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ABSTRACT

Context. Current constraints on models of galaxy evolution rely on morphometric catalogs extracted from multi-band photometric
surveys. However, these catalogs are altered by selection effects that are difficult to model, that correlate in non trivial ways, and that
can lead to contradictory predictions if not taken into account carefully.
Aims. To address this issue, we have developed a new approach combining parametric Bayesian indirect likelihood (pBIL) techniques
and empirical modeling with realistic image simulations that reproduce a large fraction of these selection effects. This allows us to
perform a direct comparison between observed and simulated images and to infer robust constraints on model parameters.
Methods. We use a semi-empirical forward model to generate a distribution of mock galaxies from a set of physical parameters. These
galaxies are passed through an image simulator reproducing the instrumental characteristics of any survey and are then extracted in
the same way as the observed data. The discrepancy between the simulated and observed data is quantified, and minimized with a
custom sampling process based on adaptive Markov chain Monte Carlo methods.
Results. Using synthetic data matching most of the properties of a Canada-France-Hawaii Telescope Legacy Survey Deep field, we
demonstrate the robustness and internal consistency of our approach by inferring the parameters governing the size and luminosity
functions and their evolutions for different realistic populations of galaxies. We also compare the results of our approach with those
obtained from the classical spectral energy distribution fitting and photometric redshift approach.
Conclusions. Our pipeline infers efficiently the luminosity and size distribution and evolution parameters with a very limited number
of observables (three photometric bands). When compared to SED fitting based on the same set of observables, our method yields
results that are more accurate and free from systematic biases.

Key words. galaxies: evolution – galaxies: bulges – galaxies: spiral – galaxies: luminosity function, mass function –
galaxies: statistics – methods: numerical

1. Introduction

During the last decades our understanding of galaxy formation
and evolution has been largely shaped by the results of deep
multicolor photometric surveys. We can now extract the spectro-
photometric properties of millions of galaxies, over large vol-
umes that cover more than ten billion years of cosmic history.
Despite this wealth of data, we are still incapable of deriving
strong constraints on the free parameters of current semi-analytic
models that describe quantitatively how galaxies evolve in color,
size, and shape from their high redshifts counterparts. The main
reason is that, missing physical ingredients in our models aside,
the galaxy catalogs derived from surveys are often incomplete.

First of all, surveys are limited in flux. Consequently, in-
trinsically faint sources tend to be under-represented because
they are above the limiting magnitude only at small distances.
This effect, called Malmquist bias (Malmquist 1920), intro-
duces correlations between probably non-correlated variables,
mainly distance and other parameters such as luminosity (e.g.,
Singal & Rajpurohit 2014). Additionally, some galaxies over-
lap and may be blended into single objects. Source confusion
(Condon 1974), caused by unresolved faint sources blended by
the point spread function, can act as a signal at the detection

limit and also affects number counts in a non-trivial way. More-
over, source confusion affects background estimation by adding
a non-uniform component to the background noise, which is
correlated with the spatial distribution of unresolved sources
(Helou & Beichman 1990). Statistical fluctuations in flux mea-
surements give rise to the Eddington bias (Eddington 1913).
As galaxy number counts increase as a power of the flux,
there are more overestimated fluxes for faint sources than un-
derestimated fluxes for bright sources. This results in a gen-
eral increase in the number of sources detected at a given flux
(Hasinger & Zamorani 2000; Loaring et al. 2005). Because of
the cosmological dimming, the bolometric surface brightness of
galaxies gets dimmer with increasing redshift proportionally to
(1 + z)−4 (Tolman & Richard 1934), which makes many faint ex-
tended sources undetectable. Finally, stellar contamination af-
fects the bright end of the source counts (e.g., Pearson et al.
2014).

Apparent magnitudes in catalogs also have to be corrected
for Galactic extinction (e.g., Schlegel et al. 1998), and to ac-
count for redshift effects, K-corrections (Hogg et al. 2002) that
are sensitive to galaxy spectral type must be applied on the
magnitudes of high-redshift galaxies (e.g., Ramos et al. 2011).
Both corrections, however, are applied only after the sample is
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truncated at its flux limit, which causes biases at the survey limit.
Inclination-dependent internal absorption from dust lanes in the
disk of galaxies also tends to draw a fraction of edge-on spirals
below the survey flux limit (e.g., Kautsch et al. 2006). Because
of these various selection effects, that correlate in ways that are
poorly understood, and that may be spatially variable over the
field of view of the survey, observations undergo complex selec-
tion functions that are difficult to treat analytically, and the re-
sulting catalogs tend to be biased towards intrinsically brighter,
compact, and low dust content sources.

