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ABSTRACT

We present 1.3- and/or 3-mm continuum images and 3-mm spectral scans, obtained us-
ing Northern Extended Millimeter Array (NOEMA) and Atacama Large Millimeter Array
(ALMA), of 21 distant, dusty, star-forming galaxies. Our sample is a subset of the galaxies
selected by Ivison et al. on the basis of their extremely red far-infrared (far-IR) colours and
low Herschel flux densities; most are thus expected to be unlensed, extraordinarily luminous
starbursts at z 2> 4, modulo the considerable cross-section to gravitational lensing implied by
their redshift. We observed 17 of these galaxies with NOEMA and four with ALMA, scanning
through the 3-mm atmospheric window. We have obtained secure redshifts for seven galaxies
via detection of multiple CO lines, one of them a lensed system at z = 6.027 (two others are
also found to be lensed); a single emission line was detected in another four galaxies, one of
which has been shown elsewhere to lie at z = 4.002. Where we find no spectroscopic redshifts,
the galaxies are generally less luminous by 0.3-0.4 dex, which goes some way to explaining
our failure to detect line emission. We show that this sample contains the most luminous
known star-forming galaxies. Due to their extreme star-formation activity, these galaxies will
consume their molecular gas in < 100 Myr, despite their high molecular gas masses, and are

therefore plausible progenitors of the massive, ‘red-and-dead’ elliptical galaxies at z ~ 3.

Key words: ISM: molecules — galaxies: high-redshift — galaxies: ISM — galaxies: starburst.

1 INTRODUCTION

It has been known since the 1970s and 1980s that a large frac-
tion of the energy produced by vigorously star-forming galax-
ies in the nearby Universe is radiated by cool dust that mingles
with their reservoirs of molecular gas (e.g. Soifer, Neugebauer
& Houck 1987). A decade on, the existence of a more distant
population of dusty galaxies was inferred by Puget et al. (1996)
from the detection of the cosmic far-infrared (far-IR) background
using FIRAS aboard the Cosmic Background Explorer, individ-
ual examples of which were quickly detected by Smail, Ivison
& Blain (1997) in the submillimetre (submm) waveband. If their
initial stellar mass function (IMF) is normal, these galaxies form

* E-mail: yoshinobu.fudamoto @unige.ch

stars at tremendous rates, sometimes (>)1000 M, yr~! (e.g. Ivison
etal. 1998). Deeper submm observations in cosmological deep fields
(e.g. Barger et al. 1998; Hughes et al. 1998; Eales et al. 1999) con-
firmed the abundance of these so-called submm galaxies (SMGs),
sometimes known now as dusty, star-forming galaxies (DSFGs —
e.g. Casey, Narayanan & Cooray 2014).

In the decades since then, the SPIRE camera (Griffin et al. 2010)
aboard Herschel (Pilbratt et al. 2010) and the Submillimetre
Common-User Bolometer Array-2 (SCUBA-2) camera (Holland
et al. 2013) on the James Clerk Maxwell Telescope (JCMT) have
together detected orders of magnitude more of these DSFGs. Con-
ventional optical and near-IR spectroscopic observations confirmed
that DSFGs are considerably more abundant (1000 x) at high red-
shift than in the local Universe, with a redshift distribution for those
selected at 850 pum that peaks at z ~ 1-3 (e.g. Chapman et al. 2005;
Simpson et al. 2014). Those selected at (>) 1 mm by the South Pole
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Telescope (e.g. Vieira et al. 2010; Strandet et al. 2017) are more
distant while those selected at the far-IR wavelengths imaged by
Herschel are typically at z < 2.

In the local Universe, massive early-type galaxies have old stellar
populations, (>) 2 Gyr, and are therefore red in optical colour — so-
called ‘red-and-dead’ galaxies. They have little gas or dust, and
star-formation activity has ceased (see Renzini 2006, for a review,
cf. Eales et al. 2017). The majority of these galaxies experienced an
intense phase of star formation around 5-10 Gyr ago (e.g. Thomas
etal.2010), and current observational evidence suggests that DSFGs
at z &~ 2 are their likely progenitors.

It is also well established that there exists a population of massive
elliptical galaxies at z ~ 2-3. It has been claimed that most of these
are high-redshift analogues of local, massive red-and-dead galaxies
(i.e. high stellar masses, red colours, old stellar populations — see
e.g. Cimatti et al. 2004; Trujillo et al. 2006; Kriek et al. 2008; van
Dokkum & Brammer 2010, see also Dunlop et al. 1996 for a rarer
but similarly old galaxy at z = 1.55). The existence of these galaxies
at z ~ 2-3 suggests intense star-formation episodes must occur at
even higher redshifts, perhaps implying that DSFGs are common at
7 2 4 (e.g. Toft et al. 2014).

Only a small number of DSFGs were known at z = 4 un-
til recently, most of them gravitationally lensed (e.g. Asboth
et al. 2016). To address this issue, Ivison et al. (2016) recently ex-
ploited the widest available far-IR imaging survey, H-ATLAS (Eales
et al. 2010), to create a sample of the faintest, reddest dusty galax-
ies, further improving their photometric redshifts via ground-based
photometry from SCUBA-2 (Holland et al. 2013) and LABOCA
(Siringo et al. 2009). The galaxies thus selected are expected to
be largely unlensed,' luminous and very distant. Their vigorous
star-formation activity thus tallies with the star-formation history
required to build up the large mass of stars found in spheroidal
galaxies at 7 ~ 2.

To confirm that the ultrared DSFGs selected by Ivison et al. do
lie at z 2 4, which will strengthen their links with red-and-dead
galaxies at z ~ 2-3, requires robust spectroscopic confirmation of
their photometric redshifts. This is non-trivial when working in the
traditional optical and near-IR regime, verging on impossible with
current telescopes and instrumentation. Following the success of
Cox et al. (2011), who scanned the 3-mm atmospheric window
to determine the redshift of one of the brightest, reddest, lensed
galaxies to emerge from H-ATLAS (see also Weil} et al. 2013), we
have therefore obtained 3-mm spectral scans of 21 ultrared DSFGs
from the Ivison et al. sample, as well as interferometric 0.85- and
1.3-mm imaging to better pinpoint their positions.

Our primary objective here is to determine robust spectroscopic
redshifts for these DSFGs, via the detection of multiple molecu-
lar and/or atomic emission lines. Using these to fine-tune the far-
IR/submm photometric techniques employed by Ivison et al. then
allows us to more reliably determine the space density of DSFGs
at z = 4. In addition, we use our improved measurements of IR
luminosity and our CO line luminosities to estimate physical prop-
erties, such as SFR and molecular gas mass. Finally, we compare
these derived properties with those of other DSFGs at low and high

! Despite expecting a low lensing fraction, Ivison et al. and others have
shown that strongly lensed galaxies are common at z > 4 due to the increase
with redshift of the optical depth to lensing and the magnification bias;
Oteo et al. (in preparation-a) present high-resolution ALMA imaging of
this sample, showing that the fraction of lensed galaxies is indeed relatively
high.
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Table 1. Targets for which 3-mm spectral scans were obtained.

Nickname TAU name?

SGP-196076P (SGP-38326°)
SGP-261206°
SGP-354388-d

HATLAS J000306.9—-330248
HATLAS J000607.6—322639
HATLAS J004223.5—-334340

SGP-32338° HATLAS J010740.7—282711
G09-59393¢ HATLAS J084113.6—004114
G09-81106° HATLAS J084937.0+001455
G09-83808°¢ HATLAS J090045.44-004125
G09-62610° HATLAS J090925.0+015542
G15-26675 HATLAS J144433.34-001639
G15-82684° HATLAS J145012.74+014813

NGP-206987¢
NGP-111912¢
NGP-136156°
NGP-126191¢
NGP-284357

NGP-190387¢
NGP-113609¢
NGP-252305¢
NGP-63663¢

NGP-246114°¢
NGP-101333¢

“As listed in Ivison et al. (2016).

bObserved with ALMA at 3 mm.

