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Abstract— Diagnostics and monitoring of radiological scenes are critical to the field of 8 

nuclear safety and here, the localization of radioactive hotspots is mandatory and remains a 9 

critical challenge. In order to perform gamma-ray imaging, one main method relies on 10 

indirect imaging by means of coded mask aperture associated with a position sensitive 11 

gamma-ray detector and a dedicated deconvolution algorithm. However, the deconvolution 12 

problem is non-injective, which implies limitations of the reconstruction performance, 13 

especially for spatially extended radioactive sources with respect to the angular resolution. 14 

In this paper, we present and evaluate a new method based on a deep learning algorithm 15 

with a convolutional neural network to overcome this limitation, in comparison with a 16 

classical iterative algorithm. Our deep learning algorithm is trained on simulated data of 17 

extended sources that may imply an intrinsic regularization of the neural network. We test it 18 
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on real data acquired with a gamma camera system based on Caliste, a CdTe detector for 19 

high-energy photons. 20 

 Index Terms— CdTe, coded mask aperture, gamma imaging, deep learning, machine 21 

learning, convolutional neural networks. 22 

1 Introduction 23 

Nuclear instrumentation is vital to nuclear safety and security, in order to provide accurate 24 

information on unknown radiological environments, such as post-accident situations or in 25 

the context of decommissioning and dismantling. In particular after the Fukushima accident 26 

in 2011, a new generation of gamma cameras was developed, whose objective is to provide 27 

a gamma-ray image of radiological scenes and to localize radioactive hotspots. 28 

Due to the physical properties of gamma-ray photons, direct imaging using lenses or mirrors 29 

cannot be used in compact systems such as gamma cameras. Moreover, direct imaging leads 30 

to narrow fields of view. Consequently, indirect imaging is performed and two main 31 

methods exist. The first one relies on the Compton scattering of high-energy photons [1], 32 

[2], [3], [4], which is interesting for its extremely large field of view from 2�  to 4� 33 

steradians and can typically be used for photons with energies above 250 keV. The second 34 

method is based on coded mask aperture imaging [5], [6], [7], which consists of setting a 35 

coded mask aperture in front of a position sensitive gamma-ray detector and reconstructing 36 

the position of the radioactive sources by means of the deconvolution of the projected image 37 

onto the detector, called the “shadowgram”. This method can be used for photons with 38 

sufficiently low energy to be absorbed by the mask, which depends on the mask thickness. 39 



 

This method provides a typical angular resolution from 2° to 5° in existing systems. The 40 

angular resolution is in fact limited only by the geometry of the system, i.e. the relative size 41 

of elementary pixels and mask patterns and the distance between the mask and the detector. 42 

Different mask patterns have been designed in the literature, such as URA (Uniformly 43 

Redundant Array) and MURA (Modified Uniformly Redundant Array) [8] or random masks 44 

[9]. URA and MURA masks are advantageous for background noise subtraction, while they 45 

are likely to reconstruct false sources, also called ghosts. On the other hand, random masks 46 

reconstruct fewer ghost artefacts but are more sensitive to the background noise. 47 

However, coded mask aperture imaging suffers from limitations when the angular size of 48 

the sources is large compared to the angular size of the elements of the mask projected on 49 

the detector. Such sources are named extended sources in the following. This limitation is 50 

the consequence of the deconvolution problem, which is a non-injective inverse problem. 51 

The classical algorithms, such as MLEM (Maximum Likelihood Expectation Maximization) 52 

[10], cannot overcome this issue and new methods must be explored. 53 

Moreover, the coded mask aperture method cannot be used when the energy of the emitted 54 

photons is too high to interact by photoelectric effect in the mask. This can be partially 55 

solved by increasing the thickness of the mask, but a thick mask suffers from a strong 56 

vignetting effect. Eventually, sources out of the mask field of view contribute to the 57 

background noise and affect the reconstruction quality, thus the sensitivity. To solve the 58 

latter problem, shielding can be added to the camera, but this can make it heavy and non-59 

portable. 60 



 

