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Abstract Using multiyear satellite rainfall estimates, the distributions of the area, and the total rain rate
of rain clusters over the equatorial Indian, Pacific, and Atlantic Oceans was found to exhibit a power law
f S sð Þes�ζ S , in which S represents either the cluster area or the cluster total rain rate and fS(s) denotes the
probability density function of finding an event of size s. The scaling exponents ζ S were estimated to be
1.66 ± 0.06 and 1.48 ± 0.13 for the cluster area and cluster total rain rate, respectively. The two exponents
were further found to be related via the expected total rain rate given a cluster area. These results suggest
that convection over the tropical oceans is organized into rain clusters with universal scaling properties.
They are also related through a simple scaling relation consistent with classical self-organized critical
phenomena. The results from this study suggest that mesoscale rain clusters tend to grow by increasing in
size and intensity, while larger clusters tend to grow by self-organizing without intensification.

1. Introduction

Despite the advancement in understanding tropical deep convection (see, for example, Houze [2004] for a
review), a complete understanding of how tropical deep convection self-organizes into clusters across a wide
range of spatial scales remains elusive. Evidences of self-similarity in observed tropical convection abound.
For example, Mapes et al. [2006] showed that convectively coupled tropical synoptic-scale waves exhibit
similar life cycles to mesoscale convective systems. Elsewhere, the power law nature in the probability distri-
butions of observed cloud and rain cluster geometrical measures appears to be ubiquitous [e.g., Lovejoy,
1982; Cahalan and Joseph, 1989; Peters et al., 2009, 2012;Wood and Field, 2011; Traxl et al., 2016], suggesting
scale invariance in the geometries of cloud and rain clusters.

Some important understanding of the mechanisms behind the self-organization of tropical convection has
been gained through idealized numerical radiative-convective equilibrium (RCE) simulations [e.g.,
Bretherton et al., 2005; Muller and Held, 2012; Wing and Emanuel, 2014; Muller and Bony, 2015]. Recently,
Khairoutdinov and Emanuel [2010] demonstrated through simulated RCE that disaggregated tropical convec-
tion tends to self-aggregate into a single large cluster above a certain sea surface temperature (SST). They
argued that such self-aggregation can be regarded as a form of phase transition; the tropical convection in
the real atmosphere could be a self-organized critical phenomenon [Bak et al., 1987] through regulating
the SST around a critical value via radiative effects in the presence or absence of cloud cover. The conjecture
of tropical convection as a self-organized critical phenomenon has been put forth earlier from observational
studies of oceanic rainfall by Peters and Neelin [2006]. They suggest that convective precipitation exhibits self-
organized criticality (SOC) with the column water vapor self-regulating by precipitation.

Motivated by the above background work, we decided to test the hypothesis that the rain clusters over the
tropical oceans exhibit SOC by investigating the scaling behavior of the rain cluster. Our work primarily seeks
evidence for the universality in the scaling of deep convection which underlies the concept of self-organized
criticality (SOC). It is for this reason that we focused on the tropical oceanic basins, where the surface bound-
ary conditions are relatively homogenous, in the hope to minimize any organizing effects heterogeneous
surfaces have on deep convection. Land surfaces have uneven terrain, soil moisture, roughness, and
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urbanization elements which are all known to organize rainfall. Coastlines also organize mesoscale convec-
tion in land-sea breeze systems, and at large scales, they have a multifractal nature which may complicate
the scaling behavior further. We believe that such boundary-induced effects would potentially mask the
universal character of the otherwise self-organizing rain clusters. In contrast, the oceanic basins are large
enough for us to observe rain clusters across a wide range of spatial scales, and consequently, we should
be able to better characterize the scaling regime or regimes.

We focused our study primarily on regions where deep convection is frequent, namely, the Indo-Pacific Warm
Pool and the Intertropical Convergence Zone (ITCZ) over the east Pacific Ocean and the Atlantic Ocean. These
regions are where deep convection frequently self-organizes into mesoscale convective systems. In the
context of critical phenomena, the common tendency for tropical convective systems to aggregate and
self-organize [Mapes, 1993] over a domain with homogeneous environmental condition, such as uniform
sea-surface temperature, leads to the universally emergent statistical character of tropical convection across
different oceanic basins. In particular, we hypothesize that the scaling exponents and their relations for
convective rain clusters are the same, regardless of the dynamical details of individual rain clusters and their
geographic location. Although it has been reported that the prominent stratocumulus decks can organize
themselves into mesoscale cells [Bretherton et al., 2010], the underlying mechanisms in the organization of
these shallow convective rain clusters are different from that of rain clusters that involve deep convection
in their life cycle. So as a first investigation, we confined our analysis to tropical oceanic regions with frequent
deep convection and excluded those regions where the convection is predominantly shallow, for example,
south of the equator over the east Pacific.

Specifically, we examined the probability distributions of the cluster observables using the simple scaling
[Christensen and Moloney, 2005 p. 273]:

f S sð Þ∝s�ζ SGS
s
ξS

� �
; s > s0 (1)

where fS is the probability density function of a given observable of the cluster S, ζ S is the scaling exponent,
and GS is the scaling function accounting for the departure from a strict power law nature due to the finite
system size. GS decreases monotonically for s/ξS> 1 and is a constant when s/ξS≪ 1. Between the upper
cutoff ξS and lower cutoff s0 the distribution is a power law f S sð Þes�ζ S . For such distributions, ξS is the only
characteristic scale that in the simple scaling hypothesis depends on the size of the domain in which the
system is confined [e.g., Pruessner, 2012, p. 27]. For tropical convection, the equivalent domain size would ide-
ally correspond to an outer length scale in which the tropical convective clusters are embedded. That this
length scale would likely be controlled by the larger-scale atmospheric circulation and the sea surface tem-
perature means that ξS for the different oceanic basins might not be the same. But when we analyze the clus-
ter statistics sampled from a domain with size smaller than this natural outer length scale, the power law
scaling will be limited not by the outer length scale but the finite size of the sampled domain.

We adopt the following notation for the remaining of this paper: A and R denote the random variables repre-
senting the rain cluster area and cluster total rain rate, respectively (see section 3 for the precise definitions of
the two quantities). Symbols a and r represent sample values of A and R, respectively. The conditional mean
of R for a given cluster area a is denoted as hR| ai. For brevity the symbol S (s) shall be used to represent A (a)
or R (r) whenever the discussion happens to apply for both the variables.

