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S U M M A R Y
Glacial Isostatic Adjustment (GIA) models commonly assume a mantle with a viscoelastic
Maxwell rheology and a fixed ice history model. Here, we use a Bayesian Monte Carlo
approach with a Markov chain formalism to invert the global GIA signal simultaneously for
the mechanical properties of the mantle and the volumes of the ice sheets, using as starting ice
models two previously published ice histories. Two stress relaxing rheologies are considered:
Burgers and Maxwell linear viscoelasticities. A total of 5720 global palaeo sea level records
are used, covering the last 35 kyr. Our goal is not only to seek the model best fitting this data
set, but also to determine and display the range of possible solutions with their respective
probability of explaining the data. In all cases, our a posteriori probability maps exhibit the
classic character of solutions for GIA-determined mantle viscosity with two distinct peaks.
What is new in our treatment is the presence of the bi-viscous Burgers rheology and the
fact that we invert rheology jointly with ice history, in combination with the greatly expanded
palaeo sea level records. The solutions tend to be characterized by an upper-mantle viscosity of
around 5 × 1020 Pa s with one preferred lower-mantle viscosities at 3 × 1021 Pa s and the other
more than 2 × 1022 Pa s, a rather classical pairing. Best-fitting models depend upon the starting
ice history and the stress relaxing law. A first peak (P1) has the highest probability only in the
case with a Maxwell rheology and ice history based on ICE-5G, while the second peak (P2) is
favoured for ANU-based ice history or Burgers stress relaxation. The latter solution also may
satisfy lower-mantle viscosity inferences from long-term geodynamics and gravity gradient
anomalies over Laurentia. P2 is also consistent with large Laurentian and Fennoscandian ice-
sheet volumes at the Last Glacial Maximum (LGM) and smaller LGM Antarctic ice volume
than in either ICE-5G or ANU. Exploration of a bi-viscous linear relaxing rheology in GIA now
seems logical due to a new set of requirements to satisfy observations of transient post-seismic
flow seen so ubiquitously in space gravimetry and other global geodetic data.

Key words: Gravity anomalies and Earth structure; Sea level change; Transient deformation;
Probability distributions; Dynamics of lithosphere and mantle; Rheology: mantle.

1 I N T RO D U C T I O N

During glacial cycles, redistribution of the ice and oceanic wa-
ter masses at the Earth surface causes gravitational perturbations
and deformations in the lithosphere and mantle. This phenomenon,
called Glacial Isostatic Adjustment (GIA), is controlled by ice load-
ing history, buoyancy forces and the Earth’s rheology.

∗ Now at: Jet Propulsion Laboratory – California Institute of technology,
4800 Oak Grove Drive MS 300-323, Pasadena, CA 91109-8099, USA.

Considering that the time scale of GIA is long enough to allow
creep to occur in mantle rocks, a mathematically tractable model ap-
proximation for the mantle constitutive law is the linear viscoelastic
model of a Maxwell body (Peltier 1974; Mitrovica & Forte 2004;
Lambeck et al. 2010, 2014). When a deviatoric stress is instan-
taneously applied and held constant, a Maxwell material exhibits
an instantaneous elastic strain followed by a constant strain rate
that is exactly the same as the response of a Newtonian viscous
fluid. While the elastic parameters can be estimated via seismolog-
ical and laboratory studies, the value of the viscosity is elusive. In
particular, disagreements exist over the viscosity increase between
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Inverting GIA signal using Bayesian framework 1127

upper mantle and lower mantle. GIA inversions at the global scale
can be roughly classified into two groups: one features a moder-
ate increase of, at most, one order of magnitude (e.g. Peltier 2004;
Paulson et al. 2007; Peltier & Drummond 2008; Geruo et al. 2013),
or a much higher viscosity increase, from one and a half to two
orders of magnitude (Lambeck 1990; Lambeck et al. 2010, 2014).
The existence of the contrasting pair of viscosity solutions using
GIA data has long been recognized (O’Connell 1971), and the
distinction between these two classes of GIA models that are re-
alized from the solutions is quite important. For example, the class
of models featuring a relatively smaller viscosity increase is em-
ployed for correcting the trend caused by GIA that is present in
time-varying space gravimetry, where trends in hydrology, ice sheet
or ocean mass is sought (see GRACE Tellus solutions, from e.g.
Chambers & Bonin 2012; Watkins et al. 2015, or in the IPPC last
assessment in Church et al. 2013). The alternative class of solu-
tions (with higher increases in viscosity between upper mantle and
lower mantle), however, exhibits greater consistency with solutions
based on mantle convection models that employ global seismic
anomalies, geoid and surface plate motion data for parameteriza-
tion and analyses (Hager et al. 1984; Forte & Peltier 1991; Ricard
et al. 1993; Ivins et al. 1993; Čadek & Fleitout 2003; Steinberger &
Calderwood 2006; Greff-Lefftz et al. 2016).

A possible resolution of this dilemma is that GIA and mantle
convection have very different time and length scales. While Forte
& Mitrovica (1996), Mitrovica & Forte (1997), Mitrovica & Forte
(2004) and Kaufmann & Lambeck (2002) have demonstrated that
it is possible to reconcile these through joint inversions using the
Maxwell rheology, it is also possible that the viscosity will differ
because of the contrasting time scales involved.

Indeed, various factors such as temperature, grain-size, water
content or mineral structure and composition induce heterogeneities
at various scales in the mantle viscosity. The mantle can be consid-
ered as a mixture of materials of different viscosities. Self-consistent
homogenization theory (Ivins & Sammis 1996) and creep experi-
ments on multiphase rocks (Ji & Zhao 1993, 1994) show that a mix
of two Maxwell materials with different viscosities exhibits a tran-
sient rapid relaxation before reaching a steady strain rate, that is,
a constant apparent viscosity. The amplitude of the transient relax-
ation is predicted to increase when several scales of heterogeneities
are superimposed. Thus, it seems relevant to investigate what could
be the role of transient creep in the GIA signal. Such heterogeneity
has recently been advocated for the lower mantle by the fact that
the two phases of perovskite (MgO and SiO3) have quite different
intrinsic susceptibility to creep (Marquardt & Miyagi 2015).

Further evidence of more complex behaviour than described by a
Maxwell material comes from the laboratory, where tertiary creep is
ubiquitous. Peltier et al. (1980) recognized the possibility of tertiary
creep as an alternative constitutive framework for mantle response
to glacial unloading and tested the response of a model involving
a standard linear solid relaxation time advocated by Anderson &
Minster (1979) to the Hudson Bay free decay spectra, showing that
the more complex rheology poorly fit these data.

The test, however, was limited in both scope of the parameters
examined and the pertinent space and time of the data set. Subse-
quently, Yuen et al. (1986) found that by introducing a close relative
of the Maxwell body, a four parameter linear stress relaxing material
called Burgers rheology, light might be shed on the dilemma of hav-
ing both a reduced and an elevated lower-mantle viscosity operating
on GIA and convective time scales, respectively. The principal in-
gredient of a Burgers rheology in the lower mantle is that it allowed
deformation to be controlled by two viscosities, thus inherently hav-

ing the capacity to explain GIA and convective based inferences of
viscosity. Extensive studies of Burgers rheology as a model for GIA
have remained rather limited, in part due to the elusiveness of incor-
porating high temperature and pressure laboratory data from rock
deformation experiments.

The re-emergence of the Burgers fluid constitutive assumption
for describing upper-mantle flow has been necessitated by geodetic
observations (GNSS and GRACE) following the great earthquakes
of the past decade (Pollitz 2005; Melini et al. 2008; Han et al. 2008;
Panet et al. 2010; Trubienko et al. 2013; Meade et al. 2013). It
seems quite logical now to re-examine the constitutive assumption
as applied to the GIA model predictions, especially in light of the
more than one order of magnitude increase in the amount of RSL
data currently available compared to the 1990’s (Tushingham &
Peltier 1992).

A key contributor to the GIA signal is the ice loading history.
The load history in the standard GIA theory requires proper rep-
resentation of ice thickness change over time and location at the
Earth’s surface. While only grounded ice, or marine ice that sits
above flotation, loads the solid Earth as a part of this history, there
is also an important meltwater redistribution to the global oceans.

It is important to note that palaeoclimatic and geological indi-
cators (e.g. moraine deposits) from field-based work (e.g. Dyke &
Prest 1987; Clark et al. 2004; Svendsen et al. 2004) provide key
information for reconstructing the ice sheet extent over time. Nu-
merical models coupled to past climatology, oceanography and ice-
sheet dynamics (e.g. Zweck & Huybrechts 2005; Charbit et al. 2007;
Beghin et al. 2014) provide some additional insights on the time-
evolution of ice sheets. However, it is very difficult to bring this
information together to constrain past ice thickness and, therefore,
volume. Uncertainty in ice history, especially as it affects inferences
about volume, is a major challenge in GIA models.