 61 

In recent years, deep learning algorithms based on neural networks have been used in many 62 

fields such as image or speech recognition and have outperformed classical methods. These 63 

algorithms have been applied in gamma-ray imaging with coded mask aperture systems 64 

[11], [12] on simulated data of gamma-ray point sources with a CZT detector leading to 65 

promising results. The major interest of algorithms based on neural networks lies on the one 66 

hand, in their speed of execution for real-time applications once they are properly trained, 67 

and on the other hand, in their potential to overcome the problem of extended sources 68 

reconstruction. 69 

In this paper, we demonstrate the application of a Convolutional Neural Network (CNN) 70 

dedicated to the image reconstruction of extended radioactive gamma-ray sources. We train 71 

our CNN and compare its performance with MLEM, a reference algorithm for the 72 

deconvolution problem of coded mask aperture imaging. We evaluate the results using 73 

simulated data and we also perform tests on real data acquired with a gamma camera 74 

prototype equipped with a coded mask and Caliste-HD, a fine pitch CdTe imaging 75 

spectrometer [13]. We conclude in favour of this algorithm, which outperforms MLEM in 76 

terms of reconstruction performances and computation time. 77 

 78 

The paper is structured as follows: 79 

 80 



 

Section 2 focuses on the detection system properties. Section 3 presents the mathematical 81 

formulation of the problem and the deconvolution limitations with MLEM. We report the 82 

architecture of our CNN and our training method in section 4. Finally, Section 5 presents 83 

the evaluation of the performances of our algorithm and shows test results on real data. 84 

2 A Gamma Camera prototype based on Caliste-HD associated with a Coded Mask 85 

Aperture 86 

2.1 Caliste-HD: A CdTe-based detector for high-energy photons 87 

Caliste-HD [13] is a miniature pixelated detector devoted to high-energy photon imaging 88 

spectroscopy. The sensor consists of a 1 mm thick Schottky CdTe crystal. The pixelated 89 

electrode pattern is made of 16×16 pixels with 625 µm pitch (525 µm pixel and 100 µm 90 

gap). The total detection area is 1 cm². Each pixel is a tiny independent spectrometer. The 91 

pixel pattern is used to record the shadowgram of our coded aperture. The pixel array is 92 

associated with a stack of ultra-low noise readout electronics, the IDeF-X HD ASICs [14]. 93 

The whole detector is assembled into a 3D module using 3D PLUS technology [13], [15].  94 

 95 

Thanks to its unique design, Caliste-HD reaches a spectrometric resolution of 670 eV 96 

FWHM (Full Width at Half Maximum) at 60 keV and 4.7 keV FWHM at 662 keV. Its 97 

dynamic range extends from 2 keV to 1 MeV. Energy resolution is important in coded mask 98 

aperture imaging when spectral separation of different isotopes is required in the 99 

reconstruction. 100 

 101 



 

The characteristics of Caliste-HD are summarized in Table 1 102 

TABLE I 103 

CHARACTERISTICS OF CALISTE-HD 104 

PARAMETER CALISTE-HD 

Number of 

pixels 

256 (16×16) 

Pixel Pitch 625 μm 

Crystal 

thickness 

1 mm 

Dimension 

without CdTe 

10×10×16.5 

mm3 

Power 

Consumption 

200 mW 

Energy Range 2 - 1000 keV 

FWHM at 60 

keV 

670 eV 

FWHM at 662 

keV 

4.7 keV 

 105 



 

The optimal spectral and noise performance of the detector is obtained at a temperature of -106 

