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Abstract The hydroxyl radical (OH) is the primary daytime oxidant in the troposphere and provides the
main loss mechanism for many pollutants and greenhouse gases, including methane (CH4). Global mean
tropospheric OH differs by as much as 80% among various global models, for reasons that are not well
understood. We use neural networks (NNs), trained using archived output from eight chemical transport
models (CTMs) that participated in the Polar Study using Aircraft, Remote Sensing, Surface Measurements
and Models, of Climate, Chemistry, Aerosols and Transport Model Intercomparison Project (POLMIP), to
quantify the factors responsible for differences in tropospheric OH and resulting CH4 lifetime (τCH4) between
these models. Annual average τCH4, for loss by OH only, ranges from 8.0 to 11.6 years for the eight POLMIP
CTMs. The factors driving these differences were quantified by inputting 3-D chemical fields from one CTM
into the trained NN of another CTM. Across all CTMs, the largest mean differences in τCH4 (ΔτCH4) result from
variations in chemical mechanisms (ΔτCH4 = 0.46 years), the photolysis frequency (J) of O3→O(1D)
(0.31 years), local O3 (0.30 years), and CO (0.23 years). The ΔτCH4 due to CTM differences in NOx (NO+NO2) is
relatively low (0.17 years), although large regional variation in OH between the CTMs is attributed to NOx.
Differences in isoprene and J(NO2) have negligible overall effect on globally averaged tropospheric OH,
although the extent of OH variations due to each factor depends on the model being examined. This study
demonstrates that NNs can serve as a useful tool for quantifying why tropospheric OH varies between global
models, provided that essential chemical fields are archived.

1. Introduction

The hydroxyl radical (OH) is the primary daytime oxidant in the troposphere [Levy, 1971] and is responsible for
the breakdown of many pollutants and other atmospheric species of interest. Notably, the abundance and
lifetime of methane (CH4) are controlled by the global tropospheric OH concentration ([OH]TROP). The chem-
istry of OH, however, is not easily modeled due to its numerous sources and sinks, rapid recycling in the pre-
sence of NOx (=NO+NO2), and nonlinear chemical feedbacks that are not fully understood [Prather et al.,
2001; Taraborrelli et al., 2012].

The inherent difficulty in modeling [OH]TROP and CH4 lifetime (τCH4) on a global scale is evidenced by large
differences in values of τCH4 reported by model intercomparison projects [Shindell et al., 2006; Fiore et al.,
2009; Naik et al., 2013]. In general, lifetime is calculated as the atmospheric burden of a species divided by
its total loss rate, but here we use τCH4 to refer to the ratio of burden to loss of CH4 with respect to reaction
with tropospheric OH only. The four model intercomparison studies included in Table 1, not considering
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this study, show model spreads for τCH4 ranging from 62% [Fiore et al., 2009] to 84% [Shindell et al., 2006].
These spreads represent the difference between maximum and minimum values of τCH4, divided by the
multimodel mean.

The cause of model differences in τCH4 for the contemporary atmosphere is particularly critical to address
because CH4 is the second most important anthropogenic greenhouse gas. The lifetime of CH4 factors
directly into the calculation of the global warming potential (GWP) of this compound [Intergovernmental
Panel on Climate Change (IPCC), 2013, Table 8.A.1]. Furthermore, models disagree on how τCH4 will evolve over
the next century due to variations in atmospheric composition. Voulgarakis et al. [2013] found a multimodel
mean change in τCH4 of +8.5 ± 10.4% between years 2000 and 2100, for simulations conducted by using 14
models driven by the Representative Concentration Pathway 8.5 greenhouse gas emissions scenario. Of
the 14 models analyzed, three yielded decreases in τCH4, for year 2100 relative to year 2000, while another
three yielded increases in τCH4 that exceed +25%. This level of disagreement illustrates that the effect of cli-
mate change on the future oxidizing capacity of the troposphere is highly uncertain, due to a large range of
possible future emission scenarios that will alter atmospheric composition as well as variations in model
behavior with respect to OH. The path to reducing this uncertainty lies in first accurately assessing why
present-day [OH]TROP and τCH4 differ among models.

Another challenge to our understanding of [OH]TROP is the persistent discrepancy between τCH4 values calcu-
lated by models and those based on observations. Measurements of the temporal evolution of the global
mean abundance of methyl chloroform (MCF: CH3CCl3) as well as the global emission rate of MCF are fre-
quently used to infer the abundance of [OH]TROP and hence τCH4. Prinn et al. [2005] estimated a mean chemi-

cal τCH4 of 10:2þ0:9�0:7 years for the 1978–2004 period following this method. Prather et al. [2012] adopted a more
sophisticated approach, considering more terms for loss of MCF than prior studies, and estimated τCH4 to be
11.2 ± 1.3 years for year 2010. IPCC [2013, section 8.SM.2] uses the Prather et al. [2012] value of τCH4 for its lat-
est set of GWP estimates due to CH4. For comparison, the multimodel mean values for present-day τCH4 cal-
culated by Shindell et al. [2006], Fiore et al. [2009], and Naik et al. [2013] are 9.72 ± 1.70, 10.19 ± 1.72, and
9.7 ± 1.5 years, respectively. Uncertainties in the empirical estimates of τCH4 include potential stockpiling of
MCF and resulting inaccuracies in assumed emissions [Krol and Lelieveld, 2003], ocean outgassing of MCF
at high latitudes [Wennberg et al., 2004], and uncertainty in the rate constants for the OH+MCF and OH
+CH4 reactions [Prather et al., 2012]. Given that CH4 is such a potent greenhouse gas and that the sign of
future changes in τCH4 is uncertain [Voulgarakis et al., 2013], the low bias in modeled τCH4 relative to the
recent empirical estimate provided by Prather et al. [2012] is important to understand and eventually resolve.

There have been three recent attempts to assess our understanding of tropospheric OH based on observa-
tions. Strode et al. [2015] used satellite observations of CO to analyze the hemispheric biases in modeled
OH. That study investigated possible solutions to bring the modeled ratio of Northern Hemisphere (NH) to
Southern Hemisphere (SH) burdens of OH (greater than 1 in most models [Mao et al., 2013a; Naik et al.,
2013]) into better agreement with observation-based estimates of the NH:SH ratio (almost exactly 1 accord-
ing to recent studies [Krol and Lelieveld, 2003; Patra et al., 2014]). The ratio of NH:SH burdens of OH is a metric

Table 1. Estimates of CH4 Lifetime Due To Removal by OH From Recent Literature and This Study

Method τCH4 due to OH Source

Best estimate from CH3CCl3 inversion;
range from OxComp CTM evaluation

9.6 (6.5–13.8)a Intergovernmental Panel on Climate
Change (IPCC) [2001]

CH3CCl3 inversion 10.2 (9.5–11.1)b Prinn et al. [2005]
CH3CCl3 inversion 11.2 (9.9–12.5)b Prather et al. [2012]
CH3CCl3 inversion 10.5 (8.0–15.1)c SPARC, [2013]; Rigby et al. [2013]
CTM model intercomparison (26 models) 9.72 (6.91–15.05)a (8.02–11.42)b Shindell et al. [2006]
CTM model intercomparison (12 models) 10.19 (6.19–12.50)a (8.47–11.91)b Fiore et al. [2009]
Chemistry-Climate Model (CCM) intercomparison, ACCMIP (16 models) 9.7 (7.1–14.0)a(8.2–11.2)b Naik et al. [2013]; Voulgarakis et al. [2013]
CCM intercomparison (5 models) 8.9 (7.5–10.3)b SPARC [2013]
CTM model intercomparison (8 models) 9.3 (8.0–11.6)a (8.2–10.3)b POLMIP/This study [2017]

aFull range of values provided.
b1σ uncertainty provided.
c2σ uncertainty provided.
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often used to evaluate τCH4 because its variation betweenmodels can indicate whether discrepancies are due
to hemisphere-specific processes, such as anthropogenic emissions concentrated in the NH, or processes that
occur equally in both hemispheres, such as loss by longer-lived, well-mixed species including CH4. While the
hemispheric gradient of OH is not directly constrained by observations, latitudinal gradients of species pri-
marily lost by OH (e.g., CO and MCF) are well established from satellite, aircraft, and ground-based measure-
ments. Strode et al. [2015] found that reducing NH OH brought the modeled latitudinal gradient of CO into
better agreement with observations. Further simulations conducted by Strode et al. [2015] were unable to
attribute the large ratio of NH:SH OH in the model to known model deficiencies in O3 and H2O. The second
observation-based study by Patra et al. [2014] used ground-based measurements of MCF and a chemical
transport model (CTM) to estimate the ratio of NH:SH burdens of OH as 0.97 ± 0.12. Further, they attributed
ratios greater than 1 in other models to likely overestimates in emissions of reactive species such as NOx.
In a third study, Nicely et al. [2016] found that OH inferred from observations of precursors in the tropical wes-
tern Pacific tended to exceed concentrations of OH calculated by global CTMs by up to 20%. For this region
during January–February 2014, CTM underestimates of NOx and HCHO were the primary drivers of underes-
timated OH. Conversely, underestimates in CTM acetaldehyde (CH3CHO) relative to observations resulted in
the magnitude of the OH sink being underestimated in the CTM at low altitudes, partially compensating for
the underestimated NOx and HCHO sources. Therefore, it is unclear from these attempts to constrain OH
using observations why models are presently overestimating the oxidizing capacity of the troposphere, rela-
tive to the CH4 lifetime based on MCF inversion studies.