Previous publications have demonstrated that powerful estima-
tions of the mantle viscosity can be obtained in specific loca-
tions of the globe with minimal influence from ice loading his-
tory. These studies rely on using differential sea level highstands
(Lambeck & Nakada 1990; Bradley et al. 2016), relaxation spectra
(McConnell 1968; Parsons 1972; Mitrovica & Peltier 1993a; Mar-
tinec & Wolf 2005) and post-glacial decay times (Mitrovica &
Peltier 1993b; Mitrovica & Forte 2004). In particular, these stud-
ies allow upper-mantle viscosity values to be constrained to 2–
3 × 1020 Pa s in the Australian region and to less than 1.5 × 1020 Pa
s in South East Asia using sea level highstands. In addition, con-
straints are about 3–6 × 1020 Pa s in Fennoscandia using relaxation
spectra and decay times, and to about 1021 Pa s in the Laurentia
region, based on decay times for the same depths in the upper man-
tle. Other data sets, such as palaeo sea level measurement, provide
complementary information by sampling GIA signal on a global
spatial distribution, which extends the sensitivity of GIA to viscos-
ity deeper in the mantle (due to larger spatial scales of the samples),
and to account for a more global viscosity estimate. In this study we
propose to use a global relative sea level (RSL) data set, consisting
of 5720 records, to acquire information about both mantle viscosity
and ice loading history. One problem with RSL data is that model
inferences are influenced by their sensitivity to both the space-time
history of the ice load and mantle rheology. Indeed, when com-
paring the two most emblematic global GIA models (Peltier 2004;
Lambeck et al. 2014), we notice that they are different in terms of
both load amplitude and timing. Furthermore, they differ in total
ice mass at the Last Glacial Maximum (LGM), and in mass distri-
bution among continental and marine-based ice sheets. Our rather
humble goal is to illustrate how the information from RSL data
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constraining ice history and mantle viscosity are coupled in these
two global models, and to show how this coupling is never really
disentangled, although here we make an extensive effort to do so.
To this end, we employ a Bayesian method that allows us to explore
the parameter space and reveal the trade-offs, uncertainty and other
non-uniquenesses inherent to GIA solutions.

This paper is organized as follows: in Section 2, we present the
calculation methods as well as the model setting. In Section 3,
we describe the inversion results coupling Maxwell and Burgers
rheologies with ice models derived from the ANU and ICE-5G
models. In Section 4, we discuss the implications of the results and,
finally, we conclude in Section 5.

2 M E T H O D S

2.1 Principle

We use loading Love numbers (Love 1909; Munk & MacDonald
1960; Longman 1962a,b; Farrell 1972), dependent on the stratifi-
cation of the Earth in terms of density and rheological parameters,
to represent the impulse response of the Earth to surface load-
ing. Expanding the ice load with spherical harmonics, from degree
one (Greff-Lefftz & Legros 1997) to 89, we can calculate surface
displacements and geoid perturbations due to GIA. Instead of the
commonly used viscoelastic normal modes approach (Peltier 1974),
we use a Fourier transform method (Craig et al. 2016): for each fre-
quency we solve the yi system introduced by Alterman et al. (1959),
expressing the Lamé parameters as a function of the frequency us-
ing the correspondence principle (Biot 1962). Note that using the
Fourier transform makes the signal infinitely periodic, so our calcu-
lated deformation corresponds to the response to an infinite number
of glacial cycles, as opposed to the normal mode approach with
Laplace transform. Overall, we think this is an improvement as there
were quite similar (although not identical) glacial cycles prior to the
last one, which we can compute at no additional cost. Our method
includes rotational feedback effect (Munk & MacDonald 1960; Han
& Wahr 1989; Mitrovica et al. 2001) and the resolution of the sea
level equation (Farrell & Clark 1976). Our method uses a simple
fixed ocean-continent geometry which allows the GIA response to
be perfectly linear with respect to the loading function, and thus to
invert for ice history parameters via a linear least-squares algorithm.
See the Appendix A1 for further details.

2.2 Calculation settings

The nominal mantle rheology used in GIA inversion is the linearly
relaxing Maxwell viscoelastic model. It features an instantaneous
elastic response followed by a viscous creep similar to a Newto-
nian fluid, and is represented in analogous mechanical diagram, in
Fig. 1, by the association of a spring with Lamé coefficients λ1 and
μ1, and a dashpot with viscosity 10η1 in series. Note that we choose
the viscosity parameters to be the logarithm of the actual viscos-
ity value, as recommended by Mitrovica & Peltier (1991). Indeed,
GIA signal is dependent on the logarithm of the viscosity, and the
statistics (e.g. expected value or standard deviation) derived from it
have to be consistent with this basic property. Burgers rheology is a
linear viscoelastic model that exhibits the same features as Maxwell
rheology with an additional transient relaxation. It is described by
a Kelvin-Voigt body, that is, a dashpot element with viscosity 10η2

(linked to the characteristic time scale of the transient response) in
parallel with a spring element with shear modulus μ2 (linked to the
amplitude of the transient response), in series with a Maxwell body.

Figure 1. Mechanical diagram of Maxwell and Burgers rheologies.

We use a compressible layered Earth model with spherical symme-
try. It describes the density and elastic moduli (λ1 and μ1) in radial
profile, which are set to a volumetric average of the PREM Earth
model (Dziewonski & Anderson 1981) for each layer, and the vis-
cosity profile, the values for which we seek by inversion. The model
features an elastic lithosphere with thickness Te, a viscoelastic up-
per mantle with viscosity 10ηUM , a viscoelastic lower mantle with
viscosity 10ηLM , a fluid outer core and a viscoelastic inner core. With
Burgers rheology, we input additional ratios μ1/μ2 and 10η1/10η2

that apply for the whole mantle. Of course, this is a simplification,
as in reality the ratio could be different in each layer. Note that in
the Burgers rheology case, ηUM, 1 and ηUM, 2 quantify long-term and
transient viscosities, respectively, in the upper mantle, and the same
applies to ηLM, 1 and ηLM, 2 notations in the lower mantle.

The ice model is obtained by regionally scaling the ice height
of a reference model. We divide the model into West Lauren-
tide (WL), East Laurentide (EL), Fennoscandia (F), Antarctica
(A) and Greenland (G), and neglect the contribution of the moun-
tain glaciers, thus avoiding ill-conditioned least square matrices.
In each region the ice thickness is multiplied by a scalar coeffi-
cient α that applies for the whole glacial cycle, following Fleitout
et al. (2006) (see Fig. 2 for notation and coverage of each ice
region). Thus, we can adjust the mass distribution between the
different ice sheets in the inversions. We also monitor the eu-
static sea level at the LGM ξLGM = ∑

nαnVn/Socean, where Vn is
the ice volume change since the LGM in region n and Socean is
the surface covered by oceans. Note that these coefficients only
scale the change of ice thickness during the last glacial cycle
(sole source of the GIA signal, along with the associated sea level
change), yielding the actual ice thickness taken for computation:
Htotal(t, θ, ϕ) = Hpresent(t, θ, ϕ) + ∑

n αn H ref
n (t, θ, ϕ), with Hpresent

the present-day ice thickness (non-zero in Antarctica and Green-
land) and H ref

n the ice thickness in region n provided by the ref-
erence ice model. For purposes of comparison, we test both the
ANU (Lambeck et al. 2014) and ICE-5G (Peltier 2004) models as
reference models.

2.3 Inverse method

We use Simulated Annealing (Kirkpatrick et al. 1983), a variation
of the Monte Carlo with Markov chains method (Metropolis &
Ulam 1949; Metropolis et al. 1953) to invert for ηUM, ηLM, Te,
log10(μ1/μ2) and η1 − η2 (i.e. the logarithm of the viscosity ratio:
log10(10η1/10η2 ). For a given Earth model with these parameters,
we then invert for the α coefficients, applied to a given reference
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Figure 2. Map of the different ice regions considered in the inversion. Each region is indicated by a different hue, while ice in the grey region is neglected.
For purposes of visual clarity the ice extension and ice thickness maxima, the temporal integration of the ANU model over the last 122 kyr is represented in
shades of dark (note that the present-day ice thickness is subtracted because it does not participate to the GIA signal).

ice model, using a linear least square method (see Appendix A1.3).
This method allows us to sample the parameter space and express
the likelihood of each model:

p( y|x) = exp

(
−

Ndata∑
i=1

wi
2

2σ 2
dataset

(
ym

i (x) − yd
i

εi

)2
)

, (1)

where x is the vector of parameters, yd the constraining data set,
ym(x) the model predictions with parameters x, ε the uncertainty of
the data, σ dataset the standard deviation of the data set, w a vector of
weights (see Appendix A2) accounting for the data distribution in
space and time, which is meant to avoid over-fitting a single region
or epoch with abundant data, and Ndata the number of data.