10°C, which is reached by using an embedded compact cooling system with Peltier 107 

modules. 108 

This miniature detector and compact cooling system are the basic components of a portable 109 

gamma camera prototype with a weight of 1 kg, presented in  110 

Fig. 1. This gamma camera is dedicated to nuclear safety applications such as radiological 111 

environment analysis and is planned to be developed in an industrial version by 3D PLUS 112 

company. 113 

2.2 The Coded Mask Aperture geometry 114 

Our gamma camera is equipped with a coded mask aperture in order to perform radioactive 115 

source localization. The geometry of the mask is given in Fig. 2. Opaque elements are made 116 

of Tantalum while transparent elements are simply holes. A point source placed at infinity 117 

casts a shadow of the mask pattern on the detector plane, as the photons are stopped by 118 

opaque elements while they move directly to the plane through transparent elements. 119 

The high atomic number (Z = 73) and density (16.4) of Tantalum are of interest in order to 120 

absorb high-energy photons. The thickness of the mask is adaptive from 0.3 mm to 3 mm, 121 

by stacking up to ten 0.3-mm thick unit layers. This flexibility is an advantage to manage 122 

the vignetting effect. In fact, thick masks are efficient at high energy but the effective size 123 

of the transparent elements becomes smaller and smaller as the sources move away from the 124 

optical axis.  In the following and for the sake of simplicity, the total thickness of our mask 125 



 

is 0.9 mm, i.e. three layers. In this configuration, the total probability of interaction in the 126 

opaque elements of the mask at the 60 keV line of 241Am is 99%.  127 

Our mask is an Optimized Random Aperture mask composed of 46×46 elements, with a 128 

unit size of 1×1 mm². Still, the randomness is constrained by mechanical considerations, 129 

such as the fact that an opaque element cannot be surrounded only by transparent elements. 130 

Thus, the mask is self-supporting. Its open fraction is 40%. This is a miniaturised version of 131 

the mask initially developed for the purpose of the ECLAIRs spaceborne instrument 132 

devoted to Gamma-Ray Burst detection [9].  133 

The mask is set at 5.8 cm from the detector. From geometrical considerations, the Fully 134 

Coded Field of View is consequently 34.5° and the total Field of View is up to 51.5°. In this 135 

work, we use the total Field of View. From simple geometrical considerations of the 136 

projections of the mask, according to the mask element unit size and the detector pixel 137 

pitch, for a source at infinity from the gamma camera, the reconstructed image, called the 138 

“sky”, is discretised with 75x75 positions, with a resolution of 0.7°.  139 

3 Formulation of the reconstruction problem, Classical algorithm and Limitations 140 

3.1 Reconstruction problem 141 

In order to pose the problem mathematically, we consider that we register a hit map �, 142 

where �� represents the number of photons detected in each detector pixel �. � is a vector of 143 

size 256 (16×16). We want to reconstruct the position on the sky, from which the recorded 144 



 

photon was emitted. For this purpose, we designate the sky intensity map by �, where �� is 145 

the number of photons emitted by position �. � is a vector of size 5625 (75×75). 146 

Finally, we introduce 	, the mask matrix, where 	�� contains the expected projection of the 147 

mask on the detector pixel � for a source at position �. From a probabilistic point of view, � 148 

follows a Poisson probability law as described in Equation (1). 149 

� ~ Poisson�	. � + �� (1) 

where � is a perturbation term, which takes into account the background counts, false events 150 

due to electronic noise and a potential dead pixel map. Note that a first difficulty arises from 151 

the fact that the components of the term �  depend on measurement conditions that are 152 

generally unknown.  153 

On the other hand, the probabilistic aspect of the problem creates inherent noise in the 154 

reconstruction due to the Poissonian counting fluctuations, especially for low photon count 155 

statistics. 156 

Eventually, the reconstruction problem is not injective. Indeed, the dimension of the 157 

reconstructed sky � is larger than the dimension of the measurement �. This leads to the 158 

limits of the reconstruction of extended sources that we will show in paragraph 3.3. 159 

3.2 Maximum Likelihood Expectation Maximisation (MLEM) 160 

A classical way to solve this ill-posed inverse problem in a probabilistic paradigm is to use 161 

an algorithm that maximizes the probability ���|��  of observing the data �  given the 162 



 

reconstructed image �, also known as the likelihood. It is equivalent to solving the problem 163 

given in Equation (2). 164 

�� = argmax�  ���|��! (2) 