The nonlinear chemical response of OH to changes in sources and sinks and the codependencies between
many drivers of OH present a challenge to modeling [OH]TROP on a global scale [Spivakovsky et al., 1990;
Duncan et al., 2000]. A thorough investigation of multimodel differences in τCH4 would require methodical
examination of the complete chemical mechanisms of each participating model, which is an unreasonable
expectation. Other methods such as Gaussian process emulation aim to quantify and attribute sources of
model uncertainty based on performing multiple simulations with inputs spanning reasonable parameter
ranges in a computationally efficient manner [e.g., Lee et al., 2012; Lee et al., 2016]. However, modeling tropo-
spheric chemistry involves a multitude of parameters, many of them highly uncertain, and re-running even a
single CTM with perturbed inputs is time-consuming and labor-intensive. In this study, we use the computa-
tional power of neural networks (NNs) [Jain et al., 1996; Gardner and Dorling, 1998; Heaton, 2011; Allison, 2015]
to mimic the behavior of the chemical mechanism of each of eight CTMs and reproduce its global OH output.
The parallel computation method employed by NNs allows for the fitting of nonlinear systems using code-
pendent variables as inputs. We use NNs with output generated for the POLARCAT (Polar Study using
Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols and
Transport) Model Intercomparison Project (POLMIP) [Emmons et al., 2015] to quantify the effect of the input
parameters in driving differences in τCH4.

2. Method
2.1. POLMIP CTMs

The POLMIP intercomparison project [Emmons et al., 2015] was designed to take advantage of the
POLARCAT [Law et al., 2014] suite of observations taken in 2008. While the POLARCAT measurements
focus on study of the Arctic troposphere, POLMIP includes model simulations with global coverage.
Simulations were performed with a common emission inventory (specifying separately emissions from
anthropogenic, biomass burning, biogenic, soil, ocean, and volcano sources) for January to December
2008 with output provided as monthly means for each month (see Emmons et al. [2015] for further detail).
However, emissions of some hydrocarbon species within the Goddard Earth Observing System-Chemistry
(GEOS-Chem) model vary significantly from those recommended. Participating models were run as CTMs,
meaning they used winds and temperatures based on analyzed meteorological fields. As such, there was
general consistency in the meteorological variables among the models, although some additional meteor-
ological fields (e.g., water vapor, clouds, and convection) were input to some models, whereas these quan-
tities were calculated internally in others. Each model provided monthly mean output for many chemical,
physical, and radiative variables by using the standard chemistry and deposition schemes of each group.
Only those models that output fields with global coverage are included in this study. Since this analysis
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relies on relative differences among models, output from only one (version 4) of two available versions of
Community Atmosphere Model with Chemistry (CAM-Chem) is considered to eliminate a small bias due
to use of output from two highly similar models.

The eight models participating in this analysis are listed in Table 2. Treatment of aerosols, the tropospheric
chemistry scheme implemented, inclusion of stratospheric chemistry, and parameterization of lightning
NOx (NO+NO2) vary between these models (see Emmons et al. [2015] for further detail). For instance, the
GEOS-Chem CTM employed a heterogeneous uptake pathway for hydroperoxy radical (HO2) on aerosols that
is unique among the POLMIP CTMs [Mao et al., 2013a]. CAM-Chem, GEOS-Chem, Global Modeling Initiative
(GMI), and Model for Ozone and Related chemical Tracers, version 4 (MOZART-4) use GEOS-5 meteorology
[Molod et al., 2012], while Tracer Model 5 (TM5), Composition Integrated Forecasting System (C-IFS),
Toulouse Off-line Model of Chemistry And Transport (TOMCAT), and Laboratoire de Météorologie
Dynamique-Interaction between Chemistry and Aerosol (LMDz-INCA) use ERA-Interim meteorology [Dee
et al., 2011]. Latitude × longitude grids and number of vertical levels for each model are listed in Table 2.
However, because of the fine spatial resolution of the C-IFS model output, the computer used for the NN ana-
lysis did not have enough memory to train a NN using the raw archived output. Therefore, output from C-IFS
was bilinearly interpolated to a 2.0° × 2.5° latitude/longitude grid for training of the NN.

Given that emissions of chemical species, atmospheric transport fields, and meteorology should be relatively
consistent between the various CTM simulations, differences in τCH4 likely arise from variations in the OH pre-
cursor and sink fields, the radiative conditions, and the chemical mechanisms inherent to each model. It is pos-
sible that differences in certain meteorological parameters that are not necessarily consistent between models
(e.g., clouds) also influence OH indirectly through their effect on photolysis frequencies [e.g., Rohrer and
Berresheim, 2006; Voulgarakis et al., 2009]. Additionally, OH precursors, such as NOx can be both directly emitted
as well as generated by lightning, which is parameterized in a manner individual to each model. However, we
focus on the factors that directly affect OH chemistry. To answer whether model differences in those factors are
driven by emissions, chemistry, deposition, or the radiative environment necessitates the archiving of output
fields that were not available for this study. Also, to properly evaluate the role of fast chemistry (i.e., OH recycling
from HO2 and alkylperoxy radicals, RO2), additional chemical fields at higher temporal frequency must also be
archived. Here we use NNs to quantify the drivers of intermodel differences in τCH4 by swappingmonthly mean
OH precursor and sink fields from one model into the NNs of other models.

For our analysis of CTM output, values of τCH4 were calculated as the total tropospheric burden of CH4 divided
by the CH4 loss rate:

τCH4 ¼ ∑Mair � χCH4

∑ OH½ �� kOH þ CH4� Mair � χCH4
(1)

where Mair is the mass of air within a grid box, brackets denote number density, χ denotes mixing ratio,
kOH + CH4 is the reaction rate constant for the OH+CH4 reaction calculated for each grid box temperature,
and summations are performed over all tropospheric model grid boxes. In this formulation of lifetime calcu-
lation, the numerator represents the total burden of CH4 in kilograms, while the denominator represents the
loss of CH4 by reaction with tropospheric OH in units of kg s�1. Tropopause pressures were calculated for
each model by using vertical profiles of O3 and CO mixing ratios to identify a chemical tropopause, following
the method of Pan et al. [2004]. Figure 1 shows the τCH4 evaluated by using equation (1) for each month for
the eight CTMs analyzed here. The LMDz-INCAmodel generally exhibits the longest τCH4 (i.e., lowest values of

Table 2. Chemical Transport Model Simulations From the POLARCAT Model Intercomparison Project Used in This Study

POLMIP CTM Resolution Institution Reference

CAM-Chem 1.875° × 2.5° 56 levels National Center for Atmospheric Research, USA Lamarque et al. [2012]; Tilmes et al. [2015]
C-IFS 1.125° × 1.125° 60 levels European Centre for Medium-Range Weather Forecasts, UK Flemming et al. [2015]
GEOS-Chem 2.0° × 2.5° 47 levels Harvard U., USA Bey et al. [2001]; Mao et al. [2010]
GMI 2.0° × 2.5° 72 levels NASA Goddard Space Flight Center, USA Duncan et al. [2007]; Strahan et al. [2007]
LMDz-INCA 1.875° × 3.75° 39 levels Laboratoire de Météorologie Dynamique, France Hauglustaine et al. [2004]; Hourdin et al. [2006]
MOZART-4 1.875° × 2.5° 56 levels National Center for Atmospheric Research, USA Emmons et al., [2010]
TM5 2.0° × 3.0° 60 levels Royal Netherlands Meteorological Institute, Netherlands Huijnen et al. [2010]; Williams et al. [2013]
TOMCAT 2.81° × 2.81° 31 levels University of Leeds, UK Chipperfield [2006]; Monks et al. [2016]
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tropospheric OH), with an annual mean
τCH4 of 11.6 years. The TOMCAT model
has the shortest τCH4, with an annual
average of 8.0 years.

The annual average values of τCH4 from
the eight CTMs are listed in Table 3. The
intermodel spread of τCH4 for these eight
CTM simulations is 39%, found by taking
the difference between the maximum
and minimum values, and dividing by
the multimodel mean. This spread is
smaller than reported in other compari-
sons, likely because these other studies
involve a larger number of CTMs and
more extreme outliers of τCH4 (τCH4 as
low as 6.2 years in Fiore et al. [2009] and
as high as 15 years in Shindell et al.
[2006]). Given the nature of our study,
we are only able to use output from
CTMs that archive global, monthly fields

of a large number of chemical constituents. Most importantly, we note that all but one value of τCH4 given in
Table 3 are shorter than the value of 11.2 years used by IPCC [2013] for the computation of the GWP of CH4.

2.2. Neural Network Training

Neural networks can be thought of as an advanced parameterization method well suited to model nonlinear
systems. Applications include problems as varied as speech recognition, data mining, and stock market fore-
casting [Jain et al., 1996]. Others in the atmospheric science community have used NNs to forecast O3 air
quality events [Comrie, 1997], improve satellite retrievals of aerosol optical depth [Lary et al., 2009], and esti-
mate reaction rate constants and dissociation energies of atmospherically relevant species not easily mea-
sured experimentally [Gramatica et al., 1999; Urata et al., 2002; Urata et al., 2003; Allison, 2015]. As far as we
are aware, NNs have not yet been applied to diagnose and improved tropospheric chemical processes within
global models.

