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ABSTRACT

The dynamics of massive clumps, the environment where massive stars originate, is still unclear. Many theories predict that these
regions are in a state of near-virial equilibrium, or near energy equi-partition, while others predict that clumps are in a sub-virial state.
Observationally, the majority of the massive clumps are in a sub-virial state with a clear anti-correlation between the virial parameter
αvir and the mass of the clumps Mc, which suggests that the more massive objects are also the more gravitationally bound. Although
this trend is observed at all scales, from massive clouds down to star-forming cores, theories do not predict it. In this work we show
how, starting from virialized clumps, an observational bias is introduced in the specific case where the kinetic and the gravitational
energies are estimated in different volumes within clumps and how it can contribute to the spurious αvir-Mc anti-correlation in these
data. As a result, the observed effective virial parameter α̃eff <αvir, and in some circumstances it might not be representative of the
virial state of the observed clumps.
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1. Introduction

The star formation process proceeds in a hierarchical way,
from clouds (size between 5–100 pc) down to cores (size
'0.1−0.2 pc), with an intermediate step, the clumps, which
are cold, dense structures of '0.5−2 pc in size. These objects
have already been investigated in the past (Williams et al. 1994;
and references therein), but recently surveys of the Galactic
plane such as BGPS, ATLASGAL, and Hi-GAL have identi-
fied thousands of these objects, from extremely young, starless
clumps up to more evolved structures that embed HII regions
(Svoboda et al. 2016; Csengeri et al. 2014; Urquhart et al. 2018;
Traficante et al. 2015; Elia et al. 2017; Cesaroni et al. 2015).

To understand the mechanism of star formation it is fun-
damental to investigate the dynamics of the above-mentioned
clumps, and a key parameter used to do that is the so-called virial
parameter αvir, defined as αvir = 5σ2Rc/(GMc) ∝ Ekin/|Epot|

(Bertoldi & McKee 1992). Here, Ekin ∝ σ2
c Mc and Epot ∝

M2
c/Rc are the kinetic and gravitational energy of the clump,

respectively, Mc and Rc are the mass and radius of the clump,
G is the gravitational constant, and σc is the one-dimensional
(1D) velocity dispersion. Several studies of the dynamics of
clumps, focusing on the more massive ones, demonstrate that
αvir is often below the value expected for an isothermal sphere in
hydrostatic equilibrium, or a Bonnor-Ebert sphere with αBE ' 2,
and in particular below the virial equilibrium value, αvir = 1. In
addition, each separated survey exhibits a clear anti-correlation

between αvir and the mass of the clumps (Kauffmann et al.
2013; Urquhart et al. 2014, 2018; Traficante et al. 2018a). These
results have been interpreted as the more massive clumps
being more gravitationally unstable and prone to collapse (e.g.
Urquhart et al. 2018).

However, the αvir-mass anti-correlation can be also induced
by some observational bias. When several surveys of different
objects are combined together the trend seems to disappear, sug-
gesting that this anti-correlation may be spurious and some-
how misleading (Kauffmann et al. 2013). This is corroborated by
results that show that massive clumps present clear signatures of
dynamical activity and infall motions, such as blue-asymmetric
HCO+ spectra, regardless of the inferred value of the virial
parameter or mass of the clumps (Traficante et al. 2018a,b).

From a theoretical point of view, the turbulent-core mod-
els of massive star formation assume that massive stars form in
clumps near the virial equilibrium state, supported by high levels
of pressure generally driven by local turbulence (McKee & Tan
2003; Tan et al. 2014). Recent simulations of high-mass gaseous
proto-clusters have shown that these objects may undergo a local
gravo-turbulent collapse and evolve at near-virial equilibrium
while continuing to accrete mass (Lee & Hennebelle 2016a,b),
suggesting also that the energy properties of the clumps are
set at the very early stages of formation. The collapse may
also be driven by the gravity itself on a global scale that puts
the massive clumps in a state of energy equi-partition. This
implies αeq = 2, a condition that in the observations, given the
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uncertainties of the measurements, is nearly indistinguish-
able from αvir = 1 (Ballesteros-Paredes et al. 2011, 2018;
Camacho et al. 2016; Iffrig & Hennebelle 2017; Hennebelle
2018). Alternatively, competitive accretion theories consider
that massive star-forming regions may be in global, free-
fall collapse, but they start and evolve in a sub-virial state,
although the expected values may still be near unity (αvir ' 0.5,
Bonnell & Bate 2006).