MLEM is a method initially developed in the framework of tomographic reconstruction [10] 165 

and provides an iterative algorithm when the data follows a Poisson law, in order to find the 166 

optimal value ��. For each iteration ", Equation (3) gives the update formula. 167 

���#$% = ���# & ���|����
∑ ���|�(����)#�)�

 (3) 

���|�� indicates the probability that a detected photon emitted at position � will be detected 168 

in the detector’s pixel �. Actually, ���|�� is given by the mask matrix element 	��. 169 

For initialisation, ��*  can be chosen as a uniform strictly positive image. The algorithm 170 

ensures the conservation of the number of photons +,-./ given in Equation (4), for each 171 

step " > 0. 172 

& ���#
�

= & ��
�

= +,-./ (4) 

This algorithm has a low sensitivity to the unknown perturbations � in Equation (1), such as 173 

dead pixels or background uniformity. However, there is no clear stopping criterion to 174 

determine when the algorithm reaches the convergence, which can lead to the overfitting of 175 

data.  176 



 

Finally, we will show in the paragraph 3.3 that MLEM algorithm does not overcome the 177 

limitations identified for the reconstruction of extended sources. 178 

3.3 Limitations for extended sources 179 

The deconvolution problem (1) is non-injective, which means that one observation � can be 180 

associated to several sky maps �. This phenomenon is illustrated in Appendix 7. 181 

Fig. 3 shows a simulation of an extended square source with 108 detected photons without 182 

background in the simulation, and the corresponding image reconstruction with MLEM 183 

algorithm. The simulation is a direct application of the mask projection, combined with a 184 

random draw of the number of photons detected according to a Poisson distribution, in each 185 

pixel. In this simulation, the photons are fully absorbed by the opaque elements of the mask. 186 

Although this is an ideal case, the MLEM algorithm is not able to locate or reconstruct the 187 

simulated source.  188 

Since MLEM is based only on the likelihood of the data, it does not embed any 189 

regularization property. A regularization term properly designed could favour solutions with 190 

compact sources. Regularization can be done by adopting a Bayesian paradigm through a 191 

MAPEM (Maximum A Posterior Expectation Maximization) algorithm [16], which consists 192 

of maximizing the a posteriori probability ���|��, proportional to ����. ���|��. The prior 193 

���� is then seen as the regularisation term. On the one hand, the difficulty arises from the 194 

mathematical formulation of this prior in order to favour compact sources. On the other 195 

hand, the resolution then requires the use of another algorithm because the algorithm given 196 



 

in Equation (3) cannot be applied. To the best of our knowledge, there is no study in the 197 

literature, which introduces such a method to reconstruct extended sources with coded mask 198 

aperture imaging. 199 

In Section 4, we propose a method using Convolutional Neural Networks to address this 200 

problem. 201 

4 Use of a Convolutional Neural Network for image reconstruction 202 

4.1 Architecture of the CNN 203 

The performance of deep learning algorithms in the domain of image processing, and 204 

recently for coded mask [11] [12] aperture imaging of gamma-ray point sources, show that 205 

the study of these methods is relevant to the problem of extended sources. 206 

We propose a Convolutional Network Architecture in order to test the reconstruction of 207 

extended sources by means of deep learning algorithm. The architecture is presented in Fig. 208 

4. 209 

The rationale for the use of convolution layers is given by the fact that the input image, the 210 

hit map, is expected to be locally correlated through the projection of the mask patterns. The 211 

number of layers has been tuned in order to ensure the learning of the algorithm. Our first 212 

tests on shallower networks show that numerous convolution layers and fully-connected 213 

layers are needed, otherwise the learning is blocked and does not converge. We do not apply 214 

pooling operations since the input size is small. 215 

We use dropout as a regularisation technique. We leave the dropout active during testing to 216 



 

approximate a Bayesian neural network by means of Monte-Carlo (MC) dropout method 217 

