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Abstract. Heat waves can be one of the most dangerous cli-
matic hazards affecting the planet, having dramatic impacts
on the health of humans and natural ecosystems as well as on
anthropogenic activities, infrastructures and economy. Based
on climatic conditions in West Africa, the urban centres of
the region appear to be vulnerable to heat waves. The goals
of this work are firstly to assess the potential uncertainties
encountered in heat wave detection and secondly to anal-
yse their recent trend in West Africa cities during the period
1993–2020. This is done using two state-of-the-art reanal-
ysis products, namely the fifth-generation European Centre
for Medium-Range Weather Forecasts (ECMWF) reanaly-
sis (ERA5) and Modern-Era Retrospective analysis for Re-
search and Applications (MERRA), as well as two local sta-
tion datasets, namely Dakar–Yoff in Senegal and Aéroport
Félix Houphouët-Boigny, Abidjan, in Côte d’Ivoire. An es-
timate of station data from reanalyses is processed using an
interpolation technique: the nearest neighbour to the station
with a land sea mask ≥ 0.5. The interpolated temperatures
from local stations in Dakar and Abidjan show slightly bet-
ter correlation with ERA5 than with MERRA. Three types of
uncertainty are discussed: the first type of uncertainty is re-
lated to the reanalyses themselves, the second is related to the
sensitivity of heat wave frequency and duration to the thresh-
old values used to monitor them, and the last one is linked
to the choice of indicators and the methodology used to de-
fine heat waves. Three sorts of heat wave have been analysed,
namely those occurring during daytime, nighttime, and both

daytime and nighttime concomitantly. Four indicators have
been used to analyse heat waves based on 2 m temperature,
humidity, 10 m wind or a combination of these. We found
that humidity plays an important role in nighttime events;
concomitant events detected with wet-bulb temperature are
more frequent and located over the northern Sahel. Strong
and more persistent heat waves are found in the continental
(CONT) region. For all indicators, we identified 6 years with
a significantly higher frequency of events (1998, 2005, 2010,
2016, 2019 and 2020), possibly due to higher sea surface
temperatures in the equatorial Atlantic Ocean corresponding
to El Niño events for some years. A significant increase in the
frequency, duration and intensity of heat waves in the cities
has been observed during the last decade (2012–2020); this
is thought to be a consequence of climate change acting on
extreme events.

1 Introduction

Since the industrial revolution, the Earth has experienced
global warming related to human activity (Hartmann et al.,
2013; Intergovernmental Panel on Climate Change – IPCC
– report 2021; Eyring et al., 2021). The last report of the
IPCC shows that this warming will exceed 1.5 ◦C with re-
spect to the IPCC baseline of 1850–1900 under different
Shared Socioeconomic Pathways (SSPs) in 2100 if the rate
of greenhouse gas emissions is not reduced. This warming
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climate not only contributes to the occurrence of extreme
events but also tends to reinforce their intensity (Fischer and
Schär, 2010; Engdaw et al., 2022; IPCC report 2021). Heat
waves appear as one of the most dangerous climatic haz-
ards affecting the planet due to their impacts on several sec-
tors (Perkins, 2015). The health sector is the most affected;
heat waves act on the thermal comfort of the body, leading
to an increase in morbidity and respiratory and cardiovas-
cular diseases among the most vulnerable population (chil-
dren and the elderly) (e.g. Huynen et al., 2001; Braga et
al., 2002; Hajat et al., 2007; Kovats and Hajat, 2008; An-
derson and Bell, 2009; Gasparrini and Armstrong, 2011;
Rocklöv et al., 2014). Heat waves are “silent killers” be-
cause their impacts on human health are not usually instan-
taneous (Loughnan, 2014). In 2003, an intense heat wave
occurred in France, killing more than 14 000 people (Fouil-
let et al., 2006). During this event, temperatures sometimes
reached 37 ◦C, a record since 1950. This event was very per-
sistent and lasted 2 weeks in France. In addition to this event,
the Russian heat wave in 2010 caused numerous destruction
(dysfunction of railway stations, interruption of energy pro-
duction) and more than 11 000 deaths (Shaposhnikov et al.,
2014). Temperatures sometimes reached 38 ◦C and gener-
ated huge fires in the neighbouring regions of Moscow and
a high concentration of carbon monoxide in the troposphere.
In April 2010, northern Africa was affected by a severe heat
wave with daily maximum temperatures frequently exceed-
ing 40 ◦C and daily minimum temperatures over 27 ◦C for
more than 5 consecutive days (Largeron et al., 2020).

Heat waves are natural disasters often associated with an
increase in daytime and/or nighttime temperatures. More
generally, they are defined as a period of consecutive days
during which temperatures are much hotter than normal.
There is no universal formulation describing a heat wave;
however a definition could be made according to the con-
text of the study (health, environment, infrastructure, agri-
culture, energy supply). From a physiological point of view,
the severity of a heat wave is measured through its duration
and intensity.

West Africa experiences a very hot and dry climate over
the Sahel region and a hot and humid climate over the Guinea
coast. The climatic conditions over West Africa make the re-
gion vulnerable to heat waves when it comes to not only the
health of humans and natural ecosystems but also agricul-
ture. Many studies on heat waves have been carried out in
Europe. However, heat waves in Africa are still not well doc-
umented. Moron et al. (2016) analysed the trends of extreme
temperatures in northern tropical Africa from observations
and reconstructed data. They show that heat wave indices
over the region were highly correlated with the El Niño–
Southern Oscillation indices (ENSO). Barbier et al. (2018)
investigated the intraseasonal variability of large-scale heat
waves during spring using the Berkeley Earth Surface Tem-
peratures (BEST) gridded dataset and the following reanaly-
ses: the European Centre for Medium-Range Weather Fore-

casts interim reanalysis (ERA-Interim), Modern-Era Retro-
spective analysis for Research and Applications (MERRA;
see Sect. 2.2 for more details), and the National Centers
for Environmental Prediction Reanalysis 2 (NCEP-2). They
defined heat waves using anomalies of minimum/maximum
values of the 2 m temperature. They found some discrepan-
cies in the characteristics, variability and climatic trends of
heat waves in the different products. Largeron et al. (2020)
analysed the April 2010 heat wave in North Africa using
both the BEST dataset and climate simulations from the at-
mospheric component of the Centre National de Recherches
Météorologiques (CNRM) climate model. They showed a
strong link between heat waves over the Sahara and the in-
coming heat surface fluxes. Another important result of this
work is the radiative effect of water vapour on minimum
temperatures during the heat wave period. This can lead to
extreme heat conditions during the night and the death of
elderly people. Guigma et al. (2020) analysed the charac-
teristics and thermodynamics of Sahelian heat waves using
different thermal indices based on temperature, wind speed
and relative humidity derived from fifth-generation ECMWF
reanalysis (ERA5; see Data section for more details). They
found that most of the regions in the Sahel experience on
average one or two heat waves per year with a duration of
3–5 d and severe magnitude. They have also shown that the
eastern Sahel experiences more frequent and longer events.
They identified heat advection and the greenhouse effect of
moisture as the main drivers of Sahelian heat waves. Some of
the previous studies conducted over the Sahelian band only
use the daily maximum and minimum temperatures (e.g. Mo-
ron et al., 2016; Barbier et al., 2018) for the detection of heat
waves, thereby ignoring the potential influence of humidity
and wind speed. Others take into account the effect of hu-
midity in the heat wave definition (e.g. Guigma et al., 2020),
but information about the interannual and seasonal variabil-
ity of events detected is missing, even though this is very
important for policymakers and governments to take into ac-
count in order to develop early alert systems. Recently, En-
gdaw et al. (2022) studied the trends of heat waves over
Africa during the period 1980–2018 using observations from
the Climate Research Unit Time-Series version 4.03 (CRU
TS4.03) and BEST datasets as well as the following reanaly-
sis datasets: ERA5, MERRA-2 and the Japanese Meteoro-
logical Agency’s 55-year reanalysis (JRA-55). They high-
lighted large differences in both the trend and the temporal
evolution of heat wave indices between the different reanal-
yses. They found a peak of heat over northern and western
Africa in 2010 as well as in 2016 over eastern and southern
Africa. They noticed significant warming and an increase in
heat wave occurrence in all the regions in Africa. However,
Engdaw et al. (2022) focused only on dry heat waves over
a large domain of West Africa (10◦ S–15◦ N, 20◦W–20◦ E);
the duration of heat waves was not addressed and nor was the
evolution of wet heat waves.
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The most lethal heat waves are due not only to high
temperatures but also to the effect of humidity (Steadman,
1979a, b); hot and humid conditions (as is the case in coastal
regions) can be more dangerous than equivalently hot but
dry conditions (Wehner et al., 2017). Wet heat waves, which
are the most dangerous for human health, were not inves-
tigated in previous works. Following Steadman (1979a, b),
one can legitimately wonder about the effect of humidity on
the frequency of heat waves and on the evolution of humid
heat waves in West African cities. Based on previous studies,
many definitions of heat wave have been proposed, leading
to different results. Indeed there is no universal definition of
a heat wave; depending on the research applications, some
indicators and definitions can be adopted. Thus, we can ques-
tion the potential sources of uncertainty found in heat wave
analysis.