2. A SOC Theory for Rainfall

The two cluster variables A and R that are readily observed from satellite data were chosen for analysis. They
were selected because (1) the distribution of A contains information about the spatial variability of radiative
fluxes and (2) the distribution of R is related to the spatial variability of the vertical fluxes of moist static
energy from the boundary layer. Cloud-radiative feedback and boundary layer moist static energy fluxes
are found to be important in determining the self-aggregation of convection [Muller and Held, 2012]. In
our SOC paradigm for rainfall, R corresponds to a measure of the “avalanche intensity” of the tropical
atmosphere-ocean system, releasing the potential instability of the atmosphere built-up as a result of the
radiative and sensible heat fluxes on a timescale significantly longer than the convective “charging” time-
scale. A corresponds to a measure of the “avalanche area.”

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025921

TEO ET AL. SCALING OF TROPICAL RAIN CLUSTERS 5583



Specifically, we sought the evidence for universality in the rain clusters by showing that ζ S is the same across
the different oceanic basins, S being either A or R. A further relation between the scaling exponents for dis-
tributions of A and R under the SOC paradigm can also be established through the scaling properties of hR| ai.
For the tropical rain clusters, the following model was found to be suitable (section 5):

Rjah i ¼ kaβ a≤α
kαβ�χaχ a > α

(
(2)

where k, β, and χ are positive numbers and β ≠ χ. The α in equation (2) is known as the crossover cluster size
since the exponent in equation (2) takes the value of either β or χ depending on whether a is larger or smaller
than α. By assuming that (1) ξR scales with the conditional average rain rate at a given crossover cluster size,
i.e., hR| αi, and (2) α scales with ξA, we were able to establish the following relation:

β ¼ ζ A � 1
ζ R � 1

(3)

Details of the proof can be found in Appendix A1. Equation (3) is a well-known relation for SOCmodels for the
special case where there is no crossover scale in the scaling exponent in hR| ai [see, for example, Pruessner,
2012, pp. 41–43].

3. Data and Methods

We used the 3-hourly rainfall intensity observations from the Tropical Rainfall Measuring Mission (TRMM)
3B42 [Huffman et al., 2007] from 1998 to 2012 which have a spatial resolution of 0.25° × 0.25°. We focused
our attention on four equatorial regions IO (60°E–90°E, 20°S–10°N), WP (150°E–180°, 15°S–15°N), EP (110°
W–140°W, 15°S–15°N), and AO (15°W–45°W, 10°S–20°N) covering the major ocean basins as shown in
Figure 1. These regions were equal in size, each with a length (Z) of 120 TRMM grid points in both the
longitudinal and latitudinal directions covering an area of approximately 9 × 106 km2. We tried as much as
possible to locate the study regions away from land or coastal seas where the topography and coastlines
can organize localized mesoscale weather systems [Teo et al., 2011] that could impose a preferential scale
that is more related to the geometry of the coastlines or topography.

For each available time slice of the data, we first identified the oceanic rain clusters within each focus
region. In the interest of clarity, the term “focus region” is used interchangeably with “domain of length
Z = 120” or “120 × 120 domain” in the following discussion. A cluster is defined as a set of rainy grid boxes
where every grid box from the set shares at least one common edge with another rainy grid box within
the set. In our work a grid box is considered rainy if the observed rain intensity is greater than zero. The
area of the rain cluster A is simply the area covered by all grid boxes in the set, while the corresponding
total cluster rain rate R is the sum of the individual rain rates of the cluster grid boxes. (Note that the
quantity R was named “event power” in Peters et al. [2012].) A is measured in units equal to the constant
area ΔA of a grid box (ignoring the slight distortion due to the curvature of the Earth near the equator),
and R is measured in units of ΔA × 0.01 mm/h (as TRMM 3B42 data are discretized in intervals of 0.01 mm/h).
The few rain rates in the data set that were not multiples of 0.01 mm/h were rounded up to the nearest
multiple of 0.01 mm/h. In the following discussion, A and R are dimensionless quantities, normalized by ΔA
and ΔA × 0.01 mm/h, respectively.

Due to the temporal correlation between rain clusters that was estimated to be significant up to a time inter-
val of 5 days for all the focus regions, the cluster data for each focus region were further partitioned into 40
nonoverlapping data subsets. The details of how the temporal correlations between the rain clusters were
calculated can be found in Appendix A2. Each of these data subsets contained cluster data sampled 5 days
apart at the same coordinated universal time (UTC). To mitigate complicating influences of land and predo-
minantly shallow convective regions, we only admitted those focus regions with less than 10% land coverage
and if their mean cluster rain rates calculated from each of the 40 data subsets were all larger than a given
threshold. This threshold is empirically defined asM(Z = 120)� S(Z = 120), whereM(Z = 120) is the ensemble
mean of the average cluster rain rates for the focus region and S(Z = 120) is the corresponding ensemble
standard deviation. Details of the selection criteria which the domains were subjected to can be found in
Appendix A3.
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Due to the dependence of the scaling exponents on the domain sizes in which the clusters were sampled, we
further divided each focus region (including EP) into nonoverlapping squares of length Z = 24, 30, 40, and 60
to investigate this dependence. The process of testing for deep convective oceanic domains as well as iden-
tifying the rain clusters described for the Z = 120 domains was repeated for all these smaller domains. Note
that although EP was excluded for analysis for Z = 120, it was included for analysis for the smaller Zs. This was
because the (smaller) domains within the focus region where the ITCZ is located could be admitted based on
our selection criteria. Thereafter, the ensemble probability distribution for a given Z (for Z < 120) was com-
puted among all the deep convective oceanic domains of the same size for each focus region. The ensemble
probability for a Z × Z domain for a given focus region was computed by averaging the probability distribu-
tion of the Z × Z domains for that focus region that passed the selection criteria. For example, the ensemble
probability distribution for Z = 60 domain for EP was found by averaging the sample probability distributions
over the two 60 × 60 domains that passed the selection criteria. Obviously, the ensemble probability distri-
bution for each of the 120 × 120 domain (the focus region) is just the sample probability distribution since
there is only one such domain per focus region.