€0Old nomenclature used by Oteo et al. (2016).

4 Also known as the Great Red Hope (Oteo et al., in preparation-
b).

¢Observed with NOEMA at 1.3 mm as well as at 3mm (Sec-
tion 3.3).

HATLAS J125440.74-264925
HATLAS J130823.94-254514
HATLAS J132627.54-335633
HATLAS J133217.44-343945
HATLAS J133251.54-332339
HATLAS J133337.64-241541
HATLAS J133836.04-273247
HATLAS J133919.34-245056
HATLAS J134040.34-323709
HATLAS J134114.24-335934
HATLASJ134119.44-341346

redshifts, subject as usual to the considerable uncertainties imposed
by aco and the assumed IMF.

Where applicable, we assume a flat Universe with (£2,,, 4,
hy) = (0.3, 0.7, 0.7). In this cosmology, an arcsecond corresponds
to 7.1kpc at z = 4.

2 SAMPLE SELECTION

Our targets — see Table 1 — were chosen from the faint, ‘ultrared’
galaxy sample of Ivison et al. (2016), taking those best suited to the
latitudes of the telescopes we employ, with photometric redshifts
consistent with z = 4. Here, we briefly summarize the selection
method used, referring readers to Ivison et al. (2016) for more
details.

The sample was selected from the SPIRE images used to con-
struct H-ATLAS Data Release 1 (Valiante et al. 2016), employing
an optimal extraction kernel to minimize the effects of source confu-
sion, which is especially pernicious at 500 wm. The reddest galaxies
were isolated based on their SPIRE colours, such that Ssq9/S250 >
1.5 and Ss500/S350 > 0.85, where S5 is the flux density measured
at 250 um (see Fig. 1). The galaxies thus selected have a median
Ss00 ~ 50 mJy, such that the majority are not expected to be lensed
gravitationally (e.g. Negrello et al. 2010; Conley et al. 2011, but see
Oteo et al., in preparation-a).

The reddest of these SPIRE-selected galaxies were then imaged
with SCUBA-2 (Holland et al. 2013) on the 15-m JCMT and/or with
LABOCA (Siringo et al. 2009) on the 12-m Atacama Pathfinder
Telescope (APEX) so that better photometric redshifts could be
determined. These data are also utilized here, in Section 4.1, to
aid us in spatially localizing any line emission. Of the 109 objects
thus targeted by Ivison et al., 17 galaxies were selected for further

MNRAS 472, 2028-2041 (2017)
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Figure 1. Ss00/S350 versus Ssoo/S2s50 plot of our 21 targets (red circles),
and SPIRE-selected DSFGs at z > 4 previously studied (magenta stars, Cox
et al. 2011; Combes et al. 2012; Riechers et al. 2013). A sample of 1000
randomly selected H-ATLAS galaxies from Valiante et al. (2016) are shown
as grey dots. We also show the redshift tracks of Arp220 (blue line) and
of a spectral energy distribution (SED) synthesized from 122 high-redshift
DSFGs (green line; da Cunha et al. 2015) where triangles indicate z = 4,
5 and 6. Our targets satisfy the ultrared colour cuts, S500/5350 > 0.85 and
S500/S250 > 1.5 (blue shaded area), expected for z Z 4 DSFGs (Ivison
et al. 2016).

observations with the Institute Radioastronomie Millimetrique’s
(IRAM’s) Northern Extended Millimeter Array (NOEMA) and four
galaxies for further observations with the Atacama Large Millime-
ter Array (ALMA), based on their accessibility to those telescopes
and their high photometric redshifts. The SPIRE flux densities and
photometric redshifts determined by Ivison et al. (2016) are listed
in Table 2.

3 OBSERVATIONS

3.1 NOEMA 3-mm spectral scans

Our observations with NOEMA? were conducted as two pro-
grammes (Program IDs: WO5A, X0C6; Co-PlIs: R.J. Ivison, M.
Krips). Table 1 lists the galaxies observed. Both projects acquired
data using five or six antennas in NOEMA’s most compact (D)
configuration. WO5A was carried out between 2012 June and 2013
April, and 14 targets were observed. X0C6 took place between 2013
November and 2014 June, where four targets were observed. One
target, G09-83808, was observed during both periods.

We employed multiple receiver tunings together with the
WideX correlator — which provides 3.6 GHz of instantaneous dual-
polarization bandwidth — to cover the 80-101.6-GHz part of the
3-mm atmospheric window, in which we expect to find at least one
12CO transition for galaxies at z > 3.6 — see, for example, fig. 2
of Weil} et al. (2013), where for 3.6 < z < 7.5 we always expect
12C0(4-3), 2CO(5-4) and/or 12CO(6-5) in our frequency search
range, with other lines such as C1(1-0) and H,O(211-202) also
present for some redshifts.

Different approaches were used during the two projects to maxi-
mize the probability of detecting multiple emission lines from each

2 http://iram-institute.org/EN/noema-project.php
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target, necessary to yield an unambiguous redshift (see discussion
in Weil} et al. 2009). In WOS5A, once a single emission line was
detected during an initial sweep of the 3-mm atmospheric window,
the remaining 3-mm tunings were skipped and we instead tuned to a
higher frequency, outside the 3-mm band, to search for a higher CO
transition, having used the initial line and/or continuum detection
to quantize the possibilities as well as to improve the photometric
redshift estimate. In X0C6, spectra covering the 3-mm atmospheric
window were obtained for all targets (~21 GHz in total), then targets
with emission lines were observed again to search for emission lines
at higher frequencies, in the 2-mm band. Some of the targets there-
fore have less than 21 GHz of coverage (e.g. NGP-190387, NGP-
126191 and G09-59393); others have coverage larger than 21 GHz
(NGP-284357, NGP-246114 and G09-81106). Average on-source
time per tuning was 20 min for WO5A, and 120 min for X0C6, of
which 15 and 90 min remained after flagging, respectively.

Calibration of the data was carried out by using the GILDAS
package.> The typical resulting r.m.s. noise levels were 2.7 and
1.1mJybeam™~"' in 100-kms~' channels for data taken in WO5A
and X0C6. Calibrated visibilities were converted into FITS format
for export, then into MS format to be imaged by casa (McMullin
et al. 2007). The average synthesized beam size was 5 arcsec full
width at half-maximum (FWHM) during both runs, with consider-
able diversity in beam shape due to the relatively short tracks.

To study any 3-mm continuum emission from our targets, we
integrated our data over all observed frequencies, imaging with
the CLEAN task in casa, with a map size of 1arcmin x 1arcmin,
sufficient to cover the 3-mm primary beam.

3.2 ALMA 3-mm spectral scans

Four ultrared galaxies were observed using ALMA (see Table 1),
with five separate tunings to cover the 3-mm window (Program
ID: 2013.1.00499.S; PI: A. Conley). Data were acquired during
2014 July 02-03 and August 28, with typically 8.6-9.7 min spent
on-source for each tuning, in addition to 20 min of calibration —
pointing, phase, flux density (Neptune) and bandpass.

Data were calibrated using the ALMA pipeline, with only minor
flagging required. Calibrated data were imaged using cLEAN within
CASA, using the natural weighting scheme to maximize sensitivity.

The resulting r.m.s. noise levels ranged between 0.73 and
0.80mJybeam™! in channels binned to 100kms~'. Because the
observations were carried out on several different dates, with dif-
ferent antenna configurations, at frequencies ranging from 84 to
115 GHz, the resulting synthesized beamsizes varied between 0.6
and 1.2 arcsec FWHM.