The goals of this paper are (i) to highlight the potential
uncertainties encountered in the heat wave detection process
and (ii) to analyse the recent trend and characteristics of dry
and wet heat waves over a selection of West African cities
grouped into climatic regions. To achieve these objectives,
we first assess the biases in the reanalyses (ERA5, MERRA)
using ERA5 as a reference; then, a sensitivity analysis of the
frequency of heat waves with respect to the threshold values,
indicators and methods applied to define heat waves is ad-
dressed. Finally, we assess the spatial and temporal variabil-
ity (seasonal and interannual) of heat waves and their char-
acteristics in different climatic regions over West Africa.

The remainder of this article is organized as follows: in
Sect. 2, we present the regions of interest and the data used
for this work; the description of the methodology is also pro-
vided. Section 3 contains the main results of this study fol-
lowing the methodology described in Sect. 2. In Sect. 4, the
uncertainty in the reanalyses and the origin of coastal heat
waves are discussed. Section 5 provides a conclusion and
some perspectives for future works.

2 Region of interest, data and methods

2.1 Region of interest

The current study is conducted over West Africa, which is lo-
cated over the domain 5–20◦ N, 15◦W–10◦ E, and spans the
Atlantic coast to Chad and the Gulf of Guinea to the southern
fringes of the Sahara (Fig. 1). The climate in West Africa is
mostly influenced by the West African monsoon flux, which
governs the rainy season and thus the rain-fed agriculture.
The West Africa region has a semi-arid and hot climate with
a dry season (Köppen classification BSh or BWh). This cli-
mate corresponds to an alternation between a short wet sea-
son and a very long dry season. The West Africa region
shows high climate variability at a regional and local scale.
In this study, we are interested in the coastal and continental
parts of West Africa. We have therefore identified three re-

gions based on their location and climate variability on which
we have conducted our analyses. The choice of these regions
is coherent with Moron et al. (2016), who used a hierarchical-
clustering approach to define some city blocks over West
Africa. The 15 cities investigated here were classified into
the three following regions:

– continental zone (CONT hereafter) including the cities
of Bamako, Ouagadougou and Niamey (Fig. 1);

– coastal Atlantic zone (ATL hereafter) including the
cities of Dakar, Nouakchott, Monrovia and Conakry
(Fig. 1);

– coastal Guinean zone (GU hereafter) including the cities
of Yamoussoukro, Abidjan, Lomé, Abuja, Lagos, Ac-
cra, Cotonou and Douala (Fig. 1).

The CONT and GU regions are very similar to the clusters
found by Moron et al. (2016) (see figure under the title “Clus-
ters membership” in Moron et al., 2016). The ATL region is
a specific case because not all cities belonging to the region
are present in the clusters defined by Moron et al. (2016).
Therefore, we analysed the spatial variability of heat wave
characteristics for each city. In this way, we found a consis-
tent pattern across cities (see Fig. S1 in the Supplement for
maximum T2 m values using the 90th percentile as a thresh-
old), and we grouped them to form the ATL block.

2.2 Data

Reanalysis products are often taken as an alternative so-
lution to observational weather and climate data due to
availability and accessibility problems, particularly in data-
sparse regions such as Africa (Gleixner et al., 2020). In
this work, to access information with a regular spatial grid
and a large horizontal coverage, we used two state-of-the-
art reanalysis products: the fifth-generation European Centre
for Medium-Range Weather Forecasts (ECMWF) reanalysis
(ERA5; Hersbach et al., 2020) and the Modern-Era Retro-
spective analysis for Research and Applications, version 2
(MERRA-2; Gelaro et al., 2017), from the National Oceanic
Atmospheric Administration (NOAA) (in the following, we
will use “MERRA” to refer to MERRA-2). ERA5 reanal-
ysis has a native spatial resolution of 0.28125◦ (∼ 31 km)
with 137 hybrid sigma–pressure levels from the surface up
to 80 km, yet downloaded data are interpolated to a regular
latitude–longitude grid of 0.25◦× 0.25◦. ERA5 is produced
using 4D-Var data assimilation and the Cycle 41r2 (Cy41r2)
of the ECMWF Integrated Forecasting System (IFS), which
was operational in 2016. MERRA reanalysis has a spatial
resolution of 0.625◦× 0.5◦ with 42 standard pressure levels.
MERRA uses an upgraded version of the Goddard Earth Ob-
serving System model version 5 (GEOS-5) data assimilation
system and the Gridpoint Statistical Interpolation (GSI) anal-
ysis scheme of Wu et al. (2002). MERRA is produced using
a 3D-Var data assimilation algorithm. These two reanalyses
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Figure 1. Topographic map of West Africa using ERA5 elevation data. The circles on the map represent the different climatic zones: ATL
(coastal Atlantic zone), CONT (continental zone) and GU (coastal Guinean zone). The two boxes named SST_A and SST_G represent the
boxes used to analyse the links between sea surface temperature (SST) and heat waves for the ATL and GU regions respectively. The y and
x axes represent the latitude and longitude respectively. The colour bar shows the elevation in metres over the region.

datasets can be accessed through the Climserv database from
the Institut Pierre-Simon Laplace (IPSL) server. To be con-
sistent in our analyses, we transformed the spatial resolution
of MERRA from 0.625◦×0.5◦ to 0.25◦×0.25◦ to match the
one of ERA5; this is done using a first-order conservative
interpolation. We use hourly data covering the period from
1 January 1993 to 31 December 2020 for both ERA5 and
MERRA. Our choice of ERA5 and MERRA to conduct this
study is supported by some previous work showing that these
two reanalyses included among the most relevant used in
African regions (e.g. Barbier et al., 2018; Ngoungue Langue
et al., 2021; Engdaw et al., 2022). As the main objective here
is to process heat wave detection, we focus on atmospheric
variables at the surface such as 2 m temperature (T2 m), 2 m
relative humidity (RH), 2 m dewpoint temperature, 2 m spe-
cific humidity, 10 m wind components, and water vapour
pressure (e) from which wet-bulb temperature (Tw) and ap-
parent temperature (AT; McGregor et al., 2015) were derived.
These atmospheric variables have a significant impact on hu-
man thermal comfort (McGregor et al., 2015). Daily mini-
mum and maximum values were calculated for T2 m, Tw, AT
and the universal thermal comfort index (UTCI; Di Napoli
et al., 2021). AT is similar to the heat index developed by
Steadman (1984). The climate variables e, Tw, AT and RH
were calculated using the following formulas:

e = 6.1121 · exp
(

17.502 · T
240.97+ T

)
(1)

(Buck, 1981; Alduchov and Eskridge, 1996),

Tw = T · atan
[
A(RH+B)

1
2

]
+ atan(T +RH)

− atan(RH−C)+D · (RH)
3
2 · (atan(E ·RH))−F (2)

(Stull, 2011) (RH is given as a percentage, for example 32
for RH= 32 %),

AT= T + 0.33× 10−0.70
·Ws− 4.00 (3)

(McGregor et al., 2015).
RH is computed differently based on the variables avail-

able in the products. The first formula is used to compute RH
in ERA5, and the second is used for MERRA.