The determination of the luminosity function (LF) of galax-
ies, a fundamental tool for characterizing galaxy populations that
is often used for constraining models of galactic evolution, is
particularly sensitive to these biases. As input data, analyses use
catalogs containing the photometric properties, such as appar-
ent magnitudes, of a selected galaxy sample. LF estimation re-
quires the knowledge of the absolute magnitude of the sources,
which itself depends upon the determination of their redshift.
The number density per luminosity bin can be determined by
a variety of methods, parametric or non-parametric, described
in detail in Binggeli et al. (1988), Willmer (1997), and Sheth
(2007). The resulting distribution is usually fitted by a Schechter
function (Schechter 1976), but other functions are sometimes re-
quired (e.g., Driver & Phillipps 1996; Blanton et al. 2005). The
Schechter function is characterized by three parameters: φ∗ the
normalization density, α the faint end slope, and M∗ a character-
istic absolute magnitude. The LF at z ∼ 0 is presently well con-
strained thanks to the analysis of high-resolution spectroscopic
surveys, such as the 2dF Galaxy Redshift Survey (2dFGRS,
Norberg et al. 2002) or the Sloan Digital Sky Survey (SDSS,
Blanton et al. 2003). There is also clear evidence that the global
LF evolves with redshift, and that the LFs for different popula-
tions of galaxies evolve differently (Lilly et al. 1995; Zucca et al.
2006).

Measuring the LF evolution is nevertheless a challenge, as
high-redshift galaxies are faint, and therefore generally unsuit-
able for spectroscopic redshift determination, which would re-
quire prohibitive exposure times. The current solution to this
problem is to use the information contained within the fluxes
of these sources in some broad-band filters, in order to esti-
mate their redshift, known as photometric redshift. This pro-
cedure has a number of biases in its own right, because the
precision of photometric redshifts relies on the templates and
the training set used, assumed to be representative of the
galaxy populations. These biases are described extensively in
MacDonald & Bernstein (2010). In turn, redshift uncertainties
typically result in an increase of the estimated number of low
and high luminosity galaxies (Sheth 2007).

The forward-modeling approach to galaxy evolution. The tra-
ditional approach when comparing the results of models to data
is sometimes referred to as backward modeling (e.g., Marzke
1998; Taghizadeh-Popp et al. 2015). In this scheme, physical
quantities are derived from the observed data, and are then
compared with the physical quantities predicted from simula-
tions, semi-analytical models (SAM), or semi-empirical models.
A more reliable technique is the forward modeling approach:
a distribution of modeled galaxies are passed through a vir-
tual telescope with all the observing process reproduced (fil-
ters, exposure time, telescope characteristics, seeing properties,
as well as the cosmological and instrumental biases described
above), and a direct comparison is made between simulated
and observed datasets. The power of this approach comes from

the fact that theory and observation are compared in the ob-
servational space: the same systematic errors and selection ef-
fects affect the simulated and observed data. Blaizot et al. (2005)
were the first to introduce realistic mock telescope images from
light cones generated by SAMs. Overzier et al. (2013) extended
this idea by constructing synthetic images and catalogs from
the Millenium Run cosmological simulation including detailed
models of ground-based and space telescopes. More recently,
Taghizadeh-Popp et al. (2015) used semi-empirical modeling to
simulate Hubble Deep Field (HDF) images, from cutouts of real
SDSS galaxies with modified sizes and fluxes, and compared
them to observed HDF images. Here we make the case that for-
ward modeling can be used to perform reliable inferences on the
evolution of the galaxy luminosity and size functions.

Bayesian inference. Standard Bayesian techniques provide a
framework to address any statistical inference problem. The goal
of Bayesian inference is to infer the posterior probability den-
sity function (PDF) of a set of model parameters θ, given some
observed data D. This probability can be derived using Bayes’
theorem:

P(θ|D) =
P(D|θ)P(θ)

P(D)
, (1)

where P(D|θ) is also called the likelihood (or the likelihood
function) of the data, which gives the probability of the data
given the model, P(θ) is the prior, or the probability of the model
with the parameters θ, and P(D) is the evidence, which acts
as a normalization constant and is usually ignored in inference
problems. The posterior PDF is approximated either analytically
or via the use of sampling techniques, such as Markov chain
Monte Carlo (MCMC).

