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Abstract10

The rapid and accurate identification of radionuclides brings crucial information for nuclear monitoring11

to diagnose unknown radiological scenes. Recent studies have used a deep learning approach based on12

neural networks to develop algorithms that perform well in terms of accuracy and computation time13

and can also identify radionuclides with a limited number of photons. However, it has been shown that14

conventional neural networks are not necessarily robust, in the sense that a small particular perturbation15

of the input data can mislead the networks. A specific learning procedure is necessary to overcome this16

lack of robustness. In this paper, we show that small perturbations intentionally injected into gamma-17

ray spectra, with respect to the Poisson statistics, are able to fool the network. We propose applying18

a robust learning procedure, called ”adversarial learning”. We evaluate this procedure using a CdTe19

detector, namely Caliste-HD. We train a Convolutional Neural Network (CNN) with a synthetic database20

composed of simulated spectra and we test its performance on real data acquired with a Caliste detector.21

1 Introduction22

In the context of nuclear safety and security, the diagnosis and monitoring of radiological scenes represent a23

major challenge: being able to identify the radionuclides present in the scenes. This identification must be24

fast, accurate, and reliable, especially in critical applications. The common way to achieve this identification25

is to detect individual X-ray and gamma-ray photons emitted by radioactive sources and to measure their26

energies to build a spectrum. The resulting spectrum is a signature of the isotopes mixture and its analysis27

leads to their identification.28

Classic approaches have been developed to perform this analysis automatically, such as peak fitting29

algorithms, which focus on radionuclide emission lines [1, 2], or model fitting algorithms, which aims to use30

the entire spectral information by fitting a combination of spectral models [3, 4]. Recently, deep learning31

approaches based on neural networks have been successfully applied to gamma-ray spectroscopy [5, 6, 7].32
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Their performance in other fields, such as computer vision [8, 9, 10], or natural language processing [11, 12]33

have been a motivation to overcome the difficulties of gamma-ray spectra analysis by classic methods, such34

as low photon counting statistics or complex mixture of radionuclides.35

However, studies have shown that neural networks are very sensitive to adversarial attacks: small per-36

turbations of the input data which are specifically designed to mislead the network [13, 14, 15]. This lack37

of robustness is a major weakness that must be solved for critical applications, such as nuclear safety and38

security, which requires a certification of the tools used in this context. Procedures have been proposed to39

improve the robustness of the neural networks and make them less sensitive to small perturbations in the40

input data [16]. In the present paper, we show that neural networks used in gamma-ray spectroscopy are41

also sensitive to this problem, and that we can compute small perturbations in the spectrum, according to42

the Poisson statistics, that are sufficient to fool the neural network. We show that an adversarial learning43

procedure is helpful to avoid this problem. We evaluate this approach on real data registered with a CdTe44

detector, Caliste-HD, dedicated to the detection of high-energy photons.45

The paper is structured as follows: Section 2 describes the Caliste detection system and presents the46

deep learning approach we use as a baseline. Section 3 presents the method for computing the specific small47

perturbations that can mislead our neural network and we describe the adversarial learning procedure to48

ensure the robustness of the neural network. In Section 4, we evaluate the performance of this method on a49

real data set.50

2 Caliste-HD detector and classic learning51

2.1 Caliste-HD52

Caliste-HD [17] is a miniature detector for high-energy photons counting and imaging spectroscopy. Its53

sensitive area is made of a monolithic pixelated CdTe crystal, 1-mm thick, with 16 × 16 pixels and 625 µm54

pixel pitch. Its readout electronic, the ASIC IDeF-X HD [18], ensures a low electronic noise and low power55

consumption, that are advantageous for the spectrometric performances of the detector. Caliste-HD achieves56

a resolution of 700 eV FWHM at 60 keV and 4.1 keV FWHM at 662 keV, with an energy range from 2 keV57

to 1 MeV (single pixel events). These spectroscopic features are relevant to perform spectro-identification of58

radionuclides, and the data of this study are based on this detection system.59

2.2 Datasets60

2.2.1 Training and validation set61

Our training set is constructed by a GEANT4 Monte-Carlo simulation associated to the computed detector62

