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Extended sources reconstructions by means of coded mask aperture systems and deep learning algorithm

Diagnostics and monitoring of radiological scenes are critical to the field of nuclear safety and here, the localization of radioactive hotspots is mandatory and remains a critical challenge. In order to perform gamma-ray imaging, one main method relies on indirect imaging by means of coded mask aperture associated with a position sensitive gamma-ray detector and a dedicated deconvolution algorithm. However, the deconvolution problem is non-injective, which implies limitations of the reconstruction performance, especially for spatially extended radioactive sources with respect to the angular resolution.

In this paper, we present and evaluate a new method based on a deep learning algorithm with a convolutional neural network to overcome this limitation, in comparison with a classical iterative algorithm. Our deep learning algorithm is trained on simulated data of extended sources that may imply an intrinsic regularization of the neural network. We test it

on real data acquired with a gamma camera system based on Caliste, a CdTe detector for high-energy photons.
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Introduction

Nuclear instrumentation is vital to nuclear safety and security, in order to provide accurate information on unknown radiological environments, such as post-accident situations or in the context of decommissioning and dismantling. In particular after the Fukushima accident in 2011, a new generation of gamma cameras was developed, whose objective is to provide a gamma-ray image of radiological scenes and to localize radioactive hotspots.

Due to the physical properties of gamma-ray photons, direct imaging using lenses or mirrors cannot be used in compact systems such as gamma cameras. Moreover, direct imaging leads to narrow fields of view. Consequently, indirect imaging is performed and two main methods exist. The first one relies on the Compton scattering of high-energy photons [START_REF] Takeda | Applications and Imaging Techniques of a Si/CdTe Compton Gamma-Ray Camera[END_REF], [START_REF] Wahl | The Polaris-H imaging spectrometer[END_REF], [START_REF] Sinclair | Silicon Photomultiplier-Based Compton Telescope for Safety and Security (SCoTSS)[END_REF], [START_REF] Saull | First demonstration of a Compton gamma imager based on silicon photomultipliers[END_REF], which is interesting for its extremely large field of view from 2 to 4 steradians and can typically be used for photons with energies above 250 keV. The second method is based on coded mask aperture imaging [START_REF] Montemont | NuVISION: a Portable Multimode Gamma Camera based on HiSPECT Imaging Module[END_REF], [START_REF]iPIX -Ultra Portable Gamma-Ray Imaging System[END_REF], [START_REF] Skinner | Imaging with coded-aperture masks[END_REF], which consists of setting a coded mask aperture in front of a position sensitive gamma-ray detector and reconstructing the position of the radioactive sources by means of the deconvolution of the projected image onto the detector, called the "shadowgram". This method can be used for photons with sufficiently low energy to be absorbed by the mask, which depends on the mask thickness.

This method provides a typical angular resolution from 2° to 5° in existing systems. The angular resolution is in fact limited only by the geometry of the system, i.e. the relative size of elementary pixels and mask patterns and the distance between the mask and the detector. Different mask patterns have been designed in the literature, such as URA (Uniformly Redundant Array) and MURA (Modified Uniformly Redundant Array) [START_REF] Gottesman | New family of binary arrays for coded aperture imaging[END_REF] or random masks [START_REF] Schanne | The ECLAIRs GRB-trigger telescope on-board the future mission SVOM[END_REF]. URA and MURA masks are advantageous for background noise subtraction, while they are likely to reconstruct false sources, also called ghosts. On the other hand, random masks reconstruct fewer ghost artefacts but are more sensitive to the background noise.

However, coded mask aperture imaging suffers from limitations when the angular size of the sources is large compared to the angular size of the elements of the mask projected on the detector. Such sources are named extended sources in the following. This limitation is the consequence of the deconvolution problem, which is a non-injective inverse problem.

The classical algorithms, such as MLEM (Maximum Likelihood Expectation Maximization) [START_REF] Shepp | Maximum Likelihood Reconstruction for Emission Tomography[END_REF], cannot overcome this issue and new methods must be explored.

