95 −2.82
Numberice 9046 3 865 027 5521 3 524 716 22 455 3001

∗ Time window used for collocations was ±15 min for ATSR2+AATSR, MERIS+AATSR and MODIS-Terra. For all others a ±3 min window was used.

measurement of the total liquid cloud condensate amount.
Shortcomings of the MW data usually exist for scenes with
low LWP and scenes with clouds that also contain large
solid (ice) and liquid (rain) particles. Because of this and
because of the different orbital characteristics of the MW-
sensor carrying satellites our validation focused on Level-
3C (i.e. monthly averages) in three stratocumulus regions
for which ice cloud occurrence is very low. The regions
are the oceanic area west of Africa at 10–20◦ S, 0–10◦ E
(SAF hereafter), the oceanic area west of South America
at 16–26◦ S, 76–86◦W (SAM hereafter), and the oceanic
area west of California at 20–30◦ N, 120–130◦W (NAM
hereafter). The (O’Dell et al., 2008) data have an accuracy
of 15–30 % and contain monthly mean diurnal cycle prod-
ucts, from which the 10:30 and 13:30 values were taken to
match the Cloud_cci morning and afternoon sensors, respec-

tively. For the validation scores presented in Table 9, only
the common overlap period among all Cloud_cci datasets
and the MW data were considered (2003 to 2008). The val-
idation scores vary among the Cloud_cci datasets but also
among the three regions under consideration. Considering
the correlation coefficients, the SAF region exhibits the best
agreement with the MW for all Cloud_cci datasets, which
might be due to the large seasonal cycle of LWP in this re-
gion. Bias and bias-corrected root mean square errors (bc-
RMSEs) do not differ from the other regions, except for the
afternoon satellite datasets AVHRR-PM and MODIS-Aqua,
which show best scores for SAF. The ATSR2-AATSR and
MERIS+AATSR datasets have the largest deviations to the
MW data for all three regions. For all other datasets very
small positive or moderately negative biases are found, and
thus a slight underestimation of LWP compared to MW. Con-
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Table 9. Summary of liquid water path (LWP) validation results for Cloud_cci datasets when compared against the passive, microwave-
based (MW), monthly mean LWP data of (O’Dell et al., 2008) in the period 2003 to 2008. The validation was performed for three oceanic
stratocumulus regions for which the frequency of ice cloud occurrence is very small: SAF, west of Africa (10–20◦ S, 0–10◦ E); SAM, west
of South America (16–26◦ S, 76–86◦W); NAM, west of California (20–30◦ N, 120–130◦W) – see text for details. Reported are the mean
LWP of the MW as well as the bias and standard deviation (SD) for each Cloud_cci dataset with respect to the MW (all values in g m−2). In
addition, the values are given in relative terms in percent in brackets. The correlation coefficient (r) is also given.

Region Score AVHRR-AM AVHRR-PM MODIS-Terra MODIS-Aqua ATSR2-AATSR MERIS+AATSR

Mean∗ 60.1 46.2 60.1 46.2 60.1 60.1
NAM Bias −6.8 (−11 %) −6.7 (−14 %) −14.1 (−23 %) −1.8 (−3 %) 5.7 (9 %) 0.6 (1 %)

SD 5.4 (8 %) 8.2 (17 %) 5.4 (8 %) 7.0 (15 %) 13.4 (22 %) 11.3 (18 %)
r 0.88 0.66 0.88 0.75 0.80 0.72

Mean∗ 80.2 52.6 80.2 52.6 80.2 80.2
SAM Bias −1.2 (−1 %) −3.9 (−7 %) −8.5 (−10 %) 0.7 (1 %) 27.5 (34 %) 13.2 (16 %)

SD 7.4 (9 %) 7.1 (13 %) 6.8 (8 %) 7.6 (14 %) 13.2 (16 %) 10.3 (12 %)
r 0.88 0.93 0.90 0.93 0.83 0.72

Mean∗ 59.5 39.6 59.5 39.6 59.5 59.5
SAF Bias −7.6 (−12 %) −2.4 (-6 %) −11.9 (−19 %) 1.0 (2 %) 11.8 (19 %) 1.2 (2 %)

SD 9.7 (16 %) 5.4 (13 %) 6.3 (10 %) 5.3 (13 %) 11.0 (18 %) 10.7 (17 %)
r 0.89 0.95 0.96 0.95 0.93 0.85

∗ The mean values given are for the reference data at 10:30 when compared against AVHRR-AM, MODIS-Terra, ATSR2-AATSR and MERIS+AATSR, and at 13:30
when compared against AVHRR-PM and MODIS-Aqua.

sidering the given uncertainty estimates for the reference data
(15–30 %), one can still conclude that there is agreement be-
tween all Cloud_cci datasets and MW in nearly all regions.
It is worth mentioning that the agreement with MW reduces
when considering the time period before 2003 for AVHRR-
AM, AVHRR-PM and ATSR2-AATSR. This is mainly due
to problems with the earlier satellites, which can also be seen
in the LWP time series plots of Figs. 8 and 9.