response. The details of the simulation can be found in [7]. We simulated the spectra of six radionuclides that63

are available in our laboratory: 241Am, 133Ba, 57Co, 137Cs, 152Eu, 22Na. The advantage of this synthetic64

database is the possibility to simulate other radionuclides that are not available in the laboratory. The65

training database contains 200 000 examples of gamma-ray spectra with 2000 channels, sampled uniformly66

from 0 keV to 1000 keV with 0.5 keV channel widths. Each spectrum contains a mixture of radionuclides67

among the six simulated ones, with a random number of photons Nphotons, ranging from a few tens to several68

million photons, according to Equation 1. Thanks to this method, the training database contains spectra69

with low counting statistics of photons as well as very high counting statistics.70

Nphotons = 107x+1, x ∼ Unif([0, 1]) (1)
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Before starting the learning of models, it is necessary to normalize each spectrum. A normalization by
the total number of photons can be considered. However, since the photons with the highest energies have
much lower probabilities of interacting in the detector than those with lower energies, it creates an imbalance
in the spectrum where the photons with lower energy are very visible, unlike high energy ones. Hence, it
is preferable to use a logarithmic normalization. For a spectrum s, we note si the photons number in the
bin number i. The first step is to add one count for each bin, so that the logarithmic function will be well
defined, then we apply the logarithmic function given by Equation 2:

s
′

i = log

(
si + 1∑
j(sj + 1)

)
(2)

Since all components of the vector s
′

i are negative, they should ideally be readjusted between zero and one,71

which can be done following Equation 3:72

ŝi = −
s
′

i

min(s′)
+ 1 (3)

where ŝ is the normalized spectrum that we will use as the input of our neural networks.73

The expected output of the neural network is represented by a vector Yc with six components, correspond-74

ing to the six radionuclides. Each component is a binary variable, which is equal to 1 if the corresponding75

radionuclide is present in the spectrum and 0 if not.76

We use also a validation dataset, which is a part of our training set. More precisely, we take 20% of77

our training set and we use it to give us an estimate of model performance, while adjusting the model’s78

hyperparameters such as the number of layers and the number of neurons in our model.79

2.2.2 Test set80

In order to evaluate the performances of the neural networks in real conditions, we built a test set from81

real data acquired with the Caliste-HD detector. We took a long, well-calibrated acquisition for the sources82

available in the laboratory, in order to obtain large photon count statistics. The available sources correspond83

to the six simulated radionuclides. The photon counts are recorded in a list so that we can construct spectra84

by selecting any statistic of interest to evaluate sensitivity and to arbitrarily create a virtual mixture by85

selecting events from the photon lists. We constructed six sets of test spectra each with a fixed count86

statistic: 100, 1 000, 10 000, 100 000, 1 000 000, 10 000 000 photons. Each set contains 10 000 example87

spectra. We apply the same normalization to the test set spectra before applying the neural networks.88

2.3 Classic Convolutional Neural Network approach89

In this study, we use a convolutional neural network (CNN) [19] with multiple convolutional hidden layers in90

one dimension (Conv1D). Every convolution layer is followed by a spatial dropout [20] in one dimension (Spa-91

tialDropout1D), a batch normalization [21] and a max-pooling layer [22] in one dimension (MaxPooling1D)92

with size equal to two. The motivation for using a convolution structure is that gamma spectra possess93

local structures, such as photoelectric peaks or Compton continua, that can be extracted by the convolution94

operations, as described in [7]. We add two fully-connected layers after the convolutional blocks, in order95

to perform the identification of the radionuclides. The activation function used in all hidden layers is the96

Rectified Linear Unit (ReLU) function. For the output layer, we use the sigmoid function, which is relevant97

for our multi-class classification problem, and the corresponding loss function is the binary cross-entropy98

given in Equation 4:99
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ℓ(x, y; θ) = −
L∑

j=1

[yj log(fθ(x)j) + (1− yj) log(1− fθ(x)j)] (4)

where x represents the input data, y the expected ground truth; j is the index for each class, L the number100

of classes and fθ is the output of the neural network with some parametrization θ.101