RH= 100 ·
exp

(
a·Td
b+Td

)
exp

(
a·T
b+T

) (4)

(August, 1828; Magnus, 1844; Alduchov and Eskridge,
1996),

RH= 0.263 ·p · q ·
[

exp
(

17.67 · (T − T0)

T − 29.65

)]−1

(5)

(https://earthscience.stackexchange.com/questions/2360/
how-do-i-convert-specific-humidity-to-relative-humidity,
last access: 3 April 2023), where a = 17.625,
b = 243.04, A= 0.151977, B = 8.313659, C = 1.676331,
D = 0.00391838, E = 0.023101, F = 4.686035 and
T0 = 273.16 K. T (◦C), Td (◦C), T0 (K), p (hPa), Ws (m s−1)
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and q are the ambient temperature, dewpoint temperature,
reference temperature, pressure, wind speed and specific
humidity respectively.

The land sea mask dataset used in this work was derived
from ERA5 reanalysis; it can be accessed on the Coperni-
cus Climate Data Store (CDS). T2 m daily maximum and
minimum observations at Dakar–Yoff station in Senegal and
Aéroport Félix Houphouët-Boigny (FHB) station in Côte
d’Ivoire were used to evaluate our interpolation method. This
is due to the fact that we do not have access to other sta-
tion data in these regions. The data from Dakar–Yoff extend
from 1 January 1973 to 31 December 2018 and contain al-
most 16 % missing values, and the data from Aéroport FHB
extend from 1 January 2005 to 31 December 2017 and con-
tain 0.35 % missing values. These data were provided by col-
leagues from the Agence Nationale de l’Aviation Civile et de
la Météorologie (ANACIM) for the Dakar–Yoff station and
from the Institut des Géosciences de l’Environnement (IGE)
for the Aéroport FHB station.

2.3 Methods

2.3.1 Estimation of atmospheric variables at the scale
of cities

Reanalysis datasets used for weather studies are generally
run at a global scale; therefore information at a local scale
is missing in many regions; this is a critical issue in regions
where there is a lack of observation stations as is the case
for African cities. To overcome this problem, downscaling
methods can sometimes be used. In this work, we study phe-
nomena at the scale of the cities, and reanalyses (ERA5 and
MERRA) have too coarse a spatial resolution. The scales of
the reanalyses are more representative of the spatial variabil-
ity of a heat wave occurring in a city than at an isolated lo-
cal station. Nevertheless, some validation of the test stations
needs to be done, in particular to find the best interpolation
technique to estimate local temperatures from the reanalyses.
This is especially important over the coastal regions. Indeed,
most of the cities used in this study are located along the
coast and influenced by the ocean air masses (see Fig. 1). The
evaluation of the spatial variability of the correlation between
the local-scale variable (station) and reanalyses (ERA5) for
T2 m, for example, showed high correlation values over the
continent (Fig. S2) (Dakar, Abidjan). This suggests that the
station data are well correlated with ERA5 grid points which
are located on the continent; it is therefore necessary to know
whether an ERA5 grid point is over the continent or not be-
fore applying an interpolation technique. To estimate the pro-
portion of land on a grid point, we used the land sea mask
(lsm) with values ranging from 0 to 1. The land sea mask is
a measure of the land occupation on a grid point. An lsm of
0 means no land (a grid point located in the ocean), and an
lsm of 1 means that the model cell is fully covered by land.
Therefore, to estimate the climate variables over the cities

Table 1. Land sea mask (lsm) of West African towns used in this
study.

Towns Latitude Longitude lsm

Dakar 14.75 −17.25 0.6
Abidjan 5.25 −3.75 0.5
Nouakchott 18 −16 continent
Conakry 9.5 −13.5 0.5
Monrovia 6.25 −10.75 0.6
Bamako 12.5 −8 continent
Yamoussoukro 6.75 −5.25 continent
Ouagadougou 12.25 −1.5 continent
Accra 5.5 −0.5 0.8
Lomé 6 1 0.5
Niamey 13.5 2 continent
Cotonou 6.5 2.5 0.7
Lagos 6.5 3.5 0.5
Abuja 9 7.5 continent
Douala 4 9.75 0.9

from reanalyses, we use the nearest grid point of reanalyses
to the station which satisfies an lsm equal to or greater than
0.5 (see Table 1 for lsm values of all the cities considered in
this study). This approach was chosen after evaluating dif-
ferent methods such as the following (see Fig. S3a for more
details):

– a bilinear interpolation using the four nearest grid points
of reanalyses around the station (panels a and d in
Fig. S3a),

– a linear gradient approach which considers the gradient
of temperature constant between two grid points based
on a linear interpolation with a condition placed on the
lsm value (≥ 0.5) (panels c and f in Fig. S3a),

– the selection of the nearest grid point of reanalyses from
the station with different values of lsm (≥ 0.5, 0.75 and
1; we show only results for lsm≥ 0.5) (panels‘b and e
in Fig. S3a),

– a dynamical interpolation approach taking into account
the effect of winds (not shown).

The interpolation method was applied to ERA5 and
MERRA, and the resulting estimated data were compared to
the station data by correlation analysis. We found that ERA5
appears to be slightly better than MERRA at both stations
(Dakar and Abidjan) for minimum and maximum T2 m val-
ues (Fig. S3b).

2.3.2 Heat wave detection

Heat waves are usually defined as consecutive days of ex-
tremely hot temperatures above a threshold temperature
value (e.g. Tan et al., 2010; Gasparrini and Armstrong, 2011;

https://doi.org/10.5194/nhess-23-1313-2023 Nat. Hazards Earth Syst. Sci., 23, 1313–1333, 2023
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Perkins and Alexander, 2013; Wang et al., 2019). Many fac-
tors can affect the definition of a heat wave, including the
end-user sectors (human health, infrastructures, transport,
agriculture) and also the climatic conditions of the regions
(Perkins and Alexander, 2013). Therefore, there is no uni-
versal and standard definition of a heat wave (Perkins, 2015;
Oueslati et al., 2017; Shafiei Shiva et al., 2019). Different
thresholds, duration and indicators contribute to the diver-
gence in the definition of heat waves (Smith et al., 2013).
Heat waves can be defined from daily meteorological vari-
ables such as daily raw temperature (Tmin, Tmean and Tmax)
(e.g. Fontaine et al., 2013; Beniston et al., 2017; Ceccherini
et al., 2017; Déqué et al., 2017; Batté et al., 2018; Barbier
et al., 2018; Lavaysse et al., 2018; Engdaw et al., 2022),
mean daily wet-bulb temperature (Yu et al., 2021) or heat
stress indices (e.g. Robinson, 2001; Fischer and Schär, 2010;
Perkins et al., 2012a; Guigma et al., 2020) using relative or
absolute thresholds. The use of absolute thresholds is well
suited to detecting heat waves during the year in regions
where the seasonal cycle is well marked. In mid-latitudes
for example, the seasonal thermal amplitude of T2 m is large,
approximately 20 ◦C. In tropical regions this method is not
suitable, since the seasonal thermal amplitude is strongly re-
duced (6 ◦C). Therefore, a relative threshold for heat wave
detection is adopted in our study, since our region of inter-
est is West Africa. Some authors use the daily anomalies of
temperature to define heat waves (e.g. Stefanon et al., 2012;
Barbier et al., 2018). Most of the previous studies are fo-
cused on daytime or nighttime heat waves, ignoring events
which occur during the day and night concomitantly. This
type of heat wave is very dangerous for human health be-
cause the body suffers from heat stress during the day and
night (Lavaysse et al., 2018). In our case, we defined three
methods to detect specific types of heat waves (namely those
occurring during daytime, nighttime, and both daytime and
nighttime concomitantly) using the daily minimum and max-
imum values of T2 m (T2 m,min, T2 m,max), Tw (Tw,min, Tw,max),
AT (ATmin, ATmax) and UTCI (UTCImin, UTCImax) as indi-
cators. The selected atmospheric variables have been used
for heat wave detection in previous studies; they take into ac-
count some key parameters (air temperature, wind, humidity,
radiant temperature) to assess the body heat stress, and they
are easy to compute. The methods applied are defined below:

– Method 1. A heat wave is defined as a consecutive pe-
riod of at least 3 d during which the daily maximum
value of an indicator exceeds the calendar 90th per-
centile of daily maximum values of the indicator com-
puted over the whole period (see HW1 in Fig. 2). This
approach is useful for monitoring daytime heat wave
events. Daytime events will be more associated with in-
coming solar radiation.