With a sufficiently large sampling in the model space, this for-
mulation allows a statistical characterization of each parameter xi,
yielding its:

(i) best fit xi, best = xi(p = max(p)),
(ii) expected value E(xi ) = ∑Nmodels

j=1 p j xi, j ,

(iii) standard deviation σ (xi ) = ∑Nmodels
j=1 p j (xi, j − E(xi ))2,

(iv) Q per cent confidence interval CI = [l, u] such that∑xi =u
xi =l p = Q.10−2,

(v) linear correlation coefficient to the other parameters
ρ(xi , xk) = ∑Nmodels

j=1 p j
(xi, j −E(xi ))(xk, j −E(xk ))

σ (xi )σ (xk ) .

Please note that upon occasion the correlation is nonlinear. In the
general case, it is thus best illuminated by projecting the probability
distribution over the 2-D space formed by the pair of parameters
considered, rather than the linear correlation coefficient.

We use a uniform prior distribution within the explored parameter
space, so that the a posteriori probability is equivalent to the likeli-
hood. Note that in eq. (1) a normalizing constant could be added so
that the integration of the probability would yield 1. However, while
we do normalize it in our statistical calculations, in our probability
plots we choose not to repeat this, so that we can still directly com-
pare inversions with different ice models or rheologies: that way, we
can affirm that a given probability value corresponds to the same
misfit in all the inversions, and that models reaching a higher peak
of probability perform better. Consequently, we advise the reader
to compare the probability values of the different inversions rather
than focusing on the meaning of their absolute values.

3 R E S U LT S

Our inversions are constrained by 5720 palaeo sea level records, dat-
ing up to 35 kyr BP, compiling near field records in Laurentia from
Dyke & Peltier (2000), in Fennoscandia from Lambeck et al. (2010)
and far-field records from Lambeck et al. (2014). We use ice-sheet
histories either based on the ANU model (Lambeck et al. 2014) or
on the ICE-5G model (Peltier 2004) and both Maxwell and Burgers
rheologies. The inversions presented in this section use eight free
parameters, of which three are resolved via the Bayesian method,
and each inversion contains about 3 × 104 forward models. In-
version results are presented in additional detail in Appendix A3,
along with Burgers inversions where the shear modulus and vis-
cosity long-term to short-term ratio are added to the list of free
parameters, instead of being fixed to a value of 5. In these cases, the
number of models in each inversion reaches about 105.

3.1 ANU

Fig. 3(a) represents the a posteriori probability distribution (both
on the y-axis and colour bar) in the Maxwell case projected in the
ηLM dimension. The dashed-line highlights the apparent distribu-
tion envelope. This isolates the maximum probability that can be
reached for a given value of ηLM. In Figs 3(b)–(d), the Maxwell case
a posteriori probability distribution (coloured points) is projected
against ηLM, in the x-axis. Here the upper-mantle viscosity ηUM, ice
coefficient for East Laurentide αEL and ice coefficient for Antarctica
αA are on the y-axis. The black cross indicates where the best-fitting
model is located. Note that models with higher probability are plot-
ted on top of the lower probability models, so that the envelope of
the distribution is apparent. One could argue that representing the
integration of the probability with respect to the other parameters
might have much statistical relevance, but we found that the shape
of the distribution is better highlighted with the projection method.
Indeed, one can track a particular model (e.g. the best-fitting model)
with its colour, or follow the good-fitting region when varying one
parameter. For this purpose, we plot the black dash-dot line that
describes the line along which the probability decreases the least,
indicating a partial compensation between the parameters with re-
spect to the misfit, which can be called a trade-off or correlation
effect. Note that maps that include at least one ice coefficient as
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1130 L. Caron et al.

Figure 3. (a) Projected a posteriori probability in the Maxwell rheology case, as a function of the lower-mantle viscosity, with the ANU model as reference ice
model. The dashed line highlights the distribution envelope, that is, max(p) for a given value of ηLM. (b–d) Maps of the envelope probability in the Maxwell
rheology case. The dash-dot line is a visual guide that indicates the apparent trade-off axis, with the probability decreasing the least along this line. The black
cross marks the position of the best-fitting model. The white cross indicates the expected model, and the dashed white line the 90 per cent confidence interval.
(e–g) Maps of the envelope probability in the Burgers rheology case.

a parameter appear with some blank areas. This is perfectly ex-
pected as these coefficients are solved by least-squares methods, so
the sampled area does not have a rectangular shape. These blank
regions are, in fact, areas where the probability is very low. For a
more complete description of the inverse results, see Appendix A3
where we display the probability distribution projected against each
pair of parameters.

Similarly, Figs 3(e)–(g) represent the a posteriori probability dis-
tribution in the Burgers rheology case projected against ηLM, 1 and,
respectively, ηUM, 1, αEL and αA. Note that the viscous parameters

represented here correspond to the long-term value, while the tran-
sient viscosity can be recovered using the 10η1/10η2 ratio. In this
case, we fixed μ1/μ2 and 10η1/10η2 to 5 so that we can illustrate
the preferences , in the parameters space, that the solutions have
when the Burgers contribution is sufficiently important. However,
the reader should be advised that we could not constrain the values
for these two parameters (see Figs A4 and A7 in Appendix A3).
For purpose of comparison, the following values have been pre-
viously used in GIA and post-seismic modelling: μ1/μ2 = 10,
10η1/10η2 = 10 (Yuen et al. 1986), μ1/μ2 = 1, 10η1/10η2 = 28
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Inverting GIA signal using Bayesian framework 1131

Table 1. Contribution of the different ice regions when α = 1 at the LGM. ξ is the equivalent eustatic sea level
contribution, corresponding to the ratio of the ice volume to the oceanic surface area.

WL EL F A G

ANU ξ (m) − 42.73 − 41.69 − 21.67 − 30.78 − 3.72
Ice volume (km3 × 106) 15.10 14.74 7.66 10.88 1.31

ICE-5G ξ (m) − 54.97 − 30.87 − 23.45 − 18.58 − 2.51
Ice volume (km3 × 106) 19.43 10.91 8.29 6.57 0.89

Table 2. Inversion results for the Maxwell case based on the ANU model as an ice model reference.

Low ηLM High ηLM Expected value 90 per cent confidence
maximum (P1) maximum (P2) ± standard deviation interval

ηUM 20.628 20.599 20.764 ± 0.240 [20.428, 21.219]
ηLM 21.568 22.376 22.545 ± 0.722 [21.391, 23.762]
Te 89.41 94.07 103.76 ± 28.90 [61.05, 156.19]
αWL 0.729 0.882 0.918 ± 0.125 [0.728, 1.113]
αEL 0.797 1.008 0.985 ± 0.160 [0.710, 1.206]
αF 0.935 1.000 1.106 ± 0.216 [0.907, 1.575]
αA 1.024 0.735 0.695 ± 0.214 [0.350, 1.046]
αG 1.470 1.116 1.373 ± 0.511 [0.741, 2.416]
ξLGM − 121.63 − 128.15 − 130.76 ± 8.31 [−146.81, −119.76]

Table 3. Inversion results for the Burgers rheology, with μ1/μ2 = 5 and 10η1 /10η2 = 5, based on the ANU
model as an ice reference. Note that ηUM, 1 and ηLM, 1 are the long-term viscosities.

Low ηLM, 1 High ηLM, 1 Expected value 90 per cent confidence
maximum (P1) maximum (P2) ± standard deviation interval

ηUM, 1 N/A 20.617 20.766 ± 0.250 [20.419, 21.236]
ηLM, 1 N/A 22.771 22.708 ± 0.698 [21.493, 23.791]
Te N/A 92.29 97.74 ± 26.24 [55.76, 141.52]
αWL N/A 0.899 0.931 ± 0.073 [0.809, 1.062]
αEL N/A 1.023 1.007 ± 0.096 [0.828, 1.171]
αF N/A 1.089 1.213 ± 0.196 [1.037, 1.627]
αA N/A 0.690 0.635 ± 0.124 [0.405, 0.840]
αG N/A 1.419 1.705 ± 0.520 [1.094, 2.846]
ξLGM N/A − 131.17 − 133.93 ± 5.95 [−145.71, −126.03]

(Pollitz 2005), μ1/μ2 = 3.3, 10η1/10η2 = 10 (Spada et al. 2011b),
μ1/μ2 = 3, 10η1/10η2 = 10 (Trubienko et al. 2013), μ1/μ2 = 1,
10η1/10η2 > 7.5 (Meade et al. 2013).