As with our NOEMA data, 3-mm continuum images were created
using all the available data, with a map size of 1 arcmin x 1 arcmin.

3.3 NOEMA 1.3-mm continuum observations

We have also carried out 1.3-mm observations of 10 galaxies lacking
continuum detections, and hence accurate positions, in our earlier
3-mm work. Table 1 lists those targets observed during 2015 De-
cember (Program ID: W15ET; PI: M. Krips), again using the most
compact NOEMA configuration, with six antennas. The typical re-
sulting synthesized beam size was ~1.5 arcsec FWHM. Calibration
was accomplished following the standard procedures, using GILDAS,

3 http://www.iram.fr/IRAMFR/GILDAS
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Table 2. Continuum flux-density measurements and redshifts, photometric and/or spectroscopic.
Nickname 5250 5350 S500 S850 S?_3 mm S§1 mm Zghot Ispec Reference
SGP-196076  28.6 £ 7.3  28.6 £82 462 + 8.6 325+ 9.8 - 041£003 451703 4425 £ 0.001 -
SGP-261206  22.6 £ 63 452 £80 594 £ 84 569 £ 89 - 038+£002 5037035 4242 £ 0.001 -
SGP-354388  26.6 £ 80 398 £89 535+ 98 399+ 47 - 035+£0.02 535703 4.002 £ 0.001 Oteo etal. (in

preparation-b)
SGP-32338 160 £ 7.1 332480 637 +87 279+ 94 - 0214£0.02  3.93%03 - -
G09-59393 241 £70 438 +£83 468 +£86 277 +56 4006 - 3707032 - -
G09-81106 140 £ 60 309 £82 475+88 374+ 114 97+13  024+004 498705 4531 + 0.001 -
G09-83808 97 £54 246£79 440£82 362£09.1 194+20 066+0.12  56670% 6.027 £ 0.001 Zavalaetal.
(2017)

G09-62610 186 £54 373+£74 443£78 231+£90 52+08 <0.18 3707054 - -
G15-26675 268 £ 63 572+ 74 614 +77 366+ 103 - <033 436707 - -
G15-82684 173 £ 64 385+ 81 432+ 88 153 %82 <16 <0.36 3.651038 - -
NGP-206987 241 £ 7.1 392 +82 501 £87 175+£65  92+18 <0.32 4,079 - -
NGP-111912 252 £ 65 41.5+£76 502 +£80 88+67  47+09 <0.26 3.2710:36 - -
NGP-136156 293 £ 74 419 £83  575+£92 297 £46  3.1£08 <0.25 3.9570% - -
NGP-126191 245+ 64 313 +77 437+£82 372475 123£17 030+£011¢ 433709 - -
NGP-284357 126 £ 53 204 +£ 78 424 +£83 274 £99 - 0.62+£003 499704 4.894 £ 0.003 -
NGP-190387 252 £ 7.2 419 £80 633 +£88 334+80 122+12 084014 4367037 4.420 + 0.001 -
NGP-113609 294 £ 7.3  50.1 £80 635 £86 125+62 13.0+23 <0.26 3.431034 - -
NGP-252305 153 £ 6.1 277 £81 400 £94 235+76  65+07 <0.29 4.3470%3 - -
NGP-63663  30.6 £ 6.8 53.5+£78 501 +£81 7.9+ 83 <13 <0.24 3.08%0% - -
NGP-246114 173 £ 65 304 £81 339+£85 324+82 80£15 042+006 435703 3.847 £ 0.002 -
NGP-101333 324 +£ 75 465+82 528+£90 17.6+82 108+13 <0.25 3.537034 - -

“Measured flux density, or 3o upper limit. Stated errors exceed the local r.m.s. in the relevant image, since they reflect all uncertainties, including source size.
b Photometric redshift estimated by template SED fits to 250-, 350-, 500- and 850- or 870-um flux densities (Ivison et al. 2016).

“Tentative detection only.

with little need for significant flagging. The average time spent on-
source was 25 min, yielding typical noise level of 0.47 mJy beam .

We also use data from an earlier programme that observed another
five of our targets — G09-81106, G09-83808, NGP-101333, NGP-
126191 and NGP-246114 — taken during 2013 in the compact 6C
configuration, with a typical resulting synthesized beam size of
1.0 arcsec x 1.3 arcsec FWHM, the major axis at a position angle

of 25° (Program ID: WOBD; Co-PIs: F. Bertoldi, I. Perez-Fournon).

4 RESULTS

If detecting faint line emission from distant galaxies is challenging,
doing so in the absence of an accurate position is considerably more
so. For this reason, our first step is to explore the 3-mm continuum
images described in Section 3, hoping that thermal dust emission
from our luminous, dusty starbursts will betray the precise position
of our targets.

4.1 Continuum emission

To determine the significance of any continuum emission, we mea-
sured the r.m.s. noise level of the maps, and then created the signal-
to-noise ratio (SNR) images shown in Fig. 2.

All four sources observed at 3 mm with ALMA are clearly de-
tected in continuum, at (>) 8¢ significance.

For the objects observed at 3 mm with NOEMA, the sensitivity
is much reduced compared to ALMA, so we begin by overlaying

the 3-mm continuum images with contours from the deep SCUBA-
2 850-pum imaging of Ivison et al. (2016), where the unsmoothed
FWHM of the SCUBA-2 images is around 13 arcsec, and the r.m.s.
pointing accuracy of the JCMT for a single visit to a target is ~2—
3 arcsec.

We then searched for faint 3-mm continuum sources coincident
with SCUBA-2 850-um emission, finding eight plausible sites. We
discount the faint 3-mm emission seen towards G09-59393, favour-
ing the 1.3-mm position a few arcseconds to the east, which is
considerably more significant. The most dubious of the others is
NGP-1136009, although the close proximity of the 3-mm peak to the
SCUBA-2 850-um emission lends extra confidence. NGP-126191
displays >40 emission; again, the near-coincidence with 850-pm
and/or 1.3-mm emission gives additional confidence. For the five
remaining sources, 3-mm continuum emission was detected at (>)
S5o.

Of the targets observed in continuum at 1.3 mm using NOEMA,
we were able to measure positions and flux densities for 13 of 15.

The flux densities and coordinates of all these continuum de-
tections are quoted in Tables 2 and 3, respectively, corrected for
primary beam attenuation, including the small number of tentative
examples (which are marked as such). The contribution from emis-
sion lines to the continuum flux density is negligible, as we shall
see in what follows.

It is worth noting here that none of the ultrared galaxies observed
in 1.3- or 3-mm continuum are revealed as doubles, as would be
expected in the simulations of Bethermin et al. (2017), though it

MNRAS 472, 2028-2041 (2017)
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SGP-196076 SGP-261206 SGP-354388

@

G09-59393 " Ly G09-62610

0
\
N

G15-26675 ~ NGP-111912

NGP-136156 NGP-126191 NGP-284357 NGP-190387

-N‘GP—252A305 NGP-63663 NGP-246114

NGP-101333

0
.