In this study, NNs were developed individually for each CTM, one for each of four months to span the
seasons (i.e., January, April, July, and October) using the MATLAB Neural Network Toolbox Version 8.0.1
available from MathWorks [Beale et al., 2013]. Each NN was trained to reproduce the 3-D monthly mean
field of OH mixing ratio from the CTM; section 3.1 presents metrics on the performance of all NNs. Inputs
were chosen based on their direct influence on OH chemistry. Here we used monthly mean averages of
11 variables: volume mixing ratios of H2O, O3, NOx, CO, CH4, and isoprene, along with photolysis frequen-
cies J(O3→O(1D)) and J(NO2) (units of s

�1) and physical parameters latitude, pressure (units of hPa), and
temperature (units of K). These inputs were chosen based on the OH parameterization originally devel-
oped by Spivakovsky et al. [1990] and explicitly listed in Table 1 of Duncan et al. [2000]. We used all of
the parameters from the Duncan et al. [2000] parameterization that were archived for all POLMIP model
simulations with the exception of ethane (C2H6) and propane (C3H8). These species were not included
here because their emissions were commonly prescribed for all models and they account for a small per-
centage of total OH reactivity. The addition of C2H6 and C3H8 to the calculation of OH reactivity results in
an increase of less than 0.4% of the total OH reactivity on a global mean basis for all POLMIP CTMs
(Figures S1 and S2 in the supporting information) [Lelieveld et al., 2016]. Additionally, we use monthly
mean fields of J(O3→O(1D)) and J(NO2) as inputs to the NN, rather than the parameters surface and
cloud albedo, declination angle, and overhead O3 column that appear in Table 1 of Duncan et al.
[2000]. The availability of these two photolysis frequencies in the POLMIP archive provides a more direct
connection to tropospheric OH than the photolytically related parameters in their table. Because surface
CH4 is set as a boundary condition in the POLMIP model simulations, and little overlap exists between

Figure 1. Tropospheric CH4 lifetime by month calculated for each
POLMIP CTM included in this analysis. CAM indicates CAM-Chem ver-
sion 4. Values of τCH4 are calculated as the tropospheric CH4 burden
divided by the CH4 loss rate due to reaction with OH frommonthly mean
output. Labels are listed in descending order of January lifetime values.
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ranges of CH4 values for some of the models as
shown in Figure S3, we input CH4 for each grid
box as the ratio of model CH4 mixing ratio to the
maximum tropospheric value present in a given
model for that particular month.

Neural networks can be configured with many dif-
ferent architectures and degrees of processing
power [Gardner and Dorling, 1998]. We found the
architecture that struck the best balance between
being computationally efficient and accurate in
reproducing the OH fields for a given CTM was the

feed-forward NN (meaning that processing only occurs in a forward direction, as opposed to cyclically
as occurs in other architectures) consisting of two hidden layers (Figure 2). Following extensive testing
of various configurations, we selected NNs containing 15 nodes (represented by the blue circles in
Figure 2) per layer for most of the CTMs. However, we extended the NNs for TOMCAT, C-IFS, and
GEOS-Chem to contain 30 nodes per layer due to larger errors evident in OH fields generated by the less
powerful NN architecture. This may be due to stronger influence of other chemical species on the chem-
istry of OH in these models, preventing our selection of NN inputs from fully explaining model variations
in OH. Alternatively, for C-IFS, it is possible that interpolation to a coarser spatial grid could distort the

Table 3. Annual Average CH4 Lifetime Due To Loss by
OH Evaluated for the Eight CTMs Included in this Study

POLMIP CTM Annual Average τCH4 (years)

CAM-Chem 8.6
C-IFS 9.3
GEOS-Chem 9.6
GMI-GEOS5 9.3
LMDZ-INCA 11.6
MOZART 9.0
TM5 8.8
TOMCAT 8.0

Figure 2. Architecture of the NNs used in the present study for all CTMs except GEOS-Chem, C-IFS, and TOMCAT. The
NN consists of two hidden layers, each containing 15 nodes (represented by blue circles). The NNs for GEOS-Chem, C-IFS,
and TOMCAT contain 30 nodes per hidden layer instead of 15. The 11 input parameters are listed on the left (dark green
boxes). Values are input as unitless mixing ratios for all chemical species except CH4, units of s

�1 for photolysis frequencies
J(O1D) and J(NO2), K for temperature, and hPa for pressure. For CH4, values are scaled relative to the maximum CH4 within
the troposphere for a given model such that the input value represents a ratio between 0 and 1. Hyperbolic tangent
activation functions are performed on the linear combination of the inputs multiplied by their input weights (represented
by grey arrows) at each node in Hidden Layer 1; those values are fed forward with additional weightings (Layer 1 weights)
to the Hidden Layer 2, where a second series of activation functions are performed. Output from Hidden Layer 2 is
weighted once more (Layer 2 weights) and linearly combined to give a single OH mixing ratio for a given latitude, longi-
tude, and pressure level.
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chemical equilibria expressed between species. In order to reproduce OH from each model with compar-
able accuracy, we created NNs that are more computationally expensive for these three CTMs. The train-
ing method used here is similar to methods found in Lary et al. [2009] and Allison [2015].

Here we provide further detail of our implementation of the NN. At each node, a hyperbolic tangent activa-
tion function (see Figure 2, bottom) is performed on the linear combination of each input multiplied by a
unique weighting (represented by the grey arrows in Figure 2). The Levenberg-Marquardt algorithm
[Heaton, 2011] was used to adjust NN weights during training, based on the second derivatives of the errors
of the simulated OHmixing ratios. Of all the tropospheric grid points output for a single model month, 80% of
those were used to adjust weights during training of the NN, 10%were used to evaluate errors and determine
a stopping point during training, and 10% were used as an independent validation of the NN posttraining,
following the method of Lary et al. [2009].

The end of NN training was determined by calculating the mean squared error (MSE) between CTM OH and
OH calculated by the NN for 10% of the data points not used to adjust NN weights. In the event that the MSE
increased six iterations in a row, following six sets of weight adjustments, training was stopped and the NN
weights prior to the error increase were saved. In other words, the NN weightings that minimize a cost func-
tion and cannot be adjusted to decrease errors further are saved. Upon completion of NN training, the
remaining 10% of data points are used to validate the final weights by regressing OH calculated by the NN
versus CTM OH. The training process is repeated several times to identify the NN weights that maximize
the r2 value of this regression.

Upon successful training of NNs for each CTM, the performance of each NN was evaluated by calculating tro-
pospheric OH mass columns and τCH4 for the NN-simulated fields of OH and comparing these NN-derived
quantities to the values derived from the CTM output. Tropospheric mass columns were calculated by verti-
cally integrating the mass of OH in the column from the surface to the tropopause then normalizing by the
base area of the surface grid box. Figure 3 provides an example of the OH mass column distribution we see
from GMI for the month of July and representative NN performance. Figures 3a and 3b show OH mass col-
umns from the GMI CTM and NN, respectively. The difference in the OH mass columns, NN�CTM, is shown in
Figure 3c. While differences on the order of ±5% between the NN and CTM exist in some locations, the OH
mass column distributions in Figures 3a and 3b are nearly visually identical. NN performance is further quan-
tified and discussed for all CTMs in section 3.1.

2.3. Quantifying Precursor Effects on OH

Once established, NNs for each CTM were then used to quantify the effect on τCH4 of replacing one of the OH
precursor fields (e.g., the distribution of O3) with that from another CTM. This was done by running the NN
with inputs from the parent CTM, except for a single input field taken from another CTM. This “swapped”
input was interpolated to the native spatial grid of the parent CTM and run through a series of checks, to pre-
vent a value outside of the range over which the NN was trained from being passed to the NN. The latter step
prevents the NN from extrapolating outside of the “trained range” of an input variable. Such extrapolation,
which we have fastidiously avoided in the results herein, would result in anomalous values of OH being out-
put, even for a well-trained NN.

Here we describe our method for handling situations when the swapped variable from one NN is outside
the trained range of another NN, which we term “extrapolation control.” To test the effect of MOZART-4
CO on the value of OH output by the GMI NN, each MOZART-4 CO value is compared to ranges of CO
mixing ratios acceptable for the values of GMI O3, CH4, isoprene, etc. that coexisted with this value of
CO during training. In other words, if the MOZART-4 CO value was indicative of pollution, while the other
GMI variables indicate clean conditions, the substituted CO value will likely be too high for the NN in an
otherwise clean chemical regime. In this case, the CO value would be revised down to the highest “accep-
table” mixing ratio of CO, over which the NN was trained for clean conditions. Our extrapolation control
method is accomplished by compiling a series of reference matrices for each CTM and checking against
the appropriate matrix whenever a variable substitution is conducted.

After running a NN with an input field substituted from another CTM, new values of tropospheric OH mass
column and τCH4 were calculated from the output OHmixing ratios. The change in both, relative to the parent
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Figure 3. (a) Tropospheric OH mass columns calculated directly from GMI CTM output and (b) from GMI NN output
generated from input of OH precursors from the GMI CTM are shown for July. The CH4 lifetime (τCH4) calculated for each
3-D OH distribution is indicated in the bottom right corner of Figures 3a and 3b. (c) The absolute difference in OH mass
columns between Figures 3a and 3b is shown as NN–CTM. The difference in τCH4 (ΔτCH4), NN–CTM, is indicated in the
bottom right corner of Figure 3c.
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NN base run, is attributed to the substituted variable. These swaps were performed for all chemical and radia-
tive variables, as well as temperature, between all models.

