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ABSTRACT

Since the asteroseismic revolution, the availability of efficient and reliable methods to extract stellar-oscillation mode parameters has
been an important part of modern stellar physics. In the fields of helio- and asteroseismology, these methods are usually referred to
as peakbagging. Here, we introduce the apollinaire module, a new Python 3 open-source Markov chain Monte Carlo (MCMC)
framework dedicated to peakbagging. We extensively describe the theoretical framework necessary to understand MCMC peakbagging
methods for disk-integrated helio- and asteroseismic observations. In particular, we present the models that are used to estimate the
posterior probability function in a peakbagging framework. A description of the apollinaire module is then provided. We explain
how the module enables stellar background, p-mode global pattern, and individual-mode parameter extraction. By taking into account
instrumental specificities, stellar inclination angle, rotational splittings, and asymmetries, the module allows a large variety of p-mode
models to be fitted that are suited for solar and stellar data analysis with different instruments. After presenting a validation of the
module with a Monte Carlo fitting trial on synthetic data, it is benchmarked by comparing its outputs with results obtained with other
peakbagging codes. We present our analysis of the power spectral density (PSD) of 89 one-year subseries of GOLF observations.
We also selected six stars from the Kepler LEGACY sample in order to demonstrate the code abilities on asteroseismic data. The
parameters we extract with apollinaire are in good agreement with those presented in the literature and demonstrate the precision
and reliability of the module.
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1. Introduction

Models implemented in stellar evolution codes require strong
constraints in order to accurately infer stellar ages (Appourchaux
et al. 2012; Davies et al. 2016; Lund et al. 2017; Silva Aguirre
et al. 2017; Tayar et al. 2020). When available, stellar seismic
parameters such as pressure-mode (p-mode) frequencies provide
excellent constraints on the inputs required for stellar modelling.
Reliable tools to infer those parameters from observations are
therefore necessary.

The theory behind p modes has been extensively described
(e.g. Unno et al. 1989; Christensen-Dalsgaard 2008, and ref-
erences therein) while solar-like oscillations have been abun-
dantly observed in the Sun with helioseismic facilities such as
the Global Oscillations at Low Frequency instrument (GOLF,
Gabriel et al. 1995), the Variability of solar IRradiance and
Gravity Oscillations instrument (VIRGO, Fröhlich et al. 1995),
the Solar Oscillations Investigation’s Michelson Doppler Imager
instrument (SOI/MDI, Scherrer et al. 1995), the Helioseismic
Magnetic Imager instrument (HMI, Scherrer et al. 2012), the
Global Oscillations Network Group (GONG, Harvey et al. 1996),
the Birmingham Solar Oscillations Network (BiSON, Chaplin
et al. 1996), and the solar counterpart of the Stellar Observa-
tions Network Group (Solar-SONG, Pallé et al. 2013; Fredslund
Andersen et al. 2019; Breton et al. 2022), as well in main

sequence solar-like stars (e.g. Appourchaux et al. 2014; Lund
et al. 2017), subgiants (e.g. Kjeldsen et al. 1995), and red giants,
from the red giant branch to the clump (e.g. Beck et al. 2011;
Mosser et al. 2011; Bedding et al. 2011). Following space mis-
sions such as the Microvariability and Oscillations of STars
mission (MOST, Matthews et al. 2000), the Convection, Rota-
tion, and planetary Transit satellite (CoRoT, Auvergne et al.
2009) and especially Kepler/K2 (Borucki et al. 2011; Howell
et al. 2014)1, the golden years of solar-like-star asteroseismology
are not over yet, with the Transiting Exoplanet Survey Satellite
(TESS, Ricker et al. 2015) currently taking place and the launch
of the PLAnetary Transits and Oscillations of stars mission
(PLATO, Rauer et al. 2014) on the horizon in 2026. Ground-
based stellar observations provided by networks such as SONG
(Grundahl et al. 2007, 2017) also provide asteroseismic data that
will benefit from our analysis tools.

Helio- and asteroseismic parameter fitting (usually referred
to as peakbagging) is a topic that has been extensively dis-
cussed in the literature over recent decades. The parameter
inference may follow a frequentist approach through the use
of maximum-likelihood estimator (MLE; see e.g. Toutain &
Appourchaux 1994; Appourchaux et al. 1998) methods or a
1 For sake of completeness, the observation of α Ursae Majoris by the
Wide-field InfraRed Explorer (WIRE, Buzasi et al. 2000) satellite must
also be mentioned for its precursor role.
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Bayesian approach, with for example implementation of max-
imum a posteriori algorithms (MAP; see e.g. Gaulme et al.
2009), Monte Carlo Markov chains methods (MCMC, see e.g.
Benomar et al. 2009; Gruberbauer et al. 2009, 2013; Handberg &
Campante 2011; Gruberbauer & Guenther 2013; Deheuvels et al.
2015; Davies et al. 2016; Lund et al. 2017; Nielsen et al. 2021), or
nested Monte Carlo (see e.g. Corsaro & De Ridder 2014; Corsaro
et al. 2020).

The apollinaire2 package is designed to provide a ready-
to-use, consistent, and flexible open-source MCMC peakbagging
framework for solar and stellar time series. It has already been
used in several publications (Hill et al. 2021; Breton et al. 2022;
Huber et al. 2022; Mathur et al. 2022; Smith et al. 2022). The
code is fully written in Python 3. Available solar time series
being unequaled in quality and length, their specificities were
fully taken into account during the development phase of the
module. The difficulties of stellar peakbagging were also exhaus-
tively considered in order to provide an automated process for
p-mode parameter extraction. Therefore, apollinaire is able to
perform fits globally, by order (` = {0, 1, 2, 3}), by pair (` = {0, 2}
or {1, 3}), or for a single mode, and to extract parameters such
as mode splittings, stellar inclination angles, and the choice of
symmetric or asymmetric Lorentzian profiles (see e.g. Nigam &
Kosovichev 1998; Korzennik 2005). Similar automated frame-
works with the Interactive Data Language (IDL) or Python
interface have already been developed in the past few years (see
e.g. Fast and AutoMated pEak bagging with DIAMONDS (FAMED)
from Corsaro et al. 2020, or PBJam from Nielsen et al. 2021).
With the upcoming PLATO mission at the end of the decade,
the existence of a wide diversity of peakbagging open source
modules will be a considerable asset for the asteroseismic com-
munity, as it will allow non-expert peakbaggers to easily access
ready-to-use frameworks for p-mode parameters extraction.

The layout of this paper is as follows. Section 2 presents
the principles of parameter fitting in a Bayesian framework and
extensively describes the set of models that are implemented in
apollinaire. Section 3 provides a detailed presentation of how
these models are used in the different steps of the apollinaire
framework. Section 4 presents an extended benchmark of the
module, with comparison of published results from helioseimic
and asteroseismic data. Usual fitting strategies are discussed
in Sect. 5 while conclusions and perspectives for improve-
ment of the current apollinaire releases are provided in
Sect. 6.

2. Model spectrum

In this paper, we exclusively focus on peakbagging methods for
full-disk-integrated time series. The single-sided power spectral
density (PSD) is taken as the squared modulus of the Fourier
transform of a given time series with the following calibra-
tion (e.g. Press et al. 1992; García 2015) verifying the Parseval
theorem:
∫ νN

0
PSD(ν)dν = σ2, (1)

where νN is the Nyquist frequency of the spectrum and σ is the
rms value of the temporal signal.

The goal of the peakbagging process is to extract stellar back-
ground parameters and global and individual oscillation mode
2 This paper describes the v1.1 of the module, for which addi-
tional documentation can be found at https://apollinaire.
readthedocs.io/en/v1.1/

parameters from the PSD. After briefly describing the principle
of mode fitting in a Bayesian framework, we present and exten-
sively describe the background and p-mode models implemented
in apollinaire in the following subsections.

2.1. Statistics

The PSD follows a χ2 distribution with two degrees of free-
dom (Woodard 1984). The likelihood of an ideal spectrum S
parametrised by a set of parameters θ and considered against an
observed spectrum Sobs at a given set of k frequency bins νi is:

L(Sobs, θ) =

k∏

i=1

1
S (νi, θ)

exp
[
− S obs,i

S (νi, θ)

]
. (2)

This expression of the likelihood assumes that all frequency
bins are independent, an assumption that is theoretically fulfilled
only for uninterrupted, evenly sampled observations. However,
in the case of high-duty-cycle time series, the independence
assumption can be made without introducing any bias in the
parameter estimation (Stahn & Gizon 2008; Davies et al. 2016).
The cases of significant gaps is discussed in Sect. 2.7.

The goal of a Bayesian approach is to sample the posterior
probability p(θ|Sobs) defined as:

p(θ|Sobs) =
p(Sobs|θ)p(θ)

p(Sobs)
, (3)

where p(Sobs|θ) is the likelihood L, p(θ) is the prior probabil-
ity, and p(Sobs) is a normalisation factor. The prior probability
forms the core of the Bayesian approach and contains the infor-
mation we have before confronting the model to the data. In
practice, the function that will be sampled is a normalised mea-
sure of the posterior distribution, L(Sobs, θ)p(θ). The strength of
this approach is that it allows the fitter to evaluate the shape of
the probability distribution of the model parameters. Moreover,
parameter uncertainties can be extracted directly from it, while
the MLE approach only provides a lower bound on the uncer-
tainty, obtained through a Hessian inversion (for more details
about the Hessian matrix see Toutain & Appourchaux 1994).

2.2. Background model

The power distribution in the PSD can be separated between the
p-mode contribution and a stellar background (see e.g. Mathur
et al. 2010; Kallinger et al. 2014). The global spectrum can then
be modelled in the following way:

S (ν) = B(ν) + P(ν), (4)

with B the background contribution and P the p-mode
contribution.

The background is dominated at high frequency by a photon
noise term Pn. At low frequency, the effects of stellar activ-
ity and surface rotation are visible together with long-period
instrumental variations (see e.g. García 2015). In the presence of
stellar activity alone, these low-frequency regions can be mod-
elled through a power law (Mathur et al. 2010). However, it is
difficult to define a general functional profile for both rotational
modulations and instrumental effects, and these contributions
are not taken into account in apollinaire. Therefore, when
power excesses due to such effects are identified in the PSD, the
minimal frequency chosen for the background analysis should
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be set sufficiently high to prevent their contribution from bias-
ing the fitted profile. In the case of Kepler, the typical period
of the instrumental effects is ∼40–45 days (see e.g. Santos et al.
2019; Breton et al. 2021) which corresponds to frequency regions
below ∼0.3µHz. The location of the rotational modulations in
the PSD depends of course on the surface rotation period of
the considered stars, but also on the power distribution between
the different harmonics of the signal. The fastest main sequence
solar-like stars with detected surface rotation still exhibit a power
contribution at a few tens ofµHz. Nevertheless, most of the stars
are rotating slowly enough for their rotational power contribution
to only influence the shape of the PSD below a fewµHz. Con-
cerning the Kepler nominal survey, stars exhibiting photometric
rotational modulations can be identified with the Santos et al.
(2019, 2021) reference catalogues.

Surface convection is the main process shaping the pro-
file of the remaining components of the background. Harvey
(1985) suggested that these trends could be described through
empirical laws (referred to as Harvey models or sometimes
super-Lorentzians, a nomenclature discussion on the term is
provided by Kallinger et al. 2014) of the following form:

H(ν) =
A

1 +
(
ν
νc

)γ , (5)

where A is the reduced amplitude component, νc the charac-
teristic frequency, and γ is an exponent that can be linked to
the amount of memory in the physical process described by the
Harvey model (see e.g. García & Ballot 2019).

There is no clear consensus in the community on the best
number of Harvey models to consider in order to optimally fit the
background. Mathur et al. (2010) combined one Harvey model
and a power law in their model, while Kallinger et al. (2014)
decided to fit the data with two Harvey models after using a
Bayesian framework to compare six possible models.

For the sake of generality, the considered limit background
is then taken as the sum of k Harvey models, a power law, and a
white noise term:

B(ν) =
∑

k

Hk(ν) + aν−b + Pn, (6)

where a and b are the power-law parameters. In the cases of long
cadence observations from Kepler or TESS, it can be necessary
to include a damping factor η to take into account the power loss
in the components of the signals close to the Nyquist frequency
(Chaplin et al. 2011; Kallinger et al. 2014):

η2(ν) = sinc2
(
πν

2νN

)
. (7)

The photon noise is not affected by this effect and Eq. (6)
therefore becomes

B(ν) =


∑

k

Hk(ν) + aν−b

 η2 + Pn. (8)

2.3. The Lorentzian model

In asteroseismology, p-mode profiles are usually described
with symmetric Lorentzian profiles. However, previous helio-
seismic observations provide evidence that the p-mode spec-
tral profile was actually asymmetric (Duvall et al. 1993;
Toutain et al. 1998). Two solutions were suggested to model

p-mode asymmetric Lorentzian profiles. The first one was pro-
posed by Nigam & Kosovichev (1998):

L(ν, ν0,Γ,H, α) =
H

1 + x2

[
(1 + αx)2 + α2

]
, (9)

while the second possibility was put forward by Korzennik
(2005):

L(ν, ν0,Γ,H, α) =
H

1 + x2 [1 + α(x − α/2)]. (10)

In the two previous equations, H is the height of the Lorentzian,
α is the asymmetry parameter, and x is the reduced frequency,
defined as

x(ν, ν0,Γ) =
ν − ν0

Γ/2
, (11)

where ν is the frequency, ν0 the Lorentzian central frequency,
and Γ the Lorentzian full width at half maximum (FWHM). If
α = 0, the modelled profile is a standard symmetric Lorentzian.