Figure 2. Continuum images of the 1.3- or 3-mm continuum data from ALMA (fop row) and NOEMA, uncorrected for the primary beam response. Black
contours represent the continuum emission, and start from 3o Black dashed lines indicate where the sensitivity (primary-beam response) drops to 50 per cent
of the peak response (for ALMA at 3 mm, this region exceeds the size of the maps shown here). White contours represent 850-pum emission as detected by
SCUBA-2, smoothed with a 13 arcsec Gaussian, with contours starting at 30 and increasing in factors of /2, from Ivison et al. (2016). The SCUBA-2 images
give an indication of where to expect 1.3- or 3-mm continuum emission. For the ten examples where 1.3- or 3-mm continuum is detected, we see typical offsets
of ~2-4 arcsec between the emission peaks detected by SCUBA-2 and the more precisely pinpointed 1.3- or 3-mm peaks detected by ALMA or NOEMA,
consistent with the o = 2-3 arcsec pointing accuracy of the JCMT for a single visit to a target, as was usually the case for the SCUBA-2 images shown here.
Except for NGP-111912, all continuum detections are coincident with emission-line detections. White dashed contours indicate —3c at 3 mm. Black ellipses
indicate the synthesized beamsize. N is up; E is left.

MNRAS 472, 2028-2041 (2017)
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Table 3. Precise J2000 positions of ultrared galaxies.

Nickname RA Dec.
SGP-196076 (aka SGP-38326) 00:03:07.22 —33:02:50.9
SGP-261206° 00:06:07.54 —32:26:39.9
SGP-354388" (aka GRH) 00:42:23.52 —33:43:23.5
SGP-32338P 01:07:41.00 —28:27:09.4
G09-59393* 08:41:13.42 —00:41:11.7
G09-81106° 08:49:36.82 +00:14:54.7
G09-83808 P 09:00:45.79 +00:41:22.9
G09-62610* 09:09:25.18 +01:55:43.7
G15-26675 - -
G15-82684 - -
NGP-206987* 12:54:40.67 +26:49:29.6
NGP-1119122 13:08:24.04 +25:45:17.9
NGP-136156* 13:26:27.57 +33:56:35.5
NGP-126191% 13:32:17.76 +34:39:47.5
NGP-1261914 13:32:17.82 +34:39:50.5
NGP-284357° 13:32:51.73 +33:23:42.8
NGP-190387* 13:33:37.47 +24:15:39.3
NGP-113609% ¢ 13:38:36.65 +27:32:53.5
NGP-252305% 13:39:19.27 +24:50:59.4
NGP-63663 - -
NGP-246114%b 13:41:14.09 +33:59:38.2
NGP-101333% 13:41:19.36 +34:13:46.5

“Position determined via 1.3-mm continuum.
bPosition determined via 3-mm continuum.
“Tentative continuum detection.

dposition determined via emission line.

remains possible that some or all of the ~20percent of targets
that remain undetected in continuum have been pushed below our
interferometric detection threshold by multiplicity.

4.2 Searching for emission lines

To determine reliable, unambiguous redshifts for a DSFG, we must
detect two or more emission lines. Ideally we must extract their
spectra at known positions, typically betrayed by interferometric
continuum detection in the cases of DSFGs, thereby maximizing
the significance of any line detections. If we extract spectra blindly,
we must correct our statistics for the number of independent sight-
lines explored. Here, our known positions come from the 1.3- and
3-mm continuum imaging with NOEMA and ALMA, as described
in Section 4.1; for the 17 sources with reliable coordinates (Table 3),
we extracted spectra at the precise positions of the corresponding
continuum detections.

In the three cases where we have no continuum detection at ei-
ther 1.3 or 3 mm, tagged as such in Table 3, we searched blindly
for emission lines in data cubes that had not been corrected for
the primary beam response. We convolved these data cubes along
their frequency axis with box-car kernels of width 3, 4 and 7 chan-
nels, corresponding to velocity widths of 2200-500km s, typical
for DSFG emission lines (Bothwell et al. 2013). For each con-
volved cube we created an SNR cube, then searched for peaks
above 50, where the significance of detections at this stage has not
been corrected for the number of independent sightlines we have
explored. We also performed the same blind line-search procedure
on continuum-detected sources to look for any additional line emis-
sion. Only known lines were recovered.

As a result of these emission-line searches, we detected multiple
(two or more) emission lines from seven of our targets, one of these
following the detection of three lines by Zavala et al. (2017), as well

Distant luminous dusty star-forming galaxies 2033

Table 4. Measured properties of the detected emission lines.

FWHMP
(kms™!)

Nickname Transition Viine Flux?

(GHz) (Jykms™")

SGP-196076¢ CO(4-3)  84.97 £ 0.01 3.18 & 0.34 1080 + 90
CO(5-4) 106.19 £ 0.02 1.22 + 0.12 1280 + 80

SGP-261206  CO(4-3)  87.95 £ 0.01 2.12 £ 033 440 £ 40
CO(5-4) 109.01 £ 0.01 294 + 0.33 440 & 30
SGP-354388 C1(1-0) 98.39 £ 0.01 097 £ 022 700 £+ 180
SGP-32338 CO(5-4)¢ 100.07 £ 0.01 1.70 £ 020 630 £ 80
G09-81106 CO(4-3) 8336 £ 0.01 1.27 &£ 021 570 £+ 130
CO(5-4) 104.19 £ 0.01 1.56 & 0.33 470 £+ 100
G09-83808 CO(5-4) 82.02+£0.02 092 £ 030 240 £+ 100
CO(6-5) 9839 £ 0.01 0.87 £ 024 360 £+ 110
NGP-111912  CO(4-3)°  95.15 4+ 0.04 2.04 £ 0.79 440 + 200
NGP-126191  CO(5-4)¢  85.77 &£ 0.02 3.19 &+ 0.88 570 & 180
NGP-284357  CO(6-5)  97.75 £ 0.03 237 £+ 0.52 680 + 180
CO(7-6) 136.90 £ 0.09 2.70 &= 0.68 420 £ 150
NGP-190387 CO(4-3)  85.10 £ 0.02 252 + 0.67 670 + 250
CO(5-4) 10623 £0.02 2.69 & 0.71 440 £ 150
NGP-246114 CO(4-3)  95.08 £ 0.02 1.36 = 0.19 550 + 150
CO(6-5) 14271 £ 0.03 1.60 = 0.32 660 £+ 140

“Measured via 2D Gaussian fit to zeroth moment image, after continuum
subtraction.

bFWHM calculated via Gaussian fit to spectrum with 100-kms~! spectral
resolution.

“Most probable CO transition, based on the photometric redshift estimate
from Ivison et al. (2016).

dProperties measured by combining all components.

as single emission lines from four targets, where more lines have
been detected subsequently in one case (Oteo et al., in preparation-
b). We thus report the first eight robust, accurate, unambiguous
redshifts for faint, largely unlensed and thus intrinsically very lu-
minous starbursts.

For all the detected emission lines, we have fitted single-
component Gaussians, measuring the frequency of the line cen-
tre, and its FWHM. Continuum emission was subtracted with the
UVCONTSUB task in casa, using all available channels except
those close to emission lines. The flux of each emission line has
been measured with the casa IMFIT task, from the zeroth mo-
ment map (created by integrating along the frequency axis across
the emission line). There are no significant discrepancies between
these values and those found from the Gaussian fits. The measured
properties of the emission lines are summarized in Table 4.

4.3 Unambiguous redshifts via detection of multiple emission
lines

We detect multiple emission lines towards seven of our targets,
such that the redshifts of these sources and species/transitions of
the emission lines are confirmed unambiguously. The properties of
those sources are discussed in Section 6.

For NGP-190387, two emission lines are detected at 85.10 and
at 106.23 GHz (see Fig. 3), CO(4-3) and CO(5-4) at z = 4.420
(z =4.418 and 4.425, respectively, for the two lines). NGP-190387
lies close to a group of three faint (Kxg &~ 21-22) galaxies, likely
at z 2 1, revealed by NIRI on the 8-m Gemini North telescope
(Fig. 4), which amplify the DSFG gravitationally by a factor we
cannot constrain meaningfully at the present time.