Generally speaking, the motions induced by, or nearly in
equilibrium with, gravity, are naturally virialised. This is a robust
property/feature from which it seems difficult to depart signifi-
cantly. Even magnetic fields may not be able to provide signif-
icant support for massive clumps, from both a theoretical and
observational point of view (e.g. Hartmann et al. 2001; Crutcher
2012; Hennebelle 2018).

All these theories can explain why clumps are in a state of
near-virial equilibrium or are in a roughly sub-virial state, but
none of them offer a clear explanation for the observed anti-
correlation between αvir and mass, reinforcing the idea that it
may be the consequence of an observational bias in the eval-
uation of the gravitational energy or the kinetic energy (or
both) at all spatial scales. This αvir-mass anti-correlation is
in fact observed with similar trends in giant clouds (GMCs,
Miville-Deschênes et al. 2017), clumps (Traficante et al. 2018a)
and cores (Kauffmann et al. 2013). However, the bias may have
different origins. The physical and kinetic properties of giant
clouds are usually determined consistently within the same
volume of gas from the emission line spectra of CO iso-
topologues (e.g. Heyer et al. 2009; Roman-Duval et al. 2010;
Miville-Deschênes et al. 2017). On parsec scales, within the
dense clumps (Σ ≥ 0.01 g cm−2 Elia et al. 2017; Urquhart et al.
2018), the CO lines become optically thick and the physical
properties must be determined from the cold dust emission, and
then combined with the kinematics derived from the gas to eval-
uate the virial properties.

A possible bias in the estimation of the gravitational energy in
massive regions is discussed in the literature, and it is the sensi-
tivity limit of each survey that may bias the observations towards
regions with similar column densities (Ballesteros-Paredes et al.
2012; Kauffmann et al. 2013), which is particularly significant for
relatively low-density regions like the GMCs.

In this letter we show that, starting from a simple model of
massive clumps near virial equilibrium, an observational bias is
introduced when the gravitational and the kinetic energies are
evaluated within different regions of the clump and that this bias
can contribute to the spurious anti-correlation between αvir and
mass. The model is described in Sect. 2, and its application to
simulations of cluster formation and real datasets is reported
in Sects. 3 and 4, respectively. In Sect. 5 we draw our sum-
mary. More details about the setup of the simulations are in
Appendix B, and a discussion of the possible biases introduced
in observations of massive clumps is given in Appendix C.

2. A bias in the observations of virialized clumps

We model a clump as an “onion-like” structure, that is, a spher-
ically symmetric region formed by the combination of several
layers of material with increasing density as we move from the
clump edges into the inner regions.

Each clump therefore follows a density profile ρ that depends
only on the radius R as ρ = ρ0(R/Rc)−p, with ρ0 the density at
the edges of the clump, that is, at the layer with radius R = Rc.

We further assume that the clumps are all near virial equi-
librium at all stages of star formation and that each layer is

virialized itself, that is, clumps have αvir ' 1 at each radius R.
We note that our model is not intended to reconstruct the abso-
lute value of the virial parameter in massive clumps. For the pur-
pose of our discussion, it is not relevant if the clumps are all in
virial equilibrium (αvir = 1), can be modeled as a Bonnor-Ebert
sphere (αBE ' 2), or are in energy equi-partition (αeq = 2), as
long as they all have the same intrinsic value of α.

Finally, we assume that the clumps follow the rela-
tion (Camacho et al. 2016; Ballesteros-Paredes et al. 2018;
Iffrig & Hennebelle 2017)

σ ∝ (ΣR)0.5, (1)

with Σ the surface density of the clumps. This is a generalized
version of the first Larson’s relation (σ ∝ R0.5 Larson 1981;
Heyer & Brunt 2004) that accounts for the results obtained in
recent observations of massive objects (Ballesteros-Paredes et al.
2011; Maud et al. 2015; Traficante et al. 2018b) and allows us
to self-consistently assume that clumps are in virial equilibrium
(Ballesteros-Paredes et al. 2018). Equation (1) implies σ ∝ Rδ

with δ > 0 when Σ = M/(πR2) ∝ Rβ and β > −1, that
is, a mass-radius relationship M ∝ Rγ with γ > 1, a condi-
tion that is always found in observations (e.g. Urquhart et al. 2014;
Ellsworth-Bowers et al. 2015; Traficante et al. 2018b).