Figure 2 shows the domains for different Z, admitted by the selection process. To gauge how good our selec-
tion criteria were in excluding predominantly shallow convective domains, we estimated the average frac-
tional areal coverage of clouds with cloud tops between 7 km and 15 km in height, as a proxy to the
frequency of deep convection. Thirteen years (2000–2012) of the annually averaged areal cloud cover
retrieved from measurements made by the Multiangle Imaging Spectroradiometer (MISR) [Di Girolamo
et al., 2010] on board the Terra satellite were used in computing the required high cloud fraction shown in
Figure 2. The selection criteria performed reasonably well for all Z, admitting most of the domains over the
IO and WP where deep convection is frequent, while excluding a few of the southernmost domains for
Z = 24 in IO. Likewise, the ITCZs in the EP and AO were admitted for analysis as expected, and the predomi-
nantly shallow convective areas outside the ITCZs were excluded. The exclusion of the 120 × 120 domain for
the EP is reasonable, since most of the area south of the equator was dominated by rain clusters associated
with low-level clouds.

The spatial patterns of the domains selected remained relatively robust to the variation of the selection cri-
teria: if we relaxed the selection criteria to include a domain for analysis so long as 50% instead of 100% of
the mean cluster rain rates calculated from each of the 40 data subsets were larger than the same threshold,
some of the rejected domains, like the south-western IO domain, and the south western AO domain at Z = 60,
as well as those at the north-eastern edges of the WP at Z = 24, would be included (cf. Figure 2). However, the
selected and rejected EP domains at all Z remained unchanged. All results and conclusions presented in the
later sections remained virtually unchanged under the relaxed criteria, demonstrating the robustness of our
analysis to the selection criteria. Henceforth, we present only the results for the more stringent
selection criteria.

Figure 3 shows an example of the resulting ensemble distributions of A and R for the IO for the different
domain sizes Z. The dependence of the scaling exponents, which correspond to the gradients of the linear
region of the distributions on the double logarithmic plots, can be visually discerned for both A and R.

Figure 1. Focus regions where the rainfall cluster distributions were analyzed. The 1998–2012 average rainfall rates obtained from TRMM 3B42 are shown as shaded
contours.
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Figure 2. Selected domains for different Z together with the climatological (top) high and (bottom) low cloud amount statistics from satellite observations. The
boxes with solid (dotted) edges are domains that passed (failed) the selection criteria. The contours are the mean of the annually averaged high cloud fractions,
reported as percentages, as observed by the MISR from 2000–2012. The annually averaged high (low) cloud fraction is defined as the annually averaged spatial
cloud cover in a 0.5° × 0.5° grid box, expressed as percentages, for clouds with cloud top heights between 7 km and 15 km (500 m and 3 km). Note that the contour
intervals for the two panels are different.
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4. Universality of Cluster Distributions

For each of the individual data subsets of a Z × Z domain, we modeled the distribution of A and R from the
observations as

P S ¼ sð Þ ¼ Css
�τs exp � s=Scð Þνs½ �; s∈ S0; S0 þ 1; S0 þ 2;⋯; Smf g (4)

where P(S = s) is the probability of the discrete random variable S taking a positive value s, Cs is the appropri-
ate normalizing constant, and τS, νS, and Sc are positive numbers to be determined empirically. Discrete
random variables were used since both A and R obtained from the TRMM data were discrete as noted pre-
viously. In equation (4), S0 ≥ 1; Am is the largest possible cluster area which is the domain area Z2; Rm is the
largest possible cluster rain rate which is the saturation value for TRMM’s rainfall measurement multiplied
by the Am. The exponential term on the right-hand side (RHS) of equation (4) is one of the simplest form that
accounts for the rapid departure of the probability from a power law due to the global constraint imposed by
the finite nature of Sm as seen in Figure 3. Note that S0 has to be determined empirically as it is not known a
priori; below this scale the cluster distribution is no longer associated with the actual organized deep convec-
tive clusters but is sensitive to the myriad details of mesoscale convective dynamics. For instance, observed
rain clusters with very small r of values of 1 or 2, corresponding to 0.01 or 0.02 mm/h × (0.25° × 0.25°), may
actually be associated with the nonuniform filling of the cluster area by smaller regions of higher rain rates,
or with shallow-convective or stratiform rain.

For each focus region we estimated τA and τR for the different domain sizes Z by fitting the model parameters
in equation (4) to the cluster data using the maximum likelihood method [e.g., Papoulis and Pillai, 2001]. The
details of the maximum likelihood method used in estimating the model parameters are described in
Appendix A4. For each Z, estimates of the scaling exponents were obtained for a range of different S0 values
to account for the uncertainty in the S0. This was done as follows: For each S0, 40 separate estimates for the
scaling exponent were derived from the 40 nonoverlapping cluster data time series (section 2), and from
these estimates, a best estimate τS(Z, S0) was obtained by the method described in Appendix A4. τS is plotted
in Figures 4a–4d with each data point corresponding to the estimate of the scaling exponent (for A or for R)
for one (Z, S0) pair. The dependence of τS on Z is a consequence of both the finite size of the domain as well as

Figure 3. Double logarithmic plots of the ensemble probability distribution of (left) rain cluster area A and (right) total
cluster rain rate R over the focus region IO of Figure 1. A and R are normalized by ΔA and ΔA × 0.01 mm/h, respectively.
Each curve represents the probability for the ensemble of all nonoverlapping samples of one domain size Z × Z (cf. the
legend). The inserts are magnified views that emphasize the dependence of the scaling exponent on the domain size.
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the finite resolution of the satellite data; in theory, the scaling exponent of the cluster area or rain rate will
emerge in the thermodynamic limit, i.e., as the resolution and/or the domain size increases indefinitely. To
this end, we modeled the scaling exponent-domain size dependence by a linear regression of τS with 1/Z
as shown in the figures; the intercept of the regression ζ S is the domain size-independent estimate of the
scaling exponent. A robust iterative least squares method [Holland and Welsch, 1977] was used in the
regression instead of the ordinary least squares (OLS) regression due to the presence of influential data
points particularly for R. Some of the important features of the robust regression method are highlighted
in Appendix A5.

All the regressions are significant at the 5% level except for the regression line of R for EP. The P value for the
regression of R for EP is slightly larger than 0.05 (Figure 4c), likely a result of a lack of scaling exponent
estimates at Z = 120; repeating the regression for IO, WP, and AO while excluding the scaling exponents
estimates for Z = 120 (not shown) gave P values greater than 0.05 as well. This provides strong evidence that
the linear model is a good model for EP, and as such, we included the original regression estimates for ζ R for
further analysis. The theoretical limits of the scaling exponents ζ A and ζ R estimated for each focus region are
shown in Figure 4e. There is agreement in both estimates for ζ A and ζ R across the various ocean basins (cf. the
horizontal lines in Figure 4e) demonstrating clearly the universality of oceanic rainfall scaling. We next esti-
mated the universal scaling exponents for A and R by repeating the procedures described in the last
section using the observed clusters from all the focus regions combined and obtained the values below:

ζ A ¼ 1:66 ± 0:06

ζ R ¼ 1:48 ± 0:13
(5)

where the 95% confidence intervals of the estimates are cited. Both regressions for the combined regions are
significant at the 5% level.