2.4. Evaluation Against Box Model

A box model is used to determine whether the chemical mechanisms within individual CTMs are also respon-
sible for differences in [OH]TROP and τCH4. The box model employed is the Dynamically Simple Model of
Atmospheric Chemical Complexity (DSMACC) [Emmerson and Evans, 2009], operating with the Master
Chemical Mechanism (MCM) [Jenkin et al., 1997; Saunders et al., 2003] version 3.3.1 [Jenkin et al., 2015].
Each of the box model input values is determined by finding an average value representative of a particular
geographic region for all tropospheric pressure levels. Hourly values of J(NO2), J(O3→O1D), and NO from
CAM-Chem, GMI, and LMDz-INCA are used to scale monthly mean output from all eight CTMs, used in the
NNs, to an instantaneous noon-time value that is then input to the box model, following the method of
Nicely et al. [2016]. The hourly output necessary to do this is only available from the three CTMs noted for
April along with June–July; we perform the box model analysis only for the springtime month. All other spe-
cies were constrained in the box model by using the monthly mean NN input value. Monthly means of the
additional species ethane (C2H6), propane (C3H8), acetone (CH3COCH3), acetaldehyde (CH3CHO), and formal-
dehyde (HCHO) from each CTM are also input to the box model (with the exception of acetone from C-IFS,
which was not archived). This enables the boxmodel, which explicitly represents the chemistry of OH produc-
tion and loss (as opposed to the NN method that treats isoprene as a proxy for other VOCs that also affect
OH), to accurately evaluate how purely chemical mechanism-related differences may be influencing OH.
The box model is run to diurnal steady state, and mixing ratios of OH output from these runs were averaged
to obtain a 24 h mean, which are directly compared to CTM monthly mean values.

We have conducted box model evaluations of the CTM chemical mechanisms for four distinct geographic
regions shown in Figure 4: the Eastern Pacific, Atlantic, Africa, and Western Pacific. Figure 4 also shows tropo-
spheric OHmass columns for the month of April calculated by using output from the TOMCAT (Figure 4a) and
LMDz-INCA (Figure 4b) CTMs, which give the shortest and longest values of τCH4, respectively, among the
POLMIP models. We focus this analysis on regions with relatively low NOx and low VOCs due to our ability
to reproduce CTM OH in these chemical regimes with reasonable accuracy using the box model. Large dis-
crepancies between OH calculated by the box model and the CTMs in regions of high NOx and/or high
VOCs, such as over the Amazon, are likely due to the influence on OH from other species (e.g., methanol
and monoterpenes) not output by the CTMs for the POLMIP archive. Differences between the CTM and
box model chemical mechanisms that are particularly important for these high NOx and/or high VOC regimes
could also influence the box model OH discrepancies. Results for the box model analysis are discussed in
section 3.4.

3. Results
3.1. Neural Network Performance

The NNs reproduced OHmixing ratios from the CTMs and resulting tropospheric OHmass columns with good
accuracy. Figure S4 shows tropospheric column mass differences between the NN and each CTM for July,
analogous to Figure 3c. Generally, the NNs perform well for most regions, with simulated column mass OH
within ±5% of the CTM values. Additionally, the mean squared error (MSE) metric by which the NNs were vali-
dated generally fell below 1.0 × 10�3, which indicates very good performance. The NNs for C-IFS and GEOS-
Chem, however, exhibited errors higher than this threshold for at least one of the four months for which NNs
were trained (0.0012 in January for C-IFS and 0.0019, 0.0019, and 0.0012 in January, April, and July, respec-
tively, for GEOS-Chem), despite use of a more powerful NN architecture. NN performance also displayed a
seasonal dependence, with all producing highest MSE values in January and lowest MSE values in October
or April. Finally, the most important quantity, τCH4, which reflects global tropospheric OH in each CTM, is
reproduced well by the NNs. The largest error in τCH4 shown in Figure S4, 0.019 years or 0.25%, results from
the NN for TM5. The extremely high accuracy for τCH4 results from the tendency of overestimates of OH in
some geographic regions to be balanced by underestimates in other regions (i.e., overestimates and under-
estimates of OH tend to cancel, when τCH4 is examined).
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Figure 4. Tropospheric OH mass columns from (a) TOMCAT (lowest value of τCH4) and (b) LMDz-INCA (highest value of
τCH4) for the month of April. The boxes highlight the geographical regions used for the box model evaluation of CTM
chemical mechanism differences: Eastern Pacific (box 1), Atlantic (box 2), Africa (box 3), and Western Pacific (box 4).
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The spatial distribution of the difference between NN and CTM tropospheric OH mass column indicates
that NN errors are most concentrated either over continents or in oceanic regions affected by continental
outflow. This may be due to the influence of an emission source that leads to a unique set of chemical
conditions for which the NN could not be sufficiently trained. In addition, monthly mean averages of
the parameters used as input to the NN may not be able to represent the nonlinearity of the chemical
conditions in the actual POLMIP CTM simulation that led to a particular monthly mean value of OH, at
a specific model grid point. Regardless of these localized errors, the NNs are able to reproduce τCH4 values
for their respective CTMs to within ±0.02 years and the worst performing NN (GEOS-Chem), based on MSE,
reproduces a τCH4 0.012 years higher than the native CTM. As such, the NN error in calculating τCH4 is less
than 0.25%.

3.2. Individual Precursor Analysis

Each input variable was swapped between all models for a given month, allowing the impact on OH to be
examined for each of the primary parameters that affect OH. Comparisons of tropospheric OH mass differ-
ences due to CO, NOx, J(O3→O1D), and J(NO2) swaps between CAM-Chem and GEOS-Chem are shown in
Figure 5 and CH4, isoprene, H2O, and O3 swaps in Figure 6. We show OH differences from these two CTMs
because they are representative of results from most other model pairings, in which CH4 lifetimes of the par-
ent CTMs vary by ~1 year. The order of variable swaps listed here and shown in the two figures is determined
by the mean absolute value of ΔτCH4, the change in τCH4 resulting from the performed swap. The first four
variables, CO, NOx, J(O3→O1D), and J(NO2), influence the largest changes in τCH4 for this model pair. Color
bars for the pair of plots on the left and right of each row are mirror images of each other, designed to repre-
sent the fact that decreases in OH in one model for a variable swap should be accompanied by increases in
OH when the swap occurs in the opposite direction. Values of ΔτCH4 are also imprinted on each panel of
Figures 5 and 6. As with the spatial distribution of OHmass differences, values ofΔτCH4 shown in the left-hand
and right-hand side of each row are expected to be opposite in sign and of roughly the same magnitude.
Inspection of these figures shows that this expectation is generally met, further validating proper behavior
of the NNs.

The primary driver of differences in τCH4 between CAM-Chem and GEOS-Chem is CO. Widespread decreases
in OH are found by the CAM-Chem NN as a result of using CO from GEOS-Chem, which is generally higher
than CO from CAM-Chem (Figure 5b). This results in a net increase in τCH4 of 0.48 years. When the swap of
CO occurs in the other direction, i.e., use of CO from CAM-Chem in the GEOS-Chem NN, we see a widespread
increase in OH corresponding to a decrease in τCH4 of 0.75 years (Figure 5a). The direction of change agrees
with expectations, since CO from CAM-Chem is generally lower than CO from GEOS-Chem as shown in Figure
S5. The visual similarity of the colors on the left-hand plots to those on the right-hand plots, for each row, con-
firms that the NNs are behaving in a reasonable manner. Despite a common emissions inventory being pro-
vided, in the case of GEOS-Chem, some hydrocarbon emissions are very different from those specified
[Emmons et al., 2015]. Secondary production of CO from oxidation of these hydrocarbons could play a large
role in explaining the strong CO variations amongmodels. Whatever the cause, the largest differences in τCH4
and OH between GEOS-Chem and CAM-Chem are driven by differences in the fields of CO.

The effect of swapping NOx between GEOS-Chem and CAM-Chem within the respective NNs (Figures 5c and
5d) highlights large differences in OH, particularly over continental source regions. While the POLMIP project
specified a common emissions inventory for use by all CTMs, it is possible that the implementation of the
inventory in the various models differs or that nitrogen chemistry (including sequestration of NOx to reservoir
species such as peroxyacetyl nitrate (PAN)) evolves in a differentmanner following emission, resulting inmod-
erately varied fields of NOx among the eight CTMs as shown in Figure S6. Variations in CTM parameterizations
of lightning NOx could also account for the large differences in OH resulting from the NOx swaps.Murray et al.
[2013] noted the importance of lightning NOx for accurately modeling the interannual variability of OH.
Interestingly, while there are considerable regional differences in the tropospheric mass of OH resulting from
the swap of NOx in the NN analysis, the resulting difference in τCH4 is modest. Regions of enhanced OH in one
region (Central America) tend to be offset by regions of suppressed OH in other areas (India and SE Asia).