This toy-model is an approximation of the real structure
of the clump, where low-density gas can be widely distributed
across all spatial scales (see Sect. 3). Also, it may be inaccu-
rate to describe the central regions of the clump, where the deep
potential well may allow the fragmentation and the consequent
formation of many non-uniformly distributed cores and proto-
stars (e.g. Zhang et al. 2015). Nevertheless, it is a very simple but
reasonable approximation for clumps that have an aspect ratio
of the order 1.2–1.3 (Molinari et al. 2016), and in particular to
model the outer layers of each clump, which is the primary pur-
pose of this work.

Applying the virial equilibrium hypothesis to a clump,
and following the definition of the virial parameter of
Bertoldi & McKee (1992), we can write
GMc

5Rc
= σ2

c . (2)

The quantities Mc and Rc in the clumps are deter-
mined by observations of the dust continuum emission in
the far-infrared/sub-millimetre (Urquhart et al. 2014, 2018;
Traficante et al. 2015; Svoboda et al. 2016; Elia et al. 2017). In
order to evaluate the kinetic energy of the clumps, instead
observers usually measure the velocity dispersion from the
emission spectra of a specifically optically thin line such as
for example NH3 (1, 1) (Urquhart et al. 2014) or N2H+ (1−0)
(Jackson et al. 2013). Each particular transition however is
excited at and above a specific volume density, the critical den-
sity of the line ρcrit. Although also including the effect of the
radiative trapping, Shirley (2015) showed that the effective exci-
tation density ρeff may be significantly lower than the line crit-
ical density of a given gas tracer, the gas at densities lower
than ρeff is not traced by the chosen molecular line (see e.g.
Kauffmann et al. 2017). In this case, there will be a specific
radius Reff above which the gas is not traced by our chosen
molecule. The measured velocity dispersion, σeff , refers there-
fore to a region of the clump that goes from the center up to the
layer of the clump where M = Meff and R = Reff < Rc. Since in
our hypothesis the clumps are in virial equilibrium at all layers,
at a given radius Reff < Rc we can write
GMeff

5Reff

= σ2
eff < σ

2
c , (3)

L7, page 2 of 7



A. Traficante et al.: A possible observational bias in the estimation of the virial parameter in virialized clumps

with σ2
eff

< σ2
c , which comes from our hypothesis that the

clumps follow a generalized Larson-like relation σ ∝ Rδ with
δ > 0 and Reff < Rc.

The key point is that for each clump we can only determine
the total mass Mc and radius Rc but, at the same time, for any
given molecule we can only measure the velocity dispersionσeff .
Although the clumps are all in virial equilibrium, the net result
is that we measure an effective virial parameter α̃eff :

α̃eff =
5σ2

eff
Rc

GMc
<

5σ2
cRc

GMc
= αvir = 1. (4)

The value of α̃eff depends on the ratio between the kinetic energy
measured at and within the region with effective critical density
ρeff , proportional toσ2

eff
, and the total kinetic energy of the clump

(proportional to σ2
c).

In the following, we derive the dependence of α̃eff with the
effective critical density ρeff within each clump (Sect. 2.1) and
the slope of the α̃eff-mass diagram for an ensemble of clumps
(Sect. 2.2).

2.1. The relation between α̃eff and ρeff in a given clump

In our hypothesis each layer is virialized, and following on from
Eqs. (3) and (4):

α̃eff

αvir = 1
=
σ2

eff

σ2
c

=
Meff

Reff

Rc

Mc
· (5)

As showed in Appendix A, given the definition of the effec-
tive critical density ρeff = ρ0(Reff/Rc)−p, we can express the
effective virial parameter measured in a given clump as a func-
tion of ρeff :

α̃eff(ρeff) =

( 3
3 − p

ρeff

ρc

) p−2
p

, (6)

where ρc is the average volume density of the clump. This equa-
tion shows that for a clump with a given density profile, when
p , 2 there will only be some specific molecule with a critical
density ρeff = ρ0 = ρc × (3 − p)/3 for which α̃eff = α = 1. With
p , 2 and in clumps with ρc < ρeff , α̃eff < αvir and it depends on
the chosen gas tracer used to infer the kinetic properties of the
gas.