It is finally important to note that H and Γ can be related
to the mode amplitude A through (Fletcher et al. 2006; Chaplin
et al. 2008; Lund et al. 2017):

H =
2A2

πΓ
. (12)

2.4. Low resolution and sinc model

In the PSD, the ideal mode profile is in reality convolved by the
Fourier transform of the observational window. In case of con-
tinuous observations of length Tobs, this Fourier transform has
the shape of a sinc function. There is no significant bias in the
observed height H (or amplitude A) and width Γ of the mode
in the case Tobs � 1/Γ. However, as illustrated in Fig. 1, when
we represent the result of the convolution of the ideal signal by
the Fourier transform of the observational window for different
ΓTobs values, the effect of the convolution appears as soon as
ΓTobs is of the order of several times unity, and the sinc function
profile dominates the Lorentzian profile when ΓTobs < 1. There-
fore, if the considered modes have a long lifetime with regards
to the duration of the observation, the Lorentzian nature of their
profile may not appear clearly because of insufficient resolution
(frequency bins) to properly characterise the profile. In this case,
it is more adequate to model the p-mode peaks with squared sinc
functions instead of Lorentzians:

L(ν, ν0,Γ,H) = H sinc2x. (13)

2.5. Mode description

Under the effect of slow rotation (Ledoux 1951), an acous-
tic mode M of order n and given degree ` is described
as a multiplet of 2` + 1 components (modelled with sym-
metric Lorentzian profiles, asymmetric Lorentzian profiles, or
sinc profiles as explained above) according to the following
equation:

Mn,`(ν) =
∑̀

m=−`
L(ν, νn,` + msn,`,Γn,`, r`,mHn,`, α), (14)
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Fig. 1. Top: Effects of the convolution by the Fourier transform of the
observational window on an ideal Lorentzian mode profile (grey) in the
case of continuous observations, with ΓTobs = 0.25 (red), 0.5 (dark blue),
0.75 (green), 1 (orange), 2 (light blue), and 5 (brown). Bottom: Same as
top panel, but for the y-axis range [1, 2].

with sn,` being the mode splittings, and r`,m the m-height ratio

(with
m=`∑

m=−`
r`,m = 1). The r`,m term is, in principle, purely geomet-

ric and depends on the stellar inclination angle i (Dziembowski
1977; Toutain & Gouttebroze 1993; Gizon & Solanki 2003;
Ballot et al. 2006). Typical r`,m values considered for different
instruments are given in Table 1.

2.6. Mode visibilities

It is often useful to be able to define the mode-height ratio
between close-frequency modes. This can be achieved by com-
puting the mode visibility, V`, which depends on the stellar
limb darkening and links the mode surface amplitude to the
disk-integrated mode amplitude.

V` =
√

(2` + 1)π
∫ 1

0
P`(µ)w(µ) µdµ, (15)

where P` is the `th-order Legendre polynomial and w is a
weighting function. Assuming energy equipartition at close fre-
quencies, the height ratio can be computed as the visibility ratio
V`/V0. For some instruments, the dependence is more complex

Table 1. m-height ratios r`,m.

r`,m GOLF VIRGO Kepler/K2/TESS

r1,0 0 0 cos2 i
r1,±1 0.5 0.5 1

2 sin2 i
r2,0 0.65/2.65 0.75/2.75 1

4 (3 cos i − 1)2

r2,±1 0 0 3
8 sin2 2i

r2,±2 1/2.65 1/2.75 3
8 sin4 i

r3,0 0 0 1
64 (5 cos 3i + 3 cos i)2

r3,±1 0.41/2.82 0.63/3.26 3
64 sin2 i(5 cos 2i + 3)2

r3,±2 0 0 15
8 sin4 i cos2 i

r3,±3 1/2.82 1/3.26 5
16 sin6 i

r4,0 0.1/2.7 – –
r4,±1 0 – –
r4,±2 0.3/2.7 – –
r4,±3 0 – –
r4,±4 1/2.7 – –
r5,0 0 – –
r5,±1 0.117 – –
r5,±2 0 – –
r5,±3 0.137 – –
r5,±4 0 – –
r5,±4 0.246 – –

Notes. The parameter i is the stellar inclination angle.

Table 2. Mode visibility ratios V`/V0

Ratio GOLF VIRGO Kepler/K2/TESS

V1/V0 1.69 1.53 1.5
V2/V0 0.81 0.59 0.7
V3/V0 0.17 0.09 0.2
V4/V0 0.0098 – –
V5/V0 0.001 – –

as the instrument response does not depend only on µ. Hence, the
relations given by Eq. (15) cannot be directly used (for an exam-
ple with GOLF, see García et al. 1999; Salabert et al. 2011b). The
values for V`/V0 used in apollinaire are given in Table 2.

2.7. Modelling the modes for time-series with observational
gaps

The apollinaire package is designed to deal with time series
with large temporal gaps and was used for this purpose in Breton
et al. (2022). The effect of the presence of gaps in the observa-
tions is the convolution of the Fourier transform of the ideal time
series by the Fourier transform of the observational window. One
of the consequences of this convolution is that the hypothesis on
the frequency-bin independence is no longer valid (e.g. Gabriel
1994). However, the form of the likelihood that takes this effect
into account is computationally challenging and not well suited
for an optimised implementation.

The historically considered solution is to ignore the inde-
pendence loss (Appourchaux et al. 1998) and to consider the
likelihood given in Eq. (2). To go further, the model can be
corrected to take into account the side lobes generated by the
window convolution in the PSD (e.g. Salabert et al. 2002, 2004).
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Eq. 17

Fig. 2. Model for a ` = 1, 3 pair with inclination angle i = 90o and
splittings s = 0.4µHz, without taking the observational window into
account (grey) and the modified model with the observational window
effect applied following Eq. (17) (orange). The actual convolution of the
synthetic PSD by | f |2 is represented in black for comparison.

We use such an approach in apollinaire to modify the model
when fitting PSD from time series with low duty cycle. In order
to approximate the power redistribution of one peak in the model,
we define the observation window f of the time series. The value
of f is 1 at the time-stamps where data were acquired, and 0
otherwise. The Fourier transform f̃ of f is then computed. The
frequency shift νi (relative to the zero-frequency peak of | f̃ |2)
and the amplitudes ai of the k peaks above a given threshold in
| f̃ |2 are then stored. The amplitudes are normalised to verify

k∑

i=0

ai = 1. (16)

The mode description given in Eq. (14) is then replaced by:

Mn,`(ν) =
∑̀

m=−`

k∑

i=0

L(ν, νn,` + msn,` + νi,Γn,`, air`,mHn,`, α). (17)

The side lobe power redistribution of the mode is illustrated
in Fig. 2, where we consider an observational window with a
regular observation cycle of 720 min with observations followed
by 720 minutes without observations. We consider a ` = 1, 3
pair with i = 90o and νs = 0.4µHz and we represent the model
with 100% duty cycle for comparison. The power redistribution
of the modes appears clearly when the formula from Eq. (17)
is applied to compute the mode profiles, and we see that the
modified model – approximating | f̃ |2 as the sum of k + 1 Dirac
functions – is extremely close to the profile we obtain when we
actually perform the convolution operation between the PSD and
the | f |2.

3. Description of the framework

The apollinaire package is designed to perform MCMC sam-
plings for each step of the peakbagging procedure: background
fit, asymptotic parameters fit to determine the global modes
pattern, and extraction of individual mode parameters. Those
three operations are performed one after another when using the
stellar_framework function but can also be performed inde-
pendently. The global flowchart of an analysis performed with
the stellar_framework function is represented in Fig. 3.

erent parameters.
At the same time, the prior function reflects the level of knowl-
edge that the Bayesian fitters already possesses concerning the
model for which they want to sample the posterior distribution.

From this point of view, the choice of the prior functions to use in
order to sample the posterior is necessarily somewhat arbitrary.
Discussing considerations over the expected mode profile, sev-
eral possibilities have been suggested in the Bayesian peakbag-
ging literature. Following

Fig. 3. Simplified representation of the apollinaire flow chart.

3.1. Sampling the posterior probability with MCMC

The MCMCs are implemented with the Python package emcee
(Foreman-Mackey et al. 2013). The sampling strategy fol-
lows Goodman & Weare (2010). The sampler, which can be
seen as an improvement of the single site Metropolis scheme
(Sokal 1997; Liu 2009), is designed as an affine invariant
ensemble of walkers. Walker positions are updated one after
another by the algorithm. The proposal for the new position
of a given walker is created by taking into account the posi-
tions of other walkers. Acceptance or rejection of each move is
assessed through the Metropolis-Hastings rule (Metropolis et al.
1953; Hastings 1970). In every part of the framework (back-
ground, global mode pattern, individual mode parameters), the
user is free to choose the number of walkers and the num-
ber of steps to perform in order to sample the distribution, as
well as the number of steps discarded as part of the burn-in
phase.

The results yielded by a Bayesian approach strongly rely
on the choice of prior functions made for the different param-
eters. At the same time, the prior function reflects the level
of knowledge that the Bayesian fitters already possesses con-
cerning the model for which they want to sample the posterior
distribution. From this point of view, the choice of the prior
functions to use in order to sample the posterior is neces-
sarily somewhat arbitrary. Discussing considerations over the
expected mode profile, several possibilities have been suggested
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in the Bayesian peakbagging literature. Following Benomar et al.
(2012), Davies et al. (2016) considered for example a smooth-
ness condition for the mode frequencies while using uniform
priors for every other parameters. On the contrary, Lund et al.
(2017) considered uniform priors for frequencies and inclina-
tion angle while using modified Jeffrey’s priors (Handberg
& Campante 2011) for amplitudes and widths. Corsaro et al.
(2020) adopted uniform priors for all free parameters, justify-
ing this choice by the fast computation that it allowed in their
framework.

In apollinaire, prior functions are taken to be uniform
distributions within two bounds with the exception of the incli-
nation angle, i, the heights H (or amplitudes A), and the widths Γ.
It should be underlined that the uniform priors confine the sam-
pled distribution to the compact support defined by the bounds
and represent in this sense a strong constraint on the posterior.
However, this can be justified by the fact that it is for example
reasonable to suppose that, for a given mode, the actual mode
frequency cannot be located outside a small frequency window
around the mode power excess.

Most of the usual priors defined on a compact support can
actually be linked to a uniform prior through a change of vari-
able. For H (or A) and Γ, we therefore consider uniform prior
distributions in log H (or log A) and log Γ. This is equivalent to
constraining H (or A) and Γ with Jeffrey’s priors. This way, in
the limit of the fixed boundaries, the prior does not contain infor-
mation on the parameter scaling. For i, the prior distribution is
p(i) = sin i in order to fulfill the a priori isotropic distribution of
stellar rotation axes (García & Ballot 2019).

In the stellar_framework function, the automatically
generated priors have been set in order to cover a suffi-
ciently wide range to ensure that the sampled distribution is
not biased by boundary effects. Additional difficulties that
may arise in the specific case of frequencies are discussed in
Sect. 3.5.

When a MCMC is sampled, the code automatically extracts
summary statistics from it. For a given parameter, it returns the
median of the marginalised sampled distribution, y. In order to
obtain the uncertainties σ− and σ+ over y, 16th and 84th per-
centiles y16 and y84 are also extracted. In the case of a Gaussian
distribution, σ− = σ+ = σ with σ being the standard devia-
tion of the distribution. Some apollinaire output files (see
Appendix D and online documentation for more details) only
provide a σsym over y:

σsym = max (y − y16, y84 − y). (18)

In this case, if it is the natural logarithm of the parameters
that has been sampled, median, 16th, and 84th percentiles are
transformed again before computing and returning σsym.

3.2. Inputs and outputs

The guess and priors for background and global pattern fits are
automatically generated by apollinaire. The user can also
manually provide guess and priors if needed. The inputs for indi-
vidual mode-parameter extractions are more complex, and for
them, apollinaire uses text files with a specific syntax: the
a2z files, which were originally developed as part of the A2Z
pipeline (Mathur et al. 2010). The syntax of the file is dedicated
to providing a simple and straightforward way to specify the
nature, extent, initial value, and bounds for each parameter to fit.
These files will be auto-generated by the stellar_framework
function but can also be manually created in order to directly

use the peakbagging function. They can be read as a pandas3

DataFrame through the auxiliary function read_a2z.
The chains are stored as Hierarchical Data Format version 5

(hdf5) files. The code provides functions to read these files for
the user that would need to perform a more thorough analysis
on the chains than the extraction of summary statistics described
in Sect. 3.1. Using these files, it is for example straightforward
to obtain the marginalised distribution for each parameter or the
covariance matrix between two parameters. Corner plots visu-
ally summarising the sampled distributions can be saved as pdf
or png files if filenames are specified. They represent both the
marginalised distribution for each parameter and the covariance
distribution for each pair of parameters.