Differences in OH driven by photolysis frequencies (J(O3→O(1D)) in Figures 5e and 5f and J(NO2) in
Figures 5g and 5h exhibit more global uniformity than differences driven by NOx and isoprene. Variations
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Figure 5. Tropospheric column mass OH differences for various inputs swapped between GEOS-Chem and CAM-Chem NNs. OH differences from GEOS-Chem’s
NN arising as a result of replacing (a) CO, (c) NOx, (e) J(O3→O(1D)), and (g) J(NO2), from top to bottom, with that from CAM-Chem. (b, d, f, and h) The same species
swaps from GEOS-Chem into the CAM-Chem NN. The difference in τCH4 between the swap run and the base run of the NN is inscribed in the bottom right corner of
each plot. Note that color bars are reversed between the left and right columns to highlight that OH increases in the NN of one model generally accompany OH
decreases in the NN of the other model for a given variable swap.
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Figure 6. Same as Figure 5 except for swaps between the variables (a and b) CH4, (c and d) isoprene, (e and f) H2O, and (g and h) O3, from top to bottom. Note that
color bars are reversed between the left and right columns to highlight that OH increases in the NN of onemodel generally accompany OH decreases in the NN of the
other model for a given variable swap.
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in J(O3→O(1D)) generally arise from differences in overhead O3 column, which exhibit considerable range
among these eight CTMs. Only two of the models (GMI and CAM-Chem) include interactive stratospheric
chemistry. The others constrain stratospheric O3 concentrations to climatological mean values. Figure S7
shows the large variations in the dependence of J(O3→O(1D)) on overhead O3 column among the eight
CTMs. The CTMs also calculate photolysis frequencies by using differing methods, as detailed in Table S1 in
the supporting information. Strong differences in cloud coverage [Emmons et al., 2015] are also likely to play
a role in causing photolysis frequency variations between models. Despite use of one of two common
sources of meteorological fields (either GEOS-5 or ERA-Interim), models may either use H2O and cloud fields
from that source directly or calculate their own fields based on surface fluxes and model physics. As a result,
model fields of H2O (Figure S8) and clouds vary considerably as shown in Emmons et al. [2015]. The differ-
ences in J(O3→O(1D)) between CAM-Chem and GEOS-Chem are consistent with the direction of change
in OH shown in Figures 5e and 5f: i.e., GEOS-Chem exhibits lower values of J(O3→O(1D)) than CAM-Chem,
resulting in an increase in OH upon swapping CAM-Chem J(O3→O(1D)) into the GEOS-Chem NN. The origin
of differences in J(NO2), on the other hand, is primarily due to various model representations of cloud cover-
age and surface albedo. Variations in the CTM fields of overhead O3 and clouds are manifest on a global scale,
resulting in differences in OH due to photolysis frequencies that have comparable magnitude across conti-
nents and oceans. Even so, OH features are still distinguishable, such as the strong increase in OH over
Indonesia in the CAM-Chem NN due to J(NO2) (Figure 5h). Since not all models have output a variable con-
taining information on cloud coverage for the POLMIP archive, we can only surmise that the CAM-Chem
treatment of clouds over Indonesia differs from that within GEOS-Chem.

Figure 6 shows the impacts on OH of swapping the variables that have the least impact on τCH4 between
GEOS-Chem and CAM-Chem: CH4, isoprene, H2O, and O3. The result of swapping CH4 between the two
CTMs (Figures 6a and 6b) reveals a shortcoming in the NN approach when one model uses a fixed 3-D field
of an input parameter. In this case, the use of constant CH4 mixing ratios throughout the troposphere in
GEOS-Chem results in an inability of the NN to evaluate the effect of other CH4 values (Figure 6a) for reasons
explained below (i.e., the paragraph that begins “An extreme case”). The CAM-Chem NN, on the other hand,
suggests a change in τCH4 of�0.14 years resulting from the use of CH4 from the GEOS-Chem CTM, largely due
to increases in OH throughout most of the tropics. Swaps of isoprene (Figures 6c and 6d) show almost com-
plete localization of resulting OH differences to continental source regions, due to the short lifetime of iso-
prene. As for NOx, the isoprene-driven variations in OH could result either from differences in the
implementation of isoprene emissions or from alternate representations of the impact on OH of isoprene oxi-
dation, an area of active current research [Mao et al., 2013b].

We also show results for the swapping of inputs between the LMDz-INCA and TOMCAT NNs (Figures S9 and
S10). These two CTMs exhibit the largest difference in τCH4; LMDz-INCA has the longest lifetime (11.6 years),
whereas TOMCAT has the shortest value (8.0 years) (Table 3). While some of the variable swaps indicate large
values of ΔτCH4 (H2O in Figures S10e and S10f and NOx in Figures S9c and S9d), the sum of the eight values of
ΔτCH4 for swapping in one direction (0.77 years for left hand panels) or the other direction (�1.28 years) does
not account for the 3 year difference in τCH4 between these two CTMs for the month of July. We conclude
therefore that a considerable portion of the variation in OH between LMDz-INCA and TOMCAT is due to
differences in the chemical mechanisms within these two CTMs, which is examined further in section 3.4.
One indicator of this may be the very different responses to CH4 being swapped between these two CTMs.
Whereas we generally expect an OH increase in one model to be accompanied by an OH decrease in
the other, we instead see widespread OH increases in both models except for OH decreases localized over
the tropical continents in the TOMCAT NN. TOMCAT generally has higher CH4 than LMDz-INCA, so the
LMDz-INCA NN indicates that OH concentrations increase due to the input of higher CH4. This response dif-
fers from that of the TOMCAT NN, which shows OH increasing as a result of lower CH4. It is these variations
in OH responses that reveal the likely presence of important chemical mechanism differences.

Upon examination of the 2016 tropospheric mass OH difference plots generated by our NN analysis (eight
models combined with seven possible pairs, for the eight variables shown above plus the ninth variable tem-
perature, times four months), it is important to recognize several points. As noted above, the pairings of tro-
pospheric column mass OH difference plots and ΔτCH4 values for swaps of precursor fields in both directions
are expected to demonstrate some level of visual and quantitative symmetry, and this is generally the case.
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There are, however, instances where
this symmetry is lacking. The cause
of this may be twofold. First, the che-
mical mechanism inherent to the
respective CTMs may exhibit varying
responses to the variable being
swapped. The second cause may be
due to the extrapolation control
method used to confine substituted
variables to the range of values for
which each NN was trained. If one
CTM produces a wide range of tropo-
spheric values, e.g., for CH4, while a
second confines the species to a very
narrow range, the swap in CH4 values
between the NNs of the two CTMs
will be asymmetric. Extrapolation
control will allow the NN of the first
CTM to test the full range of the field
of CH4 generated by the second CTM,

whereas the CH4 values from the first CTM will need to be heavily revised to fall within the narrow trained
range before being input to the NN of the second CTM.

An extreme case of this phenomenon is seen in the CH4 swap between CAM-Chem and GEOS-Chem
(Figure 6a): mixing ratios of CH4 within GEOS-Chem are prescribed as 1740 ppb throughout the tropo-
sphere for the POLMIP simulation. To prevent the extrapolation of the GEOS-Chem NN by using unfamiliar
values of CH4, all incoming CH4 values must be set to 1740 ppb. The GEOS-Chem NN therefore is unable
to represent the impact of CH4 on OH, despite the fact that loss or production of OH (which depends on
NOx) via the oxidation of CH4 is represented within the chemical mechanism of GEOS-Chem. For this rea-
son, Figure 6a shows no effect of CH4 on OH and τCH4. To obtain scientifically meaningful results, great
care must be used in NN analysis to assure that the derived functions are interpolations and not extrapo-
lations, due to the highly nonlinear behavior of the basis functions. The only alternative for the use of
NNs to examine the cause of intermodel difference in modeled OH would be for each group to share
the code of their chemical mechanism, which would then allow for the full range of swapped variables
to be considered.

Another point to note is that regions in which strong differences in OH are calculated require two
necessary conditions: (1) the variables being swapped between the respective NNs must be significantly
different at the grid point and (2) the NN must demonstrate a significant response of OH due to that
variable. It is possible that differences in a swapped variable may be large, yet the response in OH is
small due to the weak dependence of OH chemistry on that variable. Therefore, large values of OH col-
umn mass differences in Figures 5, 6, S9, and S10 indicate that the magnitude of the swapped para-
meter varies significantly between the two CTMs and that this parameter has a considerable impact
on the chemistry of OH.

Table 4 lists the effects on τCH4 of all variable swaps between the GEOS-Chem and CAM-Chem CTMs for July
2008. The variables are listed in order of their impact on τCH4. Next, the ΔτCH4 values due to all inputs are
summed (ΔτCH4, TOT). It is often the case that the total ΔτCH4 accounts for the majority of the difference in
τCH4 between the parent CTMs (denoted by τORIG). This is true for CAM-Chem and GEOS-Chem: the adjusted
τCH4 for GEOS-Chem, 7.32 years, nearly matches the original CAM-Chem τCH4 of 7.44 years, while the adjusted
CAM-Chem τCH4 of 7.99 years is close to the original GEOS-Chem τCH4 of 8.29 years. We attribute the remain-
ing difference between (τORIG +ΔτCH4, TOT) from one model and τORIG of the second model to the sum of two
terms: variations in the chemical mechanisms of the two models plus differences driven by nonlinearities of
substituted inputs. This term is referred to as “Mechanism+nonlinearities” in Table 4 and as “Mech. +Nonlin.”
in subsequent figures.