In Figs 3(a)–(d), two local maxima can be observed around
ηLM = 21.5 (peak one, hereafter noted P1) and ηLM = 22.4 (P2),
nevertheless we can see that a large set of models with 21.3 ≤
ηLM ≤ 24 have a rather high probability, which we arbitrarily define
here as more than two thirds of the maximum probability in order
to describe the geometry of the probability distribution. This means
that the uncertainty over ηLM is large and so the information gained
over this parameter after the inversion is small. However, Figs 3(c)
and (d) reveal that there is a significant gain of information over
the correlation between ηLM and the ice distribution. Indeed, the
region of good fit is clearly organized along a line that is neither
horizontal or vertical, such that, in order to stay in the high proba-
bility region when increasing the lower-mantle viscosity from 1021.5

Pa s to 1022.4 Pa s (from P1 to P2), one has to increase the amount
of ice in East Laurentide by about 20 per cent while decreasing the
amount of ice that melted since the LGM in Antarctica by about
30 per cent. See Table 1 for conversion of the α values into eustatic
sea level or ice volume equivalent. Let us note that for ηLM ≥ 23
a plateau is reached along the trade-off line, which we interpret as
a saturation effect of the lower-mantle viscous response. Table 2
summarizes the parameters of the two maxima and the statistics
derived from the whole distribution for this inversion. Note that
in addition to the standard deviation, we display the 90 per cent

confidence interval which is more accurate to describe the uncer-
tainty in the case of non-Gaussian distributions. Figs 3(e)–(g) reveal
that adding a significant transient relaxation tends to increase the
long-term lower-mantle viscosity by a small factor (approximately
1.5), with the best-fitting value being about ηLM, 1 = 22.77. Let us
remark that P1 disappears in this case. Accordingly, the ice scenario
is set to a higher ice volume in Laurentide and a lower ice volume
in Antarctica, although the trade-off seems to be nonlinear with a
plateau in the solutions with 22.3 ≤ ηLM, 1 ≤ 23. Note that the value
for ηUM, 1 remains the same as for the Maxwell case. Table 3 details
the parameter results in the Burgers ANU-based inversion.

3.2 ICE-5G

We performed a second set of inversions using ICE-5G as the ref-
erence ice model, which, while regionally adjusted in the same
fashion as that for the ANU model, features differences in spatial
and temporal ice distribution within each region. This allows us to
understand the importance of such differences in the global fit and
high probability region shape in the parameter space. Looking at
the Fig. 4 colour bar, we immediately notice that the a posteriori
probability drops by a factor of 10, corresponding to an RMS misfit
in the sea level increasing from approximately 8–12 m. This is not
surprising as we based our inversions on the data set used to estab-
lish the ANU model, and the reverse situation could be expected if
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Figure 4. (a–c) Maps of the envelope probability in the Maxwell rheology case with the ICE-5G model as base reference for ice distribution. The dash-dot
line is a visual guide that indicates the apparent trade-off axis, with the probability decreasing the least along this line. The black cross marks the position of
the best-fitting model. The white cross indicates the expected model, and the dashed white line the 90 per cent confidence interval. (d–f) Maps of the envelope
probability in the Burgers rheology case.

Table 4. Inversion results for the Maxwell rheology based on the ICE-5G model as an ice reference.

Low ηLM High ηLM Expected value 90 per cent confidence
maximum (P1) maximum (P2) ±standard deviation interval

ηUM 21.034 21.285 21.070 ± 0.340 [20.442, 21.554]
ηLM 21.257 22.542 22.138 ± 0.915 [20.864, 23.666]
Te 16.42 110.96 96.68 ± 44.96 [26.45, 177.23]
αWL 0.621 0.751 0.703 ± 0.073 [0.599, 0.834]
αEL 0.778 1.239 1.056 ± 0.268 [0.775, 1.539]
αF 0.745 1.222 1.046 ± 0.344 [0.728, 1.754]
αA 1.744 0.856 1.179 ± 0.419 [0.492, 1.699]
αG 2.015 2.975 2.497 ± 1.058 [0.859, 4.124]
ξLGM − 113.04 − 131.56 − 124.08 ± 10.83 [−143.29, −111.24]

we were using the data set from which ICE-5G is derived. As in the
ANU inversion, Fig. 4(a) reveals that there are two local maxima
for the viscosity profile, one with a low viscosity increase between
ηUM = 21 (P1) and ηLM = 21.4 and the other exhibiting a larger
contrast with ηUM = 21.3 and ηLM = 22.6 (P2). We also note that,
unlike the ANU case, the low viscosity solution is clearly preferred,
and exhibits a larger uncertainty on ηUM. Figs 4(b) and (c) show a
trade-off effect very similar to the ANU case, although the percent-
age of ice change between the maxima is more important, reaching
about 60 per cent more ice in Laurentide and 50 per cent less ice
in Antarctica when moving from the P1 to the P2 solution. See
Table 4 for all details on the Maxwell ICE-5G-based inversion re-
sults. Figs 4(d)–(f) display the results of the inversion for the Burgers
rheology using μ1/μ2 = 5 and 10η1/10η2 = 5. The solutions fea-
ture a better maximum fit than in the Maxwell case, with the high
and low viscosity solutions having about the same likelihood. The
two maxima for the viscosities have the same location as in the
Maxwell inversion, except for a small decrease of ηLM, 1 in the P2
maximum. The difference in ice coefficients is also smaller, with an

increase of the ice mass by 30 per cent and a decrease of 50 per cent
in Laurentide and Antarctica respectively, comparable to the results
obtained in the ANU inversion. Table 5 summarizes the results in
the Burgers ICE-5G-based inversion.

4 D I S C U S S I O N

Possibilities for ice model improvement may reside in the distribu-
tion of the residuals. Indeed, Fig. 5 suggests that this distribution
has common features for notably different rheology and α coeffi-
cient combinations. Perhaps imperfections in the ice model could
be connected to these residuals that escape correction in our large-
scale parameterization. Such conjecture suggests improvements to
be discovered in either smaller scale features or in adjustments of
time- dependence of the ice models.

Large residuals are found in all best solutions in the region of west
Svalbard, Banks and Victoria Islands, between 9 and 15 kyr BP, so
the models require significant small-scale improvement. It is worth
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Table 5. Inversion results for the Burgers rheology, with μ1/μ2 = 5 and 10η1 /10η2 = 5, based on the ICE-5G
model as an ice reference. Note that ηUM, 1 and ηLM, 1 are the long-term viscosities.

Low ηLM, 1 High ηLM, 1 Expected value 90 per cent confidence
maximum (P1) maximum (P2) ± standard deviation interval

ηUM, 1 20.973 21.263 21.113 ± 0.323 [20.514, 21.592]
ηLM, 1 21.265 22.419 22.284 ± 0.852 [20.965, 23.658]
Te 42.40 70.42 87.23 ± 43.39 [23.75, 166.92]
αWL 0.694 0.780 0.762 ± 0.038 [0.698, 0.817]
αEL 0.861 1.114 1.071 ± 0.168 [0.863, 1.415]
αF 0.849 1.228 1.129 ± 0.255 [0.821, 1.603]
αA 1.520 0.960 1.073 ± 0.272 [0.591, 1.472]
αG 2.120 2.984 2.686 ± 0.900 [1.211, 4.100]
ξLGM − 118.15 − 131.39 − 128.07 ± 7.64 [−141.79, −117.38]

Figure 5. Weighted sea level residue distribution: Ri = wi (ym
i −yd

i )
εi

, following Section 2.3 notations, for the following inversions: (a,c) P2 Burgers maximum
with ANU-based ice model, (b,d) P1 Maxwell maximum with ICE-5G-based ice model. Note that points with higher absolute value are plotted on top of lower
residue points, and that the scale is non-dimensional.
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noting that the ice history of the Canadian Arctic Archipelago, in
particular the Banks Island, has recently been significantly revised
by Lakeman & England (2013). Larger scale residuals, with mod-
erate to high amplitude, can be found over the Atlantic coast of
North America prior to 6 kyr BP (particularly in the ICE-5G-based
models), suggesting the potential for improvement in the Lauren-
tian region ice history. We think that considering other ice history
models in that region, such as Simon et al. (2015), could help to cor-
rect any biases that ANU and ICE-5G have in common, and could
allow us to have better control over this region. In the far field,
large local residuals can be observed in Mayotte and the Bengal fan
regions, and are mainly due to very high precision data for their
respective epoch. Here there are standard deviations that are less
than 2 m, with data having substantial amplitude standout, between
−120 and −135 m below the present-day level. At such locations
the fit can be improved by a better timing of the global deglaciation,
as these are mainly sensitive to the eustatic sea level. Note that both
ANU-based and ICE-5G-based models show similar distributions
of residuals, which is why Fig. 5 only displays the residuals of two
models.