Parameters fitted by the perform_mle_
background, perform_mle_pattern, explore_
distribution_background, and explore_distribution_
pattern functions are returned as numpy arrays. When these
functions are called by the stellar_framework functions,
the results they provide are stored in text files with dedicated
headers. For convenience, the peakbagging function returns
both an a2z DataFrame, which can be saved to an a2z file with
the auxiliary function save_a2z, and a so-called pkb4 array,
which can be saved with the save_a2z (when the function is
called by stellar_framework, this is done automatically). The
returned a2z DataFrame is useful for performing new MCMC
samplings with modified input values while the pkb array
provides a mode-by-mode summary statistics and allows the
user to simply reconstruct the best-fit p-mode model computed
by apollinaire. More details about a2z files, a2z DataFrame,
pkb files, and pkb arrays can be found in Appendix D, and
example a2z and pkb files are also provided.

3.3. Background fit

Besides the PSD, the only additional inputs needed by
apollinaire to automatically compute initial guesses and pri-
ors for the background fit are the stellar effective temperature,
Teff , the asymptotic large spacing ∆ν, and the frequency at max-
imum power νmax. If no previous estimations of ∆ν and νmax are
available, it is possible to provide the code with the stellar mass,
M, and radius, R, in order to compute an estimate of ∆ν and νmax
through the scaling laws (Kjeldsen & Bedding 1995)

∆ν ≈ ∆ν�

(
M
M�

)1/2 (
R
R�

)3/2

νmax ≈
(R�

R

)2 M
M�

(
Teff,�
Teff

)1/2

,

(19)

where ∆ν�, M�, R�, and Teff,� are the reference solar values for
the asymptotic large spacing, mass, radius, and effective temper-
ature, respectively. These values are set to 135µHz, 1 M�, 1 R�,
and 5770 K in apollinaire .

The limit spectrum fitted on the data is the sum of the back-
ground term given by Eq. (6) and a Gaussian p-mode envelope
term:

S B(ν) = B(ν) + Hmax exp

−
(
ν − νmax

Wgauss

)2, (20)

3 https://pandas.pydata.org/
4 Originally developed inside the Kepler Asteroseismic Science Oper-
ations Center (KASOC) working package 6.
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with Hmax being the maximal height of the p-mode Gaussian
envelope and Wgauss its width or standard deviation.

When only one Harvey model is considered, the initial γ
value is fixed to 2; it is fixed to 4 when two Harvey models are
considered. This parameter can be fixed (Kallinger et al. 2014) or
set to vary. In order to fit more than two Harvey models, the user
should manually provide the guesses. Otherwise, input profile
guesses are automatically generated. If the spectrum has been
acquired with photometric observations, the values provided by
Table 2 of Kallinger et al. (2014) are used. If the code has to deal
with a PSD obtained from a solar radial-velocity time series, ini-
tial guess values have also been implemented using GOLF as a
reference.

In order to obtain significant gains in computing time, it is
possible to resample the PSD to a version with many fewer data
points. The resampling techniques are described in Appendix A.
As shown in Sect. 4.3, this method can be reliably used in
order to extract mode frequencies but the main caveat is that
the background parameters obtained by fitting the resampled
PSD should be considered with caution. In particular, the resam-
pling will filter out the power in the p-mode region, and Hmax,
νmax, and Wenv obtained with this method will be significantly
biased.

3.4. Limit p-mode spectrum

To fit the p modes, apollinaire divides the observed spectrum
by the fitted background profile B in order to get the signal-to-
noise-ratio (S/N) spectrum:

Sobs,SN =
Sobs

B
(ν). (21)

This way, the background contribution fitted in the previous
step is removed. The limit spectrum, S SN, that is then adjusted to
Sobs,SN is

S SN(ν) =
∑

n

∑

`

Mn,`

B
(ν) + b, (22)

with Mn,` given by Eq. (14), and b corresponding to an additive
factor to locally adjust the background.

3.5. Pattern fit

In order to constrain the priors of the main individual mode
parameters, νn,`, Hn,`, and Γn,`, apollinaire performs a global
pattern fit on the orders located around νmax. Tassoul (1980) pre-
sented the following asymptotic relation for mode frequencies,
within the approximation n � `:

νn,` ≈
(
n +

`

2
+ ε

)
∆ν, (23)

where ε is a phase constant. Slightly modifying the formalism
adopted in Lund et al. (2017), this relation can be approximated,
in the νmax neighbourhood, to

νn,` ≈
(
n +

`

2
+ ε

)
∆ν− δν0` − β0`(n− nmax) +

α

2
(n− nmax)2, (24)

where the small separations δν0` are given by

δν00 = 0,

δν01 =

〈
1
2

(νn,1 − νn+1,0) − νn,1

〉

n
,

δν02 =
〈
νn,0 − νn−1,2

〉
n,

δν03 =

〈
1
2

(νn,3 − νn+1,0) − νn,3

〉

n
,

(25)

while α and β0` are respectively the curvature terms on ∆ν and
δν0`. The parameter nmax, which is not an integer, follows the
relation

nmax =
νmax

∆ν
− ε. (26)

Mode heights in the limit spectrum can be approximated
through the p-mode envelope parameters Hmax and Wgauss,
considering

Hn,` =
Hmax

B(νn,`)
exp

−
(
νn,` − νmax

Wgauss

)2 , (27)

while Γ is taken as a FWHM value common to all modes.
Using Eqs. (24) and (27), the pattern fit step is designed to

approximate the mode pattern around νmax with a given set θ of
global parameters: ε, α, ∆ν, νmax, Hmax, Wgauss, Γ, δν02, β02, δν01,
β01, and δν13 (with δν13 = δν03 − δν01), β03. The last four param-
eters can be ignored, for example if the star to fit presents ` = 1
mixed modes: only pairs Mn−1,2, Mn,0 will then be fitted (see
Appendix B). It is also possible to ignore just the ` = 3 mode
when the S/N of the considered PSD is insufficient. Indeed, in
this situation, the δν13 and β03 parameters will be difficult to
constrain and the sampled distribution will be prior dominated.

Guesses for ε, α, Hmax, Γ, δν02, δν01, and δν13 can be manu-
ally provided, otherwise they will be automatically computed.
If a guess is given for a δν0k, the initial value for the corre-
sponding β0k will be set to zero. To determine initial automated
guesses for parameters, we adopted prescriptions from Corsaro
et al. (2012) for stars with ∆ν < 14µHz and νmax < 450µHz. For
main sequence stars, we derived well performing initial values
from the results obtained by Lund et al. (2017). Proper guesses
for stars with 450 µHz < νmax < 1000 µHz are not implemented
in the current version of apollinaire but a recipe for how to
proceed with these stars is given in Appendix B.

The pattern fit step will fit θ by considering the k orders clos-
est to νmax. By default, the stellar_framework function uses
k = 3. The bounds of the fitting window are set 0.2 ∆ν below
and above the smallest and largest mode frequency included in
the pattern. In the standard procedure, the MCMC exploration
is directly performed from the initial rough guess computed by
apollinaire. It is possible to use a fast MLE run to quickly
refine this initial guess and to use the values yielded by the MLE
as a starting point for the MCMC sampling. This can save some
computing time by reducing the number of discarded steps at the
beginning of the MCMC exploration, but may also reduce the
opportunities of the walkers to explore different regions of the
distribution to sample in the case of multimodal distribution.

As underlined by Lund et al. (2017), the discrepancies
between the actual position of the modes and the frequencies
yielded by the relation given by Eq. (24) can be physically
explained by acoustic glitches (e.g. Mazumdar et al. 2014;
Houdayer et al. 2021). Moreover, when optimised only on
the central orders, the formula given by Eq. (24) should be
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extrapolated with caution for modes located far from νmax.
Indeed, in this case, there can be significant discrepancies
between the mode frequencies predicted by the formula and the
actual position of the mode in the PSD. This can be straight-
forwardly checked using an échelle diagram and is illustrated in
particular in Sect. 4.3. It is of course possible to include more
orders when sampling the distribution of pattern parameters, but
this will require more computing time; on one hand because
the likelihood will be computed on more data points, and on
the other because the chain will take more steps to converge.
In this situation, the results obtained with the summary statistics
alone should also be considered with caution as the inclusion of
low-S/N modes can strongly influence the multi-modality of the
sampled distribution.

An échelle diagram may also be particularly useful in order
to check that the code correctly identified the ` = 0 and the ` =
1 mode. When this is not the case, the failure in the sampling
is generally related to an improper prior for ε. In this situation,
the solution is to manually impose new initial values and prior
bounds for ε.

3.6. Selecting orders to fit

The result of the pattern fit is used to obtain guess values for νn,`,
Hn,`, and Γn,` for each mode. These values are provided inside
an a2z DataFrame. There are two ways to determine the modes
for which the function will provide guess values. With the first
method, the function will simply build the a2z DataFrame for a
given number of orders symmetrically distributed around νmax.
The second method performs a H0 screening (e.g. Appourchaux
et al. 2009, 2012; Broomhall et al. 2010; Davies et al. 2016; Lund
et al. 2017) on the p-mode region to assess the strong (` = 0 or 1)
mode detectability. Following the procedure presented in Davies
et al. (2016), the PSD is rebinned over t bins and a χ2

2t statistics is
considered. For each mode, the rebinning is performed consider-
ing an odd number of bins, the central bin being the one with the
frequency closest to the mode frequency estimated with the fitted
global parameters. The adopted threshold for the rejection of the
null hypothesis H0 is p = 0.001. The maximal value tmax con-
sidered for the rebinning is 99, or the t value corresponding to a
bin width of 5µHz, respectively. If the H0 hypothesis is rejected
for more than one-third of the considered rebinning, we consider
the mode as detectable. A guess for this mode will be added in
the a2z DataFrame along with the guess for the closest ` = {2, 3}
mode. It should be stated that it is also possible to manually pro-
vide a a2z DataFrame that will override the guess automatically
generated by the function.

3.7. Extraction of individual parameters: the peakbagging
function

In what follows, we refer to the Mn−1,2, Mn,0, Mn−1,3, and Mn,1
group of modes as a peakbagging order to avoid any confusion.
Mode parameters can be fitted globally, by peakbagging order,
or by pair. In the latter case, modes Mn−1,2, Mn,0 or Mn−1,3, and
Mn,1 are then fitted together, respectively. The reader should note
that the pair-fitting strategy is also suited to fitting any individual
mode if the parameters of only one mode of a given pair is spec-
ified in the a2z input. The model used to compute the likelihood
and posterior probability follows Eq. (22). The initial value for
the local S/N background term b is taken as 1 and set to vary
between 10−6 and 5.

The minimal set of parameters that will be fitted by the code
are mode frequencies, νn,`, heights, Hn,` (or amplitudes, An,`),
and FWHM, Γn,`. Additional parameters that can be fitted are

Table 3. Possible values of ww.

Interval (µHz) 1200–2000 2000–2500 >2500

ww (µHz) 35 55 75

splittings, sn,`, inclination angle, i, and asymmetries, αn,`. It is
possible to fit the projected splittings, s? = s sin i (Ballot et al.
2006, 2008), instead of s. Except for mode frequencies, every
input parameter can be set to parametrise all modes, a whole
order, a pair, or only one mode. In other words, it is possible
to impose each mode of a given peakbagging order to have, for
example, the same FWHM.

If the user does not provide a fitting window size, the data
to fit are restricted to an adaptive fitting window: only PSD
elements within [ν−, ν+] are considered, with:

ν− = νlow −
νup − νlow

d
,

ν+ = νup +
νup − νlow

d
,

(28)

where νlow and νup are respectively the minimal and maximal
guess frequencies of the modes to fit. The value of d is then
determined by the considered method: if the fit is made by order,
d = 3, if the fit is made by pair, d = 1.

For modes above 800µHz and if the fit is made by pair,
another possibility offered by the code is to use the ∆ν value to
constrain the fitting window. The 800µHz value has been cho-
sen to ensure that the considered mode does not exhibit avoided
crossings, which might add additional difficulties due to the
potential presence of mixed modes in the fitting window. In this
case, the window bounds are:

ν− = νcenter − ww ∆ν

∆ν�
,

ν+ = νcenter + ww
∆ν

∆ν�
,

(29)

where νcenter is the centre of the window given by the mean of
the guess frequencies of the two modes to fit (or simply the guess
frequency of the mode to fit if only parameters for one mode are
specified), and the reference value ∆ν� = 135 µHz. The possible
values of ww are summarised in Table 3.