– Method 2. A heat wave is defined as a consecutive pe-
riod of at least 3 d during which the daily minimum
value of an indicator exceeds the calendar 90th per-

Figure 2. Schematic illustration of heat wave detection process:
HW1/HW2 represents heat waves associated with maximum/mini-
mum temperature and HW3 is heat waves detected at the same time
in maximum and minimum temperatures. The red/blue lines with
squares are max/min daily temperatures. Solid red/blue lines are
max/min thresholds. The x and y axes represent the time in days
and the temperature in degrees Celsius respectively. The term “with
pool” refers to the pooling of two (or more) events separated by 1 d
below the daily threshold. This figure shows the different types of
heat wave investigated in this work.

centile of daily minimum values of the indicator com-
puted over the whole period (see HW2 in Fig. 2). This
approach is useful for monitoring nighttime heat wave
events. Nighttime events can be related to the moisture
content of the region.

– Method 3. A heat wave is defined as a consecutive pe-
riod of at least 3 d during which daily minimum and
maximum values of an indicator exceed the calendar
90th percentiles of daily minimum and maximum val-
ues respectively (see HW3 in Fig. 2). This method is
most appropriate for extreme events that occur both dur-
ing the day and at night and are very harmful for human
health.

The 90th percentile is calculated for each calendar day of
the year using an 11 d moving window centred on the day
under study. The use of a moving window allows the sea-
sonal cycle to be taken into account in the calculation of per-
centiles. The use of a relative threshold is more appropriate
as it is easily replicable in other regions. When two heat wave
events are separated by 1 d with an indicator value below the
daily 90th percentile, they are pooled together to form a sin-
gle event (see Fig. 2).

2.3.3 Heat wave characteristics

Once a heat wave is detected, some key characteristics are
derived, namely duration and intensity. Some studies use the
heat wave magnitude index daily (HWMId) to assess the
severity of heat waves (e.g. Russo et al., 2016; Ceccherini et
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al., 2017). The HWMId focuses on strong heat waves; using
this measure, the total intensity of all detected events can-
not be assessed. In our study, the methodology applied to
compute the duration and intensity of heat waves has been
developed by Lavaysse et al. (2018) for monitoring extreme
temperatures in Europe. We define the heat wave duration
as the total number of hot days in heat waves. Hot days are
heat wave days with daily values of the indicators above the
daily thresholds. The heat wave duration is computed using
the following expression:

duration=
N∑
i=1

d∑
j

δj , (6)

where δj = 1 if Tj > daily 90th percentile and δj = 0 if
Tj < daily 90th percentile and N represents the total number
of heat waves per grid point and d the number of hot days in a
heat wave. The Kronecker δj is used here because we pooled
together heat waves separated by 1 d to form single events.
For example, two heat waves of 4 and 3 d respectively sepa-
rated by 1 d below the threshold will be counted as a single
event with a duration of 7 d. For each block defined previ-
ously, the duration of heat waves is computed as the average
of the duration of heat waves over the cities belonging to the
same block. This also applies to the intensity.

The intensity of a heat wave has been defined as the sum of
the daily exceedances of daily values of indicators above the
climatological daily threshold in a sequence of hot days. This
study is part of the Agence National de la Recherche STEW-
ARd (STatistical Early WArning systems of weather-related
Risks from probabilistic forecasts, over cities in West Africa)
project, which focuses on the human impacts of climate ex-
tremes. Therefore, the climatological daily threshold is cho-
sen to be constant over the whole period, and it is defined
as the minimum of the daily climatology thresholds over the
study period. This approach allows us to properly assess the
severity of a heat wave and its potential human impacts. The
expression of the intensity is given by

I1 =

Nd∑
t=1

boolmax,t,w ·
(
Xmax,t,w −min

(
Qmax,w

))
, (7)

I2 =

Nd∑
t=1

boolmin,t,w ·
(
Xmin,t,w −min

(
Qmin,w

))
, (8)

I3 =

Nd∑
t=1

boolmin–max,t,w ·
(
Xmax,t,w −min

(
Qmax,w

))
,

+

Nd∑
t=1

boolmin–max,t,w ·
(
Xmin,t,w −min

(
Qmin,w

))
. (9)

I1, I2 and I3 are intensities associated with HW1,
HW2 and HW3 respectively. Xmax,t,w/Xmin,t,w denotes
daily maximum/minimum values of indicators at the grid
point w. Qmax,w/Qmin,w represents daily maximum/min-
imum threshold of the indicators at the grid point w.

boolmax,t,w and boolmin,t,w are Boolean time series which
contain 0 if the day is not part of a heat wave and 1 if
the day is part of a heat wave for maximum and minimum
daily values of the indicators respectively. boolmin–max,t,w is
a Boolean time series which indicates 1 if the day is part of
a heat wave detected simultaneously with both the minimum
and the maximum values of indicators and 0 if this is not the
case. Nd is the length in days of the study period. The mean
duration and intensity are used to assess the severity of the
heat wave.

2.3.4 Evaluation of the products using statistical
metrics (hit rate, ACC, GSS)

Most regions in Africa suffer from a lack of observations due
to a small number of available weather stations. To access
information over a large domain, we use ERA5 and MERRA
reanalysis datasets, which are very consistent in representing
large-scale processes in the Saharan area (Ngoungue Langue
et al., 2021). The coherence of reanalyses at a regional scale
was assessed using statistical metrics such as the hit rate, the
anomaly correlation coefficient (ACC) and the Gilbert skill
score (GSS). The hit rate and GSS are used to evaluate hot
days in the reanalyses.

Hit rate

The hit rate, also known as the “hit”, is a measure of the
fraction of events detected in an evaluated dataset knowing
that the events occur in the reference at the same time. It is
given by the following formula:

hit=
TP

TP+FP
. (10)

TP denotes true positives, which are events correctly detected
by the two datasets at the same time; FP denotes false posi-
tives, which are events not detected by the evaluated dataset
but that occurred in the reference. Hit values range from 0 to
1; hit= 1 means that all the events observed in the evaluated
dataset occurred in the reference.

Previous work such as Olauson (2018) and Ramon et al.
(2019) have shown that ERA5 provides a good representa-
tion of various near-surface meteorological variables includ-
ing near-surface humidity and wind speed, in comparison
to others reanalyses, including MERRA. Therefore for the
computation of the hit, we chose ERA5 as the reference and
MERRA as the evaluated dataset.

ACC

The ACC is similar to a linear correlation, the only difference
being that it is calculated using the anomalies of the vari-
ables with respect to the climatology. This metric is stricter
than the simple correlation and not sensitive to the seasonal
cycle, which tends to increase the correlation between the
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Table 2. Contingency table.

2× 2 contingency table
Event observed

Yes No

Event forecast
Yes A B

No C D

products. ACC takes values between −1 and 1. ACC= 1 in-
dicates a perfect correlation between the products. For ex-
ample, to compute the ACC between ERA5 and MERRA
using the variable T2 m in this study, we firstly compute the
anomalies between each reanalysis and their respective cli-
matologies and then we compute the correlation between the
resulting anomalies.