Figure 4. (a–d) Robust iterative least squares linear regression with Huber weights of scaling exponents versus 1/Z for the
different focus regions for rain cluster size A (black open squares) and total cluster rain rate R (gray crosses). Each data point
in the plots is the averaged scaling exponent τS(Z, S0), S representing A or R. (e) Estimate for ζA (black) and ζR (gray) for
individual focus regions. The point estimates are the regression intercepts of Figures 4a–4d. The horizontal lines show the
range of values where the separate estimates for all focus regions overlap. The error bars represent the 95% confidence
level of the estimates.
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It is of interest to examine our scaling
exponent estimates in the context of
other relevant scaling estimates of
tropical rain clusters in the literature,
namely, those reported by Peters
et al. [2009, 2012] hereafter abbre-
viated as P09 and P12, respectively,
and Traxl et al. [2016].

Our estimates in equation (5) appear
to be smaller in comparison to
reported estimates for ζ A of about
2–2.05 [P09; P12] and for ζ R of about
1.87 [P12]. The rainfall products used
by P09 and P12 are based on the
TRMM Precipitation Radar (PR) which
has a narrow swath width, unlike the
IR instruments which the TRMM
3B42 product is also based on in
addition to the PR. This raises the
possibility that the discrepancies
between our estimates and those of
P09 and P12 could be due, at least

in part, to the different aspect ratio of the domain from which the rain clusters were identified. To test this
idea, we analyzed rain clusters from the WP region in domains of size 120 × 12 TRMM 3B42 grid points,
mimicking the narrow swath of the PR used by P09 and P12. Similar plots to those in Figure 2 of the sample
distributions of A and R from these elongated domains (not shown) were made. There were no discernable
difference in the scaling exponent estimates from those in equation (5) within the error margins, suggesting
that the differences in the aspect ratio of the domains are not the main cause for our departure from P09
and P12.

P09 showed that ζ A depends on the total column water vapor content within the rain cluster, with the scale-
free regime being most pronounced for rain clusters with the critical column water vapor content. They
found that ζ A is about 2 for these critical clusters and is larger for clusters with water vapor content below
the critical value. Although the rain clusters used in our analysis were not conditioned on their water vapor
content, our estimate for ζ A is smaller, not larger, than 2 as onemight expect following P09. Thus, water vapor
content is unlikely to be the factor causing our departure from P09.

We suspect that the difference between our values and those reported by P09 and P12 to arise from the dif-
ferent sensitivity characteristics of rainfall products used. The TRMM 3B42 rainfall estimates that we used
were based in part on passive radiometric sensing in the infrared bands. The infrared bands have limited
accuracy in detecting finer rain features as they essentially sense cloud top height from which rainfall is
estimated [Arkin and Meisner, 1987]. On the other hand, the PR is known to miss large areas of light rain
due to its relatively low detection sensitivity [Schumacher and Houze, 2000]. With imperfect instrument obser-
vations, it is hard to ascertain which set of estimates is more reliable, and more future work is necessary to
settle this question.

Traxl et al. [2016] reported a value of 1.712 for the scaling exponent analogous to ζ R, but for spatial-temporal
oceanic clusters (i.e., clusters in space and time, in contrast with our definition of spatial clusters) retrieved
from TRMM 3B42. Unfortunately, it is difficult to draw any meaningful comparison with our estimates since
their clusters included a temporal dimension. Future theoretical studies comparing the scaling of spatial
and spatiotemporal clusters seem to be warranted at this juncture.

Strictly speaking, universality in SOC, and critical phenomena in general, also requires the scaling function GS
(u) (equation (1)) to be identical [Hinrichsen, 2000; Pruessner, 2012, p. 20]. Evidence supporting the claim that
the scaling functions across the different ocean basins are identical comes from Figure 5. There is a good data

Figure 5. Inferred scaling function of the (a) cluster size and (b) cluster total
rain rate for different oceans for clusters identified at domain size Z = 120
(black) for IO (squares), WP (triangles), and AO (circles). The bounds of the
shaded area represent the 2.5% and the 97.5% of the 40 estimated scaling
function values. The vertical dashed lines in both plots mark the rescaled
system sizes ξA and ξR.
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collapse for the inferred scaling functions GA and GR for the cluster observed from the largest domain
(Z = 120) for IO, WP, and AO. The corresponding scaling functions for EP at Z = 120 were not assessed due
to uncertainty about its clusters’ statistical homogeneity over the Z = 120 domain noted earlier (see
section 2). Since the actual system sizes ξS associated with each focus region are unknown, A and R in the
abscissa of the plots are rescaled by their respective moment ratios hS2i/hSi, taking advantage of the fact
that ξS∝ hS2i/hSi if fS(s) were to follow equation (1) [Peters et al., 2010]. The data points plotted are the

average of sζ S P S ¼ sð Þ computed from the 40 cluster data subsets using the estimated values of ζ A and ζ R
(equation (5)). hSi (hS2i) was obtained by averaging the different estimates of hSi (hS2i) from the 40
different cluster data subsets. GA and GR similarly inferred from clusters from the smaller domain sizes
showed reasonable collapse across different ocean basins but exhibit discernable difference across the
largest and smallest domain (not shown). The mismatch of the inferred scaling functions across the
different domain sizes is likely a result of increasing finite size effects on the cluster distributions for
the smaller domain sizes. As such, we believe that the inferred scaling functions from the largest domains
(Z = 120) for the different focus regions would be the most representative of the actual scaling function,
which in theory would be defined in the thermodynamic limit Z → ∞. We note from Figure 5b that GR is
not a constant for rhRi/hR2i≲ 10�3. This would imply that the probability density function of R is
nonscaling for small enough r. Indeed, the deviation from power law can be visually discerned in Figure 3
for r≲ 100 for IO which corresponds to its best estimate of r0, the smallest scale s0 where the scaling ansatz
(equation (1)) is valid when S = R.