As underlined in Sect. 2, the mode visibilities and m-height
ratios have instrumental dependencies. There are two ways to
deal with mode visibilities: on one hand, the user can choose
to fit amplitude parameters individually for each mode, and on
the other, it is possible to specify the amplitude ratios V`/V0 in
the a2z input file. The usual ratios (Salabert et al. 2011a) are
provided in Table 2.

The m-height ratios to use are selected through the instru-
ment argument of the peakbagging function. The implemented
ratios for each instrument are given in Table 1.

It should also be noted that for H and Γ, it is the natural loga-
rithms of the parameters that are expected to have a Gaussian
distribution (Toutain & Appourchaux 1994; García & Ballot
2019). For parameters of these types, the peakbagging func-
tion thus samples the natural logarithm. However, it should be
remembered that it is straightforward to obtain the sampled dis-
tribution of the parameter itself by a simple transformation of the
MCMC elements.
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. Indeed, in this case, there can
be significant discrepancies between the mode frequencies pre-
dicted by the formula and the actual position of the mode in the
PSD. This can be straightforwardly checked using an échelle di-
agram and is illustrated in particular in Sect. 4.3. It is of course
possible to include more orders when sampling the distribution
of pattern parameters, but this will require more computing time;
on one hand because the likelihood will be computed on more
data points, and on the other because the chain will take more
steps to converge. In this situation, the results obtained with the
summary statistics alone should also be considered with caution

as the inclusion of low-S

Fig. 4. Summary of the available options for the p-mode individual
parameter extraction step.

3.8. Dealing with ` = 4 and ` = 5 leaks in solar spectra

Due to the very high S/N of radial-velocity helioseismic data,
some ` = 4 and ` = 5 modes (referred as intermediate-degree
modes) may arise above noise. It has been shown that omit-
ting their contribution to the power distribution of the spectrum
can introduce bias in the fitted frequencies of up to three times
the uncertainty (Jiménez-Reyes et al. 2008). If guesses for
intermediate-degree modes are specified in the input a2z file
(e.g. using the theoretical frequency value for those modes), the
code will check for their presence inside the defined window.

If, when reading the a2z DataFrame, it appears that an
intermediate-degree mode is present in the fitting window, its
frequency will be added to the parameters to fit. Heights and
FWHMs of intermediate-degree mode are computed considering
the ratio presented in Table 2 and using the closest ` = 0 mode
as a reference. If no ` = 0 is fitted at this time, the closest ` = 1
is used instead. Power is distributed between the m-components
of the mode following Table 1. The splittings are set to 400 nHz
and do not vary. No asymmetry is considered for these modes.
The diagram shown in Fig. 4 summarises the possible options
described in Sects. 3.6, 3.7 and 3.8.

3.9. Quality assurance

Several frequentist and Bayesian metrics for peakbagging qual-
ity assurance have been suggested over the years (see e.g.
Appourchaux et al. 2012; Davies et al. 2016; Lund et al. 2017).
The quality assurance metric implemented in apollinaire
takes inspiration from the Bayesian machinery described in
Davies et al. (2016) but avoids resampling a MCMC to obtain
the probability of the different models to compare, which saves
a large amount of computing time.

The apollinaire package implements a Bayesian quality
assurance computing tool where three possibilities are assumed
for each fitted pair of modes (odd or even): (1) The strong
(` = 0 or 1) and the weak (` = 2 or 3) modes are both
detected (model Msw with associated probability psw); (2) only
the strong mode is detected (model Ms with associated proba-
bility ps); or (3) neither of the two modes is detected (model
M0 with associated probability p0). We have assumed that a
weak mode could not be detected if the strong mode was
not also detected. Assuming that a sufficient number of ini-
tial steps has been discarded, the MCMC contains n sets of
parameters θ. A subset of k (k ≤ n) elements still representa-
tive of the MCMC distribution can be selected by thinning the

chain. Indeed, this subgroup of parameters should follow the
same distribution as the full MCMC if enough elements are
considered. For each of those k sets of parameters θk, likeli-
hoods p(D|Msw, θk), p(D|Ms, θk), p(D|M0, θk) corresponding to
the three hypothesises are then compared (considering the data
D within the same frequency window that was used for the
actual fit). For the M0 model, as the frequency window is narrow
enough, we consider a flat background which is computed as the
median of the power distribution of the frequency bins inside the
window.

The estimated probability pα (marginalised over the param-
eter distribution) that a model Mα is the most likely considering
the data is then computed as follows:

pα =

# {θk | p(D|Mα, θk) = max
i∈{α,β,γ}

p(D|Mi, θk)}
k

, (30)

where given an ensemble E, #E denotes its cardinal. The indexes
α, β, and γ in Eq. (30) should be properly replaced by sw, s, and
0 depending on the considered case. We use Eq. (30) to esti-
mate the probability pα as the fraction of explored parameter
sets θk for which the model α is the most likely among the three
models. If we consider the specific case where n = k, Eq. (30)
gives the exact proportion of cases in the sampled distribution
where the Mα model is the most likely. The probability pα is
therefore the likelihood of Mα for this distribution. The thinning
step to reduce to k samples allows a significant gain in comput-
ing time to obtain pα while conserving the sampled distribution
properties.

p0 is the probability of the null hypothesis H0 for the detec-
tion of the strong mode while ps + p0 is the H0 probability for
the weak mode. For the considered pair, the natural logarithm of
the Bayes factor K for the detection of a mode of degree ` is then
given by:

ln K = ln (psw + ps) − ln p0; ` ∈ {0, 1}
ln K = ln psw − ln (ps + p0); ` ∈ {2, 3}. (31)

Here we reiterate the interpretation of the ln K value for the
evidence against H0, as outlined by Kass & Raftery (1995) :

ln K =



< 0 favours H0
0 to 1 not worth more than a bare mention
1 to 3 positive
3 to 5 strong
> 5 very strong.

It is easy to see that, if the model psw, for example, is
favoured in any case, this will correspond to psw = 1 and there-
fore ln K > 5. If we have psw = 2/3 and p0 = 1/3, we will have
ln K ≈ 0.69, and the Msw model is only barely favoured com-
pared to the H0 hypothesis. Modes with ln K < 1 should be
cautiously considered when exploiting the peakbagging results
for modelling purposes.

4. Benchmark with Monte Carlo synthetic spectra
and published peakbagging results

In this section, in order to assess the reliability of the code, we
present the results of a Monte Carlo benchmark with synthetic
spectra. We then compare apollinaire results with results
obtained with other peakbagging codes. As the method has been
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Table 4. Mode parameters of the three pairs used for the Monte Carlo
trial.

Pair 1 Pair 2 Pair 3

` 2 0 3 1 2 0
ν (µHz) 1810 1822 2946 2963 3703 3710
H (S/N) 14 20 6 30 21 30
Γ (µHz) 0.35 0.35 1 1 4 4
s (µHz) 0.4 0.4 0.4 0.4 0.4 0.4
i (◦) 90 90 90 90 90 90

2940 2945 2950 2955 2960 2965 2970
Frequency (µHz)
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Fig. 5. Example of a synthetic spectrum generated with the pair 2 set
of parameters and a frequency vector with 1460-day resolution (black).
The ideal spectrum is overplotted in blue.

designed to perform helioseismic and asteroseismic analysis, we
decided to perform our benchmark with both solar and stellar
data5.

4.1. Monte Carlo trial

Considering three different sets of parameters (see Table 4), we
generate a limit spectrum for three pairs of modes. This limit
spectrum is then multiplied by a noise vector with a power dis-
tribution following a χ2 with two degrees of freedom. The pairs
are generated for two frequency vectors: the first with one-year
resolution and the second with four-year resolution. An example
of such a synthetic pair is shown in Fig. 5. Each pair is then fitted
using the peakbagging function. For each pair and each reso-
lution, we repeat this process 200 times. For each considered
pair and resolution, Tables 5 and 6 summarise the percentage
of times for which the true value, considering the uncertain-
ties, is outside the 68% and 99.7% credible intervals, defined
by the 1σ and 3σ departure from the fitted value, respectively,
with the fitted value taken as the median of the sampled dis-
tribution. The percentage of fits for which we find the true
value to be in the 68% and 99.7% credible intervals is therefore
close to expectations, the standard deviation for the frequency of
success being 3.3% in the case of 200 draws following a bino-
mial law of parameters (ndraw = 200, p = 0.68), and 0.4% for
(ndraw = 200, p = 0.997), with ndraw being the number of draws.

5 Full results, Kepler light curves, and data analysis tools used to
perform the benchmark can be accessed through the following reposi-
tory: https://gitlab.com/sybreton/benchmark_peakbagging_
apollinaire

Table 5. Percentage of values in the 68% and 99.7% credible intervals
for the strong (` = 0, 1) mode in the Monte Carlo trial.

Pair 1 Pair 2 pair 3

Resolution (day) 365 1460 365 1460 365 1460

ν
68% 68.5 70 64.5 71.5 75 67

99.7% 99.5 99.5 99.5 100 100 100

H 68% 74.5 69.5 76 72.5 65 72
99.7% 99.5 99.5 100 100 100 99.5

Γ
68% 71.5 73.5 68.5 72 72 70

99.7% 100 99.5 100 100 100 99.5

s 68% – – 77.5 71 – –
99.7% – – 100 100 – –

Table 6. Percentage of values in the 68% and 99.7% credible intervals
for the weak (` = 2, 3) mode in the Monte Carlo trial.

Pair 1 Pair 2 Pair 3

Resolution (day) 365 1460 365 1460 365 1460

ν
68% 77.5 72 76 73.5 71.5 74

99.7% 100 99.5 99.5 100 100 100

H 68% 75.5 70.5 70.5 68.5 71.5 72
99.7% 100 99 100 100 99.5 100

Γ
68% 74.5 73 74.5 74.5 74.5 76.5

99.7% 99.5 100 99.5 100 100 99.5

s 68% 68 73 67.5 68 86 77.5
99.7% 99 99.5 99.5 99.5 100 100

When we consider the 2400 fitted frequencies at once, we find
the uncertainties obtained with apollinaire to be conserva-
tive in this experiment. Indeed, 71.5% of the fitted frequencies
are in the 68% credible interval. With a standard deviation of
0.95% for 2400 independent experiments, this is approximately
four standard deviations away from the 68% expected value.

We note that the uncertainties obtained for the 1460-day
pairs are significantly smaller than for the 365-day pairs. An
example comparison between the true value and apollinaire
fitted value is shown in Figs. 6 and 7, where the frequency
error νfitted − νtrue between the fitted value and the true value
is represented for the ` = 1 mode of pair 2. The spread reduc-
tion of the error distribution appears clearly in the histograms.
Figure 7 also shows the (νfitted − νtrue)/σ distribution where we
specify the mean value 〈(νfitted − νtrue)/σ〉. As expected, the stan-
dard deviation for the (νfitted − νtrue)/σ distribution is close to 1
in both cases. We find no systematic bias in the fitted parame-
ters, except for the splittings in pair 3 which are systematically
underestimated due to the large mode width.

4.2. GOLF solar PSD analysis

To study the p-mode frequency shifts induced by the mag-
netic solar cycle, Salabert et al. (2015) performed an analysis
of 69 one-year subseries of the GOLF instrument, spanning
from 1996 April 11 to 2014 March 5, with 91.25 days overlap.
The modes were fitted using a MLE method (Salabert et al.
2007). In order to compare the results from this method with
apollinaire fits, we use the same MLE code to perform a sim-
ilar analysis by considering subseries of 1-yr spanning from 1996
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April 11 to 2020 July 6, with a 91.25 days overlap6. We remove
five subseries that have a duty-cycle of below 90% and therefore

6 The GOLF time series used for this work can be downloaded at
https://irfu.cea.fr/dap/LDEE/Phocea/Vie_des_labos/Ast/
ast_visu.php?id_ast=3842

√
Fig. 8. (νapn − νMLE)/

√
σ2
apn + σ2

MLE distribution for mode frequencies
fitted in the 89 considered GOLF time series.

consider 89 subseries. For each of these subseries, we fit modes
` = 0, 1, 2, 3. However, as ` = 3 have low signal-to-noise ratios in
the GOLF data, we compare only the results obtained for mode
` = 0, 1, 2 in the following. The lowest frequency considered
mode is n = 11, ` = 2 while the highest frequency considered
mode is n = 26, ` = 1. This means that we compare fit results
between apollinaire and the MLE method for 4005 modes.
The procedure to fit the series with apollinaire is the fol-
lowing. Frequency bins below 50µHz are not considered to fit
the background. The S/N spectrum is then computed by divid-
ing the PSD by the fitted background model. Modes are fitted
by pair. Heights Hn,`, FWHMs Γn,` and splittings sn,` are fit-
ted independently for each mode. As asymmetries are expected
to depend on frequency only, one asymmetry value is fitted for
each pair. Finally, ` = {4, 5} power leakages are accounted for
during the fit. For the background fit, the MCMC are sampled
with 500 walkers iterated over 500 steps, with the 100 first steps
discarded as burn-in. For the individual mode fit, the MCMC are
sampled using 500 walkers iterated over 1000 steps. The 400 first
steps are discarded to take the burn-in phase into account.