Moreover, the coded mask aperture method cannot be used when the energy of the emitted photons is too high to interact by photoelectric effect in the mask. This can be partially solved by increasing the thickness of the mask, but a thick mask suffers from a strong vignetting effect. Eventually, sources out of the mask field of view contribute to the background noise and affect the reconstruction quality, thus the sensitivity. To solve the latter problem, shielding can be added to the camera, but this can make it heavy and nonportable.

In recent years, deep learning algorithms based on neural networks have been used in many fields such as image or speech recognition and have outperformed classical methods. These algorithms have been applied in gamma-ray imaging with coded mask aperture systems [START_REF] Zhang | Reconstruction method for gammaray coded-aperture imaging based on convolutional neural network[END_REF], [START_REF] Zhang | Low-noise reconstruction method for coded-aperture gamma camera based on multi-layer perceptron[END_REF] on simulated data of gamma-ray point sources with a CZT detector leading to promising results. The major interest of algorithms based on neural networks lies on the one hand, in their speed of execution for real-time applications once they are properly trained, and on the other hand, in their potential to overcome the problem of extended sources reconstruction.

In this paper, we demonstrate the application of a Convolutional Neural Network (CNN) dedicated to the image reconstruction of extended radioactive gamma-ray sources. We train our CNN and compare its performance with MLEM, a reference algorithm for the deconvolution problem of coded mask aperture imaging. We evaluate the results using simulated data and we also perform tests on real data acquired with a gamma camera prototype equipped with a coded mask and Caliste-HD, a fine pitch CdTe imaging spectrometer [START_REF] Meuris | Caliste HD: a New Fine Pitch Cd(Zn)Te Imaging Spectrometer from 2 keV up to 1 MeV[END_REF]. We conclude in favour of this algorithm, which outperforms MLEM in terms of reconstruction performances and computation time.

The paper is structured as follows:

Section 2 focuses on the detection system properties. Section 3 presents the mathematical formulation of the problem and the deconvolution limitations with MLEM. We report the architecture of our CNN and our training method in section 4. Finally, Section 5 presents the evaluation of the performances of our algorithm and shows test results on real data.

2 A Gamma Camera prototype based on Caliste-HD associated with a Coded Mask Aperture

Caliste-HD: A CdTe-based detector for high-energy photons

Caliste-HD [START_REF] Meuris | Caliste HD: a New Fine Pitch Cd(Zn)Te Imaging Spectrometer from 2 keV up to 1 MeV[END_REF] is a miniature pixelated detector devoted to high-energy photon imaging spectroscopy. The sensor consists of a 1 mm thick Schottky CdTe crystal. The pixelated electrode pattern is made of 16×16 pixels with 625 µm pitch (525 µm pixel and 100 µm gap). The total detection area is 1 cm². Each pixel is a tiny independent spectrometer. The pixel pattern is used to record the shadowgram of our coded aperture. The pixel array is associated with a stack of ultra-low noise readout electronics, the IDeF-X HD ASICs [START_REF] Michalowska | IDeF-X HD : A low power multi-gain CMOS ASIC for the readout of Cd(Zn)Te detectors[END_REF].

The whole detector is assembled into a 3D module using 3D PLUS technology [START_REF] Meuris | Caliste HD: a New Fine Pitch Cd(Zn)Te Imaging Spectrometer from 2 keV up to 1 MeV[END_REF], [START_REF]3D PLUS[END_REF].

Thanks to its unique design, Caliste-HD reaches a spectrometric resolution of 670 eV FWHM (Full Width at Half Maximum) at 60 keV and 4.7 keV FWHM at 662 keV. Its dynamic range extends from 2 keV to 1 MeV. Energy resolution is important in coded mask aperture imaging when spectral separation of different isotopes is required in the reconstruction. The optimal spectral and noise performance of the detector is obtained at a temperature of -10°C, which is reached by using an embedded compact cooling system with Peltier modules.