We implement our model with TensorFlow version 2.2.0 [30]. In the learning part, Adam [23] was used as102

the optimization algorithm with a learning rate equal to 10−4 and a rate decay equal to 10−5. We trained on103

mini-batches with a size of 2 000 inputs and we use early stopping to stop the learning process: we evaluate104

the loss function on the validation set at each iteration, and we stop the learning if the cost function does105

not decrease for 5 successive iterations.106

To evaluate the performances of our neural network, we choose the binary accuracy metric, which measures
how often the model gets correct predictions. It is defined in Equation 5:

Accuracy =
TP + TN

TP+ TN+ FP + FN
(5)

where TP represents the number of true-positive identifications, TN for true negative, FP for false positive,107

and FN for false negative. We consider each radionuclide independently, which means that, for one example,108

if the neural network fails to classify correctly only one radionuclide among the 6 radionuclides, we do not109

consider it as a totally wrong answer, since the accuracy for this example is 5/6. The performances of this110

neural network in terms of accuracies are described in section 4.111

A source is considered to be detected if the predicted sigmoid output given by our model is higher than a112

threshold of 50 %. However, the study of the effect of the threshold [24] is useful to tune the correct threshold113

according to the detector, which is not further investigated in the present paper.114

3 Adversarial perturbations and adversarial learning115

Recently, a severe weakness has been discovered by the research community in deep learning. It has been116

demonstrated that deep neural networks are vulnerable to adversarial examples [16, 25]. An adversarial117

example corresponds to an example, originally correctly classified by the network, which has been modified118

by a small1 perturbation and it is not recognized by the network. It is important to mention that adversarial119

examples are unavoidable and universal by definition: one can always build an additive noise at input to120

make the model misclassify an example. The vulnerability to adversarial inputs can be problematic and121

even prevent the application of deep learning methods in security and safety critical applications. In our122

application, we show that we can build adversarial examples whose perturbation follows the Poisson statistics123

of the photon counting.124

3.1 Computation of the perturbations125

An adversarial example can be represented as follows: given an original input x, xadv is an adversarial126

example of x if xadv = x+ δ, such that δ is a small value, which means that xadv is slightly different from x,127

and the prediction of xadv by a considered model is different from the prediction of x.128

Since their discovery by Szegedy et al. [25], several methods have been proposed to generate adversarial129

examples to fool a trained model. Most of those adversarial examples are referred to as Adversarial Attacks.130

1The notion of ”small” perturbation is relative to the data and the application.
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In the literature, there are several types of attacks such as Fast Gradient Sign Method (FGSM) [16], Basic131

Iteration Method (BIM) [13], Projected Gradient Descent (PGD) [14]. The survey [26] describes these132

algorithms of attack and introduces also other algorithms.133

In this study, we use an adaptation of the BIM algorithm. We denote ℓ(x, y; θ) the loss function between134

the ground truth y associated with the example x and the associated prediction fθ(x) of the neural network135

with some parametrization θ. The loss function is minimal when the prediction of the neural network allows136

the best reconstruction of the ground truth by the model fθ. The computation of the adversarial example137

consists of finding a perturbation δ of the input x, which maximizes the loss function, so that the prediction138

of the neural network is far from the ground truth. Mathematically, it consists in solving the problem given139

by Equation 6:140

δ∗ ∈ argmax
δ∈B(x)

ℓ(x+ δ, y; θ) (6)

where B(x) represents some constraints on the perturbation δ, so that this perturbation can be considered141

small, relative to the input x. δ∗ is the optimal perturbation that affects the neural network’s prediction.142

In our application, we consider a small perturbation if it can be considered as noise measurement in the143

acquisition, given by the Poisson fluctuation of the photons detection. It consists in three constraints:144

1. A first local constraint linked to the Poisson’s statistics for each bin i independently:

∀i ∈ J1 ; NbinK, |δi| <
√
xi (7)

2. A global constraint linked to the Poisson’s statistics of the complete measurement:

|
Nbin∑
i=1

δi| ≤
√
∥x∥1 (8)