Similarly, Eq. (6) can be expressed as a function of the obser-
vational quantity σeff . From Eq. (5) it follows that

σeff(ρeff) = σc

( 3
3 − p

ρeff

ρc

) p−2
2p

. (7)

The radial density profile p has a range of values both from
theoretical and observational points of view. If the clump is
described by a logatropic Equation of state, it follows that p = 1
(McLaughlin & Pudritz 1997). On the other hand, the “inside-
out” collapse model of a singular isothermal sphere predicts
p = 2 (Shu 1977). The core-collapse model for the formation
of massive stars proposed by McKee & Tan (2003) assumes an
intermediate value p = 1.5. In massive star-forming clumps, p
has been observed in the range p = 1.6 ± 0.5 (Beuther et al.
2002), or p = 1.8 ± 0.4 (Mueller et al. 2002). The density pro-
file of massive clumps derived by their surface density profile
suggests p = 1.1 (Tan et al. 2013).

With a value of p = 1.5, Eq. (7) predicts σeff ∝ ρ
−0.17
eff

, in rea-
sonable agreement with observations in nearby high-mass star-
forming regions (σeff ∝ ρ

−0.15, Orkisz et al. 2017).

2.2. The α̃eff-mass relation for an ensemble of clumps

In order to derive the α̃eff-mass relation that resembles the obser-
vations, Eq. (6) has to be applied to a sample of clumps observed
with a single gas tracer. In this case, ρeff is defined for the entire
sample and the variable becomes ρc. For a given gas tracer,
there will only be a class of clumps with average volume density
ρc = 3/(3 − p) × ρeff for which we measure α̃eff = 1. The value
of ρc = 3Mc/(4πR3

c) of each clump depends on its mass Mc and
radius Rc; therefore the distribution of ρc is directly linked to the
mass-radius distribution of the sample, which can be expressed
as Mc ∝ M0(Rc/R0)γ. The factors M0 and R0 are normalization
values that may depend on the various techniques used to derive
the dust properties in each survey of clumps. It follows that

ρc(Mc) =
3

4π
Mc

R3
c

=
3

4π
M

3
γ

0 R−3
0 M

1− 3
γ

c . (8)

Substituting this value into Eq. (6), the effective virial param-
eter measured in a sample of clumps can finally be expressed as
function of the mass of the clumps:

α̃eff(Mc) = AM
γ−3
γ

2−p
p

c = AMh
c , (9)

with

A =

[
ρeff

4π
3 − p

( Rγ
0

M0

) 3
γ
] p−2

p

. (10)

The bias induced by the use of a single gas tracer to mea-
sure the kinetic energy of a sample of virialized clumps induces
a spurious correlation between α̃eff and M that depends on two
parameters: the slope γ of the mass-radius relationship of the
sample and the average radial density profile p of the clumps.
In particular, with a mass-radius slope of γ < 3 and a clump
density profile p < 2, Eq. (9) predicts that we will introduce an
anti-correlation between the measured virial parameter and the
mass of the sample. We note that the slopes γ and p are not nec-
essarily dependent variables. This would only be true if clumps
of different sizes were representative of the structures of a single
clump at different radii, which is not necessarily the case.

The value of the mass-radius slope in star-forming clumps
is expected to be γ ≤ 2 and depends on the slope of the
column density PDF of the sample (Ballesteros-Paredes et al.
2012). The mass-radius diagram has been evaluated for several
surveys of clumps and the derived γ depends significantly on the
approach used to extract the parameters of clumps and to fit the
mass-radius slope (Kauffmann et al. 2010). Also, different algo-
rithms may lead to different values of the column density PDF
and of the mass-radius slope (Gómez et al. 2014). Mass-radius
diagrams of nearby star-forming regions and massive clumps
across the Galaxy have values in the range 1.4 ≤ γ ≤ 1.7
(Kauffmann et al. 2010; Urquhart et al. 2014, 2018). There are
however examples in the literature of samples of clumps that
exhibit γ & 2 (Ellsworth-Bowers et al. 2015), larger than 2
(γ = 2.38, Traficante et al. 2018a) or even steeper (γ ' 2.7,
Kainulainen et al. 2011).