Table 4. Budgeting of τCH4 Between GEOS-Chem and CAM-Chem for July

GEOS-Chem CAM-Chem

τCH4, ORIG
a (years) 8.29 7.44

ΔτCH4 due tob: CO �0.75 +0.47
NOx +0.36 �0.30

J(O3→O(1D)) �0.36 +0.30
J(NO2) �0.12 +0.06
CH4 0.00 �0.14

Isoprene �0.02 +0.09
H2O �0.06 +0.04
O3 �0.02 +0.03

Temp 0.00 0.00
ΔτCH4, TOT

c �0.97 +0.55
τCH4, ORIG +ΔτCH4, TOT 7.32 7.99
Mechanism+ nonlinearitiesd +0.12 +0.30

aτCH4, ORIG represents value of τCH4 evaluated directly from the CTM.
bΔτCH4 calculated from output of NN when noted variable is substi-

tuted with values from the other CTM.
cSum of all ΔτCH4 values calculated for each input substitution.
d“Remainder” of original τCH4 difference not accounted for by NN sub-

stitutions; calculated as τCH4, ORIG(CTM A)� [τCH4, ORIG (CTM B) +ΔτCH4,
TOT (CTM B)].
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Table 4 shows that for the July 2008 POLMIP archive of GEOS-Chem and CAM-Chem, variations in the repre-
sentation of CO by the respective CTMs are the largest single factor driving the 0.85 year difference in τCH4.
The second most important factor is differences in the respective models’ representation of NOx. The third
factor, and only other important parameter for this model pair, is J(O3→O(1D)). The magnitude of the differ-
ence in τCH4 due to mechanism plus nonlinearities is less than that of the J(O3→O(1D)) swap.

The quantification of the reasons for the difference in OH (and hence τCH4) between GEOS-Chem and CAM-
Chem shown in Table 4 provides a roadmap for how to assess the oxidation capacity of the troposphere
within these CTMs. One could, in theory, devise a means to compare fields of CO and J(O3→O(1D)) within
these models to observations and thereby assess the computed fields. However, Table 4 represents just a sin-
glemodel pair, for a particular month. In the next section, we generalize Table 4 to all possible model pairs, for
all of the considered months.

3.3. Aggregate Results for All POLMIP CTMs

The large number of comparisons conducted among eight CTMs for nine parameters in each of four
months necessitates the aggregation of results to determine the primary drivers of differences in τCH4.
The overall effect of one variable on the value of τCH4 within a CTM is assessed by averaging the
ΔτCH4 values due to substitution of that variable from all of the other CTMs. The results of this analysis
are shown in Figure 7 for the average of the four months analyzed here and in Figure S11 for the four
months individually. The points show the mean ΔτCH4 values, and the error bars represent the standard
deviation of the various swaps of the indicated variables. As with Table 4, the difference between the sum
of the ΔτCH4 values for all of the swaps and the gap in τORIG of the two parent CTMs is ascribed to
chemical mechanism plus nonlinearities (Mech. +Nonlin.). The variables are placed in order of decreasing
importance, with the exception that Mech. +Nonlin. always appears last, representing its origin as a
remainder term. Across all models, for the four months examined (Figure S11) as well as the average
of these four months (Figure 7), J(O3→O(1D)), O3, and CO consistently drive the highest mean absolute
values of ΔτCH4. On average, the ΔτCH4 value resulting from model swaps of J(O3→O(1D)) is 0.31 years,

Figure 7. Changes in τCH4 as a result of exchanging the designated variable between all models, averaged over all four
months analyzed here (January, April, July, and October). “Mech. + Nonlin.” represents the difference between parent
CTM τCH4 values not accounted for by the sum of ΔτCH4 values for each variable (refer to section 3.2 for more information).
Ranking of inputs along the x axis occurs in descending order of mean absolute value of ΔτCH4 for all models, except for
“Mech. + Nonlin.” which is listed last due to its origin as a remainder term. Error bars are standard deviations about the
mean of all variable swaps between the indicated model and all other models.
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from O3 is 0.30 years, and from CO is 0.23 years. Water, NOx, and CH4 rank as the fourth through sixth
greatest drivers of τCH4 differences; J(NO2) and isoprene occupy the seventh and eighth positions; and
temperature accounts for practically none of the difference in τCH4.

An unexpected outcome from this analysis is the small effect of changing isoprene, despite the effort
being extended by the atmospheric chemistry community to improve the representation of isoprene
decomposition products in global models [Crounse et al., 2011; Mao et al., 2013b]. The small role for iso-
prene likely results from its short lifetime that confines enhancements, relative to background, to the low-
est few kilometers above active source regions. While the oxidation of isoprene is of great importance to
surface O3 in, for example, the southeast U.S. [Mao et al., 2013b; Canty et al., 2015; Wolfe et al., 2015], it is
less important for τCH4 because the bulk of CH4 oxidation occurs over the oceans in the tropics, where OH
is highest [Bloss et al., 2005]. For most of this region, differences in mixing ratios of isoprene are too small
to appreciably affect globally averaged, tropospheric OH. However, isoprene likely has an indirect effect
on remote tropospheric OH that is not accounted for by this method. The reaction of the oxidation pro-
ducts of isoprene with NO2 leads to the formation of PAN, a reservoir of NOx capable of being trans-
ported long distances [Singh and Salas, 1983]. Thermal decomposition of PAN to release NOx radicals

Figure 8. Monthly mean fields of J(O3→O(1D)) for July at pressure level closest to 850 hPa for the eight POLMIP CTMs: (a) CAM-Chem, (b) C-IFS, (c) GEOS-Chem, (d)
GMI, (e) LMDz-INCA, (f) MOZART-4, (g) TM5, and (h) TOMCAT.
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far from the source subsequently enhances OH secondary production. As a result of the direct role of NOx

in altering OH chemistry in this pathway, the indirect role of isoprene is likely attributed to NOx

differences in this analysis.

Inspection of the aggregated results reveals interesting patterns that provide insight into model behavior.
The swaps of J(O3→O(1D)) reveal that GMI always has a lower mean data point for ΔτCH4 compared to the
other models. This suggests that the J(O3→O(1D)) field native to GMI contributes a positive offset to τCH4
from this model; i.e., when J(O3→O(1D)) from other models is substituted into GMI, τCH4 always drops.
Since τCH4 is proportional to the reciprocal of OH, this implies that J(O3→O(1D)) from GMI is lower than this
photolysis frequency in other models. This is confirmed by looking at the fields of J(O3→O(1D)) at a particular
pressure level, 850 hPa, for each model (Figure 8).

We also provide plots showing tropospheric O3 columns from each model (Figure 9) to further demon-
strate the utility of the NN analysis. Figure 7 shows that GEOS-Chem has the most negative value of
ΔτCH4 for swaps of O3. This implies that GEOS-Chem has the lowest value of tropospheric O3, since when
O3 is swapped from all other CTMs into the GEOS-Chem NN, OH consistently rises. The low value of O3

Figure 9. Monthly mean tropospheric O3 columns in July for the eight POLMIP CTMs: (a) CAM-Chem, (b) C-IFS, (c) GEOS-Chem, (d) GMI, (e) LMDz-INCA, (f) MOZART-4,
(g) TM5, and (h) TOMCAT. Tropopause pressures were calculated for individual models by using a chemical tracer definition as defined in Pan et al. [2004].
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within GEOS-Chem, relative to the
other models, is apparent in Figure 9.
While it is possible to compare each
of these modeled fields visually or
using a statistical method, the neural
networking approach provides a
means to analyze many variables,
including τCH4, in a consistent, quanti-
tative, systematic manner.

The Mech. +Nonlin. factor accounts
for the largest values of ΔτCH4 across
all months, with a mean absolute
value of 0.46 years for the average of
the four months (Figure 7). Models
that consistently have Mech. +Nonlin.
data points that lie close to another
CTM (i.e., GMI and GEOS-Chem) are
presumed to have very similar chemi-
cal mechanisms. Models that exhibit
Mech. +Nonlin. data points that con-
sistently differ from the other CTMs,
such as TOMCAT, presumably are run-
ning a different chemical mechanism
than the other models. The NN analy-

sis suggests the chemical mechanism within TOMCAT causes a reduction in τCH4 of 1.36 years relative to the
other seven models and that the mechanism within LMDz-INCA causes an increase in τCH4 of 0.58 years. As
shown in Table 3, TOMCAT exhibits the smallest annual average value of τCH4 (8.0 years) and LMDz-INCA
has the highest value (11.6 years). Our analysis suggests that a considerable portion of these two outliers
could be due to the chemical mechanism, provided that the primary driver of the Mech. +Nonlin. terms is
indeed the mechanism.

The Mech. +Nonlin. term also encompasses effects due to nonlinearities either inherent within the chemical
mechanism or accrued by asymmetric variable swapping. It is known, for instance, that the production or loss
of OH, upon oxidation of CH4, is a sensitive function of NOx [Jacob, 1999, section 11.3.3]. The true dependence
of OH as a function of CH4 and NOx may not be properly represented by summing the individual contribu-
tions from swapped CH4 and swapped NOx. Also as discussed in section 2.3, the method we use to prevent
NNs from extrapolating outside of the input ranges on which they are trained can result in asymmetry of the
swapped variables; the extent to which this occurs can also increase the remainder Mech. +Nonlin. term. By
tracking the number of swapped inputs into the NN of a given CTM that invoke extrapolation control, i.e., are
adjusted up or down to lie within the trained range of the NN, the TOMCAT model has the second largest
percentage of adjusted points (11.2%). The CTM with the largest number of extrapolation-controlled inputs
is GEOS-Chem (17.1%); the use of constant mixing ratios of CH4 is the main reason extrapolation control is
invoked in this CTM. Even though CH4 swaps with GEOS-Chem are consequently asymmetrical, the minimal
influence of CH4 changes on τCH4 likely explains the near-zero Mech. +Nonlin. term that results for GEOS-
Chem. The third highest percentage of extrapolation-controlled points occurs for LMDz-INCA, which has
the second lowest Mech. +Nonlin. term. However, as noted above, LMDz-INCA has the highest value for
τCH4, consistent with the sign andmagnitude of the Mech. +Nonlin. term. Overall, the effect of variable swaps
that are not exactly equal and opposite does likely play a small role in explaining the Mech. +Nonlin. terms
derived from this analysis.