5. Scaling Relations

The observed hR| ai was computed by combining the cluster data in all focus regions. This was done by first
calculating the conditional mean cluster rain rate for a set of cluster area intervals for the individual Z × Z
domains (that are land-free and dominated by deep convection) disregarding which focus region the domain
belongs to. Subsequently, the ensemble average of the conditional mean cluster rain rate at each cluster area
interval was used as an estimate of hR| ai for each Z. We found that the conditional mean can bemodeled as a
power law with a crossover exponent as illustrated by Figure 6:

Rjah i ¼ kab 1≤a≤a1
kab�c

1 ac a1 < a < Z2

(
(6)

Note that the observed hR| a= 1i in Figure 6 deviated from equation (6) due to the misidentification of
random grid-point noises as rainy grid-points. The values for the crossover cluster size a1 and the
exponents b and c were determined by performing piecewise linear least squares regression with the
cluster data. Since a1 must be known before determining b and c in the regression, we repeated
the regression varying a1 across the range of observed cluster size and adopted the regression with the

Figure 6. The observed conditional average of cluster total rain rate with different cluster area computed by combining the
data observed over the focus regions with domain size Z = 120. The solid line shows the optimal piecewise regression
with a single breakpoint represented by the vertical dashed line. Note that for clarity of presentation, we multiplied the
factor a�b (see equation (6) in the main text) to the ordinate using the regressed value of b.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025921

TEO ET AL. SCALING OF TROPICAL RAIN CLUSTERS 5590



least root-mean-square errors as the optimal solution. The technical details of the piecewise regression can
be found in Appendix A6.

As in the case when estimating the scaling exponents (section 4), b, c, a1, and hR| ai were found to be depen-
dent on the domain size Z. We therefore performed linear regression for each variables b, c, and a1 against 1/Z
and took the corresponding regression intercepts as their corresponding domain size-independent
estimates. The regressions of these variables are shown in Figure 7 and the estimated asymptotes (Z → ∞)
for b, c, a1, and hR| a1i, denoted by β, χ, α, and λ, respectively, are

β ¼ 1:33 ± 0:03

χ ¼ 0:97 ± 0:04

α ¼ 1:6 ± 0:2ð Þ�102ΔA

λ ¼ 2:8 ± 0:5ð Þ cm=hr∙ΔA

(7)

where ΔA=773 km2, ignoring the curvature of the Earth’s surface in the tropics. For rain clusters smaller than
α (corresponding to an actual length scale ~320 km) the analysis interestingly suggests the cluster areal rain

efficiency, defined as dhR| ai/da, in
mesoscale clusters increases as the
cluster grows larger (dhR| ai/
da∝ aβ � 1≃ a1/3 if we take β ≃ 4/3).
In contrast, by taking χ ≃ 1 for rain
clusters larger than α, the cluster
areal rain efficiency practically satu-
rates to the constant λ/α (correspond-
ing to 1.71 mm/h from our analysis).

One way to understand these results
is to suppose that below 320 km,
clusters tend to grow by increasing
the size and intensity of individual
storms. Above 320 km, clusters tend
to grow into superclusters by orga-
nizing themselves together without
much intensification as depicted in

Figure 7. The regression of (left) b, c, (right) a1 and hR| ai against the inverse of domain size from which the respective
asymptotes β, χ, α, and λ were estimated as the regression intercepts.

Figure 8. A schematic depicting the possible reasons behind the relation
between clusters size and rain rate. The opposite process of breakup is also
possible.
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Figure 8. Similarly, the breakup of clusters in the manner opposite to what is illustrated in Figure 8 is
also possible.

To provide some motivation for our speculation as to how the rain clusters evolve, we computed the

domain-averaged cluster rain intensity, R
a

� �
, over the 120 × 120 domain in IO at 3-hourly intervals of

the TRMM 3B42 data. Figure 9 shows the normalized, 30 day high band-pass filtered R
a

� �
time series over

several days in November 2002 for discussion. The variation of the cluster intensity shown is fairly repre-

sentative of the rest of the time series, with R
a

� �
peaking in the afternoon around 09 UTC (about 14 local

standard time (LST) over IO) and during the early night around 21 UTC (about 02 LST over IO). The time-
scale of the intensification of the oceanic clusters is about 6 h. Such double peaks in the rainfall diurnal
cycle over the Indian Ocean were also observed in other studies [e.g., Yang and Smith, 2006]. The average

cluster area for the set of time slices of which R
a

� �
is smaller (greater) than half a standard deviation from

the long-term mean was found to be 15 ΔA (24 ΔA), consistent with the idea of clusters growing in size
while intensifying with time. Of course, Figure 9 is also consistent with the breakup of clusters in the
direction opposite to that depicted in Figure 8.

The scaling relation of equation (3) is consistent with our observations since our point estimates for ζ A and ζ R
and β from the satellite data can be approximated below as

ζ A ≃
5
3

ζ R ≃
3
2

β ≃
4
3
¼

5
3
� 1

3
2
� 1

(8)

6. Concluding Remarks

We derived estimates for the scaling exponents for the cluster area and cluster rain rate distributions for tro-
pical oceanic rainfall. To account for the effects of the finite domain size on the scaling of these rain clusters,
we performed the analysis for different domain size Z in each oceanic region. By assuming a linear relation
between the scaling exponents and 1/Z, we were able to estimate the “true” values of the exponents in
the limit as the sampled domain becomes unbounded. Our investigation suggests that rain clusters over
the tropical oceans possess a few simple universal characteristics: (1) The cluster area and its total rain rate
exhibit scaling behaviors and their scaling exponents were estimated to be ζ A = 1.66 ± 0.06 and

Figure 9. Time series of the normalized domain-mean cluster rain intensity for IO. The vertical dashed lines mark the time
stated in the abscissa in the two-digit year-month-day:hour format in UTC. The time interval between data points (+) is 3 h.
The horizontal lines denote half a standard deviation above and below the long-term mean of the time series.
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ζ R = 1.48 ± 0.13, respectively. (2) The two exponents ζ A and ζ R are related to the exponent β of the
conditional average cluster rain rate for a given cluster area in a form consistent with the SOC paradigm
(equation (3)) if the fractions 5/3, 3/2, and 4/3 are adopted for ζ A, ζ R and β, respectively. Both ζ A and ζ R
estimated in this work are smaller than those obtained from analyses based on TRMM PR rainfall estimates
reported in Peters et al. [2012]. Unfortunately, that piece of work only investigated the western Pacific
Ocean and so they did not show that the probability distributions of A (or R) are universal in the sense that
they collapse onto the same curve when the system is rescaled by its characteristic scale, ξA (or ξR), which
would take on different values for different ocean basins. Sensitivity tests to the domain size were also not
carried out in that paper.