We consider the 1σ and 3σ intervals relative to the val-
ues and corresponding uncertaintiesσ fitted with apollinaire.
Among the 4005 fitted modes, the frequencies fitted by the MLE
method, νMLE, lay outside the 1σ interval for 38 modes (0.9%)
and outside the 3σ interval for 10 modes (0.2%). The MLE
heights H lay outside the 1σ interval for 464 modes (11.5%) and
outside the 3σ interval for 23 modes (0.6%). The MLE FWHMs
Γ lay outside the 1σ interval for 185 modes (4.6%) and outside
the 3σ interval for 18 modes (0.4%). The relatively high num-
ber of H and Γ values laying outside the 1σ interval can be
explained by the strong anti-correlation that exists between these
two parameters, especially at high frequency. We also identify at
least two modes that have not been correctly fitted by the MLE

method. Finally, we represent the (νapn − νMLE)/
√
σ2
apn + σ2

MLE
distribution in Fig. 8 in order to show the comparison of the two
methods exhibits no systematic bias.

4.3. The Kepler main sequence LEGACY catalogue

In order to extract strong modelling constraints to be used in stel-
lar evolution codes Silva Aguirre et al. (2017), hereafter L17, per-
formed a thorough peakbagging analysis of the so-called Kepler
LEGACY sample, which contains 66 main sequence stars with
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Table 7. KIC and fundamental stellar properties of selected targets from
the LEGACY sample.

KIC Name Teff (K) log g R (R�) M (M�)

5184732 – 5835 4.257 1.326 1.159
6106415 – 6028 4.295 1.202 1.039
6225718 – 6320 4.316 1.207 1.096
6603624 – 5671 4.319 1.162 1.027
12069424 16CygA 5775 4.294 1.165 0.973
12069449 16CygB 5745 4.359 1.069 0.952

stochastically excited p modes7. We select six targets to anal-
yse within the LEGACY sample, namely KIC 5184732, 6106415,
6225718, 6603624, 12069424, and 12069449, and we compare
the apollinaire results to the reference values provided by
L17. Some fundamental stellar properties of the selected targets
are given in Table 7, which are taken from the Kepler data release
25 (DR25, Mathur et al. 2017).

As we want to show how apollinaire behaves when used
blindly without any previous knowledge of the seismic values,
effective temperatures Teff , masses M, and radii R are used to
estimate νmax and ∆ν values from the global seismic scaling laws.
We could also have used the νmax and ∆ν values from L17 as
input. The PSDs we analyse were obtained from KEPSEISMIC-
calibrated8 light curves (García et al. 2011). The background
profile is fitted considering two Harvey models and a flat noise
contribution (see Sect. 2.2). We fit the background with the com-
plete PSD, but in order to assess the effect of a background
fit performed on a rebinned PSD on the mode frequencies,
we also sample the posterior probability of our background
model on a PSD resampled following the method described in
Appendix A. Frequency bins below 50µHz are not considered.
We use 500 walkers iterated over 5000 steps, with the 100 first
iterations discarded as burn-in. We deliberately choose a large
number of steps to ensure the convergence of the chains. The
global mode pattern is adjusted on the S/N spectrum obtained
by dividing the PSD by the background model, according to the
strategy described in Sect. 3.5 and considering ` = {0, 1, 2, 3} of
the three orders closest to νmax. We use 500 walkers iterated over
5000 steps and we discard the 250 first drawn points. We visu-
ally check that the fitted pattern has a satisfying profile in order
to provide correct frequency guesses for the individual mode-
parameter extraction. In the individual mode parameter fit, for
each target, we limit our analysis to the seven orders closest to
νmax. All the chosen targets have a p-mode S/N that is suffi-
cient to fit mode parameters farther from νmax, but we make this
choice in order to ensure that the frequency estimates yielded
by Eq. (24) are correct and to avoid a manual redefinition of the
priors for low- and high-order modes before sampling the mode
parameters. The MCMCs are sampled using 500 walkers iter-
ated over 5000 steps. The 200 first steps are discarded to take the
burn-in phase into account.

For each fitted parameter, L17 specified two uncertainty
values (in the same way apollinaire allows computing σ+

and σ−). For sake of simplicity and clarity in the compari-
son of results, we consider only the larger uncertainty value

7 The mode frequency, amplitude and width tables are publicly avail-
able on VizieR at http://cdsarc.u-strasbg.fr/viz-bin/Cat?
J/ApJ/835/172
8 KEPSEISMIC data are available at MAST via http://dx.doi.
org/10.17909/t9-mrpw-gc07

525055005750600062506500
Teff (K)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6
006603624

005184732

006106415

006225718

012069449
012069424

computed according to the method pre-
sented in Sect. 3.9. The results are globally in agreement for

frequencies. Considering the 1

Fig. 9. L17 ε values (pentagons) compared to apollinaire ε values
(stars) for the six considered targets. Corresponding KIC are speci-
fied next to each red dot. The epsilon values obtained by L17 for the
other stars of the LEGACY sample are represented in grey. Some of the
uncertainties are too small to be represented on the figure.

for each parameter. L17 epsilon ε values are compared to the
results yielded by apollinaire in Fig. 9. The echelle diagrams
obtained from the apollinaire fits are provided in Fig. 10
where we also represent the frequencies obtained from Eq. (24)
and the corresponding pattern sampling. As already underlined
in Sect. 3.5, the echelle diagram clearly shows that, as we con-
strained the parameters from Eq. (24) on only the three central
orders, the predicted value we obtain for modes far from νmax
does not follow the actual node ridge in the echelle diagrams.
Fitted frequencies are compared with the values from L17 in
Fig. 11. The same type of comparison is performed for mode
amplitudes and FWHMs in Fig. 12. The apollinaire fitted
values and reference from L17 can be found in Tables 8, D.3,
and D.4, along with the quality assurance values ln K com-
puted according to the method presented in Sect. 3.9. The results
are globally in agreement for frequencies. Considering the 1σ
and 3σ interval relative to the apollinaire value again over
the 154 fitted frequencies, the L17 frequency is beyond 1σ for
39 modes and beyond 3σ for three modes. We find larger dis-
crepancies for mode amplitudes and widths: over the 42 fitted
widths (one per order), the L17 value is outside the 1σ interval
25 times and outside the 3σ interval 8 times. Over the 42 fitted
amplitudes, the L17 value is outside the 1σ interval 31 times and
outside the 3σ interval 12 times. We find no systematic bias in
the frequency, amplitude, and width comparison. Concerning the
mode frequencies, the largest observed discrepancy between L17
and apollinaire is found to be on the KIC 006603624 mode
M18,3. We have ν18,3,apn = 2299.52 ± 0.20µHz and ν18,3,L17 =
2305.47 ± 0.13µHz. However, inspecting the KIC 006603624
spectrum and the corresponding echelle diagram, it seems more
credible to us that the correct position of this mode is the one
yielded by apollinaire.

The discrepancies in the values obtained for fitted parameters
can have multiple explanations. While we used KEPSEISMIC
data, L17 exploited light curves corrected with the KASOC fil-
ter (Handberg & Lund 2014). The data calibration influences
the power redistribution in the PSD frequency bins and may
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Fig. 10. Échelle diagram of the six selected targets apollinaire fitted p-mode frequencies (black diamonds) with corresponding error bars. The
blue circles signal the frequency initial guesses inferred from Eq. (24).

therefore be responsible for some of the observed discrepan-
cies between the mode widths and amplitudes, and, to a lesser
extent, for frequency discrepancies. However, when comparing
peakbagging codes, it is found that the main discrepancies are
induced by the differences in the methods used to fit the back-
ground (Appourchaux et al. 2014). It should also be underlined
that there are several differences in the models we use when com-
pared to those used by L17. The first main difference resides in
the fact that L17 included the V` parameters for which poste-
rior probability distributions are sampled while these parameters
were fixed in our model (see Sect. 2.6). The second difference
is that, as we fit order by order, the inclination angle i is poorly
constrained with this choice of strategy. It is also important to

keep in mind that the uncertainty values yielded by a MCMC
process are only formal uncertainties related to the variance of
the parameters inside a given model confronted to the data. It
has already been demonstrated that an inaccurate description
(e.g. by neglecting the ` = 4, 5 contribution or the wing power
of the modes outside the fitting window) of the mode profiles
could bias the estimation of the real values by several times the
uncertainty values (Jiménez-Reyes et al. 2008).

Concerning ε values, L17 and White et al. (2011) noted that a
strong anti-correlation exists between ∆ν and ε. We also note that
for most νmax, ∆ν, and ε, the apollinaire uncertainty values
are much larger than for the L17 values. For KIC 006225718, for
example, apollinaire yielded ∆ν = 106.78 ± 0.43µHz while
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Fig. 11. Comparison of p-mode frequencies yielded by apollinaire (dark blue) and reference values from L17 (light blue). The error bars
overlapping intervals are represented in medium blue. The KEPSEISMIC PSD are represented in light grey while the apollinaire fitted model
is shown in dark grey.

L17 gave ∆ν = 105.695 ± 0.018µHz. This can be explained by
the fact that, even if our Eq. (24) is really close to Eq. (27) of
L17, the strategy exploited to sample the parameter distribution
is totally different. We use Eq. (24) together with Eq. (27) and
a common Γ value in order to compute a mode profile for the
three central orders and directly constrain our parameters with
the PSD. On the contrary, L17 used their Eq. (27) to constrain the
pattern parameters from the individual mode frequencies they
had already obtained from the PSD analysis.

Finally, Fig. 13 shows the (νfull − νresampled)/√
σ2

full + σ2
resampled distribution, where νfull and σfull are the

frequencies and uncertainties obtained by considering the
complete PSD for the background fit, and νresampled and σresampled
are the frequencies and uncertainties obtained after using the
background fitted on the resampled PSD. This shows that, for
mode frequencies, the discrepancies between the two methods
are negligible with respect to the fitted uncertainties, which
means that frequencies obtained with the PSD resampling
method can be used without risk as input for modelling codes.
This resampling strategy is made relevant in the optic of the
PLATO mission preparation, where it will be necessary to
perform the peakbagging analysis for tens of thousands of stars
in an optimised computing time.
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Fig. 12. Comparison of p-mode FWHMs and amplitudes yielded by apollinaire (dark blue and red, respectively) and reference values from L17
(light blue and salmon, respectively). The error bars overlapping intervals are represented in medium blue and dark salmon, respectively.

Table 8. Comparison between νmax, ∆ν, and ε values yielded by apollinaire and reference values from L17.

KIC νmax,apn (µHz) νmax,L17 (µHz) ∆νapn (µHz) ∆νL17 (µHz) εapn εL17

5184732 2164 ± 35 2089.3 ± 4.4 95.94 ± 0.15 95.545 ± 0.024 1.287 ± 0.034 1.374 ± 0.005
6106415 2215 ± 50 2248.6 ± 4.6 103.36 ± 0.37 104.074 ± 0.026 1.499 ± 0.079 1.343 ± 0.005
6225718 2349 ± 54 2364.2 ± 4.9 106.78 ± 0.43 105.695 ± 0.018 1.005 ± 0.087 1.225 ± 0.004
6603624 2386 ± 24 2384.0 ± 5.6 110.05 ± 0.03 110.128 ± 0.012 1.509 ± 0.006 1.492 ± 0.002
12069424 2192 ± 22 2188.5 ± 4.6 103.35 ± 0.39 103.277 ± 0.021 1.426 ± 0.008 1.437 ± 0.004
12069449 2625 ± 93 2561.3 ± 5.6 116.87 ± 0.87 116.929 ± 0.013 1.473 ± 0.007 1.461 ± 0.013
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targets considered in the LEGACY sample.

5. Discussion

The possibilities offered by MCMC sampling methods and the
flexibility of the possible strategies allowed by apollinaire
merit a brief discussion. Another question that arises when using
MCMC is the hyper-parameters value that must be chosen in
order to correctly dimension the problem. We decided in this
paper to use 500 walkers for all the sampling we perform, which
is a typical value used in several peakbagging studies (see e.g.
Davies et al. 2016; Lund et al. 2017). Choosing the optimal
number of steps to perform when sampling the chain and the
proportion of steps that should be burned in at the beginning of
the run represents a complex issue that has no universal solution.
This can only be done through test and trial, especially when the
initial guesses appear to be quite far from the posterior probabil-
ity optimum. One way to check that the chain is fully converged
is to split it in half after having removed the burned in elements
and to verify that the shapes of the two subdistributions are iden-
tical. It is also possible to estimate the auto-correlation time τ of
the chain to assess its convergence. However, obtaining a reliable
estimate of τ requires running the sampling for at least 50τ steps,
which can prove extremely computationally extensive. Having
run a sampling experiment with KIC 6603624 as reference, we
find that, when the posterior is data dominated, τ values are typ-
ically of a few hundred steps. Parameters for which the posterior
is prior dominated typically have longer auto-correlation times.