GSS

The GSS, known also as the equitable threat score (ETS),
measures the fraction of observed events that are correctly
predicted, adjusted for hits associated with random chance.
The GSS does not take into account positive outcomes due
to chance. It is stricter than the hit rate; the GSS takes values
between −1

3 and 1. GSS= 0 indicates no skill or no corre-
lation, while GSS= 1 indicates perfect skill. Given a contin-
gency table (see Table 2), the computation of the GSS is done
by the following formula:

GSS=
A−CH

A+B +C−H
, (11)

with CH given by

CH=
(A+B)(A+C)

A+B +C+D
. (12)

3 Results

3.1 Uncertainties in the reanalysis products

The first step of this work consists in assessing the evolution
of T2 m in the ERA5 and MERRA reanalyses. The climato-
logical state (annual mean) of T2 m in ERA5 and MERRA
has been evaluated over the West Africa region from 1 Jan-
uary 1993 to 31 December 2020 (Fig. 3a–b). Both reanaly-
ses show very similar climatologies of T2 m: a north–south
gradient of the temperature. The Sahel region appears to be
warmer than the Guinean region; this is because of the ad-
vection of cold air coming from the Atlantic Ocean to the
Guinea coast. This fresh air tends to cool down temperatures
in this region. The bias between ERA5 and MERRA is com-
puted using ERA5 as reference (Fig. 3c). MERRA shows a
cold bias with respect to ERA5 over the Sahel region and

Guinean zone except in some countries (e.g. Guinea-Bissau,
Sierra Leone, Liberia) where we observe a hot bias. The bi-
ases between ERA5 and MERRA are around±2 ◦C. The bias
highlighted between ERA5 and MERRA is very significant
for heat wave detection. Thereafter, we evaluated the tem-
poral consistency between the two reanalyses by computing
the ACC for T2 m, AT and Tw (see Fig. 3d–i). We observed
a weak correlation over the south of the Sahel and Guinean
region of around 0.5 (0.7) for maximum (minimum) values
of T2 m and AT (see Fig. 3d–e and g–h). This could be ex-
plained by the presence of a strong diurnal cycle in the re-
gion associated with high variability during the day and less
variability during the night. This will lead to high variability
in the daily maximum values compared to the daily mini-
mum values. Tw shows a uniform repartition of correlation
between ERA5 and MERRA of around 0.85 except in the
Guinean region with maximum values. Good agreement be-
tween the two products is found with Tw. We can infer from
this result that Tw has a more stable signal than T2 m and AT.
Knowing that heat waves are defined as extreme events, it is
important to evaluate the consistency of the reanalysis prod-
ucts for the representation of extreme values. The hit rate
and GSS were calculated in terms of hot days using T2 m,
and we noticed very low values between the two reanaly-
sis products over the southern Sahel and Guinean region of
around 0.25 (see Fig. S4). Similar results have been found
with Tw (not shown). The lack of coherence between ERA5
and MERRA on the representation of hot days would result
in discrepancies in the number of heat wave events derived
from the two reanalyses. The analysis of heat wave frequency
in the two products using T2 m and AT shows big differences
over the coastal region (see Fig. S5). This is very consistent
with the ACC results shown earlier. These discrepancies in
the ERA5 and MERRA reanalyses in West Africa were also
highlighted by Engdaw et al. (2022). The potential origins of
these differences are explored in Sect. 4. The spatial variabil-
ity of heat wave occurrence in ERA5, using T2 m and AT as
indicators, is very similar regardless of the methods applied
for heat wave detection. This strong correlation between T2 m
and AT is also observed when using MERRA reanalysis (see
Fig. S6). Even if the reanalyses show discrepancies over the
south of the Sahel and coastal region with respect to key vari-
ables, the correlation between the variables is preserved.

3.2 Sensitivity of heat wave detection to threshold
values

As discussed earlier in Sect 2.3.2, “Heat wave detection”, the
threshold value used for heat wave monitoring has a signifi-
cant impact on heat wave characteristics. The threshold value
is generally tailored to the application that is to be carried out.
In this part of the work, we investigate the sensitivity of heat
wave frequency to different thresholds. To achieve this goal,
we define four relative threshold values calculated over the
entire period: the 75th, 80th, 85th and 90th daily percentiles.
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Figure 3. Assessment of the evolution of some atmospheric variables in the reanalyses data: (a–b) climatology state of T2 m over 1993–2020
for ERA5 and MERRA respectively; (c) climatological bias between MERRA and ERA5 using ERA5 as reference (1T2 m); (d–f)/(g–
i) anomaly of correlation between MERRA and ERA5 respectively for min/max values using AT, T2 m and Tw variables. The x and y axes
represent the longitude and latitude in degrees respectively. The colour bars show the temperature (T2 m) in kelvins and the values of the
anomaly of temperature (ACC) respectively. The black points in the map represent the cities of interest analysed in this work (see the “Region
of interest” section for more details); this applies for all the maps in the paper.

The choice of these thresholds for assessing changes in heat
wave characteristics is based on previous work. Many stud-
ies use the 90th percentile to define a heat wave (e.g. Fis-
cher and Schär, 2010; Perkins et al., 2012a; Déqué et al.,
2017; Lavaysse et al., 2018; Barbier et al., 2018); other stud-
ies use the 75th percentile (Guigma et al., 2020). Based on
these studies, we decided to test the sensitivity of threshold
values from the third quartile (75th percentile) to the 90th
percentile by steps of 5 % to quantify significant changes in
heat wave frequency. As we are studying extreme events, it is
not relevant to go below the third quartile; knowing also that
this study focuses on human impacts of heat waves, the 90th
percentile is enough as a maximum threshold. Heat wave
detection is treated separately for these four thresholds (see
Fig. S7). The sensitivity of heat wave frequency or duration
with respect to the thresholds (75th, 80th, 85th, 90th per-
centiles) is treated independently for the four thresholds; this
is done by calculating the linear evolution coefficient over
each grid point. The linear evolution coefficient is defined
as the slope of the linear regression line fitted between the
threshold values (Q75, Q80, Q85, Q90) and the number of
events associated with each threshold (NQ75, NQ80, NQ85,
NQ90) or their corresponding duration (DQ75, DQ80, DQ85,

DQ90). The calculation of the linear evolution coefficient is
carried out according to the following steps:

– After processing for heat wave detection at each grid
point for the four thresholds separately, we compute for
each of them the frequency and duration of heat waves.

– Then we fit a regression line between the threshold val-
ues (Q75, Q80, Q85, Q90) and their corresponding fre-
quency or duration. This is done for each grid point.

– Finally, the changes in heat wave occurrence/duration
from the 75th to 90th percentiles at each grid point are
given by the computation of the slope of the regression
line fitted at step 2 between the threshold values and
their corresponding heat wave occurrence/duration.

We are aware that this regression based on four points is
not very robust; nevertheless it makes it possible to obtain
information on the evolution of the heat wave characteris-
tics with respect to the thresholds. We therefore assessed the
significance of the slope values with respect to the thresh-
olds using a confidence level of 95 %. The significance of the
slope was evaluated using a two-sided chi-squared statistics
test (Pandis, 2016).
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The linear evolution is given by the following equations:

N = aw · threshold+ bw, (13)

D = a′w · threshold+ b′w, (14)

where aw, a′w and bw, b′w are the slopes and intercepts of the
regressions at the grid point w for heat wave frequency and
duration respectively.