The characteristics of Caliste-HD are summarized in

This miniature detector and compact cooling system are the basic components of a portable gamma camera prototype with a weight of 1 kg, presented in Fig. 1. This gamma camera is dedicated to nuclear safety applications such as radiological environment analysis and is planned to be developed in an industrial version by 3D PLUS company.

The Coded Mask Aperture geometry

Our gamma camera is equipped with a coded mask aperture in order to perform radioactive source localization. The geometry of the mask is given in Fig. 2. Opaque elements are made of Tantalum while transparent elements are simply holes. A point source placed at infinity casts a shadow of the mask pattern on the detector plane, as the photons are stopped by opaque elements while they move directly to the plane through transparent elements.

The high atomic number (Z = 73) and density (16.4) of Tantalum are of interest in order to absorb high-energy photons. The thickness of the mask is adaptive from 0.3 mm to 3 mm, by stacking up to ten 0.3-mm thick unit layers. This flexibility is an advantage to manage the vignetting effect. In fact, thick masks are efficient at high energy but the effective size of the transparent elements becomes smaller and smaller as the sources move away from the optical axis. In the following and for the sake of simplicity, the total thickness of our mask is 0.9 mm, i.e. three layers. In this configuration, the total probability of interaction in the opaque elements of the mask at the 60 keV line of 241 Am is 99%.

Our mask is an Optimized Random Aperture mask composed of 46×46 elements, with a unit size of 1×1 mm². Still, the randomness is constrained by mechanical considerations, such as the fact that an opaque element cannot be surrounded only by transparent elements.

Thus, the mask is self-supporting. Its open fraction is 40%. This is a miniaturised version of the mask initially developed for the purpose of the ECLAIRs spaceborne instrument devoted to Gamma-Ray Burst detection [START_REF] Schanne | The ECLAIRs GRB-trigger telescope on-board the future mission SVOM[END_REF].

The mask is set at 5.8 cm from the detector. From geometrical considerations, the Fully Coded Field of View is consequently 34.5° and the total Field of View is up to 51.5°. In this work, we use the total Field of View. From simple geometrical considerations of the projections of the mask, according to the mask element unit size and the detector pixel pitch, for a source at infinity from the gamma camera, the reconstructed image, called the "sky", is discretised with 75x75 positions, with a resolution of 0.7°.

3 Formulation of the reconstruction problem, Classical algorithm and Limitations

Reconstruction problem

In order to pose the problem mathematically, we consider that we register a hit map , where represents the number of photons detected in each detector pixel . is a vector of size 256 (16×16). We want to reconstruct the position on the sky, from which the recorded photon was emitted. For this purpose, we designate the sky intensity map by , where is the number of photons emitted by position . is a vector of size 5625 (75×75).

Finally, we introduce , the mask matrix, where contains the expected projection of the mask on the detector pixel for a source at position . From a probabilistic point of view, follows a Poisson probability law as described in Equation ( 1).

~ Poisson . + (1) 
where is a perturbation term, which takes into account the background counts, false events due to electronic noise and a potential dead pixel map. Note that a first difficulty arises from the fact that the components of the term depend on measurement conditions that are generally unknown.

On the other hand, the probabilistic aspect of the problem creates inherent noise in the reconstruction due to the Poissonian counting fluctuations, especially for low photon count statistics.

Eventually, the reconstruction problem is not injective. Indeed, the dimension of the reconstructed sky is larger than the dimension of the measurement . This leads to the limits of the reconstruction of extended sources that we will show in paragraph 3.3.

Maximum Likelihood Expectation Maximisation (MLEM)

A classical way to solve this ill-posed inverse problem in a probabilistic paradigm is to use an algorithm that maximizes the probability | of observing the data given the reconstructed image , also known as the likelihood. It is equivalent to solving the problem given in Equation ( 2).