In Fig. 1 we show the predicted value of the slope h for dif-
ferent values of p in the expected range 1 < p < 2 and for
two values of the mass-radius slope, γ = 1.4 (Urquhart et al.
2018, upper panel) and γ = 2.38 (Traficante et al. 2018a, lower
panel). The models have been normalized to have α̃eff =αvir = 1
in clumps with mass below M0 = 300 M� for all values of
p. Assuming a clump with M = M0, a radius R0 = 0.4 pc,
and a density profile with p = 1.5, it follows from Eqs. (9)
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Fig. 1. Prediction of the model described by Eq. (9) for different val-
ues of p (various red lines) and for a mass-radius slope γ = 1.4 (upper
panel) and γ = 2.38 (lower panel), using results obtained in the samples
of Urquhart et al. (2018) and Traficante et al. (2018a), respectively. The
models have been normalized to all have α̃eff = 1 at M0 ≤ 300 M�. The
azure-dashed lines are the α̃eff-mass relations found in Urquhart et al.
(2018, upper panel) and Traficante et al. (2018a, lower panel) respec-
tively, normalized to have α̃eff = 1 at M0 = 150 M� for ease of visual-
ization.

and (10) that α̃eff =αvir = 1 is obtained if the kinetic energy is
measured using a gas tracer with effective critical density ρeff =
104 cm−3, like for example the N2H+ (1− 0) (Shirley 2015). The
figure also shows the α̃eff-mass slopes measured in the work of
Urquhart et al. (2018) and Traficante et al. (2018a), in the upper
and lower panels, respectively, normalized to α̃eff =αvir = 1 at
M0 = 150 M� for ease of visualization. We note that the abso-
lute value of α̃eff depends on the particular survey, but within
each survey the measurements are consistent and the α̃eff-mass
slope can be compared with the models.

In the following sections we see how this simple model
explains in part what is found in simulations and in observations
of massive regions.

3. The simulations

The previous section provided a simple model to explain the bias
in velocity dispersion that could be introduced by molecular line
observations. In this section, we test this idea in simulated cluster
formation to confirm the model.

The simulations from Lee & Hennebelle (2016a) and with
more complete physics, including ionizing feedback, are used
to test and analyse the concepts outlined above. They all show
qualitatively similar results. Therefore, here we present results
from run B in Lee & Hennebelle (2016a), which is a single clus-
ter of a few thousand solar masses formed from the collapse of
a 104 M� molecular cloud. The cluster has a radius of 0.6 pc.
These simulations are useful to illustrate the effect of the obser-
vational bias in a single protocluster. They represent only one
point in the αvir-mass space and were not designed to reproduce
the αvir-mass relation. More details about the simulations used
in this work can be found in Appendix B.

In Fig. 2 we show the effective virial parameter computed
at each radius and for several values of ρeff . This value is sim-
ply defined as αeff = 5/3σ2

3D(R, ρ > ρeff) × R/(GM(R)), where
σ3D(R, ρ > ρeff) is the 3D velocity dispersion of the gas within
radius R and with density > ρeff . The factor 5/3 makes the results
obtained from the simulations consistent with the definition of
αvir given by Bertoldi & McKee (1992), and directly comparable

0.4 0.6 0.8 1.0 2.0

Radius (pc)

0.8

0.9

1.0

2.0

e
ff

total gas
1.e3
1.e4
1.e5

Effective virial parameter

Fig. 2. Effective virial parameter as a function of the radius of the cluster
centre, computed for several values of the effective critical density of a
given tracer: ρeff = (103, 104, 105) cm−3 for the orange, green, and red
lines, respectively. The blue line is the total mass of the gas.

with the observations, which considers the 1D velocity disper-
sion. When most of the mass is considered, the cluster is close
to viral equilibrium, that is, α̃eff ∼αvir∼ 1. We note that there is
a numerical constant from geometrical considerations that we
ignore here since it does not have a qualitative impact on the
results.

When the low-density gas is filtered out, that is, at increasing
values of ρeff , we see a significant decrease in αeff in regions up to
twice the cluster size (radius of '1.2 pc), which is in line with the
results by Orkisz et al. (2017) and the αvir-mass trend reported
by several cluster observations. At larger radii the dense gas
becomes a very small fraction of the total gas, the simulations
deviate significantly from our proposed toy model and the kine-
matics determined with high-density tracers are not well defined.
We caution that the simulations were not meant to reproduce the
simple “onion” model we propose in this work, but they actually
result in a more clumpy cluster than the onion shell model, and
the dense gas is more widely distributed. This could possibly be
regarded as several local “onions” packed together. More care-
ful studies are certainly needed for a better understanding of the
kinetics of the cluster, but these results already suggest that the
measured α̃eff in dense clumps may be biased by the chosen gas
tracer.

4. Comparison with observations

The observed α̃eff-mass anti-correlation in clumps has the form
α̃eff∝ Mhα , with slope hα. We note that h = hα only in the case in
which the bias discussed in this work is the only factor respon-
sible for the observed α̃eff-mass slope. We further discuss this
point in Appendix C.