Our study demonstrates that GIA tends to bring different con-
straints on the parameters tested. The upper-mantle viscosity is the
most sensitive parameter. The latter is bound between 1020.5 and
1021 Pa s in the ANU-based inversion, while in the ICE-5G-based
inversion the upper range reaches 1021.5 Pa s. Our expected value is
in agreement with the other global GIA and geodynamic inversions,
for example, Lambeck (1990), Peltier (1994), Peltier (1996), Čadek
& Fleitout (2003), Steinberger & Calderwood (2006) and Peltier
& Drummond (2008), and, particularly in the ANU case seems to
agree with estimates derived from decay times and relaxation spec-
tra in the near-field (McConnell 1968; Parsons 1972; Mitrovica &
Peltier 1993a,b; Mitrovica & Forte 2004; Martinec & Wolf 2005).
In contrast, far-field data tend to prefer a value somewhat lower,
between 1020 and 1020.3 Pa s citeplambeck2014, which highlights
the fact that the viscosity profile in non-cratonic regions may be
deviate from those derived from data located at the late-Pleistocene
ice centres. Our global estimate is still biased towards the cratonic
region profile rather than being a true lateral average of the mantle
viscosity. This could be something integral to GIA inversion. First,
the location of the ice sheets is mainly on or near cratons, and this
local ice drives most of the GIA strain energy and deviatoric stress
(Johnston et al. 1998) that occur in these regions. Second, the spatial
distribution of our RSL data, tends to be relatively abundant around
these regions. As additional data from the far field are included
in the model, this situation could be considerably improved upon,
for example, Bradley et al. (2016). The introduction of Burgers
rheology influences mainly the large wavelength signal (Yuen &
Peltier 1982), minimally controlled by the upper mantle, and there-
fore has little impact on the viscosity retrieved. The lithospheric
thickness Te seems to be independent of the other parameters, con-
strained to lie around a value of 95km with moderate uncertainty
(see Appendix A), although in the ICE-5G inversion no minimum
value can be retrieved.

On the other hand, the lower-mantle viscosity value is poorly
constrained. Any value greater than 1021 Pa s can generate models
with significant probability, provided that the ice model is correctly
adjusted. Indeed, while the lower-mantle viscosity itself cannot be
constrained, our analysis highlights very clear trade-off effects be-
tween the different coefficient for ice distribution and the lower-
mantle viscosity. This trade-off is reflecting the coupled nature of
the information contained in the RSL data. We still determine two
local maxima for the lower-mantle viscosity, as classically acknowl-

edged in GIA inversions since O’Connell (1971). For all inversions,
the first one (P1) has a value lying in the [1021.2, 1021.7] Pa s range, a
value similar to Peltier (1994), Peltier (1996), Peltier & Drummond
(2008) and Geruo et al. (2013) models, which have commonly
been used as a reference to correct for the GIA signal in GRACE
(Shepherd et al. 2012). The second maximum (P2) ranges between
1022 and 1023 Pa s, exhibiting a large viscosity contrast between
upper mantle and lower mantle, consistent with inversions of geoid
and seismic tomographic data (Hager & Richards 1989; Ricard &
Wuming 1991; King & Masters 1992; Ricard et al. 1993; Čadek &
Fleitout 1999, 2003; Steinberger & Calderwood 2006; Greff-Lefftz
et al. 2016), inferences of viscosity from the sinking speed of sub-
ducted lithosphere (Čı́žková et al. 2012), analyses of deglaciation-
induced changes in the dynamic flattening and rotation of the
Earth (O’Connell 1971; Johnston & Lambeck 1999; Kaufmann &
Lambeck 2002) and GIA calculations by Nakada & Lambeck
(1988), Lambeck (1990), Wolf et al. (2006), Lambeck et al. (2014)
and Nakada et al. (2015). P2 is also consistent with gradiometric
GIA signal over the Laurentia region (Métivier et al. 2016), while
P1 yields a signal one order of magnitude too small.

The viscosity profiles of Mitrovica & Forte (2004), obtained by
a joint inversion of GIA and geoid related to mantle dynamics, are
less straightforward in comparing to our results. While their average
lower-mantle viscosity is large, comparable to P2, the authors do not
emphasize a lower average of this viscosity, but rather the average
viscosity between 660 and 1300 km. The bottom of this region is
approximately the depth to which the sensitivity of GIA tails off
with increasing depth in the lower mantle (Mitrovica 1996), and
the average value in the region is closer to P1, hence manifesting
signals that are also similar to our P1-generated GIA predictions.
Here we have demonstrated the coupling of P1 and P2 solutions to
ice loading variations, particularly when using the Burgers rheology.
As a consequence our results are quite explicable in comparing to
the geoid and GIA inversion results of Mitrovica & Forte (2004) as
the latter employ a single ice load history. It would be interesting to
advance models in the future that allow more freedom for ice history
variation in the execution of joint inversions of mantle dynamics and
GIA information.

When comparing the Burgers and Maxwell rheologies, we note
that maximum probability values and confidence intervals are very
similar, suggesting that neither of them exhibits superior perfor-
mance in GIA inversions. However, note that in the Burgers case,
either P1 is demoted (as in an ANU-based inversion) or P2 is pro-
moted to a similar probability status to the case when P1 is preferred
(as in an ICE-5G-based inversion). In either event, the likelihood of
P2 (relative to P1) is enhanced by the assumption of the bi-viscous
Burgers rheology. We find that this rheology is as likely as Maxwell
rheology to reconcile the GIA signal. However, the physics to the
former are consistent with the shallow mantle behaviour that ubiq-
uitously explain post-seismic deformation and creep experiments.
Consequently, the former is a serious competitor to Maxwell stress
relaxing materials for developing GIA inversions. Some caution,
however, is warranted, as we cannot reliably constrain any pref-
erence for the elastic components inherent to Burgers materials:
μ1/μ2 and 10η1/10η2 , although we suggest values between 1 and
10 for both. Indeed, we note that a larger ratio substantially de-
grades the fit, while a ratio below 1 yield predictions that mimic
those of Maxwell rheology so closely that they defeat the purpose
of introducing a transient relaxation.

Compared to P1, P2 is associated with an increase of the ice
volume by about 20 to 30 per cent in Laurentide (except for a
more modest increase of the west Laurentide cap in the ICE-5G
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case), an increase of 10 to 40 per cent in Fennoscandia. The lat-
ter are necessary to compensate the drop in signal amplitude due
to the higher viscosity in the early deglaciation, and a decrease of
some 40 per cent of the volume change in Antarctica. With relatively
sparse RSL data in the near field of Antarctica, the model reduction
counterbalances the increase of ice melt in the other ice sheets. It has
been pointed out that the ICE-5G and ANU models overestimate
the volume of ice on Antarctica (Nakada & Lambeck 1988; Nakada
et al. 2000; Ivins & James 2005; Philippon et al. 2006; Pollard &
DeConto 2009; Whitehouse et al. 2012; Ivins et al. 2013; Lambeck
et al. 2014), which seems to be further supported by recent esti-
mations of the ice retreat scenarios in West Antarctica around the
LGM (Halberstadt et al. 2016). Hence, our inference of a reduction
of Antarctic LGM volume appears to be an improvement in terms
of ice volume distribution with respect to both the ICE-5G and
ANU models (for extensive information of the state of the art on the
Antarctic ice sheet reconstruction, see Briggs et al. 2013). A revised
GIA prediction is especially important in the context of determining
present-day mass balance from the GRACE signal. In the course of
our study, Argus et al. (2014); Peltier et al. (2015) developed the
ICE-6G model, essentially an update to ICE-5G, with reduced ice
mass over Antarctica by ∼22 per cent. The reduction is a feature
that we support with a P2-type model and that appears in both of
the new models published by Whitehouse et al. (2012), Ivins et al.
(2013) and Briggs et al. (2013). However, with a P1-type model,
we would have to increase the ice mass of the Laurentide and/or
Fennoscandia ice sheets in order to fit the far-field data, which in
turns creates misfit in the near field of these regions. Our results do
not seem to support both a low αA and a P1-type model. Moreover,
the authors of ICE-5G decreased the mass in West Laurentide rela-
tive to East Laurentide, which is a feature that we consistently find
in our inversions, as illustrated in Appendix A3. The Greenland ice
sheet appears to play the same role as the Antarctic ice sheet in
regards to the fit of the far-field signal, as the surrounding sea level
data are overwhelmed by the Laurentide signal. However, because
of its modest contribution to the eustatic sea level it is affected by
very large uncertainties. These results emphasize that there are both
location- and time-related issues in the data sampling and these can
influence the derived ice parameters, and this echoes a conclusion
reached recently by Steffen et al. (2014). Finally, our data set is
dominated by sea level records of ages ranging from 0 to 15 kyr BP,
and a sparsely samples ages near the LGM. Hence, constraints are
weaker over the LGM state. Our results show that while the local
maxima models are able to have a very similar fit of the sea level
data overall, the amplitude of the lowstand in sea level at the LGM
decreases by as much as 15 m in contrasting P1-type and P2-type
solutions, respectively.