At this juncture, explanations for the observed cluster area-rain rate relation (equation (2)) are needed: (1)
What is the reason behind the emergence of a crossover cluster size α as a cluster grows? Is it related to
intrinsic convective self-organization dynamics or is it imposed by synoptic-scale dynamics such as the
Madden-Julian Oscillation [Madden and Julian, 1994] or equatorial waves? (2) Why does the cluster areal
rain efficiency for mesoscale clusters (i.e., clusters with area less than α) increase with area? (3) Why is
there a “maximal” rain intensity λ/α, what determines it and why is λ/α proportional to αβ � 1?
Investigations directed to these questions would complement ongoing research into organized
tropical convection.

Why tropical convective rainfall is an SOC as demonstrated in this paper needs to be better understood.
Developing an SOC model based on the known physics of moist convection could be a way forward to
elucidate the mechanisms that cause the tropical oceanic rain to exhibit SOC. Stechmann and Neelin
[2014] have recently proposed a first-passage process model, a prototype SOC based on simple moist
physics, for the time evolution of convective precipitation. Interestingly, they reported a scaling exponent
of 3/2 for the event size, the temporal analogue to ζ R of spatial rain clusters, which agrees with our esti-
mate of ζ R. However, their model also produced the same value of 3/2 for the scaling exponent for the
event duration, the analogue to ζ A of spatial rain clusters (cf. our estimate of 5/3 for ζ A). The equivalence
in their scaling exponent for the event size and the event duration is perhaps unsurprising, since the rain
intensity was independent of the event duration in their model, leading to the event size being propor-
tional to the event duration on average. A similar stochastic SOC model for spatial rain clusters could be
developed, perhaps by taking into account the conditional rain rate <R|A> identified in this paper which
determines the rain intensity. The scaling exponents of this model can then be compared directly against
the observed estimates reported here and elsewhere. Other stochastic rain models that account for the
spatial aggregation of convection have been developed in the past [Randall and Huffman, 1980], but it
is not known whether or not they exhibit SOC.

Recent RCE experiments using atmospheric general circulation models (AGCMs) coupled with slab ocean
models conducted by Reed et al. [2015] seem to lend support to the conjecture that the real-world RCE main-
tains itself between the disorganized convective state and the state of convective self-aggregation through
self-regulating the SST. They reported that self-aggregated convective clusters observed in an AGCM under a
prescribed uniform SST boundary condition were absent when the AGCM was coupled to an interactive slab
ocean model. The SST in their ocean-atmosphere coupled experiment at RCE was cooler than the prescribed
SST, at which convective self-aggregation was observed in their atmosphere-only experiment. In view of the
observational evidence that the columnwater vapor is the self-tuning parameter for the SOC in deep convec-
tion [Peters and Neelin, 2006; Peters et al., 2009], the apparent self-regulatory role of the SST in convective self-
organization seen in RCE experiments such as those mentioned above could be an extension of the relation
between SST and the atmospheric water vapor content. The deep convective regions, on which our present
analysis is based, are regions of warm SST and high moisture content in the free troposphere as well
[Kanemaru and Masunaga, 2013]. Simulations with an idealized cloud-resolving model coupled with a slab
ocean model configured for RCE experiments could potentially be useful in elucidating the role of SST and
column water vapor in convective self-organization. If a critical state exists and can be self-maintained in
the modeled RCE, it would demonstrate that SOC behavior, such as the scaling exponents and relations ana-
lyzed in this paper, can be achieved in the modeled ocean–atmosphere system. Due to the relatively low
demand on computational resources, well-defined boundary conditions and domain size, a systematic inves-
tigation can be conducted to address the above questions.
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Appendix A

A1. Scaling Relations for A and R With Crossover in the Exponent in hR| ai
The probability density function (pdf) of the cluster area A and total rain rate R are assumed to be simple
scaling:

f S sð Þ ¼ cSs
�ζ SGS

s
ξS

� �
s ≥ s0

qS sð Þ 0 ≤ s < s0

8<: (A1)

where s ∈ {a, r}, GS is the finite scaling function and qS(s) is the nonscaling portion of the pdf and cS does not
depend on ξS. hR| ai is given by equation (2) in the main text. We further assume that

α ¼ hAξA and ξR∝ RjξAh i⇒ξR ¼ hRξ
β
A (A2)

based on the following assertions:

1. The crossover is fundamentally an emergent behavior independent of the mesoscale workings of the con-
vective clusters, and the crossover scale has some functional relations with the characteristic spatial scale,
ξA, which depends on the basin-wide dynamics (e.g., SST pattern and the larger-scale atmospheric circu-
lation of the Walker cell).

2. ξR and ξA can be loosely interpreted respectively as the “largest” cluster rain rate and the “largest” cluster
size that could be found within the system. Thus, it is reasonable to relate the “largest” cluster rain rate to
the “largest” cluster size in the system.

The simple proportional relations between the variables are chosen for the lack of reasons to require more
complicated relations in our theoretical constructs.

Using equation (A1), the mean cluster rain rate can be shown to be

Rh i ¼ w Rð Þ
1 r0ð Þ þ cRξ

2�ζ R
R g Rð Þ

1�ζ R

r0
ξR

;∞
� �

; 1 < ζ R < 2 (A3)

where w Sð Þ
η s0ð Þ≝∫s00 sηqS sð Þds and g Sð Þ

η x; yð Þ≝∫yxuηGS uð Þdu for S ∈ {A, R}.

Since Rh i ¼ ∫∞0 f A að Þ Rjah ida, we can also compute the mean cluster rain rate using equation (2) in the main
text and fA(a) given by equation (A1) noting that a0 < α, as

Rh i ¼ k∫a00 aβqA að Þdaþ kcA∫
α
a0a

β�ζ AGA
a
ξA

� �
da

þ kcAa
β�χ
1 ∫∞α a

χ�ζ AGA
a
ξA

� �
da

¼ kw Að Þ
β a0ð Þ þ kcAξ

β�ζ Aþ1
A g Að Þ

β�ζ A

a0
ξA

;
α
ξA

� �
þ kcAa

β�χ
1 ξχ�ζ Aþ1

A g Að Þ
χ�ζ A

α
ξA

;∞
� �

(A4)

for β� ζ A+ 1> 0 , � 1< χ� ξA< 0.