In Fig. 3 we show the expected value of the slope h as
obtained from Eq. (9), for a range of mass-radius slopes (1 ≤
γ ≤ 3) and for three different values of the radial density profile,
p = [1.0, 1.5, 2.0] (red, blue, and green lines, respectively).

The filled circle and diamond points are the h values of
the clumps taken from Kauffmann et al. (2013, and adapted
from Wienen et al. 2012 and Sridharan et al. 2005, respec-
tively). These clumps have masses in the range 50 ≤ M ≤

104 M�, and the kinetic energy is estimated from the NH3
(1, 1) line width (Wienen et al. 2012; Sridharan et al. 2005;
Kauffmann et al. 2013). The derived α̃eff-mass slopes are hα =
−0.43 and hα = −0.47, respectively. The filled square is the
h value obtained from the distance-limited ensemble of '5000
ATLASGAL clumps where the kinetic energy is estimated com-
bining several surveys of gas tracers including NH3 (1, 1), C18O
(1−0), and N2H+ (1−0) (Urquhart et al. 2018; and references
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Fig. 3. Predicted values of the α̃eff-mass slope h for a range of values
of the mass-radius slope γ and for three different values of the radial
density profile p following Eq. (9). Red, blue, and green dashed lines
are the curves for values of p = [1.0,1.5,2.0], respectively. The values of
γ and h from several surveys of clumps presented in the literature have
been superimposed.

therein). If the bias in the estimation of α̃eff is entirely due to the
measurement of the kinetic energy, implying h = hα, the density
profiles of the clumps in these surveys predicted by our model
would be in the range 1.2 ≤ p ≤ 1.5, in good agreement with
observations (Beuther et al. 2002; Mueller et al. 2002; Tan et al.
2014). The hourglass and triangle points are the values derived
from the survey of Traficante et al. (2018a) and a collection of
nearby massive regions discussed in Kainulainen et al. (2011),
respectively. These surveys span a range of masses 10−1 ≤ M ≤
104 M� and both have a relatively high mass-radius slope, with
values of γ = 2.38 and γ = 2.7, respectively. If h = hα, this
would imply a radial density profile of the clumps with p = 0.69
and p = 0.33, respectively, slopes that are below the expected
values of the profile of the clumps. With a more realistic density
profile in the range 1 ≤ p ≤ 1.5, from Eq. (9) we still obtain an
anti-correlation between α̃eff and M with slope h, but in this case
|h| < |hα|. The observed αvir-mass anti-correlation may in fact be
the result of several sources of bias, as we discuss in Appendix C.

5. Summary

In this letter we showed that, for a sample of virialized clumps
modelled as an “onion-like” sphere made of several virial-
ized layers of material, the derivation of the physical and
kinematic properties from different tracers (e.g. from dust
emission and molecular lines, respectively) leads to a biased
estimate of an effective virial parameter α̃eff <αvir = 1 and a spu-
rious anti-correlation between α̃eff and the mass of the clumps.
We compared our model with predictions from the simulations
of Lee & Hennebelle (2016a) and we showed that, although the
onion-like model is a simplification of the structure of a clump,
the value of the effective virial parameter depends on the differ-
ent density thresholds probed by each gas tracer.

We stress that an anti-correlation between mass and the virial
parameter is observed at all scales and also in cases where the
kinetic and the gravitational energies are observed within the
same volumes, as for example in GMCs. The model we propose
here applies under the specific conditions typical of the observa-
tions of massive clumps.

We conclude that the bias discussed in this letter can con-
tribute at least partly, and in some cases significantly, to the α̃eff-
mass slope hα observed in several surveys of massive clumps.

At the same time, under the simple onion-like approximation for
the clump structure, Eq. (6) provides a simple tool to identify
the best tracer required to observe the gas kinematics of a given
region with average volume density ρc and a defined density pro-
file.

Finally, it is worth noting that the conclusions of this work
remain consistent for any fixed value of αvir in a sample of
clumps and the analysis we have shown here does not aim to
distinguish among different star-formation theories.
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Appendix A: Derivation of the relation between α̃eff
and ρeff

In this section we demonstrate how to derive the relation
between α̃eff and ρeff starting from Eq. (5).