Towards G09-81106 we have detected two emission lines, CO(4—
3) and CO(5-4), at 83.36 and 104.19 GHz (Fig. 3), bothatz =4.531.
There is no suggestion of gravitational lensing for G09-81106, either
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Figure 3. 3-mm spectra of targets with clear multiple line detections, thus
yielding unambiguous redshifts, extracted at the positions where 3-mm
continuum is seen. The spectra have been binned to 250, 150, 150, 200,
100, 100 and 100kms™!, from top to bottom, respectively. Red dashed
lines show the median continuum flux density value calculated across the
full frequency range, excluding £0.5 GHz around the emission lines. All but
two of the spectroscopic redshifts agree well with the photometric estimates
of Ivison et al. (2016) — see Table 7. NGP-284357 shows C1(1-0) emission
at the expected position, 83.6 GHz; however the line falls between WideX
tunings, meaning the line properties are difficult to measure. C1(2—-1) is
located at ~137.41, blended alongside '>CO(7-6). Like many DSFGs, SGP-
196076 comprises merging galaxies (Oteo et al. 2016), and here we show
the combined spectrum of the two most luminous components.

via the presence of unusually bright near-IR galaxies in the field,
or via its submm morphology as seen in high-resolution ALMA
continuum imaging (Oteo et al., in preparation-a).

Towards G09-83808 we have detected two faint emission lines,
at 82.02 and 98.39 GHz (Fig. 3), corresponding to CO(5—4) and
CO(6-5) at z = 6.026 = 0.001 and 6.028 £ 0.001, respectively,
so an average of 6.027 £ 0.001. These lines were also noted by
Zavala et al. (2017) in a spectrum obtained using the Large Mil-
limeter Telescope. G09-83808 is near-coincident with a foreground
galaxy, seen clearly in near-IR imaging from the VIKING survey
(see Fig. 4 — Edge et al. 2013), indicative of gravitationally lens-
ing. This foreground galaxy has a spectroscopic redshift of 0.778,

MNRAS 472, 2028-2041 (2017)
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Figure 4. Near-IR (K-band) 11 arcsec x 11 arcsec images of G09-83808
and SGP-261206 from VIKING survey (Edge et al. 2013) and NGP-190387
from Gemini/NIRI (programme GN-2016A-FT-32). Red contours represent
the 1.3-mm (G09-83808, NGP-190387) and 3-mm (SGP-261206) contin-
uum emission, at 5, 6, 7, 8,9 x o. Near-IR emission is seen clearly, coinci-
dent or near-coincident with the 1.3- or 3-mm continuum emission. At the
depth of the VIKING observations (limiting magnitude, Kap =~ 21.2), we do
not expect to detect dust-obscured distant galaxies. The sources coincident
with G09-83808 and SGP-261206 show, therefore, that these two DSFGs
are amplified gravitationally by the foreground galaxies seen in the near-IR
images. The galaxy in the foreground of SGP-83808 has zspec = 0.778, ob-
tained using X-shooter on the VLT (Fig. 5), and is magnified by 8.2 &+ 0.3,
a factor determined using high-resolution ALMA continuum imaging (see
Oteo et al., in preparation-a). The three galaxies revealed by the deeper
Gemini imaging of NGP-190387 are considerably fainter, with Kap = 21.0,
22.3, 21.4, yet they are not coincident with the z = 4.42 DSFG and likely
constitute a foreground lensing group.

arcsec

G—band |E

Flux
o
N

6500 7000 7500 8000 8500 9000
Wavelength (A)

Figure 5. Top: Spectrum of the lensing galaxy in the foreground of SGP-
83808, as seen in the optical arm of VLT/X-shooter after integrating for
4 x 20 min on 2013 March 17. Below: The 1D spectrum, in grey, extracted
using a simple box-car summation [090.A-0891(A), PI: Christensen]. To
identify the lens redshift we binned these data heavily (see Modigliani
et al. 2010; Christensen et al. 2012; Kausch et al. 2014), as illustrated in
black, with the error spectrum shown in green, then fitted the redshift by x>
minimization using a 5-Gyr stellar population model (shown in red) from
Bruzual & Charlot (2003). We find zgpec = 0.778 2= 0.006. Strong absorption
features are labelled. The flux units are 10~'7 ergs=' cm=2 A~

obtained using X-shooter on the 8-m Very Large Telescope (VLT;
see Fig. 5). A lens model based on the morphology determined by
high-resolution ALMA continuum imaging predicts a gravitational
amplification of 8.2 £ 0.3 (Oteo et al., in preparation-a).

For NGP-284357, we find at least two emission lines, at 97.75 and
136.9 GHz (Fig. 3). If these are CO(5—4) and CO(7-6), the redshifts
are 4.895 and 4.892, respectively, so an average of z = 4.894. At
this redshift, the fine-structure lines of neutral carbon are expected
at 83.54 and 137.41 GHz, respectively, and we see strong hints
of corresponding emission — a discrete feature where C1(1-0) is
expected, and C1(2-1) appears to be broadening the CO(7-6) line.

In the case of NGP-246114, two emission lines are detected at
95.08 and 142.71 GHz (Fig. 3), which must be CO(4-3) and CO(6—
5) at z = 3.849 and 3.845, respectively, so an average of z = 3.847.
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Table 5. Line luminosity ratios of CO lines.

Object CO transitions  Line luminosity ratio Bothwell*

SGP-196076 5-4/4-3 0.81 £ 0.15 0.78 £+ 0.18
SGP-261206 5-4/4-3 0.90 &+ 0.17 0.78 £ 0.18
G09-81106 5-4/4-3 0.80 £ 0.21 0.78 £ 0.18
G09-83808 6-5/5-4 0.66 + 0.28 0.66 &+ 0.16
NGP-284357 7-6/5-4 0.58 + 0.19 0.56 + 0.15
NGP-190387 5-4/4-3 0.69 + 0.26 0.78 £ 0.18
NGP-246114 6-5/4-3 0.52 £ 0.13 0.51 £ 0.13

“ Average line luminosity ratio for SMGs from Bothwell et al. (2013).

SGP-196076 has been studied in detail by Oteo et al. (2016), who
referred to the galaxy as SGP-38326, an H-ATLAS **nomenclature
pre-dating Ivison et al. (2016); for further details we refer the read-
ers to that paper. Summarizing the main results obtained from our
3-mm spectral scans of SGP-196076: we have detected the CO(5—4)
and CO(4-3) transitions at 84.97 and 106.19 GHz, so at z = 4.425
(Fig. 3). C1is also seen, at low significance. Both the continuum
emission, from dust, and the CO(5—4) line emission, indicate clearly
that SGP-196076 comprises multiple (>3) components, with the
star formation in each one presumably triggered by their close
proximity — an ongoing merger or strong interaction. Oteo et al.
(2016) explored the velocity field of the two largest components,
via their CO and [C ] emission, finding ordered disc-like rotation.

SGP-261206 displays emission lines at 87.95 and 109.01 GHz
(Fig. 3), CO(4-3) and CO(5-4) at z = 4.242 £+ 0.001, around 1.70
below its photometric redshift. C1is also seen, at low significance.
Very dust-obscured, distant galaxies should not be coincident with
near-IR sources at the depth of our available imaging, unless those
near-IR sources are gravitationally lensing the dusty galaxy. How-
ever, the K-band image4 of SGP-261206 shown in Fig. 4, from
VIKING (Edge et al. 2013), contains a clear K-band counterpart,
coincident with the dust emission. This suggests that SGP-261206
is gravitationally lensed by the foreground galaxy detected in the
near-IR image, a hint confirmed by high-resolution ALMA imaging
(Oteo et al., in preparation-a).

4.3.1 CO line ratios

Our spectra allow us to determine line luminosity ratios for those
galaxies for which multiple lines were detected, typically anchored
to 2CO J = 5-4.