Beyond the limited validation results presented in this pa-
per, a comprehensive effort has been carried out to compare
the Cloud_cci datasets with other, well-established datasets
such as PATMOS-x, CLARA-A2 and MODIS Collection 6
(Stapelberg et al., 2017). Their results prove the quality of
the Cloud_cci datasets.

5 Data availability

All presented Cloud_cci datasets are freely available. DOIs
have been issued for all datasets (see Table ) with each
DOI landing page containing a brief summary of the cor-
responding dataset and a link to the data access page (http:
//www.esa-cloud-cci.org/?q=data_download).

6 Summary

In this paper cloud property datasets generated within the
ESA Cloud_cci project were presented. The datasets are
based on passive imager measurements on board polar-
orbiting satellites. The measurement records have been char-
acterized carefully and, in the case of AVHRR, been re-

calibrated. Two retrieval systems were developed: (1) the
Community Cloud retrieval for CLimate (CC4CL) which
was applied to AVHRR as well as to the AVHRR her-
itage channels measured by MODIS, ATSR2 and AATSR,
and (2) the Freie Universität Berlin AATSR MERIS Cloud
(FAME-C) which was applied to combined MERIS+AATSR
measurements.

Based on these new developments, global cloud clima-
tologies were generated for all mentioned sensors spanning
their entire life time. The datasets are named: AVHRR-
AM, AVHRR-PM, MODIS-Terra, MODIS-Aqua, ATSR2-
AATSR and MERIS+AATSR. The cloud properties de-
rived are cloud mask/fraction, cloud phase, cloud-top pres-
sure/height/temperature, cloud optical thickness, cloud effec-
tive radius, liquid/ice water path and spectral cloud albedo.
The data is available as pixel-based retrievals (Level-2), glob-
ally gridded composites (Level-3U) and monthly summaries
of the cloud properties (Level-3C): averages, standard devia-
tions and histograms. The OE-based uncertainty information
per pixel (contained in Level-2 and Level-3U) was propa-
gated into Level-3C data using an introduced mathematical
framework (Eqs. 4 and 5). While the main characteristics
of all datasets are very similar to the AVHRR-PM examples
shown, it needs to be noted that some deviations exist. These
are mainly introduced by differences in spatio-temporal ob-
servation frequency, remaining differences in spectral prop-
erties among the considered sensors and differences in re-
trieval systems, i.e. for MERIS+AATSR dataset.

Level-2 validation of cloud mask, cloud phase and cloud-
top height against CALIOP revealed a probability of cor-
rect detection of cloudy and clear-sky scenes between 70
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and 90 % (hit rates), with a general underestimation of cloud
occurrence frequency when compared to all detected clouds
in CALIOP data, which reflects the detection limitation of
passive imagers. Neglecting optically very thin clouds in
CALIOP data improves the agreement in terms of probabil-
ity of detection and biases. For cloud phase, hit rates of 70–
80 % are reached with a bias towards liquid clouds (except
the MERIS+AATSR dataset) when comparing to the upper-
most cloud layer of CALIOP data. When comparing against
the CALIOP phase taken at a top-down cloud optical depth
of 0.15 into the cloud, hit rates increase by approximately
5 % along with a reduction in the biases. Validating cloud-
top height gives generally small standard deviations and bi-
ases for liquid clouds, while the agreement with CALIOP is
lower for ice clouds. For ice clouds, a strong dependence on
the reference level from which the CALIOP cloud-top height
is taken is found. Biases reduce to −0.8 to −1.99 km when
the reference CALIOP cloud-top height is taken at a top-
down optical depth of 1 into the cloud top. Monthly mean
liquid water path was validated against passive, microwave-
based satellite data. The mean and standard deviations are
relatively diverse and strongly dependent on the dataset and
region. However, for most Cloud_cci datasets and considered
regions agreement with the reference data within the reported
uncertainty of the reference data (15–30 %) was found.

The validation results presented here, as well as the very
comprehensive Cloud_cci validation report (Stapelberg et al.,
2017), have proven the comparability of Cloud_cci datasets
with already existing datasets of the same kind. However,
additionally ensuring spectral consistency and adding rigor-
ously propagated uncertainty measures make the Cloud_cci
datasets distinct from them. The evaluation process of the
presented datasets has also revealed some limitations, of
which the most important ones are listed in Appendix B. In
the near future, the Cloud_cci retrieval systems will undergo
a revision, e.g. improving the forward models and LUTs and
revising the BRDF for snow and ice surfaces. Based on these
developments the datasets will be reprocessed, also including
more recent time periods. Along with that, the product port-
folio will be extended to include broad-band radiation flux
properties at the surface and TOA, which will allow several
new applications such as studying the cloud radiative effect.