[17]. This method has been developed to provide an uncertainty estimate on the result, but 218 

our preliminary tests have shown that it gives promising results on our problem. At test 219 

time, we run the neural network on the same example several times, typically 100 times, 220 

and we determine the median of the results, which we consider to be the final answer of the 221 

network. 222 

We point out that many relevant architectures can be tested alternatively. Performance of 223 

uncertainty quantification by MC Dropout can be evaluated, but these studies are out the 224 

scope of this paper. 225 

4.2 Online training with synthetic data 226 

Training data are required to use machine learning algorithms. We chose to create simulated 227 

data since simulations allows us to control exactly the shape, the position and the intensity 228 

of the sources. 229 

To create extended sources with different shapes, we use the random_shapes function of the 230 

scikit-image [18] Python package. This allows us to create random elementary shapes: 231 

circles, rectangles and triangles. We also apply random rotations and resizing’s of the 232 

shapes for each training example. The intensity of the emission is considered to be uniform 233 

over the shape. This shape �  is the output that the neural network must predict. The 234 

simulated image is normalized in norm 1: its elements sum up to 1. 235 

Given the shapes, we compute the corresponding projections �2on the detector. For each 236 



 

example in the training set, we draw the number of simulated photons +,-./between 10 and 237 

104 photons, logarithmically following equation (5) in order not to penalize low counting 238 

statistics. 239 

+,-./ = 1045$%, 7 ~ Unif�:0,1;�  (5) 

We then draw a hit map with +,-./ photons corresponding to the computed projection �2. 240 

We add a uniform noise on the detector with an intensity between 0 and the intensity of the 241 

simulated source. We also randomly disable up to two pixels of the detector to anticipate a 242 

partially malfunctioning pixel array and take real experimental conditions into account in 243 

the training. The resulting hit map � is normalized by its maximum value and corresponds 244 

to the input of the neural network. The normalization must be applied for each example 245 

presented to the network. 246 

One training example is illustrated in  247 

Fig. 5, which shows the simulated shapes and the corresponding simulated hit map on the 248 

detector. 249 

The simulation is fast since it takes about 8 ms to create one example, regardless of the 250 

number of simulated photons, which is an advantage over real measurements. 251 

A more realistic Monte-Carlo simulation, such as a Geant4 [19] code, can be considered to 252 

take into account the energy of the photons and the detailed interactions in the surrounding 253 

environment. However, the computation time will be much longer and will depend on the 254 

number of simulated photons. In Section 5, we show that such a detailed simulation is not 255 



 

necessary at low energy, when opaque elements of the mask are fully efficient in stopping 256 

the photons. At higher energy, Compton scattering becomes the dominant interaction 257 

process and a complete Monte-Carlo simulation is necessary, which is beyond the scope of 258 

this paper.     259 

As the number of possible configurations is infinite (shapes, positions, intensities of 260 

sources, number of photons, random noise…), we decided not to create a fixed pre-261 

generated database with a limited number of examples, but we rather use “online” learning, 262 

meaning that we simulate examples at the learning phase. This has the advantage of 263 

showing a large number of different examples to the network and avoids memory storage 264 

issues. 265 

During the learning phase, at each iteration, we generate 1000 examples, divided into 900 266 

examples for the training set and 100 examples for the validation set, to check the training. 267 

Then we compute a learning step of one epoch out of 900 training examples. We repeat this 268 

process for 200 000 iterations, so that the network learns with approximately 200 million 269 

examples. 270 

The loss function used for training is the binary cross-entropy function and the optimizer is 271 

the ADAM algorithm [20] with a learning rate of 10<= and moments >% = 0.9 and >@ =272 

0.999. The training is made on NVIDIA GeForce RTX 2080Ti GPU. We use Keras [21] 273 

Library for implementation in Python. In this configuration, our learning phase lasts one 274 

week. 275 



 