In Table 5 we list the CO line luminosity ratios (i.e.
Lo -i1y/Leog -j1y) Which we find are consistent with the aver-
age values found for SMGs by Bothwell et al. (2013).

4.3.2 Rest-frame stacking

For the eight spectra for which we have accurate, unambiguous
redshifts, we can shift the data to the corresponding rest-frame
frequencies and stack them to search for features fainter than the
relatively bright '2CO lines, following Spilker et al. (2015) and
Zhang et al. (2017). The resulting stacked spectrum is shown in
Fig. 6 where we find the expected '2CO ladder between J = 4-3

4 Gravitational lensing is found likely for three of the galaxies in this sample,
as revealed by K-band imaging — see Fig. 4; the rest are devoid of close near-
IR counterparts, though the depth of the available near-IR imaging does not
exclude the possibility of distant (z z 1) lenses.

Distant luminous dusty star-forming galaxies — 2035

and J = 7-6, the latter broadened by C1(2-1), as well as weak
C1(1-0) line emission. Absorption due to the collisionally excited
H,0 1, ¢—1¢,; ground transition’ may be seen, at low (*2.50)
significance.

4.3.3 Detection of single emission lines

Towards four of our galaxies, single emission lines were detected,
insufficient to determine the redshift of the source unambiguously,
as the species and/or transition of the emission line is unknown.
However, combining the redshift constraint available by virtue of
far-IR/submm colour, often only a handful of strong emission lines
become plausible candidates.

Towards NGP-126191 we detected a clear emission line at
85.77GHz (Fig. 7), with an FWHM of 570 £ 180kms~'. As
outlined earlier, this line emission is ~3 arcsec from weak 3-mm
continuum emission, which may be spurious, or may be from a
companion, or the dust emission may be slightly displaced from
the line emission — a relatively common finding amongst DSFGs
(e.g. Ivison et al. 2010a; Fu et al. 2013; Dye et al. 2015; Spilker
et al. 2015; Oteo et al. 2016). With a far-IR/submm photometric
redshift of 4.9, the most likely identification for this emission line
is 2CO(4-3) at z = 4.38; however, '2CO(5-4) would then be ex-
pected at 107.1 GHz, with a similar significance given the typical
spectral-line energy distributions of DSFGs, and such a line is not
detected (Fig. 7). '2CO(3-2) and '2CO(5—4) are the other most
likely possibilities, at z = 3.03 and z = 5.71.

Towards NGP-111912 we detected a weak emission line at
95.15GHz (Fig. 7), with an FWHM of 440 £ 200kms~!. The
line emission is coincident spatially with 1.3-mm continuum emis-
sion (Fig. 2). With a photometric redshift estimate of 3.28703¢ the
emission line may be '?CO(4-3) at z = 3.84, in which case we
would not expect any other lines in our current frequency coverage,
consistent with our data.

SGP-32338 is a similar case: we detected an emission line at
101.07 GHz, with an FWHM of 630 + 80 km s~!. The line emission
is again coincident with its 3-mm continuum emission (Fig. 2). The
photometric redshift, 451703, makes '2CO(5—4) at z = 4.70 the
most likely candidate emission line. Because the line lies close to
the centre of the spectral coverage, we would not then expect to
detect any other lines, despite the high sensitivity and the wide
frequency range available.

Follow-up observations are required to determine unambiguous
redshifts for these three galaxies.

In SGP-354388, dubbed the ‘Great Red Hope’ because it is
amongst the reddest galaxies seen by Herschel, our ALMA spec-
trum reveals a line at 98.34 GHz, coincident with 3-mm continuum
emission. Extensive further follow-up observations of SGP-354388,
reported by Oteo et al. (in preparation-b), confirm that the line at
98.34 GHz is, in fact, the C 1(1-0) transition at z = 4.002 4 0.001, a
rare ~20 deviation from the photometric redshift which can be at-
tributed at least partially to dusty galaxies surrounding SGP-354388,
at the same redshift, which contaminate the flux densities measured
at >500 um by SPIRE and LABOCA (Ivison et al. 2016).

> Due to its very high critical density, this line is very difficult to excite in
emission, but it can be seen relatively easily in absorption, where there is
strong background continuum. In the cold ISM, water is normally frozen out,
forming icy mantles on dust grains; detecting this transition in absorption
suggests water is gaseous, perhaps because of turbulence or shock heating.

MNRAS 472, 2028-2041 (2017)
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Figure 6. Rest-frame stacked spectrum, noise-weighted and continuum-subtracted, of the eight galaxies for which we have accurate, unambiguous redshifts,
with lines marked, including the 12CO ladder between J = 4-3 and J = 7-6, the latter broadened by C1(2-1), as well as weak C1(1-0) line emission. The
position of HyO 1; ¢—1o, 1 is also marked, though the significance of the possible absorption line is only ~2.5¢.
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Figure 7. 3-mm spectra of NGP-111912, NGP-126191, SGP-32338 and
SGP-354388, with channels binned to 350, 200, 200 and 350 kms™!, re-
spectively. The identification of the emission line and redshift are ambiguous
for these sources, as no other emission line is detected convincingly. For
NGP-111912, the spectrum has been extracted at the position of the 1.3-
mm continuum; if we assume the emission line at 95.15 GHz is CO(4-3) at
z = 3.84, where the photometric redshift estimate is 3.27f8:;g. For NGP-
126191, the emission line seen at 85.77 GHz suggests z = 4.38, but the
non-detection of another emission line near 107.1 GHz makes this unlikely.
If we instead assume that NGP-126191 lies at z = 5.71, the emission line
at 85.77 GHz becomes CO(5-4); z ~ 3.03 or z ~ 7.06 are also feasible. For
SGP-32338 (where zp;, = 4.51703] Ivison et al. 2016), the emission line
detected at 100.07 GHz could be CO(5-4) at z = 4.70. We would not then
expect to detect other lines, despite the wide frequency coverage.

MNRAS 472, 2028-2041 (2017)

4.3.4 Galaxies where no emission lines are detected

In our remaining spectral scans, regardless of whether or not we
have secure positions via continuum detections, we have found no
compelling evidence of line emission (Fig. 8). Note that the mean
[median] log;( far-IR luminosity of this subsample, 13.2 [13.1], for
an average [median] photometric redshift of 3.79 [3.70], which is
0.3-0.4 dex below that of the sample in which line emission has
been detected. For an FWHM line width of 500 kms~! and typical
brightness temperature and Lig/CO ratios (see later, Section 4.6),
this equates to a peak line flux density in CO(4-3) of 1.6 [1.4] mJy,
comparable to the r.m.s. noise levels in our spectral scans, which
goes some considerable way towards explaining why we detected
no line emission for this sub-sample.

4.4 Spectral energy distributions

Since we have added continuum flux density measurements at 1.3
and/or 3 mm for many of our targets, as well as some unambiguous
spectroscopic redshifts, it is worth repeating the SED fits performed
by Ivison et al. (2016). We have constructed the SEDs of our targets,
utilizing data from SPIRE at 250, 350 and 500 um, from SCUBA-2
at 850 um (Ivison et al. 2016), from NOEMA at 1.3 mm and from
NOEMA and/or ALMA at 3mm — see Table 2. For details of the
SED fits for SGP-32386, we refer readers to Oteo et al. (2016).

Like Ivison et al., we employ SED templates representative
of high-redshift DSFGs: the average SEDs from Swinbank et al.
(2014), Pope et al. (2008) and Pearson et al. (2013), and the ob-
served SEDs of individual targets — the Cosmic Eyelash (Ivison
et al. 2010b; Swinbank et al. 2010), HFLS 3 (Riechers et al. 2013),
G15.141 (Cox et al. 2011) and Arp 220 (Donley et al. 2007).