= argmax | ! (2) 
MLEM is a method initially developed in the framework of tomographic reconstruction [START_REF] Shepp | Maximum Likelihood Reconstruction for Emission Tomography[END_REF] and provides an iterative algorithm when the data follows a Poisson law, in order to find the optimal value . For each iteration ", Equation (3) gives the update formula.

#$% = # & | ∑ | ( ) # ) (3) 
| indicates the probability that a detected photon emitted at position will be detected in the detector's pixel . Actually, | is given by the mask matrix element .

For initialisation, * can be chosen as a uniform strictly positive image. The algorithm ensures the conservation of the number of photons + ,-./ given in Equation (4), for each step " > 0.

& # = & = + ,-./ (4) 
This algorithm has a low sensitivity to the unknown perturbations in Equation ( 1), such as dead pixels or background uniformity. However, there is no clear stopping criterion to determine when the algorithm reaches the convergence, which can lead to the overfitting of data.

Finally, we will show in the paragraph 3.3 that MLEM algorithm does not overcome the limitations identified for the reconstruction of extended sources.

Limitations for extended sources

The deconvolution problem (1) is non-injective, which means that one observation can be associated to several sky maps . This phenomenon is illustrated in Appendix 7.

Fig. 3 shows a simulation of an extended square source with 10 8 detected photons without background in the simulation, and the corresponding image reconstruction with MLEM algorithm. The simulation is a direct application of the mask projection, combined with a random draw of the number of photons detected according to a Poisson distribution, in each pixel. In this simulation, the photons are fully absorbed by the opaque elements of the mask.

Although this is an ideal case, the MLEM algorithm is not able to locate or reconstruct the simulated source.

Since MLEM is based only on the likelihood of the data, it does not embed any regularization property. A regularization term properly designed could favour solutions with compact sources. Regularization can be done by adopting a Bayesian paradigm through a MAPEM (Maximum A Posterior Expectation Maximization) algorithm [START_REF] Levitan | A Maximum a Posteriori Probability Expectation Maximization Algorithm for Image Reconstruction in Emission Tomography[END_REF], which consists of maximizing the a posteriori probability | , proportional to . | . The prior is then seen as the regularisation term. On the one hand, the difficulty arises from the mathematical formulation of this prior in order to favour compact sources. On the other hand, the resolution then requires the use of another algorithm because the algorithm given in Equation ( 3) cannot be applied. To the best of our knowledge, there is no study in the literature, which introduces such a method to reconstruct extended sources with coded mask aperture imaging.

In Section 4, we propose a method using Convolutional Neural Networks to address this problem.

4 Use of a Convolutional Neural Network for image reconstruction

Architecture of the CNN

The performance of deep learning algorithms in the domain of image processing, and recently for coded mask [START_REF] Zhang | Reconstruction method for gammaray coded-aperture imaging based on convolutional neural network[END_REF] [12] aperture imaging of gamma-ray point sources, show that the study of these methods is relevant to the problem of extended sources.

We propose a Convolutional Network Architecture in order to test the reconstruction of extended sources by means of deep learning algorithm. The architecture is presented in Fig.

4.

The rationale for the use of convolution layers is given by the fact that the input image, the hit map, is expected to be locally correlated through the projection of the mask patterns. The number of layers has been tuned in order to ensure the learning of the algorithm. Our first tests on shallower networks show that numerous convolution layers and fully-connected layers are needed, otherwise the learning is blocked and does not converge. We do not apply pooling operations since the input size is small.

We use dropout as a regularisation technique. We leave the dropout active during testing to approximate a Bayesian neural network by means of Monte-Carlo (MC) dropout method [START_REF] Gal | Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning[END_REF]. This method has been developed to provide an uncertainty estimate on the result, but our preliminary tests have shown that it gives promising results on our problem. At test time, we run the neural network on the same example several times, typically 100 times, and we determine the median of the results, which we consider to be the final answer of the network.

We point out that many relevant architectures can be tested alternatively. Performance of uncertainty quantification by MC Dropout can be evaluated, but these studies are out the scope of this paper.