Further work is needed to elucidate the contribution of chemical mechanisms within CTMs to differences in
OH and hence τCH4. We suggest that for future model intercomparison projects, each group be asked to run
their mechanism in box model mode for prescribed inputs of the nine primary drivers of OH used here, per-
haps extracted from a single global model run for a diversity of atmospheric conditions, so that the true

Figure 10. Percent difference in the tropospheric OH mass column values
calculated by individual CTMs and the DSMACC box model (CTM�BOX),
constrained to monthly mean values of the NN inputs CO, O3, CH4, H2O, and
isoprene as well as the NN inputs NO, J(O3→O(1D)), and J(NO2) scaled to
represent instantaneous noon-time values following the method of Nicely
et al. [2016] for the geographic region indicated. Additional VOCs ethane
(C2H6), propane (C3H8), acetone (CH3COCH3), acetaldehyde (CH3CHO), and
formaldehyde (HCHO) not used in the NN analysis are also used to constrain
the box model (with the exception that acetone was not output from C-IFS
and is excluded from box model analysis of that CTM). The numbers shown
along the top axis of the plot are the average percent difference in OH mass
columns across all four regions for the individual CTMs.
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variation of OH due to chemical mechanism can be quantified. In the next section, we describe a box analysis
by using an external chemical mechanism, not associated with any POLMIP model, to serve as a standard
against which all eight CTMs can be evaluated.

3.4. Box Model Evaluation of CTM Chemical Mechanisms

We use the DSMACC box model to quantify possible contributions of the chemical mechanisms within
individual CTMs to the model differences in [OH]TROP. Percent differences between the tropospheric OH
column mass values calculated by each CTM and the box model, across four regions (Figure 4) for the
month of April, are shown in Figure 10. While the tendency for the box model to predict higher OH mass
columns compared to all of the CTMs is apparent, variations in the results indicate differences in the che-
mical mechanisms between CTMs that may be contributing to the Mech. +Nonlin. term introduced in
section 3.2. The best agreement and low absolute value of the mean percent difference (9%) between
TOMCAT and box model OH mass column, compared to the larger absolute value mean percent differ-
ences for the other CTMs (~12–22%), suggest that the chemical mechanism within TOMCAT may explain
the tendency of OH from this model to be high, compared to other CTMs. This agrees with the large,
positive value of the Mech. +Nonlin. term calculated by the TOMCAT NN (Figure 7), which indicates that
τCH4 is low in TOMCAT as a result of its chemical mechanism and nonlinearities in the variable swaps.
Likewise, LMDz-INCA and C-IFS have the largest absolute values of mean percent difference between
CTM and box model OH mass column. The suggestion of low OH resulting from the chemical mechan-
isms implemented in these two CTMs is in agreement with the NN calculation of the most negative
Mech. +Nonlin. ΔτCH4 values among the eight CTMs evaluated here. The relative ordering of the box
model and NN Mech. +Nonlin. results from the remaining CTMs is not perfect; this is likely because the
effects of nonlinearities in NN variable swaps is not evaluated by the box model approach. However,
the agreement of the box model analysis with the highest and lowest values of ΔτCH4 attributed to
Mech. +Nonlin. by the NN method lends support to our notion that the remainder term is indicative of
differences that exist between the eight chemical mechanisms of the POLMIP CTMs.

4. Discussion

We have shown that J(O3→O(1D)), O3, and CO in addition to chemical mechanisms and nonlinearities drive
the greatest difference in τCH4 among the CTMs that participated in POLMIP. Global model representation of
fields of tropospheric O3 and CO and the frequency for production of electronically excited O(1D) atoms upon
photolysis of O3, combined with the chemical mechanism that drives the chemistry of OH within these mod-
els, are the most important areas to examine to assess why globally averaged, tropospheric OH varies among
the eight modeling groups that submitted sufficient output of chemical fields to the POLMIP archive to be
used in this study.

The extent of differences in OH due to driving parameters does vary somewhat, depending on which model
is being examined. Figure 7 is meant to serve as a guide for how the behavior of a particular CTM differs from
the others. For instance, LMDz-INCA has anomalously low OH primarily due to its high CO, low H2O, and che-
mical mechanism that tends to underestimate OH, relative to the other POLMIP CTMs. The TOMCAT CTM, on
the other hand, exhibits OH higher than the other models in this intercomparison, attributable almost entirely
to its chemical mechanism. Likewise, OH in GEOS-Chem is somewhat small due to low concentrations of O3

and high CO, though offset somewhat by high H2O. The CAM-Chem CTM has relatively large OH, due to
high J(O3→O(1D)), low CO, and high H2O, though offset by low local O3 and NOx.

It is important to examine whether the factors that we identify as being the primary drivers of OH differences
are truly impacting OH concentrations rather than OH concentrations impacting them. CO is the species most
likely to be correlated with, but not the cause of, OH variations since its main loss process is reaction with OH.
We explore this possibility by comparing ΔτCH4 values due to CO swaps between CTMs that share similar che-
mical mechanisms. Across all four examined months, for the model pairings in which the mean ΔτCH4 attrib-
uted to the Mech. +Nonlin. term was less than 0.25 years (29 total pairings), the mean ΔτCH4 due to
differences in CO was 0.05 years higher than the mean ΔτCH4 due to CO from all model pairings. Likewise,
regressing ΔτCH4 due to CO against ΔτCH4 due to Mech. +Nonlin. shows a near-complete lack of correlation
(for January, r2 = 0.00; April: r2 = 0.03; July: r2 = 0.10; and October: r2 = 0.03). If OH differences were responsible
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for creating variations in model fields of CO, then we would expect CTMs that are unbiased with respect to
their chemical mechanisms, as compared to each other, to share similar CO burdens and distributions.
Since this is not the case, there is some confidence that CO is a driver of OH differences, and the CO variations
between CTMs, in turn, must be caused by different implementations of emission inventories or differences
in secondary production from oxidation of VOCs.

We also recognize that these results do not provide clear indication of how to “fix” a particular CTM. The
species examined here are interrelated, so a bias in a chemical species such as O3 could arise due to dif-
ferences in production from CO, NOx, and isoprene or in loss by photolysis, indicated by J(O3→O(1D)), fol-
lowed by reaction of O(1D) with H2O. For a given model, considering all ΔτCH4 results by species (Figure 7)
in combination helps to elucidate interplay between biases in the various NN inputs. For example, results
show that GMI has high O3 relative to the other CTMs, accompanied by low J(O3→O(1D)) and high CO. In
this case, the low photolysis frequency and high CO concentration are the likely causes of high O3 as
opposed to fields of NOx or isoprene, which are, on average, in agreement with the other CTMs. On the
other hand, TM5 exhibits high O3 in combination with high J(O3→O(1D)), low CO, low CH4, and high
NOx. Here the high concentrations of NOx are the only viable explanation for high O3. Whether the low
J(O3→O(1D)) and high CO in GMI and the high NOx in TM5 are driven by differences in photolysis scheme,
chemical mechanism, emissions, or dynamics is an area for future research. It is interesting to note that
other examinations of the POLMIP CTM simulations yield similar results. Though focused on latitudes north
of 50°N, Arnold et al. [2015] showed rank ordering of model biases in O3 and CO (as compared to data col-
lected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites cam-
paign) that are in very good agreement with our results. Similarly, Monks et al. [2015] presented global
tropospheric burdens of CO and H2O that corroborate our findings. Finally, Emmons et al. [2015] demon-
strated the same rank ordering between MOZART-4, CAM-Chem, and TOMCAT J(O3→O(1D)) values as
found by the current NN approach, though again limited to the Arctic region. We also stress that all results
are relative to other models included in the intercomparison, so this analysis offers no indication of accu-
racy relative to the actual atmosphere.

This NNmethod provides a unique and efficient way to diagnose the persistent discrepancy between empiri-
cal and model estimates of τCH4. The scope of the present analysis, to quantify the factors causing τCH4 to
range from 8.0–11.6 years among the POLMIP CTMs, does not directly address why τCH4 from global models
generally lies below the recent empirical estimate of 11.2 ± 1.3 years given by Prather et al. [2012].
Comparison of each CTM to a common chemical mechanism, the MCM version 3.3.1, indicates how the mod-
els perform against a more complete and explicit representation of tropospheric chemistry. As shown above,
the OH mass column found by using MCM 3.3.1 in a box model framework, constrained by POLMIP output,
tends to exceed the values of OH found by the CTMs (Figure 10). On one hand, this might suggest that the
discrepancy for τCH4 will worsen as a result of our findings. At face value, the box model comparisons show
that if the chemical mechanisms within CTMs could be improved to represent tropospheric chemistry as well
as MCM 3.3.1, which is a state-of-the-art, detailed chemical mechanism, then CTM OH might be expected to
increase, which would lead to a further decrease in τCH4. However, the inclusion of additional VOCs and other
OH sinks as constraints for the box model driven by MCM 3.3.1, which exist in the real atmosphere and are
simulated in many of the POLMIP CTMs, but are not provided as output in the POLMIP archive and thus
are not included in the box model analysis, would likely bring the box model into better agreement with
OH from the CTMs [e.g.,Mao et al., 2009]. Therefore, we would caution against drawing any conclusions about
the accuracy of τCH4 from this model intercomparison. Rather, future applications of this technique to data
sets that include measurements of OH, and which utilize a CTM archive that holds the entire suite of modeled
VOCs, hold promise for elucidating whether global models are truly overestimating the oxidizing capacity of
the troposphere.