Applying the same retrieval system to multiple sensors
also facilitates a combination of the individual datasets, ide-
ally leading to higher quality. This will be subject to future
studies. In addition to such a combination of the datasets,
the consistency among them (i.e. by using the same re-
trieval system) will also enable studies that investigate the
impact of the imaging characteristics of the different sen-
sors on derived cloud climatologies. These imaging charac-
teristics are, for example, the spatial resolution (1 km× 1 km
for AATSR/MODIS vs. 1 km× 4 km for AVHRR GAC) as
well as the observation frequency driven by the sensor swath
width (2399 km for AVHRR vs. 500 km for AATSR).
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Appendix A: Scores

Table A1. Contingency table.

Reference = 0 Reference = 1

Cloud_cci = 0 N00 N01
Cloud_cci = 1 N01 N11

The calculation of the probabilities of detection (PODs)
and the hit rates of binary events (e.g. clear sky/cloudy, liq-
uid/ice phase) is based on the entries of the contingency table
(Table A1).

The POD for a certain event (e.g. event 0) is determined
according to Eq. (A1). Thus, it is defined as the number of
the agreements with the reference for a certain event, divided
by the total number of this event in the reference data.

POD0 =
N00

(N00+N10)
(A1)

The calculation of the hit rate is given in Eq. (A2). The
hit rate is defined as the number of cases in which agreement
with the reference data was found, divided by the number of
all cases.

Hitrate0 =
(N00+N11)

(N01+N10+N00+N11)
(A2)

Appendix B: Known limitations

The most significant limitations of the Cloud_cci datasets, as
revealed during the evaluation, are listed. As not all limita-
tions apply to all datasets, a mapping table is provided (Ta-
ble B1).

1. Cloud detection shortcomings (overestimating of CMA
and CFC) in conditions of high aerosol loadings, e.g. se-
vere volcano eruptions or (local) heavy desert dust out-
breaks.

2. Cloud detection shortcomings during polar night due to
missing visible information and very cold surface tem-
peratures (mainly affecting CMA and CFC).

3. Shortcomings in cloud detection (affecting CMA and
CFC) and optical property retrievals (CER, COT, LWP,
IWP, CLA) in regions with high surface reflection of
solar radiation, e.g. in areas of sun glint over ocean or in
land areas with snow, ice and desert soil surfaces (high
albedo).

4. Instabilities in the time series (of all cloud variables)
due to satellite drift and/or switch in local overpass time.
Satellite drift or diurnal cycle correction is required be-
fore using the datasets for trend analysis.

5. Instabilities in the time series due to switching of near-
infrared channels (affecting mainly the retrieval of CER
and thus LWP and IWP): (a) during 2 years of NOAA-
16 the AVHRR 1.6 µm channel is switched on during
daytime, while for the rest of the AVHRR-PM time se-
ries the 3.7 µm channel is measured during daytime,
and (b) in the AVHRR-AM time series, NOAA-12 and
NOAA-15 have the 3.7 µm channel measuring during
daytime while NOAA-17 and Metop-A have 1.6 µm.

6. Significant overestimation of CER of ice clouds and
IWP due to erroneous composition of radiative transfer
look-up tables.

7. Overestimation of CER and COT for snow/ice surfaces
and high solar zenith angles.

8. The AVHRR on NOAA-12 and NOAA-15 satellites
measure in near-twilight conditions, due to the early
morning orbits of these two satellites, for which the
retrieval of all cloud properties, especially the optical
properties, is very difficult.

9. Inconsistencies in the 3.7 µm channel between the
ATSR-2 and AATSR affected CPH, CMA and CFC.

10. Additional errors introduced when converting cloud-top
level properties (CTH, CTP and CTT) to each other us-
ing potentially incorrect model profiles. However, these
errors are assumed to be significantly smaller than the
actual retrieval errors of CTP.

11. Larger errors in cloud property retrieval (all properties
except CMA and CFC) in multi-layer cloud conditions
in particular when a high, optically thin ice cloud over-
lays an optically thick, lower liquid cloud. See (McGar-
ragh et al., 2017a) for an attempt to capture cloud prop-
erties from multiple cloud layers.

12. Larger sampling error (affecting all cloud properties)
accompanied by artificially increased observed variabil-
ity due to low observation frequency for some sensors.
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Table B1. Mapping the listed limitations above to the Cloud_cci datasets they apply to.

AVHRR-AM AVHRR-PM MODIS-Terra MODIS-Aqua ATSR2-AATSR MERIS+AATSR

1, 2, 3, 4, 5a, 6, 7, 8, 10, 11 1, 2, 3, 4, 5b, 6, 7, 10, 11 1, 2, 3, 6, 7, 10, 11 1, 2, 3, 6, 7, 10, 11 1, 2, 3, 6, 7, 9, 10, 11, 12 1, 3, 7, 10, 11, 12
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