While the ICE-5G and ANU-based inversions are similarly af-
fected by the ice–mantle trade-offs and change in rheology, the
parameters values and uncertainties retrieved in the inversions can
be quite different, especially for the mantle viscosity, despite our
scaling of the ice load on a regional level. This means that the
regional distribution of the load, and even more probably the tim-
ing of the ice history, plays an important role in determining the
GIA parameters. As such, the GIA inversions using RSL data suffer
from a model-dependence. In particular, note that in ICE-5G-based
inversions, P1 and P2 solutions result in differing upper-mantle
viscosity, which, according to the results reported in Figs A5–A7,
and this further exacerbates the ice–mantle trade-offs. We speculate
that part of the discrepant upper-mantle viscosity values associated
with ICE-5G and ANU models owe to differences in the timing
of deglaciation events. We also infer that the timing difference be-

tween ICE-5G and ANU is a fundamental discriminating feature
and underlies the differences in the two model performances with
respect to our RSL data set. We see this by comparing the maximum
probability obtained with either ice model. Note that since we use
the same constraining data set as the ANU model, it was expected
that ANU-based inversions were going to perform better. Had we
been using the same constraining data set as ICE-5G, and assuming
no major difference in the method or data treatment, we would have
expected our ICE-5G-based inversions to be superior to the ANU-
based inversions. While it is quite natural for us to have chosen the
larger ANU RSL data set, significant progress could be achieved
toward reducing the non-uniqueness of the GIA solutions if the
respective models had considered precisely the same constraining
RSL data sets. Our recommendation is to build a common, accessi-
ble and consistent RSL data set for the GIA community (Düsterhus
et al. 2016).

Many of the previous inversions involving GIA or mantle rhe-
ology have focused on presenting a limited number of their best-
fitting models, even when testing a large set of models, (Lambeck
1990; Ricard et al. 1993; Peltier 1994, 1996; Steinberger & Calder-
wood 2006; Peltier & Drummond 2008), and have thus been illus-
trating only a limited part of the parameter space. In contrast here
we emphasize the importance of exploring a broader set of parame-
ters for GIA inversions, and in particular exploring a joint parameter
space of ice history and rheology. To this end, we advocate the use of
Bayesian methods, much like Mitrovica & Peltier (1991), Mitrovica
& Peltier (1993a,b, 1995); Mitrovica (1996), Cianetti et al. (2002),
Martinec & Wolf (2005) and Lambeck et al. (2014), and the use
of the full probability density function as much as the graphical
representation of a high-dimensional object allows it. Not only does
it reveal the best model, but also the existence of multiple maxima
and trade-off effects, and provides a way to estimate the uncertainty
of the parameters inverted, and similarly for the model predictions
(e.g. ξLGM, see Tables 2–5).

5 C O N C LU S I O N S

We have explored the parameter space of GIA models by a Bayesian
method, investigating the mantle rheology and the ice history, thus
clarifying a non-uniqueness in the GIA solutions and highlight-
ing the range of uncertainty and illuminating trade-offs that should
be better appreciated when evaluating the parameter solutions re-
trieved in from inversion. Using 5720 palaeo sea level records as
constraints, we are able to determine the upper-mantle viscosity to
a value of 1020.77 ± 0.25 Pa s ( 1021.09 ± 0.33 Pa s, for ICE-5G) and the
lithospheric thickness to 100.75 ± 27.57 km (92.91 ± 43.67 km,
for ICE-5G) using a scaled version of the ANU ice history model,
as these parameters appear to be retrieved free of dependence on the
other parameters. On the contrary, it seems impossible to determine
the value of the lower-mantle viscosity, as any value larger than
1021 Pa s may provide a reasonable fit to the data set. We however
determine strong trade-off effects between the lower-mantle viscos-
ity and ice history, highlighting the need to invert jointly for ice
history and mantle rheology in GIA when dealing with palaeo sea
level records. The inversions typically yield two peaks with similar
probability values: peak one (P1) features a low viscosity in the
lower mantle between 1021.2 and 1021.7 Pa s, while peak two (P2) is
characterized by a larger ice volume in Fennoscandia and Laurentia
and a smaller volume in Antarctica than P1 and exhibits a larger vis-
cosity between 1022 and 1023 Pa s. The latter is in agreement with
most geodynamic inversions of the mantle viscosity and gravity
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gradient anomalies over Laurentia. We have tested both Maxwell
and Burgers rheologies and found that while the latter does not
provide a better fit, nor a significantly different confidence inter-
val of the parameters, it provides new insights regarding the P1/P2
ambiguity in GIA solutions by increasing the relative likelihood of
a P2-type solution. It is also worth noting that transient relaxation
as featured by the Burgers rheology opens up new interpretations
of the mantle viscosity that are consistent with laboratory creep
experiments and might especially be helpful in reconciling GIA
with different time-scale phenomena, such as mantle convection.
It should be noted, however, that we are not able to determine a
best value for Burgers parameters. These features exist whether we
choose the ANU or ICE-5G model as reference for our ice mod-
els, yet we find that they exhibit very different absolute maximum
probability, relative probability of P2 to P1, and uncertainties. The
emphasis in the present study on the peak P2, which has a large
lower-mantle viscosity, may affect significantly many signals due to
GIA not discussed here, such as geoid and gravity anomalies, hor-
izontal velocities, etc. It may in turn affect corrections to GRACE
gravity observations linked to GIA over Antarctica and the shallow
seas that surround all formerly glaciated regions. We have empha-
sized the breadth of the solutions throughout the parameter spaces,
and recommend that this be considered in future GIA inversions.
Indeed, our Bayesian method allows for the calculation of uncer-
tainties affecting GIA parameters and predictions, and thus provides
a critical perspective on current and future GIA models.
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A P P E N D I X A : P R E C I S I O N S O N T H E
M E T H O D A N D F U L L R E P R E S E N TAT I O N
O F T H E P RO B A B I L I T Y D I S T R I B U T I O N S

A1 Theory

A1.1 Rheology

The usual rheology used in GIA inversion is the linearly relaxing
viscoelastic Maxwell model. It features an instantaneous elastic re-
sponse followed by a viscous creep similar to a Newtonian fluid,
and is represented in analogous mechanical diagram by the associ-
ation of a spring with Lamé coefficients λ1 and μ1, and a dashpot
with viscosity η1 in series. Following the correspondence principle
(Biot 1962), it is possible to write the stress to strain relation in a
form similar to Hooke’s law:

σ (ω) = λ(ω)∇.ε(ω) + 2μ(ω)ε(ω). (A1)

with ω the frequency, and using:

μ(ω) = μ1iω

iω + μ1
η1

. (A2)

λ(ω) =
λ1iω + κ

μ1
η1

iω + μ1
η1

. (A3)

where κ = λ1 + 2
3 μ1 and κ = λ(ω) + 2

3 μ(ω) is the bulk modulus,
independent of the frequency.

Burgers rheology is a model that exhibits the same features as
Maxwell rheology with an additional transient relaxation. It is de-
scribed by a Kelvin–Voigt body, that is, a dashpot element with
viscosity η2 in parallel with a spring element with shear modulus
μ2, in series with a Maxwell body. Similarly, using the correspon-
dence principle, one can identify for the Burgers rheology (Yuen &
Peltier 1982):

μ(ω) =
μ1iω

(
iω + μ2

η2

)
(

iω + μ1
η1

) (
iω + μ2

η2

)
+ μ1

η2
iω

. (A4)

λ(ω) =
(
λ1iω + κ

μ1
η1

) (
iω + μ2

η2

)
+ κ

μ1
η2

iω(
iω + μ1

η1

) (
iω + μ2

η2

)
+ μ1

η2
iω

. (A5)

A1.2 Gravito-viscoelastic deformations

Following Peltier (1974) we combine time-dependent love numbers
hl(t) and kl(t) (where l is the spherical harmonic degree), bearing in-
formation about the Earth rheology, with the gravitational potential
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of the load Sm
l (t) to calculate the radial surface deformation ur

m
l (t)

and change in gravitational potential 
m
l (t) :

ur
m
l (t) = hl (t)

g0
∗ Sm

l (t), (A6)


m
l (t) = (δ(t) + kl (t)) ∗ Sm

l (t), (A7)

with ∗ the temporal convolution product and l, m the spherical
harmonics degree and order. In our calculation, we calculate defor-
mations on a 180 × 360 spatial grid, yielding a maximum spherical
harmonic degree of 89, according to the Nyquist–Shannon sampling
theorem, and we include the spherical harmonic degree one. We use
a time step of 0.5 kyr. Taking (A6) and (A7) into Fourier domain
results in a scalar product between source and Love numbers :

ur
m
l (ω) = hl (ω)

g0
Sm

l (ω), (A8)


m
l (ω) = (1 + kl (ω)) Sm

l (ω). (A9)

Instead of calculating viscoelastic normal modes, we calculate hl(ω)
and kl(ω) thanks to (A1), in addition to Poisson’s equation and con-
servation of momentum, as the system is equivalent to solving the
elastic case introduced by Alterman et al. (1959) when inputting
λ(ω), μ(ω) instead of λ1, μ1. Note that because the discrete Fourier
transform implies periodicity of the signal, we obtain the defor-
mation caused by an infinity of glacial periods (all identical to the
last cycle), and not just the last one. Apart from this fundamental
difference with the normal modes approach, we ensured that our
calculation was in full agreement with the benchmark by Spada
et al. (2011a). Finally, via inverse Fourier and spherical harmon-
ics transforms of eqs (A8) and (A9) we obtain ur(t, θ , ϕ) and

(t, θ , ϕ).