∥x∥1 corresponds to the total number of photons in the spectrum and this constraints means that the145

total variation of the number of photons must be bounded. We point out, that the constraint (7) does146

not imply the constraint (8) since
√∑Nbin

i=1 xi ≤
∑Nbin

i=1

√
xi.147

3. A final constraint is related to the fact that each spectrum is corresponding to the number of pho-
tons, each component must be an integer number. Consequently, the perturbation δ follows the same
constraint:

δ ∈ ZNbin (9)

The first two constraints correspond to 1-σ Poisson noise deviation on the perturbation amplitude. We148

have also tested 2 and 3-σ deviations, but 1-σ was already sufficient to show a significant degradation of149

the neural network′s performances on the adversarial examples and we focus on this constraint in our study.150

Further works will focus on harder attacks (2 and 3-σ and more).151

The BIM algorithm approach consists of using a gradient ascent algorithm to solve the problem given by152

Equation 6. It is based on the computation of the gradient ∇xℓ(x, y; θ) of the loss function with respect to153

the inputs2 of the neural network. This gradient ascent is iterative and it uses at each iteration the sign of154

the gradient, so that it identifies the direction to disturb for each component. We adapted this algorithm in155

Algorithm 1 in order to respect the constraints 7, 8 and 9. We apply T = 15 iterations of gradient ascent156
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Algorithm 1 Adversarial attack

Input: A pattern x ∈ Nm associated to the target variable y = (y1, ..., yL) ∈ {0, 1}L. Initial model
fθ(x) = (fθ(x)1, ..., fθ(x)L) ∈ [0, 1]L.
Hyperparameter: the maximum number of iterations T , the prediction threshold α (0.5 for our case).
Initialization:
xnorm ← normalization(x) (given by Equation 3)
xadv ← x
t← 0

while t < T and
∏L

i=1(yi − boolean(fθ(xnorm)i > α)) == 1 do

δ ←
√
x

T ⊙ sign (∇xnorm
ℓ(xnorm, y; θ)) (the factor

√
x

T ensures the local constraint 7)
xnew ← xadv + δ
xint ← int(xnew) + (xnew > x)
if (|

∑m
i=0 xinti − xi| ≤

√∑m
i xi) then

xadv ← xnew

else
break (the iterations stop if the global constraint 8 is no longer respected)

end if
xnorm ← normalization(xadv)
t← t+ 1

end while

Return: xint = int(xadv) + (xadv > x) (this last operation ensures the constraint 9)

and we stop the iterations if the neural network gives a wrong prediction for one of the radionuclides or if157

the constraints are not ensured.158

Algorithm 1 operates a non-targeted attack, which means that we do not aim to fool the neural network159

on a specific radionuclide. However, it can be adapted to target a specific radionuclide and force the neural160

network to make a false prediction about that radionuclide, regardless of its prediction for other radionuclides.161

In the frame on this study, all the results are obtained by non-targeted attacks.162

3.2 Example163

In Figure 1, we attack a spectrum from the test database, from real acquisitions with Caliste, using our164

attack algorithm (1) and use our classic model to compare the prediction results on the original spectrum165

and the attacked spectrum. The predictions obtained on the original spectrum are correct. Specifically, the166

classic model gives probabilities that exceed 80 % for all five radionuclides existing in the spectrum, although167

the one radionuclide that does not exist, 152Eu, is associated with a probability of about 35 %, well below the168

50 % threshold. The predictions obtained from the adversarial spectrum by the classic model have changed169

radically. The probability of the existence of 57Co decreased from 90 % to 5 %, which is a radionuclide170

that actually exists in the spectrum, and the probability of the existence of 152Eu increased from 35 % to171

almost 90 %, which is a radionuclide that does not exist in the spectrum. Because of this drastic change in172

predictions, this result shows that we have successfully fooled our classic model.173

Figure (2) is an illustration of the adversarial noise added to the spectrum in figure (1) by our adversarial174