First, we recall that, given our onion-like model, the mass
Meff at a given radius Reff can be expressed as

Meff = 4πρ0Rp
c

∫ Reff

0
R2−pdR. (A.1)

Solving the integral we obtain

Meff =
4πρ0Rp

c

3 − p
R3−p

eff
, (A.2)

and substituting in Eq. (5),

α̃eff =
4π

3 − p
ρ0R2−p

eff

Rp+1
c

Mc
· (A.3)

The effective virial parameter can now be expressed as a
function of the effective critical density ρeff = ρ0(Reff/Rc)−p.
Equation (A.3) becomes

α̃eff =
4π

3 − p
ρ

2
p

0 ρ
p−2

p

eff

R3
c

Mc
=

3
3 − p

ρ
2
p

0 ρ
p−2

p

eff
ρ−1

c , (A.4)

with ρc = 3Mc/(4πR3
c) being the average volume density of the

clump.
The volume density at the outer layer of the clump, ρ0, can

be derived from Eq. (A.2) substituting Reff with Rc, and Meff with
Mc. It follows that

ρ0 = ρc
3 − p

3
, (A.5)

and substituting in Eq. (A.4) we finally obtain the relation
between α̃eff and ρeff described in Eq. (6).

Appendix B: Simulations

The simulations of molecular cloud collapse used in this work
are initialized with a Bonner-Ebert sphere and seeded turbu-
lence following the Kolmogorov spectrum with random phases,
which initially virializes the cloud. The cloud collapses under
its self-gravity and a gaseous proto-cluster of sub-parsec size
is formed at the centre. This proto-cluster is in virial equilib-
rium, with the turbulence being the major support against self-
gravity. Analyses by Lee & Hennebelle (2016a) showed that the
thermal and magnetic energies are at percent level with respect
to the turbulence at this scale. This is a natural consequence
seen in many collapsing structures: concentrated mass supported
by accretion-driven turbulence (see e.g. Klessen & Hennebelle
2010; Lee & Hennebelle 2016b). The first interpretations of
these simulations already strongly suggest that it is very unlikely
to see sub-virial structures when self-gravity is in action. Several
setups were considered, with the mass of 103, 104, and 105 solar
masses. The initial density was also varied, which corresponded
roughly to the scatter around Larson’s relations.

The results from the simulations are taken at a time when the
collapsing region of the proto-clusters is not overly dominated
by the sink-particles, that is, when the mass of the sink particle
is less than half of the initial proto-cluster mass. We note that
similar results are obtained if the simulations are taken at earlier
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Fig. B.1. Mean density of the cluster center simulated in
Lee & Hennebelle (2016a) averaged in spherical shells against
the radius of the cluster. The Figure shows how the density increases
towards the center of the cluster with (dashed line) and without (solid
line) including the mass of the sink particles.
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Fig. B.2. Mass integrated above a fixed value of the effective critical
density ρeff = (103, 104, 105) g cm−3 for the orange, green, and red lines,
respectively, as function of the radius of the cluster centre. The blue line
is the total mass of the gas. Dashed lines include also the mass of the
sink particles.

stages, while at later stages the gas motions are overly affected
by the feedback of the already formed HII regions.

The radial-density profiles in these simulations is roughly
ρ ∝ r−2, however in the simulations the substructures are present
across the clump and not only in the central region, as instead
suggested by our toy model. As discussed in the main text of
this letter, these simulations were not designed to reproduce our
results, but to get a first glance of the model described in this
work.

Figure B.1 shows the density averaged in spherical shells
against the distance to the cluster centre, with the solid line rep-
resenting the gas mass and the dotted line representing the total
mass including sink particles for completeness. The mass M
evaluated in these simulations does not include the mass of the
sink particles. This is done to extract parameters from the simu-
lations that are as close as possible to the observed values, since
sink particles are dominated by the stars that are not observed in
the dust continuum surveys used to determine the clump phys-
ical properties. The resolution of these simulations is however
' 200 AU, the size of a region that still contains some gas sur-
rounding the final stars. Higher-resolution simulations able to
resolve single stars starting from parsec-scale molecular clouds
are significantly more time consuming, and they will be explored
in a future work. For completeness, in Fig. B.1 we show also
the values obtained including the sink particles in the calcu-
lations. Figure B.2 shows the integrated mass M(R, ρ > ρeff)
within radius R, with filtering by a critical density. The blue line
contains the total gas mass, and the orange, green, and red lines
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contain gas mass at density above 103, 104, 105 cm−3, respec-
tively, typical values of the diffuse gas observed in massive
clumps. Solid lines show only the gas mass, and the dotted lines
with same colours show the mass including sink particles. This
figure shows that most of the gas is found at low densities and
a lot of gas is missed during the observation if a critical density
is introduced, probably biasing the measurement of the total gas
kinetic energy of the system.