This analysis is conducted with T2 m and Tw extracted
from MERRA and ERA5 reanalyses. We find a high spatial
variability in the sensitivity of heat wave occurrence to the
threshold values over West African regions (Figs. S8 and S9).
Some regions are more sensitive than others; this can be ex-
plained by a strong seasonal cycle of the T2 m and Tw signals
in those regions. We observe small changes in the frequency
and duration of heat waves with respect to the thresholds
when using the minimum and maximum values of T2 m or
Tw (Figs. S8c, f, 4c, f and S9c, f); this is related to the small
sample size of events detected with method 3 (see Sect. 2.3.2
for more details). As the results show, the frequency of heat
waves can be expected to increase with decreasing thresh-
old values (see Figs. S8 and S7). Heat waves detected using
low threshold values are very persistent and last for several
days (Fig. 4 shows an illustration with T2 m used as an indi-
cator). This can be explained by the fact that when using a
low threshold value, one can expect to have many days with
temperature values above the daily threshold. Conversely, for
heat waves detected with high threshold values, the duration
of the events is considerably reduced. This is statistically co-
herent because the number of consecutive days with temper-
ature above the threshold will decrease as the threshold in-
creases. In general, we find that the duration of heat waves
is more sensitive to the threshold values than their frequency.
This is very coherent because the persistence of a heat wave
will be mainly affected by the threshold values used for the
detection.

3.3 Sensitivity of heat wave detection to the choice of
indicators and methods applied

We have shown that the heat wave detection is very sensi-
tive to threshold values. Based on the literature review and
the application of this work, for the rest of the study, we use
the 90th percentile for heat wave analyses (e.g. Fischer and
Schär, 2010; Perkins et al., 2012a; Perkins and Alexander,
2013; Fontaine et al., 2013; McGregor et al., 2015; Russo et
al., 2016; Mutiibwa et al., 2015; Oueslati et al., 2017; Déqué
et al., 2017; Batté et al., 2018; Barbier et al., 2018; Lavaysse
et al., 2018; Yu et al., 2021; Engdaw et al., 2022) using ERA5
reanalysis (Fig. 5). We identified four indicators – T2 m, Tw,
AT and UTCI – from which heat wave detection was pro-
cessed using three different methods (see Sect. 2.3 for more
details). We notice that the occurrences of daytime and night-
time heat waves (Fig. 5a–d, e–h) are in the same range of val-
ues, while for concomitant events (Fig. 5i–l), the occurrence

of heat waves is drastically reduced by 1
4 . This could be ex-

plained by the facts that nighttime and daytime heat waves
do not necessarily occur at the same time and their origins
are totally different. Daytime heat waves will be mainly in-
fluenced by incoming solar radiation, while nighttime heat
waves will be mainly influenced by the water vapour con-
tent of the air mass (Barbier et al., 2018; Largeron et al.,
2020). We observe a high occurrence of nighttime heat waves
over the coastal region from Guinea to Cameroon (Fig. 5a–
d) linked to moist air coming from the Atlantic Ocean in the
region during the night; daytime heat waves are more fre-
quent in the Sahel and north-east of the Sahara (Fig. 5e–h)
due to hot temperatures over the continental regions. When
analysing nighttime heat wave events from each indicator
(Fig. 5a–d), it appears that Tw heat waves are more frequent
than T2 m/AT/UTCI events. It seems that Tw is more sensitive
to humidity than the other indicators (see formula of Tw); this
could explain the high frequency of events observed during
the night in the coastal region. Regarding daytime heat waves
(Fig. 5e–h), the spatial variability of events is more consistent
for all the indicators in the Sahelian zone. However, some
differences are observed: an increase in heat wave occur-
rence over the coastal region with Tw is noticed compared
to T2 m, AT and UTCI. The detection of heat wave events
with method 3 shows that Tw events are more frequent than
T2 m/AT/UTCI events with a maximum of occurrence located
over the northern Sahel. This means that daytime and night-
time heat waves occur frequently and simultaneously over
the Sahel with Tw. From this result, we can deduce that hu-
midity plays a major role in the occurrence of concomitant
heat waves, which are very dangerous for human health. In
this section, we show the high sensitivity of heat wave detec-
tion to the methodology applied and to the variables used as
indicators. The role of humidity in heat wave occurrence in
the coastal region has also been highlighted. Similar results
are found with MERRA reanalysis (not shown).

In summary, the heat wave detection is influenced by
many parameters: the dataset, threshold values, indicators
and methodology used to define such an event. There is
a high dependency between these parameters and the cli-
matic region investigated. We illustrate the sensitivity of heat
wave characteristics to the previous parameters in the CONT
region (Fig. 6), as well as the ATL and GU regions (see
Figs. S10 and S11) using ERA5 and MERRA reanalyses.

3.4 Monitoring of heat waves over West Africa regions

In this section, we analyse the spatial variability of heat
waves in three climate regions (CONT, ATL and GU; see the
“Region of interest” section for more details) using T2 m, AT
and Tw as indicators and reanalysis data. Although ERA5 is
slightly better than MERRA when compared to station data
(Fig. S3b), we have evaluated the recent evolution of heat
waves in both reanalyses. To do so, we firstly assessed the
interannual variability of heat waves and their characteris-
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Figure 4. Evolution of the heat wave duration with respect to the threshold values using T2 m as an indicator for (a–c) ERA5 and (d–
f) MERRA respectively. The figure shows the slope of the regression line in days per percentile, which is computed by fitting a linear
regression between the threshold values (Q75, Q80, Q85, Q90) and their corresponding heat waves’s duration (DQ75, DQ80, DQ85, DQ90).
The x and y axes represent the longitude and latitude in degrees respectively. The colour bar shows the values of the slope. The white blanks
indicate non-significant changes in the duration of heat waves per percentile. The significance of the slope of the regression line has been
computed using a two-sided chi-squared test.

Figure 5. Climatological state of heat wave occurrence over West Africa during the period 1993–2020 using four different indicators (T2 m,
Tw, AT, UTCI). The detection of heat waves is based on the definition adopted: (a–d) minimum values of indicators, (e–h) maximum values
of indicators, and (i–l) minimum and maximum values of indicators. The detection of heat waves was processed using ERA5 reanalysis
and the climatological daily 90th percentile over the period as a threshold. The x and y axes represent the longitude and latitude in degrees
respectively. The colour bar shows the frequency of heat waves per region.
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Figure 6. Sensitivity analysis of heat wave characteristics to the datasets, indicators and methodologies used in the CONT region. The
characteristics investigated here are the duration and intensity. The circles and stars in the figure represent ERA5 and MERRA reanalyses
respectively. The blue/red colour represents minimum/maximum values of the indicators. “T2 m,max” from ERA5 is the reference variable
used for this analysis. The x and y axes show the standardized variation in intensity and duration from the reference (no unit) respectively.
The variations in duration and intensity have been computed using max daily T2 m in ERA5 as reference. The detection of heat waves is done
using the climatological daily 90th percentile over the period as a threshold.

tics from 1993 to 2020. For each region, the characteristics
of heat waves were calculated as the ratio of the sum of the
characteristics of all the cities belonging to a region divided
by the number of cities. We identified some particularly hot
years with a high frequency of nighttime, daytime and con-
comitant heat waves: 1998, 2005, 2010, 2016, 2019 and
2020 in the three regions for all the indicators (see Figs. 7,
S12 and S13). These peak heat wave years are addressed in
Sect. 4. The GU region appears to have experienced more
heat waves over the last decade than the CONT and ATL re-
gions (see Fig. S12 for daytime events and Fig. S13 for night-
time). The mean duration of heat waves detected in the three
regions is in the same range of values with some specific per-
sistent events at the end of the period in the ATL and GU re-
gions (not shown). Stronger and more persistent heat waves
are found in the CONT region. From a statistical point of
view, this is due to less variability in the signal of indicators
in the region, which favours the detection of consecutive days
with indicator values above the threshold. The highest occur-
rences of heat waves in the three regions are associated with
Tw for daytime and nighttime events (see Figs. S12 and S13
respectively). Conversely, high-intensity heat waves are as-
sociated with AT (not shown) in the three regions. We can
infer from this result that AT presents a more stable signal
in the regions compared to T2 m and Tw. Concomitant high-
intensity events are found in the CONT and ATL regions (see
Fig. S15).