However, there are multiple cases where the likelihood is in-
tractable or unknown, for mathematical or computational rea-
sons, which renders classical Bayesian approaches unfeasible.
In our case, it is the modeling of the selection effects that is im-
practical to include in the likelihood. To tackle this issue, a new
class of methods, called “likelihood-free”, have been developed
to infer posterior distributions without explicit computation of
the likelihood.

Approximate Bayesian Computation. One of the “likelihood-
free” techniques is called Approximate Bayesian Computa-
tion (ABC), and was introduced in the seminal article of
Pritchard et al. (1999) for population genetics. ABC is based on
repeated simulations of datasets generated by a forward model,
and replaces the likelihood estimation by a comparison between
the observed and synthetic data. Its ability to perform inference
under arbitrarily complex stochastic models, as well as its well
established theoretical grounds, have lead to its growing popu-
larity in many fields, including ecology, epidemiology, and stere-
ology (see Beaumont 2010, for an overview).

The classic ABC Rejection sampling algorithm, introduced
in its modern form by Pritchard et al. (1999), is defined in
Algorithm 1, where ρ is a distance metric built between the sim-
ulated and observed datasets, usually based on some summary
statistics η, which are parameters that maximize the informa-
tion contained within the datasets (for example, normally dis-
tributed datasets can be characterized using the mean and stan-
dard deviation of the underlying Gaussian distribution), and ε
is a user-defined tolerance level >0. Using the ABC algorithm
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for t = 1 to T do
Repeat

Generate θ∗ from the prior distribution;
Simulate dataD∗ from parameters θ∗;

until ρ(η(D∗), η(D)) ≤ ε;
set θ(t) = θ∗;

end
Algorithm 1: ABC Rejection sampling algorithm

with a good summary statistic and a small enough tolerance ulti-
mately leads to a fair approximation of the posterior distribution
(Sunnaker et al. 2013). The choices of ρ, η and ε are highly non-
trivial though, and they constitute the fundamental difficulty in
the application of ABC methods as they are problem-dependent
(Marin et al. 2011). Moreover rejection sampling is notorious for
its inherent inefficiency, as sampling directly from the prior dis-
tribution results in spending computing time simulating datasets
in low-probability regions. Therefore, several classes of sam-
pling algorithms have been developed to explore the parameter
space more efficiently. Three of the most popular of them are
outlined below.

– In the ABC-MCMC algorithm (Marjoram et al. 2003), a
point in the parameter space called a particle performs a ran-
dom walk (defined by a proposal distribution or transition
kernel) across the parameter space, and is only moving if the
simulated dataset generated by these parameters match better
the observed dataset, until it converges to a stationary distri-
bution. As in standard MCMC procedures, the efficiency of
the algorithm is largely determined by the choice of the scale
of the kernel.

– In the ABC Sequential Monte Carlo parallel algorithm
(ABC-SMC, Toni et al. 2009), samples are drawn from the
prior distribution until N particles are accepted, that is, those
with a distance to the data <ε0. All accepted particles are at-
tributed a statistical weight ω0. The weighted particles then
constitute an intermediate distribution from which another
set of samples is drawn and perturbed with a fixed transi-
tion kernel, until N particles satisfy the acceptance criterion:
ρ < ε1, with ε1 < ε0. They are then weighted with ω1 and
the process is repeated with a diminished tolerance at each
step. After T iterations of this process, the particles are sam-
pled from the approximate posterior distribution. The perfor-
mance of ABC-SMC scales as N, where N is the number of
particles. Different variations of ABC-SMC algorithms have
been published, each with a different weighting scheme for
particles.

– ABC Population Monte Carlo (ABC-PMC, Beaumont et al.
2009) is similar to ABC-SMC, but differs in its adaptive
weighting scheme: its transition kernel is Gaussian and based
on the variance of the accepted particles in the previous it-
eration. This scheme requires the fewest tuning parameters
of the three algorithms discussed here (Turner & Van Zandt
2012). But ABC-PMC is also more computationally costly
than ABC-SMC, as its performance scales as N2 (caused by
its adaptability).

The reader is referred to Csilléry et al. (2010), Marin et al.
(2011), Turner & Van Zandt (2012), Sunnaker et al. (2013), and
Gutmann & Corander (2016) for a set of historical, methodical,
and theoretical reviews of this final approach, as well as a com-
plete description of the algorithms mentioned above.