We have restricted our SED work to the sources with unambigu-
ous redshift determinations, such that we need shift only the flux
density scale of the templates to fit the observed SEDs. We adopted
the lowest x? values, calculated from the difference between the
templates and the observed flux densities, with inverse weighting of
the flux density uncertainties. These best-fitting SEDs are plotted
in Fig. 9, with the corresponding IR luminosities (Lg 1000 um) and
SFRs listed in Table 7, the latter calculated using the calibration
of Hao et al. (2011), Murphy et al. (2011) and Kennicutt & Evans
(2012), with a Salpeter IMF (although see Romano et al. 2017, for
a cautionary tale regarding the IMF in such starbursts). On the basis
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Figure 8. 3-mm spectra of G09-59393, G09-62619, NGP-206987,
NGP-136156, NGP-113609 and NGP-252305, with channels binned to
200kms~!, all cases where we have secure positions via continuum de-
tections at 1.3 and/or 3 mm, but where there is no strong evidence of line
emission. The median Ljr for these galaxies, based on their photometric
redshifts, is 0.3-0.4 dex below that of the galaxies with significant line
emission, which goes some way towards explaining why we have detected
no line emission in these cases.

of high-resolution ALMA continuum and line observations, Oteo
etal. (2016) found that SGP-196076 at z = 4.425 comprises at least
three components, their on-going merger driving large masses of
turbulent gas to form stars, as is ubiquitous amongst objects with
such high intrinsic IR luminosities (e.g. Frayer et al. 1998, 1999; Ivi-
son et al. 1998, 2010a, 2013; Bothwell et al. 2013; Fu et al. 2013;
Messias et al. 2014; Rawle et al. 2014; Dye et al. 2015; Geach
et al. 2015; Thomson et al. 2015; Oteo et al. 2016).

4.4.1 Modified blackbody fits

To better quantify the thermal dust emission we have performed
SED fits using modified blackbody (MBB) spectra, again by min-
imizing x2. We adopted an optically thin model with single dust
temperature [i.e. S, (7y) (%)ﬂ B, (Ty)], where v, is the frequency
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Figure 9. SEDs of those galaxies with unambiguous spectroscopic red-
shifts. Data are from Herschel SPIRE (blue; 250, 350 and 500 pm), SCUBA-
2 (green; 850 um) and NOEMA (red; 1.3 and/or 3 mm). Best-fitting SEDs
are also shown —red solid lines for the best-fitting template, blue dashed lines
for the best-fitting modified blackbody function, with other models scaled
to minimize x> shown as grey solid lines. Best-fitting templates: Pope et al.
(2008) for NGP-190387; the Cosmic Eyelash (Swinbank et al. 2010; Ivison
et al. 2010b) for NGP-246114 and NGP-284357; G15.141 (Cox et al. 2011)
for G09-81106, SGP-354388, SGP-196076 and SGP-261206. IR luminosi-
ties are calculated using the best-fitting template between rest frame 8 and
1000 pm, and SFR is estimated using these IR luminosities with a Salpeter
IMF and the empirical calibration of Hao et al. (2011), Murphy et al. (2011)
and Kennicutt & Evans (2012). The values displayed have not been corrected
for gravitational amplification, p (see Table 7 for p-corrected values). Dust
temperatures and masses determined from the modified blackbody fits are
listed in Table 6.

at which the optical depth is unity, B,(74) is Planck function at
frequency, v, and dust temperature, T4, and S is the dust emissivity
index. We fixed v, to 1.5THz (e.g. Conley et al. 2011; Rangwala
et al. 2011) and adopted «gso ym = 0.15 m? kg~ (Weingartner &
Draine 2001; Dunne, Eales & Edmunds 2003). Dust emissivity, 8,
being poorly constrained by our data, was fixed to values of 1.5, 2.0
or 2.5 (Dunne & Eales 2001; Casey et al. 2011; Chapin et al. 2011;
Magnelli et al. 2012; Walter et al. 2012).

The assumption of a single dust temperature means that we are
measuring the emission-weighted mean dust temperature and dust
mass of all the dust components in the galaxy. Another advantage
of this approach is that it allows us to compare directly with other
high-redshift DSFGs, which are usually described in terms of single-
temperature MBB fits (see Table 7). Finally, the modest sampling of
our SEDs, especially at the short wavelengths required to constrain
hot dust components, prevents meaningful multi-temperature MBB
fitting.

The best MBB fits are plotted in Fig. 9. Minimum x> were
obtained with 8 = 1.5 for NGP-190387, 8 = 2.0 for NGP-246114
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Table 6. Dust temperatures and masses.

Object Ta/(K) Ma/M@) B
SGP-196076* ~33 ~2.6 x 10° 2.0
SGP-261206" 33.1 £ 0.5 - 25
SGP-354388 323 + 0.8 14 £+ 0.2 x 10° 25
G09-81106 347 £ 1.0 8.6 &+ 1.0 x 108 25
G09-83808° 359 £ 1.5 2.1 £ 03 x 108 25
NGP-284357 333 + 14 23 + 04 x 10° 2.0
NGP-190387° 344 + 1.1 - 1.5
NGP-246114 307 £ 1.1 2.0 + 03 x 10° 2.0

“From table 2 of Oteo et al. (2016): Ty is average of brightest two compo-
nents; dust mass is their sum.

bSGP-261206 and NGP-190387 are gravitationally lensed; only Ty is con-
strained as the magnification factors are unknown.

©G09-83808 is gravitationally amplified by a factor 8.2 & 0.3 (Oteo et al.,
in preparation-a).

and NGP-284357. G09-81106 proved difficult to reconcile with
a value of B below 2.5 — probably the result of using a single
temperature MBB (see e.g. Walter et al. 2012). Changing 8 results
in an increase/decrease of the dust temperature by ~2-3K, and
the dust mass by ~0.1 dex. The resulting dust temperatures are in
the range ~31-36 K, and dust masses, ~0.2—4.1 x 10° M@ . For
their high IR luminosities, the dust temperatures of our galaxies are
relatively low (see e.g. Symeonidis et al. 2013). Individual values
of Ty and M, are listed in Table 6.

4.5 Molecular gas masses

Although low-J transitions of CO, or C1, are much preferred when
tracing the remaining reservoirs of molecular hydrogen (Ivison
et al. 2011; Papadopoulos et al. 2012), we can estimate those
gas masses from higher J CO lines by assuming the average CO
line ratio for SMGs, as measured by Greve et al. (2005), Tac-
coni et al. (2006), Tacconi et al. (2008), Ivison et al. (2011),
Riechers et al. (2011) and Bothwell et al. (2013), and tabulated

Table 7. Properties compared to other z > 4 galaxies.

by the latter: Ltoyg)/Leoq-o) = 018, Leoes)/Leoa-o) = 0.21,
Liosay/Leoa_oy = 0-32 and Loy 3/ Leo_g) = 0.41, bearing in
mind that there can be large variations. We find that Lig — L
as derived from different — usually neighbouring — transitions are
consistent. We have taken the average Lq,_g from the available
high-J CO transitions, then calculated the molecular gas masses
using aco = 0.8 M (Kkm s~ pc?)~!, the value often assumed for
high-redshift starbursts and local ULIRGs since the work of Downes
& Solomon (1998). Estimates of gas-to-dust mass ratios then lie in
the range 50-140, consistent with those of local galaxies. Our My,
estimates are listed in Table 7.

Since luminous CO(5—4) and CO(4-3) emission can be generated
by the presence of a massive molecular gas reservoir, or by a much
smaller amount of highly excited molecular gas, follow-up observa-
tions of low-J CO transitions are required to better determine My,
modulo the effects of cosmic rays laid out by Bisbas et al. (2017).