5 Results 276 

5.1 Performance evaluation on simulated data 277 

5.1.1 Performance assessment in an ideal case 278 

Before confronting our CNN network with real data, we quantitatively evaluate its 279 

performance on the simulated database and compared results with the MLEM approach to 280 

solve the coded mask aperture image reconstruction problem. We evaluate the results 281 

relatively to the size of the extended sources. For that purpose, we built a test set with 282 

square shapes of different sizes ranging from 0.7° (i.e. 1 pixel on the sky) up to 20.6° (30 283 

pixels on the sky), with 1000 examples for each size. Note that the largest source nearly 284 

corresponds to 40% of the total field of view. In this section, the simulated hit map is 285 

calculated in ideal conditions: no background, no disabled pixels, large statistics with 10 286 

million photons simulated. Although these conditions are not realistic, applying the 287 

deconvolution with both CNN and MLEM reconstruction techniques allows us to easily 288 

intercompare both method results. For illustration, one example is shown in Fig. 6, which 289 

represents a simulated square shaped source, the corresponding simulated hit map and the 290 

reconstructed images obtained with our CNN and MLEM. 291 

To quantify the performance, we use the standard metric Intersection over Union (IoU), 292 

which is given by Equation (6). 293 

IoU = Area�True ∩ Recons�
Area�True ∪ Recons�   (6) 



 

Area�True ∩ Recons�  is the area covered by both the reconstructed positions and the 294 

expected simulated positions. Area�True ∪ Recons�  is the area covered by at least the 295 

reconstructed positions or the expected simulated positions. A perfect reconstruction would 296 

give an IoU of 1 while a value of 0 would indicate a total absence of intersection between 297 

the reconstructed image and the real source position. 298 

The reconstructed positions are selected for each algorithm as the positions with an intensity 299 

above a threshold. If �� is the reconstructed image, we choose this threshold to be 20% of 300 

max ��! . This threshold is set empirically and can be optimized. The choice of this 301 

threshold does not favour one method over the other. 302 

Fig. 7 shows the results for the CNN and the MLEM algorithm. 303 

When the size of a source corresponds to one (point sources) or two pixels on the sky, the 304 

image reconstruction is perfect for both algorithms.  305 

MLEM performance drops drastically as the sources get more extended.  IoU is found to be 306 

lower than 0.1 for 5° extended sources, while the performance of the CNN decreases much 307 

more slowly and IoU remains higher than 0.8. 308 

After IoU for MLEM reaches a minimum, it begins to increase slowly with the source size 309 

when it exceeds 8° of angular size. This effect is expected and due to the fact that the larger 310 

the source is, the more likely we are to randomly reconstruct positions within the expected 311 

source region. The red curve in Fig. 7 corresponds to the fraction of the field of view 312 

covered by the simulated and known area of the source. We notice that the IoU of MLEM 313 



 

follows the trend of this quadratic curve, which means that a large part of the IoU is 314 

attributed to randomness.  315 

This quantification study shows that the CNN is able to reconstruct a large part of the 316 

sources at the right position in the sky, even if they are extended in angular area up to a fifth 317 

of the Field of View, while MLEM is not able to perform such a reconstruction when the 318 

size of the source exceeds 3°. 319 

We point out that the CNN does not contain an explicit regularization term that would 320 

favour the reconstruction of compact sources. However, the CNN does have regularization 321 

properties due to the training database we designed, which contains only examples of 322 

compact extended sources. This is a significant advantage of the CNN over the MLEM 323 

algorithm. The latter would require the introduction of an explicit prior in order to transform 324 

it into a MAPEM algorithm and then, the corresponding maximization algorithm must be 325 

created.  326 

This study is carried out considering an ideal case, with only one of the available shapes 327 

included in the training set of our neural network. In paragraph 5.1.2 and 5.2, we 328 

demonstrate that our CNN is successfully applied to other shapes, even if they are not 329 

included in the training simulations. 330 

5.1.2 Image reconstruction in the case of a randomly generated extended source 331 

In this section, we illustrate the performance of the algorithms in non-ideal cases. Fig. 8 332 

shows the reconstruction for a shape that is not included in the training simulation set. Its 333 