We also investigate the seasonal distribution of heat wave
occurrence in the three regions. We find an increase in the

frequency of daytime and nighttime heat waves at the begin-
ning of the season and during the retreat period of the West
Africa monsoon (starting in September; see Fig. S14a–c). A
decrease in heat wave frequency is observed during the active
phase of the monsoon in the three regions; this is consistent
because the monsoon flow brings rainfall into the region, re-
sulting in a cooling effect. The concomitant heat waves show
a seasonal cycle with strong fluctuations (Fig. S16). This is
due to the fact that concomitant events are conditioned by
daytime and nighttime heat waves, which are two distinct
processes.

The seasonal cycle of the duration and intensity of heat
waves follows the same distribution as the heat wave oc-
currence (see Fig. 8a–c and d–f respectively). Persistent and
strong-intensity heat waves (nighttime, daytime) occur at the
beginning and the end of the season, while short-duration
and low-intensity events occur during the monsoon phase
(Fig. 8a–c, d–f). This is verified for all the three indicators
despite some discrepancies. The period 1993–2020 is then
divided into 3 decades – 1993–2001, 2002–2011 and 2012–
2020 – and we evaluate the contribution of each decade to the
heat wave characteristics over the whole period (see Fig. 9 for
heat wave duration). Results are similar when analysing the
intensity of heat waves (not shown). The percentiles used for
the detection of heat waves in each decade are computed over
the whole period 1993–2020. It is clearly shown with ERA5
that the major contribution to heat wave characteristics over
the period comes from the last decade (Fig. 9g–i). We no-
tice a progressive increase in frequency, duration and inten-
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Figure 7. Interannual variability of heat wave characteristics using maximum values of T2 m, Tw and AT for (a–c) duration and (d–f) intensity.
The detection of heat waves is done using the climatological daily 90th percentile as a threshold over the period, and the characteristics of
heat waves are computed in the three regions: (a, d) CONT, (b, e) ATL and (c, f) GU. The solid and dashed red/blue/green lines represent
the evolution of heat wave characteristics using T2 m/Tw/AT from ERA5 and MERRA respectively. The x and y axes represent the duration
and intensity of heat waves and the time in year respectively.

sity of all the heat waves (daytime, nighttime and concomi-
tant) from the first to the last decade in the three regions (see
Figs. S14j–l and S16j–l); this is true for all the indicators.
Using ERA5 reanalysis, we found the last decade (2012–
2020) shows a major contribution to around 50 % of heat
wave characteristics over the period 1993–2010, while the
first and second decades contribute up to 22.4 % and 27.6 %

respectively. This contribution of the last decade over the to-
tal period is not effective in MERRA reanalysis, where the
different decades appear to have a similar contribution. This
is the result of the uncertainties highlighted earlier in both re-
analyses. The reinforcement of extreme events such as heat
waves during the last decade in ERA5 is possibly linked to
global warming. This result is consistent with other studies
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Figure 8. Seasonal variability of heat wave characteristics using maximum values of T2 m, Tw and AT for (a–c) duration and (d–f) intensity
respectively. We compute a 3-month running mean to smooth the seasonal cycle. The detection of heat waves is done using the climatological
daily 90th percentile as a threshold in the different regions: (a–d) CONT, (b–e) ATL and (c–f) GU. The solid and dashed red/blue/green lines
represent the evolution of heat wave characteristics using T2 m/Tw/AT from ERA5 and MERRA respectively. The y and x axes represent the
duration and intensity of heat waves and the time in months respectively.

that show an increase in heat wave frequency and character-
istics under climate change (e.g. Dosio, 2017; Dosio et al.,
2018; Murari and Ghosh, 2019; Lorenzo et al., 2021; Eng-
daw et al., 2022). When analysing the severity of heat waves
over the previous 3 decades using the mean duration and in-
tensity (see Fig. S17 and S18), we do not find a significant
increase in heat wave characteristics.

After the evaluation of the temporal evolution of heat
waves over the three regions, we analyse their persistence
based on their duration using ERA5 and MERRA reanalyses
and maximum values of the indicators (see Figs. 10 and S19
respectively). We defined five types of event as described in
Table 3. We observed that approximately 75 % of daytime
heat waves have a duration of 3–6 d with at least 40 % of
events belonging to C1 (Fig. 10). Very persistent daytime
heat waves contribute to at least 9 %–13 % of the events reg-
istered. Severe and very severe daytime events are extremely
rare in the region, and they contribute up to 12 % of the total
number of heat waves. The classification is not too sensitive

Table 3. Classification of heat waves based on the duration.

Classes Duration (days) Degree of persistence

C1 3 normal
C2 4–6 persistent
C3 7–9 very persistent
C4 10–12 severe
C5 13+ very severe

to indicators and regions. We obtained a similar classification
with nighttime heat waves (not shown).

4 Discussion on the uncertainties found in reanalyses
and the impacts of the SST in the Atlantic

We analyse the evolution of heat wave occurrence and char-
acteristics over a variety of climatic regions in West Africa.
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Figure 9. Contribution in percent of the different decades to heat wave duration using maximum values of T2 m, Tw and AT over the whole
period for (a–c) 1993–2001, (d–f) 2002–2011 and (g–i) 2012–2020. We compute a 3-month running mean to smooth the seasonal cycle. The
detection of heat waves is done using the 90th percentile as a threshold over the period in the different regions: (a, d, g) CONT, (b, e, h) ATL
and (c, f, i) GU. The solid and dashed red/blue/green lines represent the evolution of heat wave duration using T2 m/Tw/AT from ERA5 and
MERRA respectively. The y and x axes represent the percentage of heat wave days and the time in months respectively.

The spatial variability of heat wave indicators (T2 m and Tw)
over West Africa during the seasons (winter, spring, summer
and autumn) was investigated. This is done through the com-
putation of the interannual daily standard deviation over the
period 1993–2020. We find the lowest values of standard de-
viation over the three regions of interest (CONT, ATL and
GU) during the summer and autumn when we use minimum
values of T2 m (T2 m,min) (see Fig. S20). This shows low vari-
ability in the signal of T2 m,min, which indicates favourable
conditions for the occurrence of persistent heat waves in
these regions during this period. With Tw, there is low vari-
ability in the signal during the summer for both minimum
and maximum values, indicating persistent events. We find
some discrepancies in the reanalysis products ERA5 and
MERRA. The results show that ERA5 appears to be hot-
ter than MERRA over the Sahel region. The source of these
discrepancies in the reanalyses is very complex and may re-
sult from different factors such as the data assimilation tech-
niques (4D-Var and Bonavita et al., 2016, for ERA5; 3D-Var
and Courtier et al., 1998, for MERRA), atmospheric models,
convective schemes, bias correction methods, spatial resolu-
tion and model parameterization. Another major difference
between ERA5 and MERRA is in the vertical resolution of
the profiles of the atmospheric variables between 0 and 2 km;
ERA5 has more atmospheric vertical levels than MERRA

below 2 km, which leads to a more accurate representation
of processes in the boundary layer (Taszarek et al., 2021).
Many studies have highlighted these differences in the two
reanalysis products (e.g. Olauson, 2018; Graham et al., 2019;
Taszarek et al., 2021); some authors (e.g. Gensini et al., 2014;
Tippett et al., 2014; Allen et al., 2015; Taszarek et al., 2018;
King and Kennedy, 2019) have identified model parameteri-
zation and the data assimilation technique as possible causes
of biases in reanalyses for low-level thermodynamic fields.
A more detailed study of the source of these uncertainties is
beyond the scope of this paper.

An assessment of the origins of heat waves in the coastal
regions of West Africa is discussed. One driver of heat waves
over the globe highlighted by many studies is the “block-
ing high” (e.g. Charney and DeVore, 1979; Coughlan, 1983;
Perkins, 2015). This situation occurs when a high system
pressure remains in the same region for a longer period of
time than is usually expected. The consequence of this phe-
nomenon is the compression of the air mass at the surface,
which leads to an increase in temperatures in the region.
Perkins (2015) also identified soil moisture–atmosphere in-
teractions and large-scale climate dynamics as other drivers
of heat waves.