4.6 Lr-L{ correlation

The relationship between star formation and total molecular gas
content is often shown via a plot of the key observables, Lir ver-
sus L, and can reveal if and how star-formation efficiency (SFE)
changes with the amount of molecular gas available for star for-
mation. We have constructed a plot of Lir—L, using our z > 4
IR-luminous galaxies, other high-redshift unlensed DSFGs (Ivison
et al. 2011; Bothwell et al. 2013; Greve et al. 2014) and local
U/LIRGS (Papadopoulos et al. 2012) — see Fig. 10. A linear fit to
all the data has a slope, 1.15 &£ 0.02 (see also, e.g. Iono et al. 2009;
Genzel et al. 2010; Ivison et al. 2011; Bothwell et al. 2013).
Caution is required here, however, since most of the high-redshift
targets, ours included, are detected in mid-J CO transitions. Using
only CO(1-0) observations, with self-consistent determinations of
IR luminosity, Ivison et al. (2011) reported a slope significantly
below unity, showing that adopting mid-J CO transitions for high-
redshift galaxies and CO(1-0) transitions for low-redshift galaxies
may artificially steepen the slope. Differential amplification is likely

Name Redshift SFR? M, EZ Lir Known to Reference

Mg yrh (10" M) (10" L) be lensed?
SGP-261206 4.242 5500/ 32/ 1.3/ Yes© This work
G09-81106 4.531 4300 1.2 24 No This work
NGP-284357 4.894 2100 2.1 1.2 No This work
NGP-190387 4.420 5300/ 2.1/ 29/ Yes*© This work
NGP-246114 3.847 2300 0.99 1.4 No This work
HFLS 1 4.29 9700 - 5.6 No Dowell et al. (2014)
G09-83808 6.027 7800/ 0.78/ 1 44/n Yes© Zavala et al. (2017)
ADFS-27 5.655 4200 2.5 2.5 No Riechers et al. (2017)
SGP-354388 4.002 5700 - 33 No Oteo et al. (in preparation-b)
SGP-196076 4.425 43004 2.7 2.4 No Oteo et al. (2016)
GN 20 4.055 3000 1.3 2.9 No Hodge et al. (2012)
HDF 850.1 5.183 850/ 0.35 0.65 Weakly*© Walter et al. (2012)
AZTEC-1 4.342 2000 1.4/ 1.4/ No Yun et al. (2015)
AzTEC-3 5.299 1800 0.53 1.1 No Riechers et al. (2014)
HFLS 3 6.337 2100/ 0.36/u 29/n Weakly*© Riechers et al. (2013)

“SFRs derived from Lig (rest frame 8—1000 um), and empirical calibration by Hao et al. (2011); Murphy et al. (2011); Kennicutt &
Evans (2012), i.e. SFR = Lig/2.21 x 10% M yr™!, adjusting to a Salpeter IMF.

bMolecular gas masses, assuming aco = Mgas/Lo = 0.8 M /(Kkm s~! pc?), typical for high-redshift starbursts and a small sample
of local ULIRGs (Downes & Solomon 1998).

“For lensed galaxies, listed values are uncorrected for the magnification, .

4Total SFR of the most luminous two components (Oteo et al. 2016).
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Figure 10. Ljr—L, correlation of local U/LIRGs and high-redshift DS-
FGs. Green circles: CO(1-0) observations of local U/LIRGs (Papadopoulos
etal. 2012); blue triangles: high-redshift DSFGs with CO(1-0) observations
(Ivison et al. 2011) and with mid-J CO observations (Bothwell et al. 2013;
Greve et al. 2014). For SGP-196076, we used the sum of the two most
luminous components of the merging system. Mid-J transitions have been
converted to CO(1-0) line luminosities using line luminosity ratio tabulated
by Bothwell et al. (2013). Black solid line: linear fit to all data points (i.e.
logLir = a logL + B, where « and B are free parameters). The resulting
slope, o = 1.14 + 0.02.

also an issue for the lensed galaxies in Fig. 10, where the ampli-
fications derived for the dust, the CO(1-0) and/or high-J CO lines
likely differ significantly. Finally, we note that several studies have
suggested that our adopted value of o is too low, including Weil3
et al. (2007) and Papadopoulos et al. (2012); indeed, if we were
to apply the formalism of Scoville et al. (2016), who use optically
thin long-wavelength dust emission to probe the mass of molecular
gas, we arrive at a value ~3.5 x higher, the equivalent of aco &~
3Mpe (Kkms™' pc?)~'.

4.7 Depletion time-scale

The average gas-depletion time-scale of our galaxies, Z4ep1, is around
50 Myr, modulo the possibility of considerably higher gas masses
noted in Section 4.6. Taken at face value, this 74 is consistent with
the idea that our targets are rapidly building a significant mass of
stars, which may be picked up in a later phase at z ~ 2-3 as massive
‘red-and-dead’ galaxies by near-IR imaging surveys (e.g. Cimatti
et al. 2004; Trujillo et al. 2006; van Dokkum & Brammer 2010).

5 CONCLUSIONS

We report spectral scans of Herschel-selected ultra-red galaxies
with photometric redshifts estimated to lie at 4. For each of 21
galaxies, we have covered Av 220 GHz using ALMA and NOEMA
in the 3-mm waveband. We have determined the redshifts of seven
galaxies unambiguously, in the range z = 3.85-6.03, detecting mul-
tiple emission lines, usually CO rotational transitions. One of these
redshifts was determined independently by Zavala et al. (2017).
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For an additional four galaxies, single emission lines are detected,
one of which has been shown by Oteo et al. (in preparation-b)
to lie at z = 4.002. Candidate redshifts are suggested, based on
their photometric redshifts. Follow-up observations are required to
measure their redshifts unambiguously, except in that one case.

Since the comparison of photometric and spectroscopic redshifts
for this sample by Ivison et al. (2016), two new spectroscopic red-
shifts have been determined, one below and one above the respective
photometric redshifts. Although the offsets for these two galaxies
are larger than the expected uncertainties in zpho, the overall scat-
ter in (Zphot — Zspec)/(1 =+ Zspec) 18 still consistent with (actually,
slightly better than) that of the training set. In the worst case, the
offset can be understood in terms of contamination of flux densities
measured at >500 um by a cluster of dusty galaxies (Oteo et al., in
preparation-a).

Our sample of redshift-confirmed galaxies contains extraordinar-
ily IR-luminous starbursts, with an average SFR of 22900 M, yrl,
They are also amongst the most massive known, in terms of molec-
ular gas mass, and dust mass, with My, =~ 1.8 x 10" M on aver-
age, and My ~ 0.9-4.1 x 10° M.

Lurking amongst our IR-luminous galaxies, we find three lensed
systems. These would otherwise have been hailed as the most lu-
minous known starbursts. It is notable that the vast majority of the
brightest systems selected by Herschel have been revealed as ei-
ther lensed galaxies, groups/clusters of starburst galaxies, starbursts
with buried active galactic nuclei, or some combination of the three
(e.g. Ivison et al. 2013; Oteo et al. 2016), which suggests strongly
that there exists a limit to the luminosity of individual starbursting
galaxies.

Combining local U/LIRGs, other high-redshifts DSFGs and our
new redshift-confirmed galaxies, the resulting Lir—L, correlation
has slope close to unity, 1.14 4= 0.02, suggesting slightly higher SFE
in the most IR-bright galaxies.

The gas-depletion time-scale of our galaxies, around 50 Myr, is
consistent with the idea that our targets may be picked up in a later
phase at z ~ 2-3 as massive ‘red-and-dead’ galaxies by near-IR
imaging surveys.
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