 

intensity is not uniform, which is also not learned in the training simulations. With 50 000 334 

photons and by adding noise of the same intensity as the source, the extended source is 335 

successfully located by the CNN. The localization is correct and the shape is roughly 336 

restored, while the MLEM algorithm fails to provide any information. 337 

5.2 Reconstruction test on real data acquired with a detector 338 

We test our algorithms on real data acquired with our gamma camera. Our laboratory is not 339 

equipped with extended radioactive sources, but only with point sources. In order to mimic 340 

an extended source, we place three point-sources on a rotating blade that rotates slowly and 341 

thus mimic a disc shape after some acquisition time. 342 

The sources are 241Am with activities of 312, 393 and 440 kBq. The sources are placed so as 343 

to mimic a disk shaped source of 6.5° in diameter. The source is nearly in the center of the 344 

field of view, intentionally slightly off-axis. We set our rotating system 1 m away from the 345 

detector. One can consider the source to be placed at an infinite distance for our imaging 346 

system according to our geometry. The dose rate at detector level is thus 27 nSv/h, the same 347 

order of magnitude as a typical level of natural background radiation. 348 

For illustration purpose, we superimpose the gamma image obtained by our algorithms with 349 

an optical image caught from an optical camera associated to our gamma camera. A 350 

calibration process has been previously computed to realize this superposition. 351 

Fig. 9 shows the result after a 2 hours and 35 minutes long acquisition. Gamma ray events 352 

are selected in the energy range from 15 to 62 keV, which corresponds to the dynamic of 353 



 

interest for 241Am. Our CNN is able to locate the source and restore its shape and size as a 354 

disk shape of 5° in diameter while MLEM is unable to give exploitable information. The 355 

IoU is found to be 0.72 and 0.15 for CNN and MLEM respectively. 356 

We make another acquisition by moving the sources away from the centre of the field of 357 

view. In addition, we occult part of the source by placing a 5 cm thick triangular lead brick 358 

in front of the sources, so that the shape is no longer a disk but a circular sector. Photons 359 

with an energy lower than 60 keV are entirely absorbed by the lead. The acquisition time is 360 

1 h 30 and the energy selection is again between 15 keV and 62 keV.  361 

Fig. 10 shows the result of the reconstruction with both algorithms. Our CNN locates the 362 

source position and its shape accurately. MLEM still fails to provide any exploitable 363 

information. The IoU is found to be 0.76 and 0.15 for CNN and MLEM respectively. 364 

These tests were performed with 241Am sources so that the photons interacting with opaque 365 

elements of the mask are totally absorbed. In future studies, other radioelements, such as 366 

137Cs are considered to test and evaluate the reconstruction performance. To do this, the 367 

simulation process may need to be refined using a more complex simulation code, such as 368 

Geant4, as we describe in section 4.2.  369 

6 Conclusions 370 

The localization of extended radioactive sources with coded mask aperture imaging is a 371 

challenge for algorithmic processing since the deconvolution problem is not injective. Even 372 

using ideal data, with very high counting statistics and without any noise or perturbation, 373 



 

the classical algorithm MLEM is unable to solve this problem when the source is large 374 

compared to the imaging system angular resolution. A regularization technique, such as in 375 

MAP-EM algorithm, is thus necessary. 376 

We demonstrate that convolutional neural networks have the capacity to process this type of 377 

data and to reconstruct the position of the sources and their shape. Our CNN has been 378 

successfully tested on ideal simulated data as well as on noisy simulated data and, 379 

importantly on real data. We can interpret their ability to reconstruct the sources through a 380 

regularization process, which is intrinsic to training data since our CNN has been trained to 381 

reconstruct only compact extended sources. 382 

Further studies are needed to evaluate the ability of deep learning algorithms to handle 383 

multiple point sources or multiple extended sources. In addition, the findings of this study 384 

apply to low-energy gamma radioactivity below 100 keV. For higher energy gamma-ray 385 

emission such as photons emitted by 137Cs or 60Co, the study and tests will be performed 386 

again, including full treatment of scattering both within the detector and in the inactive 387 

materials surrounding it. Non-uniform background noise, due to radiation sources outside 388 

the field of view, should also be studied. It is also relevant to work on uncertainty 389 

assessment and dose rate quantification with these machine learning techniques. 390 