Online training with synthetic data

Training data are required to use machine learning algorithms. We chose to create simulated data since simulations allows us to control exactly the shape, the position and the intensity of the sources.

To create extended sources with different shapes, we use the random_shapes function of the scikit-image [START_REF] Van Der Walt | Yu and the scikitimage contributors, scikit-image: Image processing in Python[END_REF] Python package. This allows us to create random elementary shapes: circles, rectangles and triangles. We also apply random rotations and resizing's of the shapes for each training example. The intensity of the emission is considered to be uniform over the shape. This shape is the output that the neural network must predict. The simulated image is normalized in norm 1: its elements sum up to 1.

Given the shapes, we compute the corresponding projections 2 on the detector. For each example in the training set, we draw the number of simulated photons + ,-./ between 10 and 10 4 photons, logarithmically following equation [START_REF] Montemont | NuVISION: a Portable Multimode Gamma Camera based on HiSPECT Imaging Module[END_REF] in order not to penalize low counting statistics.

+ ,-./ = 10 45$% , 7 ~ Unif :0,1;

We then draw a hit map with + ,-./ photons corresponding to the computed projection 2 .

We add a uniform noise on the detector with an intensity between 0 and the intensity of the simulated source. We also randomly disable up to two pixels of the detector to anticipate a partially malfunctioning pixel array and take real experimental conditions into account in the training. The resulting hit map is normalized by its maximum value and corresponds to the input of the neural network. The normalization must be applied for each example presented to the network.

One training example is illustrated in Fig. 5, which shows the simulated shapes and the corresponding simulated hit map on the detector.

The simulation is fast since it takes about 8 ms to create one example, regardless of the number of simulated photons, which is an advantage over real measurements.

A more realistic Monte-Carlo simulation, such as a Geant4 [START_REF] Agostinelli | Geant4 -a simulation toolkit[END_REF] code, can be considered to take into account the energy of the photons and the detailed interactions in the surrounding environment. However, the computation time will be much longer and will depend on the number of simulated photons. In Section 5, we show that such a detailed simulation is not necessary at low energy, when opaque elements of the mask are fully efficient in stopping the photons. At higher energy, Compton scattering becomes the dominant interaction process and a complete Monte-Carlo simulation is necessary, which is beyond the scope of this paper.

As The loss function used for training is the binary cross-entropy function and the optimizer is the ADAM algorithm [START_REF] Kingma | A Method for Stochastic Optimization[END_REF] with a learning rate of 10 <= and moments > % = 0.9 and > @ = 0.999. The training is made on NVIDIA GeForce RTX 2080Ti GPU. We use Keras [START_REF] Chollet | Github repository[END_REF] Library for implementation in Python. In this configuration, our learning phase lasts one week.

Results

Performance evaluation on simulated data

Performance assessment in an ideal case

Before confronting our CNN network with real data, we quantitatively evaluate its performance on the simulated database and compared results with the MLEM approach to solve the coded mask aperture image reconstruction problem. We evaluate the results relatively to the size of the extended sources. For that purpose, we built a test set with square shapes of different sizes ranging from 0.7° (i.e. 1 pixel on the sky) up to 20.6° (30 pixels on the sky), with 1000 examples for each size. Note that the largest source nearly corresponds to 40% of the total field of view. In this section, the simulated hit map is calculated in ideal conditions: no background, no disabled pixels, large statistics with 10 million photons simulated. Although these conditions are not realistic, applying the deconvolution with both CNN and MLEM reconstruction techniques allows us to easily intercompare both method results. For illustration, one example is shown in Fig. 6, which represents a simulated square shaped source, the corresponding simulated hit map and the reconstructed images obtained with our CNN and MLEM.

To quantify the performance, we use the standard metric Intersection over Union (IoU), which is given by Equation [START_REF]iPIX -Ultra Portable Gamma-Ray Imaging System[END_REF].