A1.3 Sea level

The goal of this section is to explain how we can calculate the sea
level function. We need this function first to obtain the total loading
function (comprising both ice loading and sea level loading), and
second to be able to compare the model predictions with the palaeo
sea level data, in the inverse process. It is calculated from the ice
loading function, present-day topography (and bathymetry), and
GIA deformations (vertical displacement and geoid perturbation).
We use a classical approach, similar to Farrell & Clark (1976).

Few observables are available to constrain GIA. While present-
day GPS and satellite gravimetry can be used to constrain a pattern
of the response, in order to provide a good constrain over time-
dependent parameters (e.g. viscous rheology), one needs a time-
dependent data set. Such information exist in the form of geological
records of the sea level, which include, among other, former coral
colonies, raised beaches, fossils of species that used to live near the
shore and coastal deposits. What we label sea level here is a quan-
tity that describes the local water thickness, that is, the difference
between oceanic surface and ground elevations. Thus, our first step
consists in writing the elevation of a ground point above the local
sea surface:

rground(t, θ, ϕ) = T (θ, ϕ) + ur (t, θ, ϕ) − 
(t, θ, ϕ)

g0
− ξ (t), (A10)

where ξ is the eustatic sea level, that is, the mean water thick-
ness over oceans, and T the present-day bathymetry or topography
(Amante & Eakins 2009). Fig. A1 illustrates the different compo-
nents used in the rground expression.

Figure A1. Schematic of the sea level components. All quantities are
counted positively upwards.

The sea level can then be expressed as the opposite of ground
elevation where it is negative, and 0 elsewhere:

Hwater(t, θ, ϕ) = −rground(t, θ, ϕ) OC (t, θ, ϕ), (A11)

with OC a mask function, called the ocean-continent function, equal
to 1 on oceanic locations and 0 elsewhere:

OC (t, θ, ϕ) =
{

1, if rground(t, θ, ϕ) + Hice(t, θ, ϕ) < 0
0, otherwise

, (A12)

and Hice(t, θ , ϕ) the ice thickness expressed as equivalent oceanic
water thickness.

We define ur, 
 and ξ as the difference between past and present-
day states, that is, ur(t = 0, θ , ϕ), 
(t = 0, θ , ϕ), and ξ (t = 0) = 0
for any θ and ϕ. For other quantities, let � mark the difference
between a given state and present-day state, so for a quantity Q,
�Q = Q(t) − Q(t = 0). For Hwater it yields:

�Hwater(t, θ, ϕ) = Hwater(t, θ, ϕ) − Hwater(t = 0, θ, ϕ) (A13)

�Hwater = −OC (t)

(
T + ur − 


g0
− ξ

)
+ OC (t = 0) T (A14)

�Hwater = −�OC T + OC

(



g0
− ur + ξ

)
, (A15)

The total load is the sum of oceanic load and ice load:

H (t, θ, ϕ) = Hwater OC + Hice (1 − OC ) (A16)

�H (t, θ, ϕ) = �Hwater OC + �Hice (1 − OC ). (A17)

Note that where OC = 1 and Hice �= 0, there is both ice and ocean:
this happens on locations where the ice weight is not high enough
to reach the bottom of the ocean. In such cases it becomes floating
ice (i.e. isostatically compensated), which does not generate any
GIA deformation. It is basically equivalent to a location with only
oceanic liquid water. In order to conserve the water mass balance,
one needs the following at any time:∫
SEarth

�H dS = 0 (A18)

∫
SEarth

[
T �OC − OC

(



g0
+ ξ − ur

)]
dS

=
∫

SEarth

�Hice(1 − OC ) dS, (A19)
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∫
SEarth

−OCξdS =
∫

SEarth

[ − T �OC

+ OC

(



g0
− ur

)
+ �Hice(1 − OC )

]
dS, (A20)

where dS is a spherical surface element. As ξ is only time-dependent
and

∫
SEarth

OC = Socean, the condition for mass balance becomes:

ξ = 1

Socean

∫
SEarth

[
T �OC + OC

(
ur − 


g0

)
− �Hice(1 − OC )

]
dS.

(A21)

We thus know every term in the total loading expression, built from
eqs (A15) and (A17):

�H (t, θ, ϕ) = −�OC T + OC

(



g0
−ur + ξ

)
+ (1−OC )�Hice.

(A22)

For direct problems, one can easily solve the total sea level equa-
tion expressed by eqs (A13)–(A22). However, in order to reduce
the dimensionality of the Bayesian inversion so that it can con-
verge faster and more easily, the ice coefficients are inverted by a
linear least-squares method. This represents a simplification com-
pared to some of the advances since by (Johnston 1993; Milne &
Mitrovica 1998; Lambeck et al. 2003) as the method implemented
is close to the original theory of Farrell & Clark (1976). The lin-
ear least-squares method requires to preserve the linearity of the
response with respect to the source, so we have to neglect the varia-
tion of the ocean-continent function with time, which causes T�Oc

to vanish and the other terms to be only slightly perturbed. We chose
OC such that :

OC (θ, ϕ) =
{

1, where T (θ, ϕ) < 0, and Hice(t, θ, ϕ) = 0 ∀t
0 otherwise

.

(A23)

Finally, the expression for the linearized loading is:

�H (t, θ, ϕ) = OC (θ, ϕ)

(

(t, θ, ϕ)

g0
− ur (t, θ, ϕ) + ξ (t)

)
+(1 − OC (θ, ϕ))�Hice(t, θ, ϕ). (A24)

In the initial state we input the charge such that :

�H = (1 − OC )�Hice + OC

Socean

∫
SEarth

−�Hice(1 − OC )dS. (A25)

We then iterate eqs (A8) and (A9), along with the rotational feed-
back signal, to calculate deformation, then eq. (A24) recalculates
the charge and sea level response, until the convergence reaches a
threshold in the sea level response of 0.1 m RMS difference between
two iterations.

We addressed the impact of our linearization approximation in
two ways. First, with a forward model approach, we investigated
whether there were areas or epochs subject to errors. For this pur-
pose, we compared the response with full sea level resolution using
(A22) and the response neglecting the change of OC with time,
and found that the differences are very small (less than 1 m in
the early phase of the deglaciation and significantly less towards
the present-day) except in the Barents sea region where a large
area emerges around the LGM and gets flooded again in the late
cycle. In this region the difference can reach several tens of me-
tres. We are however confident that this did not affect our inversion

as we do not use any sea level record from this region. Second,
we assessed the potential bias created by an incorrect oceanic sur-
face ratio. Our ocean-continent function is fixed, with a geometry
where the oceanic surface is minimum (resembling the near-LGM
situation) so that all the ice introduced in the reference model gen-
erates GIA signal (even in region flooded later during the cycle
such as the Barrents Sea). In this situation the ocean covers about
68.8 per cent of the Earth, while the maximum coverage during the
cycle should be around 70.8 per cent, so we are overestimating our
sea level predictions with the reference model between 0 per cent
and 1 − 0.688/0.708 = 3.05 per cent. We thus expect this approx-
imation to lead to a relative underestimate of the alpha coefficients
and LGM eustatic sea level (derived from the alpha coefficients
and spatial integration of the reference model) by a maximum of
∼3 per cent. This should of course be addressed in our future inves-
tigations, but nevertheless, given the uncertainties affecting the ice
parameters we think that this does not cause any significant change
in our conclusions.

A2 Inverse methods : Bayesian Monte Carlo
with Markov chains

Inversion is the process by which one can get information from
the observables on the parameters. In a Bayesian framework, the
concept is to attribute a probability value to any given forward
model, which corresponds to the probability that, among all tested
models, it is the right model to represent the physical phenomenon.

The principle of Monte Carlo methods is to test a large group
of forward models, exploring the parameters space, and compare
their predictions to the observed data. Since it is a trial-and-error
method, it allows for inverting non-linear physics, which is the case
of viscoelastic rheology. For this reason, the parameters inverted by
Monte Carlo methods in our inversion are η1UM, η1LM, Te, μ1/μ2

and 10η1/10η2 .
Let x be the parameters vector, and y the data vector. We want to

get the probability distribution of the parameters given the data set,
written p(x| y) and called a posteriori probability. Bayes rule states
that:

p(x| y) = p( y|x)p(x)

K1
, (A26)

where K1 is a constant that ensures that
∫

p(x| y)dx = 1. p(x) is
called the a priori distribution of the parameters, and contains in-
formation we have on the parameters before the inversion. In our
work, it is set to be a rectangular function, that is, it adds no in-
formation but the range of values in which we pick the parameters.
p( y|x) is called the likelihood function, and contains the informa-
tion acquired during the inversion. On its basic form, assuming a
L2-norm, it is a Gaussian distribution whose mean is the data y,
standard deviation is the data uncertainty ε and variable is the model
prediction ym:

p( y|x) = exp

(
−

Ndata∑
i=1

1

2

(
ym

i (x) − yd
i

εi

)2
)

. (A27)