To address the origin of heat waves in the coastal region,
we firstly analysed the interannual variability in the sea sur-
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Figure 10. Classification of heat waves using ERA5 reanalysis
based on their persistence over the period 1993–2020: (a) T2 m,
(b) Tw and (c) AT. The detection of heat waves is done using maxi-
mum values of the indicators and the climatological daily 90th per-
centile. Heat wave detection is firstly carried out, and then their
duration is computed. Clusters of heat waves based on their dura-
tion (3, 4–6, 7–9, 10–12, 13+ d) are created, and finally, we quan-
tify each class of heat waves as a proportion of the total number
of events detected. The y and x axes represent the percentage of
the heat waves per class and the duration in days respectively. The
red/blue/green bars represent the percentage of heat waves detected
over CONT/ATL/GU regions (see the “Region of interest” section
for more details). The sum of the contribution of heat waves in dif-
ferent clusters is equal to 1 for each region.

face temperature (SST) over the period 1993–2020 using the
ERA5 reanalysis. We computed the mean anomalies of SST
with respect to the climatology (Fig. S21). Warming over
the north-eastern and south-eastern tropical Atlantic Ocean is
observed in some years: 1998, 2005, 2008, 2010, 2016, 2019
and 2020. This warming over the tropical Atlantic Ocean af-
fects the whole western African coastal region. In compari-
son to the interannual variability of heat wave occurrence in
the coastal region (see Fig. S12), we noticed that the years
of high heat wave frequency correspond to years in which
ocean warming was observed: 1998, 2005, 2010, 2016, 2019
and 2020 for instance. These years also correspond to the oc-
currence of El Niño events. The link between the SST and
heat waves has been investigated in more detail in the fol-
lowing. We computed the yearly mean SST anomalies with

respect to heat waves days using the formula below:

Ano_SST_year=
12∑
i=1

αi ·Anoi = α1 ·Ano1+α2 ·Ano2

+α3 ·Ano3+ . . .+α12 ·Ano12, (15)

where αi represents the total number of days in heat waves
per month for each year; if there is no event detected, then
αi = 0.

For this analysis, we focused on the years with high peaks
of heat waves identified previously (1998, 2005, 2008, 2010,
2016, 2019 and 2020) using T2 m as an indicator for heat
wave detection. We noticed that most of the heat waves are
associated with a warming of the tropical Atlantic Ocean ex-
cept for in some specific years such as 2016 and 2019 in the
GU and ATL regions respectively (Fig. 11a, b). In the CONT
region, heat waves are influenced by both the west–east air-
flow coming from the tropical northern Atlantic Ocean and
the south–north airflow coming from the tropical southern
Atlantic Ocean (Fig. 11c, d). Some years in which a consid-
erable number of heat waves have been detected are not as-
sociated with positive anomalies of SST. These heat waves
occur during a cold phase of the tropical Atlantic Ocean.
There are no major changes observed in the analysis when
using AT and Tw as indicators for heat wave detection (not
shown). We can suggest from this result that heat waves in
the coastal region have many drivers, and one of them at a
local scale could be the oceanic forcings through the SST.
Large-scale (El Niño, atmospheric circulation) and local-
scale (soil–moisture interactions) processes may also con-
tribute to the occurrence of heat waves in the region. This
result is in agreement with Russo et al. (2016) and Moron
et al. (2016), who identified links between heat waves and
El Niño events. The investigation of the physical processes
driving heat waves in the coastal region required more in-
depth knowledge of local- and large-scale forcings, which is
beyond the scope of this paper.

5 Conclusions

The present work assesses the potential uncertainties associ-
ated with heat wave detection using reanalysis data (ERA5,
MERRA). It also looks into the recent evolution of heat
waves in different parts of the West African region.

The first uncertainty highlighted in this study comes from
the ERA5 and MERRA reanalyses. We found biases in the
reanalysis products; MERRA shows a cold bias compared to
ERA5 over the Sahel region and the Guinean region except
over some countries (Guinea-Bissau, Sierra Leone, Liberia).
Weak correlations between ERA5 and MERRA were found
over the Guinea coast using minimum/maximum values of
T2 m and AT indicators. The representation of extreme val-
ues in the reanalyses was analysed, showing that the coher-
ence between the two products is very low, around 0.25, in
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Figure 11. Analysis of the link between SST anomalies and heat waves days over the period 1993–2020 using ERA5 reanalysis and maximum
values of T2 m in the different regions: (a) ATL, (b) GU, (c–d) CONT. SST_A and SST_G represent the boxes using to compute the SST
mean anomalies for the ATL and CONT regions respectively (see Fig. 1). The anomalies are computed as the difference between monthly
SST and the monthly climatological values of the SST over the whole period. For each year, the yearly anomalies of SST are computed with
respect to the heat waves days. The x and y axes represent the frequency of heat waves days and the SST anomalies respectively. The grey
dots represent the years over the period 1993–2020.

the southern Sahel and the Guinean region. This low agree-
ment between the two reanalyses results in discrepancies in
the frequency of heat waves associated with each product.
Even though the reanalyses present large discrepancies over
the southern Sahel and Guinea coast, they are able to pre-
serve the relationship between the variables used for heat
wave detection (AT, T2 m). Temperatures estimated from lo-
cal station in Dakar and Abidjan show slightly better correla-
tion with ERA5 than with MERRA. The second uncertainty
found here is the sensitivity of the spatial variability of heat
waves to the threshold values used to process the monitoring
of events. Heat waves detected using low threshold values of
the indicators T2 m and Tw are very persistent and last for sev-
eral days, while the duration of heat waves related to the high
threshold values is considerably reduced. We notice some
discrepancies in the sensitivity to the threshold values of heat
waves detected with Tw and T2 m. Nighttime and daytime heat
waves are in the same range of occurrence, while concomi-
tant events are extremely rare because they are more restric-
tive. This shows that daytime and nighttime heat waves are
distinct phenomena. The climatological state of heat wave
occurrence shows large differences between the indicators.
Nighttime heat waves associated with Tw are more frequent
than those detected with AT, T2 m and UTCI. This shows
that humidity plays an important role in nighttime events and
tends to reinforce concomitant events over the northern Sa-

hel. The spatial variability of daytime heat waves is more
consistent for all indicators over the Sahel. The interannual
variability of heat waves in the coastal region of West Africa
shows for the three indicators (AT, T2 m, Tw) some particu-
larly hot years with a high frequency of events: 1998, 2005,
2010, 2016, 2019 and 2020 linked to El Niño events. The GU
region is more affected by heat waves during the last decade
(2012–2020) than the CONT and ATL regions. The CONT
region experienced more persistent and higher-intensity heat
waves than the GU region. The seasonal cycle of heat waves
shows an increase in the frequency of the events at the begin-
ning of the season and during the retreat phase of the West
African monsoon. Conversely, a decrease in heat wave oc-
currence is observed during the monsoon activity period in
the three regions. We observed a reinforcement in the fre-
quency, duration and intensity of heat waves during the last
decade (2012–2020). This is a consequence of global warm-
ing acting on extreme events. No significant changes in the
severity of heat waves have been found in the regions dur-
ing the 3 decades. Most of the events detected in the regions
(75 %) have a duration of around 3–6 d. The most dangerous
events, lasting at least 10 d, accounted for up to 12 % of the
total number of events. We noticed strong links between SST
and heat waves during some specific peak event years, but
this was not the case for 2016 and 2019 in the GU and ATL
regions respectively. We can infer from this result that there
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is a contribution of oceanic forcings in the reinforcement of
heat waves in the coastal region among many other drivers.
In a future work, we will investigate in more detail the influ-
ence of large-scale forcings on heat wave occurrence in this
region. In the present study, we detected different types of
heat wave based on the methodology and indicator used; this
will be very important to investigate their potential impacts
on human health and activities.
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