2In a classic learning process, the parameters of the neural network are updated by using the gradient ∇θℓ(x, y; θ) of the loss
function with respect to the parameters.
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attack. As we can see, the type of perturbation added to the spectrum is revealed by the addition or extraction175

of one or two photons from the spectrum in certain energy bins. This perturbation respects the constraints176

of the Poisson statistics. We can say that this perturbation is soft and could have been randomly obtained177

by some misfortune in the same acquisition. A full analysis is performed in Section 4 on the impact of these178

adversarial perturbations on the accuracy of the network.179

3.3 Adversarial learning180

This sensitivity to adversarial perturbation requires the introduction of methods to prevent this effect. Until181

now, two methods exist to harden neural networks against adversarial perturbations. The first one is regu-182

larization methods that penalize noise expansion throughout the network [27, 28, 29]. The second method is183

the adversarial learning [16, 13, 14] which consists of using adversarial examples generated from the training184

data set to increase robustness locally around the training samples. In this paper, we use this method to185

create a robust model.186

Mathematically, the objective of a classic learning (i.e. without specific defense against adversarial per-187

turbations) is to find, among all the possible parameters Θ, the optimal parameters θ∗ that minimizes a188

total loss function, which is the mean of the individual loss functions ℓ(x, y; θ) for each example (x, y) of the189

dataset D containing N examples, as given in Equation 10:190

θ∗ = argmin
θ∈Θ

1

N

∑
(x(i),y(i))∈D

ℓ(x(i), y(i); θ). (10)

Adversarial learning consists of learning on the adversarial examples computed through the adversarial
perturbation, as described in section 3.1. This learning procedure is typically presented as a robust min-max
optimization problem, given by Equation 11. The adversarial perturbations must satisfy certain constraints
given by B(xi).

θ∗adv = argmin
θ∈Θ

1

N

∑
(x(i),y(i))∈D

max
δ∈B(x(i))

ℓ(x(i) + δ, y(i); θ). (11)

The learning is usually processed using an optimization algorithm based on gradient descent on mini-191

batches. It is important to note that at each iteration of the optimization process, the neural network192

parameters are updated, and it is necessary to compute the adversarial perturbations with respect to these193

new parameters at each iteration. This step represents additional computation time, which can be non-194

negligible depending on the application.195

We apply this learning procedure to our convolutional neural network with our training data set, based196

on simulated spectra. As in classic learning, we use the early stopping method to stop the learning iterations.197

The results are presented in section 4 for the original test data set and the corresponding adversarial examples.198

4 Results199

The performance evaluation of the network is computed using the binary accuracies of the neural network200

as defined by Equation 5. We use the test data set, constructed from real measurements, with a controlled201

number of photons to analyze the performance based on the counting statistics. We evaluate four configura-202

tions:203

1. the classic model tested on the original test data set, this configuration is considered as a baseline with204

classic learning and no perturbations added to the test examples;205
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2. the classic model tested on an adversarial test data set, the adversarial examples are specifically created206

to fool the classic model;207

3. the robust model, trained by adversarial learning, tested on the original test data set;208

4. the robust model tested on an adversarial test data set, with the adversarial examples specifically209

created to fool the robust model.210

Figure 3 shows the overall accuracy of the neural network for all four configurations. The baseline accuracy211

of the classic model on the original examples increases from over 90 % with 100 photons to over 98 % with 10212

000 000 photons. As described in Ref. [7], the misclassified radionuclides are likely due to radionuclides in low213

proportions in the spectra, whose signal is masked by the other radionuclides. Predicting on the adversarial214

examples, the accuracy drops down to between approximately 80 % and approximately 88 %, which is an215

absolute difference of 10 % in accuracy. This result means that a small perturbation, which can be considered216

as Poisson noise in the measurement, fools the neural network for 10 % of the examples. Our robust model217

performs similarly to the classic model on the original examples. This result should be verified: our robust218

learning does not degrade the identification performance of the network. For some counting statistics, 100219

photons and 1 000 000 photons, we can slightly distinguish an improvement, but it is not significant. On220

the adversarial examples, the improvement is very clear, the accuracy increases from 83 % for 100 photons221

to almost 97 % for 10 000 000 photons. The adversarial learning process makes the model less sensitive to222

adversarial perturbations. The problem is not fully corrected, but with a spectrum containing at least 1 000223

photons, the number of adversarial examples that can fool the network is reduced by a factor of approximately224