In this form, the importance of each observation is weighted
solely by its measurement uncertainty, however in geophysical data
sets one common problem is that the data can be very unevenly
distributed in time and space, which, for example, can lead the
inversion to give better probability to models fitting well a small
area with high data density and poorly the rest of the world. To
compensate this effect we introduced a weight w that accounts for
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Inverting GIA signal using Bayesian framework 1141

redundant information in the data set. This weight was obtained by
exploring the parameter space in a first Monte Carlo search and
noting which predictions were typically correlated. If two or more
predictions are typically correlated no matter what the parameters
values are, then their information on the parameters is somewhat
redundant. In our case, this is often the case when these data are
close in space and/or time. Hence, the weight of the ith data can be
expressed as:

wi = K2∑Ndata
j=1 corr(ym

i , ym
j )

, (A28)

where corr(ym
i , ym

j ) is the linear correlation coefficient between ym
i

and ym
j over all models sampled and K2 is a constant that ensures

that the mean weight is 1, so as not to bias the statistics. In our in-
version, we calculate this coefficient for both Burgers and Maxwell
rheologies and find that less than 5 per cent of the data bears a dif-
ferent amount of information depending on the rheological model
(i.e. the mean difference in correlation coefficient was larger than
0.1). Hence, we choose to use the same weights in those two cases.
The robustness of these coefficients was tested by a bootstrap algo-
rithm to see if the number of sample models in the parameter space
was large enough, and we found that differences in the correlation
coefficients do not exceed 10−3. Finally, the most weighted data to
least weighted data ratio is less than 4, so we are confident that we
are not biasing the result by over weighting. The likelihood then
becomes:

p( y|x) = exp

(
−

Ndata∑
i=1

wi
2

2

(
ym

i (x) − yd
i

εi

)2
)

. (A29)

In this form, the likelihood accounts for the data uncertainty and
spatiotemporal distribution, however we found that the spread of
the predictions was still much larger than what the data uncertainty
would predict. Such gaps between data and predictions are probably
due to the model being only an approximation of the real structure
and rheology of the mantle and real ice loading function, not men-
tioning other possible sources of error such as linearization of the
equations and the iterative methods for solving the sea level equa-
tion. Furthermore, it is difficult to rule out any possibility that the
data contains some non-GIA signal (e.g. a tectonic component),
which will not be accounted by the measurement uncertainty either.
Unfortunately, there is no way to account for all of these sources
of discrepancy, and the former expression of the likelihood would
lead to very high differences in probability for very similar mod-
els, due to its exponential nature. An ad hoc way to go around this
problem is to normalize the misfit to the standard deviation of the
data, yielding:

p( y|x) = exp

(
−

Ndata∑
i=1

wi
2

2σ 2
dataset

(
ym

i (x) − yd
i

εi

)2
)

. (A30)

We used the Simulated Annealing algorithm (Kirkpatrick et al.
1983), a variation of the Monte Carlo with Markov chains method
(Metropolis & Ulam 1949; Metropolis et al. 1953), to perform
model sampling, which consists of the following:

(i) Initialize first model with random parameters x1 and calcu-
late its a posteriori probability p1. Mark this model as the last
accepted model, #la . Initialize the so-called ‘temperature’ value
Temp = Tempmax (term originated from the development of the
simulated annealing technique in metallurgy).

(ii) Generate a new model #i in the vicinity of the last accepted
model: xi = xla + aδx, with a a vector with values ∈ [−0.5, 0.5].

We let δx decrease as the number of models increase to allow
convergence to a better precision.

(iii) If b ≤ ( pi

pla )
1

Temp then update la := i, with b a random number
∈ [0, 1]. Decrease temperature multiplying Temp by a factor 1 − ε,
with ε � 1.

(iv) Repeat steps (ii) and (iii) until the desired number of models
has been reached.

This method provides a good compromise between exploring the
whole parameters space when ‘Temp’ is high (i.e. the acceptance

probability ( pi

pla )
1

Temp always close to 1), and focusing on the part
of the space where the probability is non-negligible, thus providing
better convergence around the probability maxima, when ‘Temp’
is low. Note that this method decreases the risk to get stuck in a
local maximum compared to other methods, such as the Metropolis
algorithm.

A3 Inversion results

In this section we present all probability maps derived from our in-
versions. Figs A2–A4 represent the results of the inversions with the
ANU ice history model as reference, respectively with Maxwell rhe-
ology, Burgers rheology when fixing μ1/μ2 = 5 and 10η1/10η2 = 5,
and Burgers rheology with μ1/μ2 and 10η1/10η2 as parameters in-
cluded in the inversion. Figs A5–A7 represent similarly the results
with the ICE-5G model as reference for ice history. In addition to
the observations made in Section 3, let us remark that the ice coef-
ficients are always highly correlated, and not necessarily in a linear
way. The least-squares matrix provided by our method evidenced
that this correlation is almost non-existent with a fixed rheology,
so this trade-off effect originates from the correlation between ice
coefficients and rheology parameters, particularly the lower-mantle
viscosity rather than an intrinsic correlation between ice coeffi-
cients. There is, however, an exception for the correlation between
ice in Antarctica and Greenland, which can reach a moderate value
of about 0.4, due to the role of these ice sheets in adjusting the far-
field sea level in our data set. When looking at the probability maps
for μ1/μ2 and 10η1/10η2 in the ANU case, we notice that we can-
not constrain a best value for these parameters. Indeed, since when
μ1/μ2 or 10η1/10η2 is small the contribution of the Kelvin–Voigt
element is negligible, many Burgers models behave like Maxwell
models, and we found that the probability in the Burgers rheol-
ogy can reach about the same maximum value as in the Maxwell
case, so we cannot constrain any minimum value of these param-
eters. Because of this effect, we cannot constrain any maximum
value either, because there is always a part of the space parameters
where the other ratio makes the Kelvin–Voigt contribution vanish,
and the model behaves like a Maxwell rheology. The only case where
the Burgers ratio would cause the fit to drop is the case where both
are very high (i.e. greater than 10). Hence, in the case with fixed
ratio for Burgers rheology, we choose a value of 5 that still provides
a good fit while having a non-negligible Kelvin–Voigt contribution.
It seems however that values around μ1/μ2 = 10 and 10η1/10η2 = 3
allow to increase the long-term upper-mantle viscosity to 1021 Pa s
without lowering the probability significantly. Furthermore, it even
yields the best fit that we could achieve in the ICE-5G case, so while
we find that the Burgers rheology only influences the long wave-
lengths and thus interacts only with the lower-mantle viscosity in
general, it seems possible to find Burgers parameters that influence
the upper-mantle viscosity.

Our approach has several weak points which could be improved
in the future. First, we use a spherical Earth model with no lateral
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1142 L. Caron et al.

Figure A2. A posteriori probability distribution projected on the 2-D space formed by each pair of parameters in the ANU-based Maxwell inversion. Note that
models with larger probability are plotted on top of lower probability models.

variations, which yields results probably more representative of
the Laurentia and Fennoscandia cratonic regions, where the main
sources of signal and the larger portion of the sea level data are
located. This could lead to a bias in the prediction of the far-field
data, in oceanic regions characterized by a thinner lithosphere and a
less viscous upper mantle, as evidenced by Lambeck et al. (2014).
A similar bias may apply to other non-cratonic areas which are
closer to the ice load, such as the British Isles and west Antarctica.

Second, resolving the ice coefficients by linear least squares leads
us to linearize the sea-level equation with respect to the ice loading,
which, as discussed in Appendix A1.3, could introduce errors in
present-day flooded areas that were above sea level sometime during
the glacial cycle, for example, the Barents sea region. Finally, we
used only sea level data to constrain the inversion, but other data
sets such as GPS, geoid rate, gravity gradients and other geodetic
data, etc., could provide further constraints over the parameters.
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Inverting GIA signal using Bayesian framework 1143

Figure A3. A posteriori probability distribution projected on the 2-D space formed by each pair of parameters in the ANU-based Burgers inversion, with
μ1/μ2 = 5 and 10η1 /10η2 = 5. Note that models with larger probability are plotted on top of lower probability models.
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Figure A4. A posteriori probability distribution projected on the 2-D space formed by each pair of parameters in the ANU-based Burgers inversion. Note that
models with larger probability are plotted on top of lower probability models.
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Figure A5. A posteriori probability distribution projected on the 2-D space formed by each pair of parameters in the ICE-5G-based Maxwell inversion. Note
that models with larger probability are plotted on top of lower probability models.
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Figure A6. A posteriori probability distribution projected on the 2-D space formed by each pair of parameters in the ICE-5G-based Burgers inversion, with
μ1/μ2 = 5 and 10η1 /10η2 = 5. Note that models with larger probability are plotted on top of lower probability models.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/209/2/1126/3055693 by C

N
R

S - ISTO
 user on 08 August 2022



Inverting GIA signal using Bayesian framework 1147

Figure A7. A posteriori probability distribution projected on the 2-D space formed by each pair of parameters in the ICE-5G-based Burgers inversion. Note
that models with larger probability are plotted on top of lower probability models, and that the colour scale is different from Figs A5 and A6.
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