Equating equations (A3) and (A4) and using equation (A2), we obtain

ξβ 1�ζ Rð Þþζ A�1
A ¼

kw Að Þ
β a0ð Þ

ξβ�ζAþ1
A

þ kcA g Að Þ
b�ζ A

a0
ξA
; hA

� �
þ hβ�χ

A g Að Þ
χ�ζ A

hA;∞ð Þ
h i

w Rð Þ
1 r0ð Þ

ξ
β 2�ζRð Þ
A

þ cRh
2�ζ R
R g Rð Þ

1�ζ R
r0

hRξbA
;∞

� � (A5)

If w Sð Þ
β s0ð Þ is bounded above, the limit of the RHS of equation (A5) exist as ξA → ∞

(=
kcA
�
g Að Þ
β�ζA

0;hAð Þþhβ�χ
A g Að Þ

χ�ζA
hA ;∞ð Þ

	
cRh

2�ζR
R g Rð Þ

1�ζR
0;∞ð Þ > 0). This implies the exponent of the ξA term in the LHS of equation (A5) must

be zero:
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β 1� ζ Rð Þ þ ζ A � 1 ¼ 0 (A6)

A2. Subsets of Cluster Data

The entire cluster data were parti-
tioned into subsets each of which
contains rainfall that are approxi-
mately statistically independent in
time. The decorrelation timescale of
the rain clusters was estimated sepa-
rately for each focus region by the
conditional probability for a rainy
grid-point to be raining after a time
lag Δt:

P Δtð Þ ≝ Prob q t þ Δtð Þ0 j q tð Þ > 0ð Þ
(A7)

where q(t) is the rainfall intensity for
a grid point within the 120 × 120 grid
points of a given focus region at time
t. The lag interval used in our calcula-
tion was 1 day. The largest lag avail-
able for P(Δt) is more than 10 years.

We used P(Δt) as a proxy of cluster correlation instead of the standard autocorrelation of q(t) since the latter
statistic would be influenced by the autocorrelation of nonrainy grid points (i.e., grid points that are not rain-
ing at t and t + Δt), which was not desirable for our purpose.

Figure A1 illustrates how the decorrelation timescale was estimated from P(Δt) using the focus region EP as
an example. Visual inspection of the time series of P(Δt) indicated the presence of a pronounced secular
variation with a 1 year period for all focus regions. This 1 year trend exists because of the strong annual
rain cycle in these regions; the probability of a TRMM grid point being rainy would likely to be the highest
during the rainy seasons. We estimated the secular variation for each region separately following the below
procedure:

1. First estimate any long-term trend, P0(Δt), in the decade-long lag time series of P(Δt) for a given region by
a polynomial regression of degree 2 using the averaged P(Δt) across lag bins with bin width of 1 year.
Then we removed the estimated long term trend from the lag time series, i.e. P0(Δt) = P(Δt) – P0(Δt).

2. Calculate the averaged 1 year secular variation by averaging the detrended lag time series P0(Δt) in the
following manner:

P1 Δtð Þ ¼
PN

j¼0 P
0
365j þ Δtð Þ

N � 1
;Δt ¼ 0; 1; 2;⋯; 364 days (A8)

where 365 N + Δt is the largest available lag in the lag time series for a given Δt. P1(Δt) represents the
contribution to P0(Δt) by the annual rain cycle. For lag larger than a year P1(Δt) = P1(Δtmod 365).

3. Finally obtain the “smoothed” secular variation using a low-pass Lanczos filter on P1(Δt) with a cutoff
period of 4-months. Figure A1 (top) shows P0(Δt) up to a lag of a year for EP and the estimated secular
variation P1(Δt).

Subsequently, the departure of P0(Δt) was obtained from the estimated secular variation. The decorrelation
time of a rainy grid point was then estimated to be the minimum lag where P0(Δt) became indistinguishable
from the background variability (Figure A1 (bottom)). The background variability is defined as the symmetric
range about zero, which contained 95% of the departures of P0(Δt) from the secular variation. Repeating the
analyses for the other focus areas gave a decorrelation timescale of 5 days as well. The cluster data were
subsequently divided into nonoverlapping subsets with each set containing rain clusters observed at the

Figure A1. P0(Δt) for EP estimated from the gridded rainfall data from the
satellite observations. (top) P0(Δt) estimated for lags with sampling interval
of 1 day for a maximum lag of 365 days (open circles). The bold line is the
estimated secular variation. (bottom) Residuals of P0(Δt) after removing the
secular variation showing that P0(Δt) becomes indistinguishable from the
background variability (demarcated by the dotted lines) after 5 days. The
95% of the residual are bounded between the dotted lines by definition.
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same time in coordinate universal
time (UTC) spaced 5 days apart. For
a given focus region 40 subsets (five
subsets for each for the eight differ-
ent TRMM observation time of the
day, 00 UTC, 03 UTC,…, 21UTC) were
therefore available for analysis for
each Z × Z domain.

A3. Selecting Deep Convective
Cluster Domains

There are 40 different data series in
the TRMM data set (from eight starting times a day over the first five consecutive days, with data points in
each series spaced 5 days apart). To be admitted for further analysis, each Z × Z domain covering the focus
regions (e.g., one of the four domains with Z = 60 over IO) was tested for two conditions:

1. The land fraction coverage over the domain must be less than 10% of the domain area, Z2.
2. Denote mj,k (Z) as the average cluster rain rate for the jth Z × Z domain satisfying condition (1) in

the kth data series. Suppose there are J such domains over all ocean basins. For example, J = 16 if
all 60 × 60 domains in the four ocean basins satisfy condition (1). We require that mj,k (Z) > M
(Z) � S(Z) for all k, where M(Z) and S(Z) are respectively the average and standard deviation of
the set {mj,k (Z) | j = 1, …, J; k = 1, …, 40}.

The motivation of the first condition is in the main text and needs no further elaboration. The second condi-
tion was applied so as to broadly exclude those regions where shallow convection dominates. The number of
domains that satisfy the two conditions is summarized in Table A1. Most of the domains over IO andWP were
included for subsequent analysis. For EP, the largest domain (Z = 120) and all domains south of ~5°N were
excluded as they failed to satisfy condition (2); the domains that remained were those in the East Pacific
ITCZ (cf. Figure 2), evidently where frequent deep convection dominates. Similar for AO, the smaller domains
away from the Atlantic ITCZ were excluded. Thus, condition (2) is a simple but effective empirical rule to iden-
tify regions of frequent deep convection.

For brevity, we shall call the domains that satisfy the above two conditions as “valid domains.”