Fortunately, a prime opportunity to constrain τCH4 using observations is currently underway. The NASA
Atmospheric Tomography Mission (ATom) field campaign [NASA, 2016] is using the DC-8 aircraft to fly along
transects up and down the Pacific and Atlantic Oceans, with a full chemistry payload of instruments. The first
scientific question ATom seeks to address is “What are [the] chemical processes that control the short-lived
climate forcing agents CH4, O3, and BC [black carbon] in the atmosphere?.” This venture will be of great utility
in testing OH in global models.
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Flights of ATomwill take place primarily over the oceans. The background atmospheric composition sampled
in these regions is likely most important in driving the τCH4 differences among the models we work with here,
since oceans account for the largest surface area within the band of tropical high OH. A straightforward ana-
lysis was performed in which we calculated the sum of the model grid box air mass, as well as the denomi-
nator in equation (1), over land and over ocean separately. About 75% of the loss of CH4 due to reaction with
OH within the POLMIP CTMs occurs due to grid boxes that reside over ocean. On the other hand, there is a
larger variation in OH over land (standard deviation about the mean of 15.1%) within these CTMs than over
the ocean (standard deviation of 9.3%). While sampling of OH and related species over land would also pro-
vide useful information, it is likely that the larger importance of loss of CH4 due to reaction with OH over
oceans will allow data from ATom to assess and improve the representation of τCH4 within CTMs.

As noted above, there is widespread recent interest in the influence of isoprene on HOx (HOx=OH+HO2)
chemistry, apparent by the number of studies on the topic [e.g., Crounse et al., 2012; Mao et al., 2012;
Taraborrelli et al., 2012; Mao et al., 2013b]. However, our primary analysis (Figure 7) suggests that isoprene
is not a large factor affecting CTM differences in τCH4. To look into this further, we repeated the analysis in
the previous paragraph, using an “elevated isoprene” mask rather than a land mask. The mask was deter-
mined by flagging model grid points for which the multimodel mean isoprene mixing ratio exceeded
0.05 ppb over land and at pressures greater than 700 hPa. Then, separately for each model, the summed
air mass and summed OH terms were determined for the flagged locations. The OH term reveals that
8.2% of tropospheric OH resides in air with elevated isoprene. However, air mass included within
elevated-isoprene regimes only accounts for 3.3% of the total tropospheric air mass. These values confirm
that isoprene likely has a small role in influencing the difference in τCH4 among the eight POLMIP CTMs.
The short lifetime and localized abundances of isoprene restrict its importance to the regions of
biogenic origin.

A final caveat that must be noted is possible codependency of the variables that determine primary pro-
duction of OH: O3, J(O3→O(1D)), and H2O. These three parameters could vary in a manner that could
complicate the analysis. For example, if larger photolysis frequency (relative to other models) happens
to lead to greater loss of local O3, it is possible that the effect of these two factors cancel and primary
production of OH remains unaffected. A cursory evaluation of this effect has been conducted by
regressing values of ΔτCH4 due to variable swaps of O3 against ΔτCH4 found from variable swaps of
J(O3→O(1D)) (Figure S12). The anticorrelation of these two factors among the eight CTMs is weak (r2 = 0.06),
suggesting that canceling effects of O3 and J(O3→O(1D)) on primary production of OH are not identifiable
in this analysis. Therefore, we attribute significance to our NN results that indicate O3 and/or J(O3→O(1D))
are influencing large intermodel differences in OH.

Further development of this technique is encouraged to best reproduce model OH chemistry through NN
training. Persistent regions of disagreement between a NN and its CTM, such as over certain continental
regions, likely indicates the exclusion of a parameter in the NN that is influencing OH chemistry in the
CTM. While a strength of this technique is the ability to perform the analysis with a minimal amount of model
output, it is probably worthwhile to explore the impact of inclusion of other species like HCHO, other VOCs
(e.g., ethane, propane, acetone, and acetaldehyde), lightning NOx, and aerosol surface area density.
Alternative inputs, such as OH chemical production and loss terms, might also be considered, with applica-
tions more directed toward studying the chemical mechanisms that drive OH. Additionally, while the NN
architectures used here were thoroughly vetted in terms of minimizing errors and maintaining reasonable
computation times, it is likely that more powerful computers could efficiently train neural networks with
more nodes, more hidden layers, or both to further improve their accuracy in modeling OH chemistry.
While the process of creating an NN is somewhat computationally intensive, once established, that NN can
be “re-run” with alternative inputs near instantly. As a result, this approach has a significant time saving ben-
efit over re-running an entire CTM.

5. Conclusions

Neural networks were used to quantify the factors driving differences in tropospheric OH and the
methane lifetime, τCH4, among the CTMs that participated in POLMIP. Annual mean values of τCH4 ranged
from 8.0 years for the TOMCAT model to 11.6 years for the LMDz-INCA model. NNs were trained to
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reproduce monthly mean 3-D fields of OH mixing ratios for each CTM using inputs of H2O, O3, NOx, CO,
CH4, isoprene, J(O3→O(1D)), J(NO2), pressure, latitude, and temperature. Trained NNs were then used to
estimate the effect on OH of replacing individual input fields with fields from another CTM.
Values of ΔτCH4 indicate to what degree a given input is influencing model differences in τCH4.
Overall, J(O3→O(1D)), O3, and CO account for the largest variation of ΔτCH4 among the eight CTMs, along
with indirectly evaluated differences in model chemical mechanisms and nonlinearities in the variable
swaps. On an annual basis and across all model pairings, J(O3→O(1D)) accounted for an average model
ΔτCH4 of 0.31 years, O3 accounted for that of 0.30 years, and CO accounted for that of 0.23 years. While
these results are representative of average ΔτCH4 values across all model pairings, it is useful to examine
individual model results to understand which fields should be targeted for further examination for any
one CTM.

Boxmodelingwasperformed toexamine theveracityofCTMmechanisticdifferences suggestedby theNNana-
lysis. Those models for which the “Mech. +Nonlin.” ΔτCH4 term is highest (TOMCAT with ΔτCH4 = +1.36 years)
and lowest (C-IFS with ΔτCH4 = –0.74 years and LMDz-INCA with ΔτCH4 =�0.58 years) have the highest
and lowest tropospheric OH mass column differences (CTM�Box Model), respectively, compared with
columns calculated by using the box model. This supports our method of attributing the remainder
τCH4 difference between models not accounted for by the total ΔτCH4 from each NN input to mechanistic
differences. A more in-depth box modeling study using higher-frequency model output is required to
identify the precise nature of these suggested mechanistic differences.

The neural network method described here offers a computationally efficient way to approximate the OH
chemistry implemented within various CTMs, without access to the detailed chemical mechanism. Output
requirements for the archive are not burdensome, and multimodel intercomparisons can be conducted in
a straightforward manner, provided all modeling groups archive the same chemical fields. Here we showed
that this analysis is possible with only monthly mean output of the fields: p, T, latitude, H2O, O3, NOx, CO, CH4,
isoprene, J(O3→O(1D)), J(NO2), and OH. However, including indicators of cloud coverage, lightning NOx,
aerosols, additional VOCs, and fast radical chemistry would likely improve NN performance and provide use-
ful information regarding the cause of the differences in OH precursors and sinks. As such, we suggest that
cloud fraction, NOx produced by lightning, total aerosol surface area density, and the species HCHO,
CH3CHO, acetone, propane, ethane, HO2, and any applicable RO2 radicals also be included in future archives
used to conduct similar analyses. In addition, higher temporal frequency of model output (i.e., at least hourly
for certain and select days) would allow for analysis of fast OH chemistry that depends strongly on solar illu-
mination. Trained neural networks can perhaps be further developed for future evaluations of coupled cli-
mate chemistry models, as well as for comparisons of model output to global measurements of OH and
related chemical compounds, such as the data that will be provided by the ongoing NASA ATom campaign.
We demonstrate here that NNs are capable of accurately reproducing 3-D fields of OH from a global CTM
using minimal model output. Application of the neural network tool to global observational data sets, such
as ATom, has the capacity to serve as a means to quantitatively evaluate the accuracy of the CH4 lifetime
in global models.

It is imperative that the large spread in CH4 lifetime values between models simulating present-day condi-
tions be understood and improved to ensure that forecasts of future climate, which depends strongly on
the CH4 abundance, are as accurate as possible. The present discrepancy between multimodel means and
empirically derived estimates of CH4 lifetime call into question whether projections of the future oxidizing
capacity of the troposphere, which can only be obtained by using models, provide a useful guide for what
might truly happen. Neural networks, which offer a means to quantify the cause of differences in the CH4 life-
time found by various models, could be an important tool for addressing this deficiency in our understanding
of OH on the global scale.
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