IoU = Area True ∩ Recons Area True ∪ Recons (6) 
Area True ∩ Recons is the area covered by both the reconstructed positions and the expected simulated positions. Area True ∪ Recons is the area covered by at least the reconstructed positions or the expected simulated positions. A perfect reconstruction would give an IoU of 1 while a value of 0 would indicate a total absence of intersection between the reconstructed image and the real source position.

The reconstructed positions are selected for each algorithm as the positions with an intensity above a threshold. If is the reconstructed image, we choose this threshold to be 20% of max ! . This threshold is set empirically and can be optimized. The choice of this threshold does not favour one method over the other. Fig. 7 shows the results for the CNN and the MLEM algorithm.

When the size of a source corresponds to one (point sources) or two pixels on the sky, the image reconstruction is perfect for both algorithms.

MLEM performance drops drastically as the sources get more extended. IoU is found to be lower than 0.1 for 5° extended sources, while the performance of the CNN decreases much more slowly and IoU remains higher than 0.8.

After IoU for MLEM reaches a minimum, it begins to increase slowly with the source size when it exceeds 8° of angular size. This effect is expected and due to the fact that the larger the source is, the more likely we are to randomly reconstruct positions within the expected source region. The red curve in Fig. 7 corresponds to the fraction of the field of view covered by the simulated and known area of the source. We notice that the IoU of MLEM follows the trend of this quadratic curve, which means that a large part of the IoU is attributed to randomness.

This quantification study shows that the CNN is able to reconstruct a large part of the sources at the right position in the sky, even if they are extended in angular area up to a fifth of the Field of View, while MLEM is not able to perform such a reconstruction when the size of the source exceeds 3°.

We point out that the CNN does not contain an explicit regularization term that would favour the reconstruction of compact sources. However, the CNN does have regularization properties due to the training database we designed, which contains only examples of compact extended sources. This is a significant advantage of the CNN over the MLEM algorithm. The latter would require the introduction of an explicit prior in order to transform it into a MAPEM algorithm and then, the corresponding maximization algorithm must be created.

This study is carried out considering an ideal case, with only one of the available shapes included in the training set of our neural network. In paragraph 5.1.2 and 5.2, we demonstrate that our CNN is successfully applied to other shapes, even if they are not included in the training simulations.

Image reconstruction in the case of a randomly generated extended source

In this section, we illustrate the performance of the algorithms in non-ideal cases. Fig. 8 shows the reconstruction for a shape that is not included in the training simulation set. Its intensity is not uniform, which is also not learned in the training simulations. With 50 000 photons and by adding noise of the same intensity as the source, the extended source is successfully located by the CNN. The localization is correct and the shape is roughly restored, while the MLEM algorithm fails to provide any information.

Reconstruction test on real data acquired with a detector

We test our algorithms on real data acquired with our gamma camera. Our laboratory is not equipped with extended radioactive sources, but only with point sources. In order to mimic an extended source, we place three point-sources on a rotating blade that rotates slowly and thus mimic a disc shape after some acquisition time.

The sources are 241 Am with activities of 312, 393 and 440 kBq. The sources are placed so as to mimic a disk shaped source of 6.5° in diameter. The source is nearly in the center of the field of view, intentionally slightly off-axis. We set our rotating system 1 m away from the detector. One can consider the source to be placed at an infinite distance for our imaging system according to our geometry. The dose rate at detector level is thus 27 nSv/h, the same order of magnitude as a typical level of natural background radiation.

For illustration purpose, we superimpose the gamma image obtained by our algorithms with an optical image caught from an optical camera associated to our gamma camera. A calibration process has been previously computed to realize this superposition.

Fig. 9 shows the result after a 2 hours and 35 minutes long acquisition. Gamma ray events are selected in the energy range from 15 to 62 keV, which corresponds to the dynamic of interest for 241 Am. Our CNN is able to locate the source and restore its shape and size as a disk shape of 5° in diameter while MLEM is unable to give exploitable information. The IoU is found to be 0.72 and 0.15 for CNN and MLEM respectively.