A4. Estimating the Scaling Exponents

For a given focus region the unknown probability model parameters for the cluster area and cluster rain rate
for each valid domain size Z were determined using the maximum likelihood method (MLM) [Papoulis and
Pillai, 2001]. The log likelihood function associated with equation (4) in the main text is proportional to

F τS; νS; Scð Þ ¼ � lnCS � τS lnsh i � γS sνSh i (A9)

where s stands for a or r and h∙i denotes the sample mean. The MLM estimates of γS and νSwere then used to
estimateSc ¼ γ�1=νS

S . In equation (A9), we estimated themodel parameters by maximizing F using the interior-
point optimization method [Waltz et al., 2006] available in standard computational package subjected to the
constraints that all the parameters were bounded below by zero.

For each focus region and domain size Z, we fitted the model parameters [τS, νS, Sc] to the observed ensemble
distributions using the MLM estimates for s ≥ S0 using a range of S0 values to account for the uncertainty in S0.
The selected S0 values were 1 to 64 for A and 1 to 1024 for R with equal binary logarithmic intervals (e.g., the
A0 tested were 1, 2, 4, 8, 16, 32, and 64). The upper limit of the A0 being tested was chosen so that it was about
2 orders of magnitude less than the smallest area of the domain to be analyzed (i.e., 24 × 24 = 576). For R,
preliminary inspection of their sample probability distribution for the different domain size suggests that
the upper limit of the scaling regime is in the order of 105. We therefore selected the upper limit of R0 tested
to be ~103 so as to have at least 2 orders of magnitude of separation in any detected scaling regime.
Estimation of the model parameters was repeated for all the cluster data subsets resulting in 40 sets of model
parameters for each (S0,Z) pair per focus region. Out of these 40 potential τS, the optimal set of scaling expo-
nents were subsequently selected as follows: (1) The scaling exponent corresponding to those fitted prob-
ability distributions that exhibited a scaling regime less than an order in S (i.e., Sc/S0 < 10) was discarded.

Table A1. Number of Z × ZDomainsWithin Each Focus Region That Satisfy
the Two Conditions Described in Appendix A3a

Z

120 [1] 60 [4] 40 [9] 30 [16] 24 [25]

IO 1 3 6 11 19
WP 1 4 9 16 22
EP 0 2 3 8 10
AO 1 2 3 8 13

aThe numbers in the square brackets beside the Z values are the max-
imum number of Z × Z domains that we can have for each focus region.
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(2) From the remaining scaling exponents, we chose the best fitted model parameters by keeping only those
scaling exponents if their corresponding Kolmogorov-Smirnov statistics [e.g., Sachs, 1984, p. 330] were less
than the 25th percentile. Finally, we obtained a single representative scaling exponent corresponding to
each S0 tested by averaging across those τS that satisfy the above two selection criteria.

A5. Robust Iteratively Least Squares Linear Regression

Here we highlight the main features of the robust iteratively reweighted least squares (IRLS) linear regression
used to obtain the scaling exponents ζ A and ζ R (Figure 4). Technical details of the robust IRLS can be found in
Holland and Welsch [1977] and Street et al. [1988]. Given a set of n predictor {xi|i= 1 , ⋯ , n} and the corre-
sponding set of response {yi|i=1 , ⋯ , n}, the method solves for the regression coefficient b= (b0 b1)

T where
yi= b0 + b1xi+ εi, {εi|i=1 , ⋯ , n} being the identical and independent errors, by solving the system of
equations: Xn

i¼1
wieixTi ¼ 0 (A10)

where xi= (1 xi)
T; ei ¼ yi � xTi b ; 0 is the zero vector and the weights wi used in our work are the Huber

weights:

wi ¼
1 for eij j ≤ k

k
eij j for eij j > k

8<: (A11)

where k = 1.345. This value of k gives coefficient estimates that are approximately 95% as statistically efficient
as the ordinary least squares estimates, provided the response has a normal distribution with no outliers.
Since the weights in equation (A10) depend on the residuals {ei} which in turn depends on the estimate of
b, equation (A11) needs to be solved iteratively from an initial guess of b from ordinary least squares
regression.

A6. Modeling the Conditional Mean Cluster Rain Rate

For each valid Z × Z domain (with no differentiation of which focus region the domain belongs to), we first
obtained the conditional rain rate by averaging the cluster rain rate for clusters with area that fall within
an equal logarithmic bin interval [1.1j 1.1j+1), j = 0, 1, 2, 3,…. After that, the ensemble average of the (binned)
conditional mean cluster rain rate among all the domains of size Zwas obtained. Preliminary inspection of the

Figure A2. Same as Figure 6 but for different domain sizes Z.
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logarithmic plots of the ensemble conditional mean cluster rain rate versus cluster area (e.g., Figure A2)
suggested that the conditional means can be modeled by two linear regimes of different gradient across
the range of cluster size with equation (6) in the main text. Note that k in the RHS of equation (6) has the
meaning of the mean cluster rainfall for the smallest cluster resolvable (a = 1) by TRMM 3B42. For each
domain size Z, we estimated b and c by performing an ordinary least squares (OLS) piecewise linear regres-
sion with one breakpoint (a1) on the logarithm of the computed conditional mean cluster rain rate and the
logarithm of the cluster area. In our work, the regression was performed by recasting the logarithm of equa-
tion (6) as an OLS regression with two variables:

log Rjah i ¼ cz2 þ bz1 þ log k (A12)

where z1 ¼ log a
a1
J log a1

a


 �þ loga1, z2 ¼ log a
a1

1� J log a1
a


 �� 	
, J xð Þ ¼ 0 x ≥ 0

1 x < 0

�
.

OLS regression was chosen in this case as opposed to the robust technique employed for regression analysis
for the scaling exponents because, compared to the latter case, there were no obvious outliers that have
sufficient leverage to appreciably affect the estimation of the regression coefficients. As the break point a1
was needed to be specified before the linear regression with equation (A12), we repeated the regression
using the geometric mean of the bin intervals (except the first and last bin where the model represented
by equation (6) in the main text would not be valid) as candidate a1 values. The optimal set of estimates
for b, c, and a1 were subsequently identified from the regression with the smallest regression root-mean-
square error. An example of the optimal set of regressions is shown in Figure A2. The above mentioned pro-
cedure was repeated for each of the 40 nonoverlapping cluster data subsets for a given domain size Z. The
mean of the resulting 40 estimates of b, c, and a1 were then taken to the best estimate for b, c, and a1 for
the given Z.
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