5 to 10.225

Finally, we have studied the model performances by analyzing the classification accuracy for each radionu-226

clide independently. The results are given in Figure 4. As we mentioned above, the classic and the adversarial227

models have similar performances. From 10 000 photons, the accuracies for all radionuclides obtained from228

both models are above 95 % except for 137Cs, where both models obtain accuracies above 95 % from 1 000229

000 photons. This effect can be explained by the emission lines of the 137Cs, especially its discriminant line230

which is at high energy, 662 keV, where our CdTe cristal is less efficient for the photoelectric effect. Further-231

more, we observe that the performance of the adversarial model exceeds the classic model with respect to232

137Cs, which shows that the regularization due to the adversarial learning can have a positive effect on the233

model performances on the original examples. There is a small reduction of the performances of the robust234

network for the 241Am but it is not significant, and also for 133Ba with 1 000 photons. For the adversarial235

examples, as mentioned above, the robust model is less sensitive to the adversarial perturbations than the236

classic model, for all the radionuclides. We also observe that some curves are not monotonic with respect to237

the number of photons in the spectrum. This effect is due to the creation of the adversarial examples, which238

consists of non-targeted perturbations, i.e. we do not try to specifically mislead the prediction for a particular239

radionuclide. Consequently, it appears for instance that the perturbations of the neural network bring to240

wrong prediction for 152Eu more likely at high counting statistics than low counting statistics. This can be241

explained by the fact that at high count statistics, the 152Eu spectra have more noise-sensitive structures,242

with many emission lines at high energies, whereas at low count statistics, only the most dominant peaks243

appear, and the rest of the spectrum is less easy to perturb to fool the neural network.244

5 Conclusion and outlooks245

The sensitivity of neural network based on deep learning models to adversarial perturbations represents a246

strong weakness of these approaches. Radionuclide identification using gamma-ray spectroscopy and deep247
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learning algorithms also faces this type of problem with perturbations that can be so small compared to248

the original acquired spectrum that they can be mistaken for Poisson noise. These specific adversarial249

perturbations result in a non-negligible reduction in accuracy, on the order of 10%, which can have important250

consequences for critical applications, such as nuclear safety and security. Even if the probability of randomly251

acquiring such a spectrum is low, it is relevant to have a method to mitigate this problem in order to have a252

reliable algorithm. It is important to notice that the tests in this study are done in a controlled environment253

of a laboratory. In real nuclear safety situations, the environment would be far more complex with shielding254

or scattering materials around the radioactive sources and would affect the acquired spectra. This complexity255

could possibly imply a higher sensitivity to specific adversarial attacks.256

Adversarial learning is an interesting solution that reduces the probability of finding an adversarial per-257

turbation that can mislead the neural network by a factor of 5 to 10 in our application. In this work, we258

focus on non-targeted perturbations, but in future work we will study this effect with targeted perturba-259

tions, which aim to deceive a specific radionuclide. This approach would be of interest for applications that260

require high precision on specific radionuclides. In addition, we impose constraints that the perturbations261

are statistically equivalent to Poisson noise, so that they can originate from the stochastic processes of the262

acquisition. However, we can imagine some intentional attacks, if someone is able to add specific materials to263

the environment, such as a specific shielding or scattering material, in order to fool the network. This could264

be a breach of security systems for monitoring radioactive sources. This approach would require the ability265

to design constraints on disturbances that could be physically applicable by a human to fool the network.266
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Figure 1: Example of a non-attacked and attacked spectrum and their predictions
results gave by a classic model. The dashed lines represent the detection threshold

at 50%. The radionuclides that really exist in the spectrum are underlined.
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Figure 2: Adversarial perturbation corresponding to the example in Figure 1
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Figure 3: Global accuracies of two models with respect to number of photons, on
original and adversarial examples.
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Figure 4: Independent radionuclide accuracies of the models with respect to the
number of photons.
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