It is also important to keep in mind that some fitting strate-
gies may have to be preferred considering the target being
analysed. For example, for high-resolution solar data, we will
favour a fit by pair, with the height and the FWHM of each mode
set to vary freely. Mode asymmetries should be fitted for modes
above 2450µHz. In stellar data, especially with low-resolution
low-S/N data, modes will be fitted globally or by order, with a
constraint on the mode-relative amplitudes. It will only be pos-
sible to constrain the stellar inclination angle where good S/N
data are available; in this case, it will be necessary to perform a
global fit in order to consider the m-height ratio of the largest
possible number of modes at the same time. Mode asymme-
tries are usually not considered when fitting stellar data. The
user may keep in mind that when fitting all the modes at once
with a global method, the MCMC will converge more slowly
because of the increased number of dimensions in the parame-
ter space being explored. For power spectra obtained from short
time series, because of the mode stochastic excitation, allowing

the mode FWHM and height to vary freely may sometimes yield
better results than using the ratios specified in Table 2.

6. Conclusion

In this paper, we introduced the apollinairemodule, an open-
source Python 3 package designed for helio- and asteroseismic
disk-integrated peakbagging. The module implements a set of
functions that are able to extract background, p-mode global
pattern, and p-mode individual parameters through MCMC sam-
pling implemented with emcee. The implementation of these
functions is designed to provide a flexible framework. They can
be used independently or combined depending on the task the
user wants to achieve.

We analysed data from the GOLF instrument and the Kepler
LEGACY sample in order to compare apollinaire results
with values available in the literature. We find good agreement
between our results and the reference values. The discrepan-
cies can be explained by differences in data calibrations, fitting
strategies, and adopted models.

The code is in active development and the online repository
is regularly updated. An online documentation of the package
is available and includes several tutorials that should allow any
interested user to quickly start working with apollinaire and
use the different functions to analyse their own set of data. With
the increasing number of TESS targets of asteroseismic inter-
est and the preparation of the PLATO mission, we hope that
apollinairewill become a widely used tool in the community.
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Appendix A: PSD resampling for background fit

We included several resampling strategies in apollinaire in
order to perform quicker background fits (the computing time
of the MCMC process being mainly constrained by the length of
the vector on which the posterior probability is computed at each
step). We describe here the resampling methods implemented in
the module. The user has the choice between two resampling
strategies, reboxing and advanced_reboxing.

The reboxing strategy uses the numpy.logspace function
to create a new frequency vector with logarithmic frequency
spacing and a number of data points specified by the user. The
logarithmic spacing is preferred over a linear spacing in order
to increase the proportion of low-frequency data-point in the fit.
Each bin of the original PSD is then attributed to a box consid-
ering the closest frequency bin in the new frequency vector. The
median of each box is then considered in order to compute the
resampled PSD.

In order to apply a distinct resampling to the p-mode region,
the advanced_reboxing extends this approach with a more
subtle resampling techniques. In this case, the user specifies a
target number N of data points in the resampled PSD outside
the νmax region and a number M of data points in the νmax
region. Considering consecutive frequency bins νk and νk+1,
they are directly put in the resampled frequency vector under the
condition
νk+1

νk
> 10

1
N , (A.1)

We define k0 as the frequency bin verifying:

k0 = min
k

{
νk+1

νk
< 10

1
N

}
, (A.2)

and three frequency intervals I j = [νa, νb] such as

I1 =

[
νk0 ,

2
3
νmax

]
, (A.3)

I2 =

[
2
3
νmax,

3
2
νmax

]
, (A.4)

I3 =

[
3
2
νmax, νNyquist

]
. (A.5)

For each frequency interval, the box size parameter S j is

S j =

(
νb

νa

) 1
N j

, (A.6)

with

N1 =
N
C

log
(

2νmax

3νk0

)
, (A.7)

N2 = M , (A.8)

N3 =
N
C

log
(

3νNyquist

2νmax

)
, (A.9)

and the parameter C is given by

C = log
(

4
9
νNyquist

νk0

)
. (A.10)

The bounds of the consecutive boxes in the I j interval are then
[νa, S jνa], [S jνa, S 2

jνa], ..., [S N j−1
j νa, νb]. Inside each box, the

new PSD bin is taken as the median of the PSD values in the
box while the corresponding new frequency bin is computed by
considering the geometric means of the frequencies inside the
box

νbox = 10
1

nbin

nbin∑
i=1

log νi
, (A.11)

with nbin the number of frequency bins inside the box.

Appendix B: Subgiant mixed-mode fitting recipe

Although apollinaire was not initially designed to perform
the automatic analysis of subgiant stars, it is possible to exploit
the global fitting strategy in order to characterise stars with an
important number of mixed modes. In this appendix we pro-
pose a recipe to analyse such stars. The user who would like
to use this recipe should be aware that in its current version,
apollinaire provides no method to automatically compute
guesses for mixed-mode parameters. Such methods were pre-
sented, for example, in Mosser et al. (2015) or Appourchaux
(2020).

We provide here an example9 of such a fit performed on
KIC 5723165, a subgiant star observed by Kepler in short
cadence in Q1, Q5, and continuously from Q7 to Q13 for a
total of ∼760 days (e.g. Appourchaux 2020), which has not been
peakbagged yet. The apollinaire KIC 5723165 peakbagging
summary plot is shown in Fig. B.1.

The sequence of steps to be followed in order to apply the
recipe is therefore as follows:
1. We start by fitting the background with the
explore_distribution_background function, in-
cluding the fitting of a Gaussian function to take into
account the power hump of the p and mixed modes.

2. The presence of mixed modes can perturb the analysis of
the mode pattern and the calculation of ∆ν. Therefore, after
dividing the PSD by the background to work in S/N, we
remove the region of the odd modes from the PSD prior to
fit the universal pattern using only the even modes. To do so,
we provide a Jupyter notebook in the documentation with an
easy procedure to select the regions of the even modes by
directly clicking on the PSD or by providing a list of fre-
quencies determining the boudaries of these bands. Then, a
median clipping of the n orders selected by the user around
νmax is done. To help performing this manual selection, the
user can use νmax obtained from the fitting of the Gaussian
when the background is determined. A first estimation of ∆ν
can then be obtained using the seismic scaling relations.

3. After median clipping the region of the odd modes, the fit-
ting of the universal pattern can be performed using the
masked PSD (see Fig.B.2). In general, if the masking is well
done, the standard guesses of the universal pattern provided
by apollinaire would be good enough. However, the user
can try to change these original guesses and bounds for δν0,2,
as they are too low for subgiants. A good choice could be
∼4 µHz, and the upper bound should be higher than 6 µHz.
The upper bound for the mode width Γ could also be low-
ered. Indeed, it is important to note that having a small δν0,2
guess value and a large one for Γ often leads to an inaccurate
fit, as the ` = 0 and ` = 2 are considered as part of the same
mode.

9 This example is available on the same repository than the bench-
mark presented in Section 4: https://gitlab.com/sybreton/
benchmark_peakbagging_apollinaire/-/tree/master/
subgiant_recipe/5723165
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Fig. B.1. Summary of the peakbagging of the subgiant KIC 5723165. Top left: Original PSD as a function of frequency in a linear scale around
νmax (grey), a smoothed PSD (black), and the resultant fit (red). Top right: Same three PSDs in a log-log scale. Central left: Residual of PSD (in
S/N) after removing the fitted model. The coloured lines represent different levels of smoothing. Central right: Fitted mode heights as a function
of frequency. Bottom left: Fitted mode widths as a function of frequency. Bottom right: Echelle diagram with a ∆ν of 34.3 µHz. Crosses indicate
the fitted frequencies. This figure has been produced as one of apollinaire standard outputs.

4. After fitting the Universal pattern, the code provides an
a2z file with the guesses for the even modes to be fitted by
the peak bagging module. A first characterisation of those
modes can be performed directly if we are not interested in
the odd ones.

5. To fit the odd modes (see Fig. B.1), the a2z guess file needs
to be modified manually. The only way to do the fitting is
global and not by order as the mixed modes cannot be
assigned to any particular order. In the a2z guess file, we

suggest to write the radial order n of each mixed mode start-
ing by 100. The order is not important and these values
are given only as an indication to the user that the corre-
sponding modes are mixed modes. We recommend that each
mixed mode is fitted with an individual frequency, width,
and height.

Table B.1 summarises the parameters obtained for the fitted
modes.
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Fig. B.2. PSD of KIC 5723165 with the regions of the odd modes
masked (grey line) and a smoothed version of this PSD in black. The
red line corresponds to the result of fitting the Universal pattern. The
structure between the modes `=2 and `=0 around 565 µHz is a mixed
mode.

Appendix C: Detailed results from Kepler LEGACY
targets

The detailed results of the p-mode individual parameters fitted
for the benchmark on the six LEGACY targets performed in
Sect. 4.3 are presented here. Table D.3 presents the comparison
of H and Γ between apollinaire and L17. As L17 chose to fit
amplitude rather than heights, the corresponding mode heights
and uncertainties have been recomputed through the proxy of
their Eq. 6. Table D.4 presents the comparison of mode frequen-
cies ν and quality assurance factors ln K between apollinaire
and L17.

Appendix D: Input and output files

The apollinaire module is built around a certain number of
input and output files which are described in the subsequent
sections.

Appendix D.1. The a2z file and the a2z DataFrame

The syntax of the a2z files has been designed to specify some
pieces of information the procedure has to be aware of when
dealing with individual mode parameters extraction. A line cor-
responds to a parameter. The file contains nine columns: order
n, degree `, name of the parameter, extent, value, uncertainty
σsym (see Sect. 3.1),fixed key, low bound and up bound of
the parameter.

If a parameter has to apply to every order or degrees,
the value to specify in the corresponding column is a. The
possible parameters name are freq, height, width, asym,
angle, split. Parameters with name freq, height or
width cannot have n = a, parameters with name freq cannot
have ` = a. The extent columns reminds the extent of appli-
cation of a given parameter: mode, pair, order, or global.
The pair keyword can only be used when fitting modes by pair.
Only angle or split parameters can be set as global. For
an input a2z file, the value column specify the value around
where the sampler will initialise the walkers that will sample the
MCMC. The uncertainty column is relevant only for output
a2z files. It has to be read as the σy values given in Eq. 18. The
fixed key column values must be set to 0 or 1 and are managed
by the apollinaire function. Parameters with fixed key 0 at
a given step will be fitted while parameters with 1-value will be
read as frozen parameters. In input a2z files, the low bound and

Table B.1. Parameters fitted for KIC 5723165 modes.

n ` ν (µHz) H (ppm2/µHz) Γ (µHz)
11 0 429.46+0.23

−0.25 3.68+0.93
−0.72 2.82+0.93

−0.70
- - 437.88+0.23

−0.19 2.78+1.44
−0.93 0.92+0.34

−0.25
- - 448.93+0.07

−0.07 14.76+4.86
−3.21 0.78+0.22

−0.18
11 2 458.84+0.21

−0.22 4.97+0.96
−0.74 1.58+0.34

−0.26
12 0 463.15+0.10

−0.10 7.09+1.38
−1.06 1.58+0.34

−0.26
- - 466.63+0.12

−0.11 7.05+2.12
−1.68 0.65+0.17

−0.14
- - 481.37+0.03

−0.03 57.69+10.44
−8.52 0.40+0.06

−0.05
12 2 493.68+0.05

−0.05 34.18+5.27
−4.53 0.46+0.06

−0.05
13 0 497.17+0.03

−0.03 48.82+7.53
−6.46 0.46+0.06

−0.05
- - 498.83+0.08

−0.07 11.92+3.24
−2.50 0.69+0.18

−0.12
- - 515.34+0.03

−0.02 92.54+19.36
−14.05 0.41+0.05

−0.05
13 2 528.44+0.03

−0.03 146.16+33.48
−24.50 0.25+0.03

−0.03
14 0 531.62+0.02

−0.02 208.80+47.84
−34.99 0.25+0.03

−0.03
- - 534.81+0.03

−0.03 43.74+10.05
−6.98 0.45+0.06

−0.06
- - 550.63+0.02

−0.02 158.32+23.46
−21.76 0.34+0.04

−0.04
- - 561.49+0.06

−0.06 43.43+8.21
−6.48 0.65+0.09

−0.08
- - 564.32+0.09

−0.09 25.49+4.68
−3.91 1.40+0.22

−0.19
15 0 565.90+0.02

−0.02 254.75+50.90
−39.71 0.22+0.03

−0.03
- - 574.01+0.03

−0.03 113.13+21.66
−17.11 0.38+0.05

−0.05
- - 576.16+0.94

−0.14 2.46+0.76
−0.68 0.72+0.28

−0.19
- - 584.32+0.19

−0.24 3.27+1.34
−0.81 0.39+0.13

−0.11
- - 587.54+0.02

−0.02 171.19+16.61
−17.31 0.37+0.03

−0.03
- - 590.94+0.29

−0.39 1.44+0.37
−0.24 2.57+0.73

−0.68
15 2 597.49+0.03

−0.03 97.60+12.75
−11.73 0.39+0.04

−0.03
16 0 600.25+0.02

−0.02 139.42+18.21
−16.76 0.39+0.04

−0.03
- - 610.44+0.15

−0.15 3.43+1.21
−0.88 1.65+0.59

−0.34
- - 614.38+0.03

−0.03 141.08+24.45
−21.09 0.40+0.05

−0.04
- - 628.73+0.06

−0.06 16.91+3.76
−3.05 1.06+0.22

−0.18
16 2 631.93+0.06

−0.06 32.59+5.24
−4.11 0.64+0.07

−0.07
17 0 634.92+0.04

−0.04 46.55+7.49
−5.88 0.64+0.07

−0.07
- - 644.58+0.19

−0.18 3.28+0.98
−0.76 1.08+0.29

−0.26
- - 653.27+0.05

−0.05 28.53+4.13
−3.54 0.96+0.12

−0.10
17 2 666.81+0.08

−0.08 12.52+1.83
−1.48 0.98+0.12

−0.11
18 0 669.80+0.08

−0.08 17.89+2.62
−2.11 0.98+0.12

−0.11
- - 678.35+0.14

−0.14 5.07+0.93
−0.79 1.89+0.35

−0.32
- - 693.22+0.14

−0.13 8.04+1.41
−1.23 1.76+0.38

−0.32

Notes. Mixed modes order n and degrees ` are not inferred in the ana-
lysis and therefore not specified.

up bound columns specify the limit values inside which the
posterior probability will be sampled. Obviously, the up bound
must be greater than the low bound, and the value term must
lay inside the defined interval.