We make another acquisition by moving the sources away from the centre of the field of view. In addition, we occult part of the source by placing a 5 cm thick triangular lead brick in front of the sources, so that the shape is no longer a disk but a circular sector. Photons with an energy lower than 60 keV are entirely absorbed by the lead. The acquisition time is 1 h 30 and the energy selection is again between 15 keV and 62 keV.

Fig. 10 shows the result of the reconstruction with both algorithms. Our CNN locates the source position and its shape accurately. MLEM still fails to provide any exploitable information. The IoU is found to be 0.76 and 0.15 for CNN and MLEM respectively.

These tests were performed with 241Am sources so that the photons interacting with opaque elements of the mask are totally absorbed. In future studies, other radioelements, such as 137 Cs are considered to test and evaluate the reconstruction performance. To do this, the simulation process may need to be refined using a more complex simulation code, such as Geant4, as we describe in section 4.2.

Conclusions

The localization of extended radioactive sources with coded mask aperture imaging is a challenge for algorithmic processing since the deconvolution problem is not injective. Even using ideal data, with very high counting statistics and without any noise or perturbation, 
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 1 

  the number of possible configurations is infinite (shapes, positions, intensities of sources, number of photons, random noise…), we decided not to create a fixed pregenerated database with a limited number of examples, but we rather use "online" learning, meaning that we simulate examples at the learning phase. This has the advantage of showing a large number of different examples to the network and avoids memory storage issues.

During the learning phase, at each iteration, we generate 1000 examples, divided into 900 examples for the training set and 100 examples for the validation set, to check the training. Then we compute a learning step of one epoch out of 900 training examples. We repeat this process for 200 000 iterations, so that the network learns with approximately 200 million examples.

the classical algorithm MLEM is unable to solve this problem when the source is large compared to the imaging system angular resolution. A regularization technique, such as in MAP-EM algorithm, is thus necessary.

We demonstrate that convolutional neural networks have the capacity to process this type of data and to reconstruct the position of the sources and their shape. Our CNN has been successfully tested on ideal simulated data as well as on noisy simulated data and, importantly on real data. We can interpret their ability to reconstruct the sources through a regularization process, which is intrinsic to training data since our CNN has been trained to reconstruct only compact extended sources.

Further studies are needed to evaluate the ability of deep learning algorithms to handle multiple point sources or multiple extended sources. In addition, the findings of this study apply to low-energy gamma radioactivity below 100 keV. For higher energy gamma-ray emission such as photons emitted by 137 Cs or 60 Co, the study and tests will be performed again, including full treatment of scattering both within the detector and in the inactive materials surrounding it. Non-uniform background noise, due to radiation sources outside the field of view, should also be studied. It is also relevant to work on uncertainty assessment and dose rate quantification with these machine learning techniques.

Appendix

The objective deconvolution problem given by equation ( 1) is to reconstruct a sky map of size 75 × 75 from a detector hit map of size 16 × 16. Because of the dimensions of and , the problem is non-injective: several sky maps can lead to the same observation . This property implies limitations especially in the case of extended sources reconstruction. Fig. 11 illustrates this phenomenon:

• In Fig. 11a, we simulate an extended source X with a 10° square shape and we calculate the corresponding projection Y by the mask on the detector in Fig. 11b.

Here, we intentionally consider an ideal case as we do not introduce any perturbation ε and we calculate the shadowgram without taking into account Poisson's law.

• In Fig. 11c, we solve the least square problem given in Equation ( 7) in order to find the optimal positions of the sources, with a positivity constraint on the result.

= argmin

M* ‖ -. ‖ @ @ [START_REF] Skinner | Imaging with coded-aperture masks[END_REF] where ‖. ‖ @ is the Euclidean norm.

The resulting reconstruction solution in Fig. 11c is clearly different from the expected simulated extended source in Fig. 11a. However, when reprojecting this result through the mask onto the detector, one finds the image in Fig. 11d, which is identical to the expected projection, the relative difference being as low as 10 <%P . Even in an ideal case, the expected source cannot be found.
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