Appendix C: Discussion

For a sample of virialized clumps, our starting hypothesis, the
value of the αvir-mass slope is equal to zero by definition.

As already noted by Kauffmann et al. (2013), the observed
slope hα depends on both the linewidth-size slope δ and
the mass-radius slope γ (see in particular Eq. (10) in
Kauffmann et al. 2013):

hα =
2δ + 1 − γ

γ
· (C.1)

The artifacts in the observations therefore influence the esti-
mation of the slopes γ and δ. While in reality the observational
biases likely contribute to both these slopes, in the following we
discuss the two extreme cases where they contribute to the eval-
uation of either γ or δ.

We first assume that the artifact affects the estimation of
γ. In this case the bias is entirely due to the estimation of the
gravitational energy of the system. The line width-size slope is
well determined, the estimation of the kinetic energy no longer
depends on ρeff and our model, in particular Eq. (9), does not
apply.

An observational bias in the estimation of the mass-radius
slope may arise from the sensitivity limits intrinsic in each
survey. Since within each survey the sensitivity remains the
same, the mean column density of each clump remains very
similar between different clumps. At the same time, the sen-
sitivity can change significantly between different surveys,
leading to different mean mass surface densities of a given sam-
ple (Kauffmann et al. 2013).

A similar argument is discussed in Ballesteros-Paredes et al.
(2012). For a given survey with sensitivity threshold near or right
after the peak of the column density probability distribution of
the clumps N−PDF, the average column density of the clumps
is determined by the (relatively) low-density gas that dominates
the distribution.

It is worth noting now that observations of massive clumps
show that there is no correlation between line width and size;
that is, the slope is δ ' 0 (Ballesteros-Paredes et al. 2011;
Traficante et al. 2018a,b). Fixing the value δ = 0, the α̃eff-mass
slope depends only on the mass-radius slope of a given sample.
From Eq. (C.1), it follows that hα → 0 when γ → 1. As dis-
cussed in Sect. 4, the values of γ are systematically larger than
1. The observational bias suggested by Ballesteros-Paredes et al.
(2012) and Kauffmann et al. (2013) in this case contributes to an
over-estimation of the mass-radius slope.

On the other hand, if the observational bias is entirely due to
the measurements of the velocity dispersion, the line width-size
relation is the only one affected, implying δ , 0. In this case our
model is fully responsible for the observed α̃eff-mass slope and
h = hα. The bias in this hypothesis arises from the fact that the
dust continuum surveys used to estimate the dust mass recover
the dust emission of the whole structure, while any given gas
tracer is only excited, in our simplified onion model, in layers at
and above its effective critical density ρeff .

An example of how this bias affects real observation is the
following: assuming a typical massive clump of 400 M� with
average surface density of 0.1 g cm−2 and radius R = 0.5 pc, the
average volume density is '1.2×104 cm−3. From Eq. (A.5) it fol-
lows that the volume density of the outer layer is 4 × 103 ≤ ρ0 ≤

8 × 103 cm−3, assuming a radial density profile with 1 ≤ p ≤ 2.
In this example, any gas tracer with ρeff ≥ 104 cm−3, the effec-
tive critical density of a commonly used high-density tracer, such
as N2H+ (1−0) at T = 10 K, will not be able to trace all the
cold gas in this clump. We note that a gas tracer with a lower
value of ρeff , such as the NH3 (1, 1) ( ρeff ≤ 103 cm−3 in gas at
T = 10 K), may suffer from the opposite bias: its emission can
arise from all the low-density gas along the line of sight, includ-
ing the gas in the parent filament/cloud (e.g. Battersby et al.
2014) which cannot be disentangled from the clump-only
emission.

Under the hypothesis that the bias is only due to the estima-
tion of the velocity dispersion, the model can predict the correct
power-law form expected for a sample of virialized clumps if the
appropriate gas tracers are used to measure the velocity disper-
sion of clumps with different volume densities. Equation (C.1)
predicts that the correct value of hα = 0 for a sample of virial-
ized clumps would be obtained as a result of, for example, a line
width-size relation with a slope δ = 0.35 and δ = 0.69 for the
samples in Urquhart et al. (2018) and Traficante et al. (2018a),
respectively, a result not far from what expected in the case of a
turbulent cascade (McKee & Ostriker 2007).
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