7 Appendix 391 

The objective deconvolution problem given by equation (1) is to reconstruct a sky map � of  392 

size 75 × 75 from a detector hit map � of size 16 × 16. Because of the dimensions of � 393 



 

and �, the problem is non-injective: several sky maps � can lead to the same observation �. 394 

This property implies limitations especially in the case of extended sources reconstruction. 395 

Fig. 11 illustrates this phenomenon: 396 

• In Fig. 11a, we simulate an extended source X with a 10° square shape and we 397 

calculate the corresponding projection Y by the mask on the detector in Fig. 11b. 398 

Here, we intentionally consider an ideal case as we do not introduce any 399 

perturbation ε and we calculate the shadowgram without taking into account 400 

Poisson's law. 401 

• In Fig. 11c, we solve the least square problem given in Equation (7) in order to find 402 

the optimal positions �� of the sources, with a positivity constraint on the result. 403 

�� = argmin�M* �‖� − 	. �‖@@� (7) 

where ‖. ‖@ is the Euclidean norm.  404 



 

The resulting reconstruction solution in Fig. 11c is clearly different from the expected 405 

simulated extended source in Fig. 11a. However, when reprojecting this result through the 406 

mask onto the detector, one finds the image in Fig. 11d, which is identical to the expected 407 

projection, the relative difference being as low as 10<%P. Even in an ideal case, the expected 408 

source cannot be found.  409 
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11 List of figures captions  482 

 483 

Fig. 1: Gamma camera prototype equipped with a coded mask aperture and an optical 484 

stereoscopic camera 485 

Fig. 2: Random coded mask aperture. The black elements are the opaque elements, the 486 

white elements are the empty elements or holes. 487 

Fig. 3: a. Projection of the source with 10Q  photons. The photons interacting with the 488 

opaque elements of the mask are fully absorbed. b. Reconstruction with MLEM algorithm, 489 

the yellow dashed square indicates the simulated source location. 490 

Fig. 4: CNN architecture 491 

Fig. 5: a. Simulated source with normalization by the sum – Output of the training example 492 

b. Simulated hit map with normalization by the maximum – Input of the training example. 493 

10 000 simulated photons, one disabled pixel. 494 

Fig. 6: a. Simulated source square, 10 million photons, no noise. b. Normalized hit map. c. 495 

Reconstruction MLEM. d. Reconstruction CNN. The yellow dashed squares indicate the 496 

source position. 497 

Fig. 7: Performances of CNN and MLEM according to the IoU metric relatively to the size 498 

of the simulated square. 499 



 

Fig. 8: a. Simulated source, random shape, 50 000 photons with noise. b. Normalized hit 500 

map. c. Reconstruction MLEM. d. Reconstruction CNN. The yellow dashed lines indicate 501 

the source position. 502 

Fig. 9: Real test acquisition with 241Am sources, 2 h 35 mn acquisition duration. 503 

a. MLEM reconstruction. b. CNN reconstruction. The black square is the coded mask field 504 

of view. The yellow dashed circles are the expected shape of the disk source. 505 

Fig. 10: Real test acquisition with 241Am sources, 1 h 30 acquisition time. 506 

a. MLEM reconstruction. b. CNN reconstruction. The black square is the coded mask field 507 

of view. The yellow dashed lines are the expected shape of the circular section source. 508 

Fig. 11: a. Simulated squared shape extended source, 10° by side. b. Computed shadowgram 509 

on the detector plane. c. Reconstruction by the least square method, the yellow dashed 510 

square indicates the expected position of the simulated source (a). d. Reprojection of the 511 

reconstruction solution (c) on the detector. 512 