An example of input for solar data is given in Table D.1.
In apollinaire, a2z files are read as a2z DataFrame (pandas
DataFrame with the structure specified in the previous para-
graph) with the function read_a2z.

Appendix D.2. The pkb file and the pkb arrays

In pkb files, each line corresponds to a given mode of order n and
degree `. The file contains 14 columns: order n, degree `, mode
frequency ν, uncertainty over frequency σapprox,ν, mode height
H, uncertainty over height σapprox,H , mode FWHM Γ, uncer-
tainty over FWHM σapprox,Γ, stellar angle i, uncertainty over
stellar angle σapprox,i, mode splitting s, uncertainty over mode
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Table D.1. An example of helioseismic a2z input file corresponding to priors for the n = 20 GOLF order.

n ` name extent value σsym fixed low bound up bound
19 2 height mode 0.0146 0.0000 0 0.0000 0.0732
19 2 width mode 0.8585 0.0000 0 0.0000 8.0000
19 2 asym mode -0.0082 0.0000 0 -0.2000 0.2000
19 2 split mode 0.4000 0.0000 0 0.1000 0.8000
20 0 freq mode 2899.0861 0.0000 0 2897.0861 2901.0861
20 0 height mode 0.0163 0.0000 0 0.0000 0.0814
20 0 width mode 0.8585 0.0000 0 0.0000 8.0000
20 0 asym mode -0.0082 0.0000 0 -0.2000 0.2000
a a angle global 90.0000 0.0000 1 0.0000 90.0000

Table D.2. An example of helioseismic pkb file corresponding to fitted parameters for the n = 20 GOLF order.

n l ν σsym,ν H σsym,H Γ σsym,Γ i σsym,i s σsym,s α σsym,α
(µHz) (µHz) ((m/s)2/µHz) ((m/s)2/µHz) (µHz) (µHz) (◦) (◦) (µHz) (µHz)

20 2 2889.57 0.07 2.10e-2 5.07e-3 0.827 0.110 90 0 0.386 0.034 -0.005 0.008
20 0 2898.97 0.07 1.27e-2 2.73e-3 1.107 0.128 90 0 0 0 -0.023 0.010

splitting σapprox,s, mode asymmetry α, uncertainty over mode
asymmetry σapprox,α. In Sect. 3.1, we describe the method used
to compute σsym .

An example of a pkb file is presented in Table D.2. In
apollinaire procedures, pkb arrays (numpy arrays with the
shape specified in the previous paragraph) are usually created
by converting a2z DataFrame with the a2Z_to_pkb function.
Those pkb arrays are used to build the models S SN(ν) which are
necessary to compute the likelihood and the posterior probabil-
ity.

Appendix D.3. The extended pkb array

The structure of the extended pkb array is close to the classical
pkb array structure, except that it contains 20 columns. Instead of
σsym, two uncertainties values are provided for each parameters:
σ− and σ+ (see Sect. 3.1).
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Table D.3. Mode heights and widths obtained for modes fitted both in L17 and
with apollinaire.

KIC n Hapn (ppm2/µHz) HL17 (ppm2/µHz) Γapn (µHz) ΓL17 (µHz)
5184732 17 2.44 ± 0.06 2.61 ± 0.08 1.13 ± 0.11 1.35 ± 0.13
5184732 18 2.97 ± 0.06 2.95 ± 0.08 1.36 ± 0.11 1.53 ± 0.13
5184732 19 3.54 ± 0.07 3.64 ± 0.09 1.17 ± 0.09 1.24 ± 0.12
5184732 20 3.83 ± 0.07 3.94 ± 0.10 1.30 ± 0.09 1.26 ± 0.12
5184732 21 4.02 ± 0.08 4.21 ± 0.12 1.33 ± 0.09 1.47 ± 0.12
5184732 22 3.54 ± 0.06 3.74 ± 0.09 1.80 ± 0.14 1.83 ± 0.14
5184732 23 2.72 ± 0.06 2.91 ± 0.09 2.64 ± 0.24 2.45 ± 0.19
6106415 17 2.54 ± 0.05 2.65 ± 0.08 1.65 ± 0.12 1.64 ± 0.18
6106415 18 3.14 ± 0.05 3.07 ± 0.09 1.43 ± 0.09 1.77 ± 0.15
6106415 19 3.54 ± 0.06 3.77 ± 0.10 1.35 ± 0.08 1.52 ± 0.11
6106415 20 3.85 ± 0.06 3.87 ± 0.08 1.36 ± 0.07 1.43 ± 0.10
6106415 21 3.63 ± 0.06 3.71 ± 0.08 1.72 ± 0.10 1.94 ± 0.13
6106415 22 3.08 ± 0.05 3.35 ± 0.07 2.55 ± 0.17 2.54 ± 0.20
6106415 23 2.63 ± 0.04 2.84 ± 0.07 2.97 ± 0.22 3.34 ± 0.23
6225718 16 1.77 ± 0.05 1.89 ± 0.07 2.10 ± 0.22 2.19 ± 0.34
6225718 17 2.24 ± 0.05 2.29 ± 0.06 2.77 ± 0.23 2.84 ± 0.30
6225718 18 2.68 ± 0.05 2.77 ± 0.07 2.16 ± 0.15 2.67 ± 0.23
6225718 19 3.07 ± 0.05 3.14 ± 0.06 2.20 ± 0.14 2.50 ± 0.21
6225718 20 3.40 ± 0.05 3.47 ± 0.07 2.20 ± 0.12 2.22 ± 0.16
6225718 21 3.32 ± 0.05 3.46 ± 0.07 2.22 ± 0.15 2.61 ± 0.17
6225718 22 3.28 ± 0.05 3.46 ± 0.07 2.76 ± 0.16 3.03 ± 0.23
6603624 17 2.22 ± 0.07 2.24 ± 0.11 0.82 ± 0.09 0.82 ± 0.11
6603624 18 2.99 ± 0.08 3.10 ± 0.12 0.61 ± 0.05 0.63 ± 0.07
6603624 19 3.58 ± 0.09 3.56 ± 0.12 0.59 ± 0.05 0.69 ± 0.05
6603624 20 4.04 ± 0.10 4.39 ± 0.13 0.57 ± 0.05 0.56 ± 0.05
6603624 21 3.58 ± 0.09 3.73 ± 0.13 0.69 ± 0.05 0.80 ± 0.06
6603624 22 2.98 ± 0.07 3.39 ± 0.11 1.16 ± 0.09 1.25 ± 0.09
6603624 23 2.05 ± 0.07 2.26 ± 0.10 2.23 ± 0.27 1.70 ± 0.18

12069424 16 2.17 ± 0.05 2.16 ± 0.07 0.93 ± 0.09 1.29 ± 0.16
12069424 17 2.63 ± 0.06 2.58 ± 0.09 0.89 ± 0.07 1.04 ± 0.12
12069424 18 3.24 ± 0.07 3.29 ± 0.09 0.84 ± 0.05 1.00 ± 0.08
12069424 19 4.17 ± 0.08 3.85 ± 0.11 0.67 ± 0.04 0.82 ± 0.06
12069424 20 4.20 ± 0.09 4.03 ± 0.12 0.78 ± 0.05 1.22 ± 0.08
12069424 21 3.59 ± 0.07 3.61 ± 0.10 1.15 ± 0.07 1.24 ± 0.09
12069424 22 2.80 ± 0.05 2.92 ± 0.07 1.97 ± 0.13 1.96 ± 0.12
12069449 17 1.88 ± 0.05 1.89 ± 0.07 0.92 ± 0.09 0.96 ± 0.11
12069449 18 2.54 ± 0.06 2.49 ± 0.08 0.84 ± 0.06 1.13 ± 0.10
12069449 19 3.05 ± 0.07 3.00 ± 0.08 0.72 ± 0.05 0.77 ± 0.08
12069449 20 3.51 ± 0.08 3.41 ± 0.10 0.68 ± 0.05 0.94 ± 0.08
12069449 21 3.37 ± 0.07 3.55 ± 0.11 0.86 ± 0.06 1.01 ± 0.10
12069449 22 2.77 ± 0.05 2.97 ± 0.10 1.35 ± 0.08 1.40 ± 0.09
12069449 23 2.13 ± 0.04 2.28 ± 0.07 2.39 ± 0.16 2.11 ± 0.13

Table D.4. Mode frequencies and quality assurance factor ln K obtained for
modes fitted both in L17 and with apollinaire.

KIC n ` νapn (µHz) νL17 (µHz) ln Kapn ln KL17
5184732 16 2 1750.31 ± 0.16 1750.26 ± 0.19 > 6 > 6
5184732 17 0 1756.69 ± 0.06 1756.69 ± 0.07 > 6 > 6
5184732 17 1 1800.54 ± 0.07 1800.50 ± 0.08 > 6 > 6
5184732 17 2 1844.66 ± 0.12 1844.74 ± 0.15 > 6 > 6
5184732 18 0 1851.08 ± 0.07 1851.15 ± 0.08 > 6 > 6
5184732 18 1 1895.61 ± 0.07 1895.59 ± 0.06 > 6 > 6
5184732 18 2 1940.39 ± 0.09 1940.45 ± 0.13 > 6 > 6
5184732 18 3 1981.70 ± 0.85 1982.10 ± 0.74 > 6 2.62
5184732 19 0 1946.67 ± 0.06 1946.65 ± 0.06 > 6 > 6
5184732 19 1 1991.62 ± 0.06 1991.57 ± 0.06 > 6 > 6
5184732 19 2 2036.29 ± 0.09 2036.35 ± 0.10 > 6 > 6
5184732 19 3 2076.94 ± 0.85 2076.67 ± 0.55 > 6 1.56

A118, page 22 of 25



S. N. Breton et al.: The apollinaire package

Table D.4. continued

KIC n ` νapn (µHz) νL17 (µHz) ln Kapn ln KL17
5184732 20 0 2042.36 ± 0.06 2042.31 ± 0.06 > 6 > 6
5184732 20 1 2087.47 ± 0.06 2087.45 ± 0.06 > 6 > 6
5184732 20 2 2132.34 ± 0.08 2132.34 ± 0.10 > 6 > 6
5184732 20 3 2172.49 ± 0.63 2173.09 ± 0.60 > 6 > 6
5184732 21 0 2138.20 ± 0.06 2138.21 ± 0.06 > 6 > 6
5184732 21 1 2183.39 ± 0.07 2183.32 ± 0.07 > 6 > 6
5184732 21 2 2227.94 ± 0.12 2227.82 ± 0.13 > 6 > 6
5184732 21 3 2269.33 ± 0.77 2269.23 ± 0.57 > 6 3.44
5184732 22 0 2233.54 ± 0.07 2233.51 ± 0.09 > 6 > 6
5184732 22 1 2279.06 ± 0.08 2279.09 ± 0.09 > 6 > 6
5184732 22 2 2323.78 ± 0.22 2324.03 ± 0.20 > 6 > 6
5184732 22 3 2365.14 ± 1.07 2365.48 ± 0.88 3.96 3.31
5184732 23 0 2328.96 ± 0.13 2329.03 ± 0.13 > 6 > 6
5184732 23 1 2375.03 ± 0.11 2375.03 ± 0.12 > 6 > 6
6106415 16 2 1902.71 ± 0.18 1902.55 ± 0.18 > 6 > 6
6106415 17 0 1909.90 ± 0.07 1909.94 ± 0.09 > 6 > 6
6106415 17 1 1957.30 ± 0.08 1957.32 ± 0.09 > 6 > 6
6106415 17 2 2005.58 ± 0.09 2005.66 ± 0.13 > 6 > 6
6106415 18 0 2013.01 ± 0.06 2013.06 ± 0.09 > 6 > 6
6106415 18 1 2061.47 ± 0.06 2061.47 ± 0.07 > 6 > 6
6106415 18 2 2110.17 ± 0.07 2110.19 ± 0.11 > 6 > 6
6106415 19 0 2117.21 ± 0.05 2117.35 ± 0.07 > 6 > 6
6106415 19 1 2165.88 ± 0.06 2165.91 ± 0.07 > 6 > 6
6106415 19 2 2214.42 ± 0.07 2214.39 ± 0.10 > 6 > 6
6106415 19 3 2259.49 ± 0.75 2259.15 ± 0.52 > 6 3.87
6106415 20 0 2221.52 ± 0.05 2221.52 ± 0.06 > 6 > 6
6106415 20 1 2270.33 ± 0.06 2270.39 ± 0.07 > 6 > 6
6106415 20 2 2318.76 ± 0.09 2318.82 ± 0.12 > 6 > 6
6106415 20 3 2363.38 ± 0.67 2363.96 ± 0.47 > 6 > 6
6106415 21 0 2325.66 ± 0.07 2325.64 ± 0.09 > 6 > 6
6106415 21 1 2374.53 ± 0.07 2374.55 ± 0.08 > 6 > 6
6106415 21 2 2422.96 ± 0.17 2423.11 ± 0.21 > 6 > 6
6106415 21 3 2467.07 ± 1.36 2467.17 ± 0.64 > 6 > 6
6106415 22 0 2429.76 ± 0.08 2429.81 ± 0.11 > 6 > 6
6106415 22 1 2478.93 ± 0.09 2478.93 ± 0.11 > 6 > 6
6106415 22 2 2527.92 ± 0.17 2528.38 ± 0.23 > 6 > 6
6106415 22 3 2571.93 ± 1.14 2572.76 ± 0.87 > 6 > 6
6106415 23 0 2534.00 ± 0.11 2534.02 ± 0.15 > 6 > 6
6106415 23 1 2583.95 ± 0.12 2583.85 ± 0.14 > 6 > 6
6225718 15 2 1816.15 ± 0.72 1816.19 ± 0.36 0.07 > 6
6225718 16 0 1825.53 ± 0.11 1825.41 ± 0.13 > 6 > 6
6225718 16 1 1873.79 ± 0.12 1873.88 ± 0.14 > 6 > 6
6225718 16 2 1920.02 ± 0.23 1919.97 ± 0.26 2.71 > 6
6225718 17 0 1929.03 ± 0.11 1929.05 ± 0.14 > 6 > 6
6225718 17 1 1977.27 ± 0.11 1977.35 ± 0.12 > 6 > 6
6225718 17 2 2023.91 ± 0.17 2023.80 ± 0.22 > 6 > 6
6225718 18 0 2032.68 ± 0.09 2032.68 ± 0.11 > 6 > 6
6225718 18 1 2081.51 ± 0.09 2081.57 ± 0.09 > 6 > 6
6225718 18 2 2128.59 ± 0.13 2128.62 ± 0.16 > 6 > 6
6225718 19 0 2137.54 ± 0.08 2137.59 ± 0.10 > 6 > 6
6225718 19 1 2186.90 ± 0.08 2186.89 ± 0.09 > 6 > 6
6225718 19 2 2234.46 ± 0.12 2234.70 ± 0.16 > 6 > 6
6225718 19 3 2278.10 ± 1.23 2281.61 ± 3.36 > 6 3.01
6225718 20 0 2243.30 ± 0.07 2243.42 ± 0.08 > 6 > 6
6225718 20 1 2292.94 ± 0.08 2293.05 ± 0.09 > 6 > 6
6225718 20 2 2340.61 ± 0.16 2340.63 ± 0.17 > 6 > 6
6225718 20 3 2384.81 ± 1.38 2385.57 ± 1.16 > 6 3.94
6225718 21 0 2349.60 ± 0.07 2349.64 ± 0.09 > 6 > 6
6225718 21 1 2399.38 ± 0.08 2399.39 ± 0.10 > 6 > 6
6225718 21 2 2446.78 ± 0.14 2446.71 ± 0.16 > 6 > 6
6225718 21 3 2490.21 ± 1.59 2493.08 ± 1.64 > 6 3.66
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Table D.4. continued

KIC n ` νapn (µHz) νL17 (µHz) ln Kapn ln KL17
6225718 22 0 2455.54 ± 0.09 2455.69 ± 0.11 > 6 > 6
6225718 22 1 2505.31 ± 0.10 2505.34 ± 0.11 > 6 > 6
6603624 16 2 2030.98 ± 0.10 2030.97 ± 0.10 > 6 > 6
6603624 17 0 2037.05 ± 0.05 2036.98 ± 0.06 > 6 > 6
6603624 17 1 2088.30 ± 0.04 2088.32 ± 0.05 > 6 > 6
6603624 17 2 2141.08 ± 0.04 2141.09 ± 0.04 > 6 > 6
6603624 18 0 2146.75 ± 0.03 2146.76 ± 0.04 > 6 > 6
6603624 18 1 2198.48 ± 0.04 2198.47 ± 0.04 > 6 > 6
6603624 18 2 2251.61 ± 0.04 2251.60 ± 0.04 > 6 > 6
6603624 18 3 2299.52 ± 0.20 2305.47 ± 0.13 > 6 > 6
6603624 19 0 2256.99 ± 0.04 2257.01 ± 0.04 > 6 > 6
6603624 19 1 2308.95 ± 0.03 2309.00 ± 0.03 > 6 > 6
6603624 19 2 2362.00 ± 0.03 2362.03 ± 0.04 > 6 > 6
6603624 19 3 2410.02 ± 0.25 2410.08 ± 0.15 > 6 > 6
6603624 20 0 2367.06 ± 0.03 2367.08 ± 0.03 > 6 > 6
6603624 20 1 2419.40 ± 0.03 2419.44 ± 0.03 > 6 > 6
6603624 20 2 2472.42 ± 0.04 2472.38 ± 0.05 > 6 > 6
6603624 20 3 2520.40 ± 0.16 2520.44 ± 0.20 > 6 > 6
6603624 21 0 2477.07 ± 0.04 2477.04 ± 0.04 > 6 > 6
6603624 21 1 2529.69 ± 0.04 2529.66 ± 0.04 > 6 > 6
6603624 21 2 2583.03 ± 0.07 2583.03 ± 0.07 > 6 > 6
6603624 21 3 2631.27 ± 0.62 2631.48 ± 0.35 4.01 1.89
6603624 22 0 2587.51 ± 0.06 2587.51 ± 0.07 > 6 > 6
6603624 22 1 2640.33 ± 0.06 2640.36 ± 0.07 > 6 > 6
6603624 22 2 2693.81 ± 0.16 2693.89 ± 0.12 > 6 > 6
6603624 22 3 2742.30 ± 5.26 2743.55 ± 1.43 2.56 1.14
6603624 23 0 2698.06 ± 0.16 2698.23 ± 0.13 > 6 > 6
6603624 23 1 2751.56 ± 0.14 2751.34 ± 0.18 > 6 > 6

12069424 15 2 1795.69 ± 0.09 1795.84 ± 0.13 > 6 > 6
12069424 16 0 1802.28 ± 0.06 1802.35 ± 0.08 > 6 > 6
12069424 16 1 1849.00 ± 0.05 1849.01 ± 0.06 > 6 > 6
12069424 16 2 1898.29 ± 0.10 1898.40 ± 0.11 > 6 > 6
12069424 17 0 1904.58 ± 0.05 1904.52 ± 0.06 > 6 > 6
12069424 17 1 1951.99 ± 0.05 1952.01 ± 0.05 > 6 > 6
12069424 17 2 2001.69 ± 0.06 2001.59 ± 0.09 > 6 > 6
12069424 17 3 2045.77 ± 0.29 2045.85 ± 0.38 > 6 > 6
12069424 18 0 2007.55 ± 0.04 2007.54 ± 0.05 > 6 > 6
12069424 18 1 2055.51 ± 0.04 2055.49 ± 0.05 > 6 > 6
12069424 18 2 2105.32 ± 0.04 2105.37 ± 0.06 > 6 > 6
12069424 18 3 2149.88 ± 0.12 2150.06 ± 0.22 > 6 > 6
12069424 19 0 2110.93 ± 0.03 2110.95 ± 0.04 > 6 > 6
12069424 19 1 2159.14 ± 0.04 2159.15 ± 0.05 > 6 > 6
12069424 19 2 2208.91 ± 0.04 2208.93 ± 0.07 > 6 > 6
12069424 19 3 2253.57 ± 0.12 2253.80 ± 0.25 > 6 > 6
12069424 20 0 2214.21 ± 0.04 2214.23 ± 0.05 > 6 > 6
12069424 20 1 2262.55 ± 0.04 2262.56 ± 0.05 > 6 > 6
12069424 20 2 2312.52 ± 0.06 2312.50 ± 0.08 > 6 > 6
12069424 20 3 2357.37 ± 0.20 2357.50 ± 0.23 > 6 > 6
12069424 21 0 2317.31 ± 0.05 2317.28 ± 0.06 > 6 > 6
12069424 21 1 2366.26 ± 0.06 2366.24 ± 0.06 > 6 > 6
12069424 21 2 2416.10 ± 0.10 2416.25 ± 0.12 > 6 > 6
12069424 21 3 2461.44 ± 0.37 2461.45 ± 0.38 > 6 > 6
12069424 22 0 2420.85 ± 0.08 2420.94 ± 0.08 > 6 > 6
12069424 22 1 2470.29 ± 0.08 2470.23 ± 0.10 > 6 > 6
12069449 16 2 2152.35 ± 0.16 2152.52 ± 0.11 > 6 > 6
12069449 17 0 2159.55 ± 0.05 2159.50 ± 0.06 > 6 > 6
12069449 17 1 2214.16 ± 0.06 2214.33 ± 0.07 > 6 > 6
12069449 17 2 2268.87 ± 0.07 2269.11 ± 0.10 > 6 > 6
12069449 17 3 2319.33 ± 0.35 2318.96 ± 0.31 > 6 > 6
12069449 18 0 2276.00 ± 0.04 2275.95 ± 0.06 > 6 > 6
12069449 18 1 2331.19 ± 0.04 2331.16 ± 0.04 > 6 > 6
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Table D.4. continued

KIC n ` νapn (µHz) νL17 (µHz) ln Kapn ln KL17
12069449 18 2 2386.23 ± 0.05 2386.25 ± 0.07 > 6 > 6
12069449 18 3 2436.50 ± 0.32 2436.78 ± 0.28 > 6 > 6
12069449 19 0 2392.73 ± 0.04 2392.64 ± 0.05 > 6 > 6
12069449 19 1 2448.24 ± 0.04 2448.18 ± 0.05 > 6 > 6
12069449 19 2 2503.51 ± 0.05 2503.41 ± 0.07 > 6 > 6
12069449 19 3 2554.11 ± 0.16 2554.18 ± 0.19 > 6 > 6
12069449 20 0 2509.70 ± 0.03 2509.68 ± 0.04 > 6 > 6
12069449 20 1 2565.40 ± 0.04 2565.43 ± 0.05 > 6 > 6
12069449 20 2 2620.51 ± 0.06 2620.56 ± 0.07 > 6 > 6
12069449 20 3 2671.86 ± 0.18 2671.59 ± 0.28 > 6 > 6
12069449 21 0 2626.44 ± 0.04 2626.46 ± 0.05 > 6 > 6
12069449 21 1 2682.37 ± 0.05 2682.25 ± 0.05 > 6 > 6
12069449 21 2 2737.73 ± 0.06 2737.71 ± 0.08 > 6 > 6
12069449 21 3 2789.17 ± 0.26 2789.00 ± 0.38 > 6 > 6
12069449 22 0 2743.32 ± 0.05 2743.32 ± 0.07 > 6 > 6
12069449 22 1 2799.75 ± 0.06 2799.61 ± 0.07 > 6 > 6
12069449 22 2 2855.52 ± 0.11 2855.51 ± 0.13 > 6 > 6
12069449 22 3 2907.03 ± 0.45 2906.90 ± 0.50 > 6 > 6
12069449 23 0 2860.73 ± 0.10 2860.68 ± 0.10 > 6 > 6
12069449 23 1 2917.81 ± 0.10 2917.89 ± 0.12 > 6 > 6
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