Parametric Bayesian indirect likelihood. Another class of
likelihood-free techniques is called parametric Bayesian indirect
likelihood (pBIL). First proposed by Reeves & Pettitt (2005) and
Gallant & McCulloch (2009), pBIL transforms the intractable
likelihood of complex inference problems into a tractable one
using an auxiliary parametric model that describes the simu-
lated datasets generated by the forward model. In this scheme,
the resulting auxiliary likelihood function quantifies the discrep-
ancy between the observed and simulated data. It is used in
Bayes’ theorem and the parameter space is explored using a user-
defined sampling procedure, in an equivalent way to a classical
Bayesian technique. While sharing similarities with the previous
technique, pBIL is not an ABC method in the strict sense, as it
does not require an appropriate choice of summary statistics and
tolerance level to compare the observed and synthetic datasets.
The accuracy of the inference in the pBIL scheme is determined
by how well the auxiliary model describes the data (observed
and simulated). The theoretical foundations of this scheme are
described extensively in Drovandi et al. (2015).

Application of likelihood-free inference to astrophysics. The
application of likelihood-free methods to astrophysics is still
rare, as noted by Cameron & Pettitt (2012) in their review. Only
lately has the potential of such techniques been considered.
Schafer & Freeman (2012) praised the use of likelihood-free in-
ference in the context of quasar luminosity function estimation.
Cameron & Pettitt (2012) explored the morphological transfor-
mation of high-redshift galaxies and derived strong constraints
on the evolution of the merger rate in the early Universe using
an ABC-SMC approach. Weyant et al. (2013) also used SMC
for the estimation of cosmological parameters from type Ia su-
pernovae samples, and could still provide robust results when
the data was contaminated by type IIP supernovae. Robin et al.
(2014) constrained the shape and formation period of the thick
disk of the Milky Way using MCMC as their sampling scheme,
based on photometric data from the SDSS and the Two Micron
All Sky Survey (2MASS). Finally Hahn et al. (2017) demon-
strate the feasibility of using ABC to constrain the relation-
ship between galaxies and their dark matter halo. The recent
birth of Python packages providing sampling algorithms in
an ABC framework, such as astroABC (Jennings & Madigan
2017) and ELFI (Kangasrääsiö et al. 2016), which implement
SMC methods, and COSMOABC (Ishida et al. 2015) which
implements the PMC algorithm, will probably facilitate the
rise of likelihood-free inference techniques in the astronomical
community.

Outline of the article. To the authors’ knowledge, no
likelihood-free inference approaches have yet included telescope
image simulation in their forward modeling pipeline, because of
the difficulty in implementation as well as a prohibitive com-
putational cost. Prototypical implementations in a cosmologi-
cal context have, however, been tested by Akeret et al. (2015)
on a Gaussian toy model for the calibration of image simula-
tions. In the present article we propose a new technique that
combines the forward modeling approach with sampling tech-
niques in the pBIL framework. In that regard, we use a stochastic
semi-empirical model of evolving galaxy populations coupled to
an image simulator to generate realistic synthetic images. Simu-
lated images go through the same source extraction process and
data analysis pipeline as real images. The observed and synthetic

A9, page 3 of 23



A&A 605, A9 (2017)

data distributions are finally compared and used to infer the most
probable models.

This article is organized as follows: Sects. 2 to 5 describe
in detail the forward-modeling pipeline we propose, from model
parameters to data analysis and sampling algorithm. Section 6
defines our convergence diagnostics. In Sect. 7, we demonstrate
the validity, internal consistency and robustness of our approach
by inferring the LF parameters and their evolution using one re-
alization of our model as input data. We perform these tests in
two situations: a configuration where the data is a mock Canada-
France-Hawaii Telescope Legacy Survey (CFHTLS) Deep im-
age containing two populations of ellipticals and lenticulars
and late-type spirals, and where the parameters to infer are
the evolving luminosity function parameters for each popula-
tion (Sect. 7.4); and a configuration where the data is a mock
CFHTLS Deep image with a single population of pure bulge el-
liptical galaxies, and in which the inference is performed on the
evolving size and luminosity (Sect. 7.6). In Sect. 8, we com-
pare the results of our forward modeling approach with those of
the more traditional photometric redshift approach applied to the
same situation. Finally, Sect. 9 provides suggestions to improve
the speed and accuracy of this method.

Throughout this article, unless stated otherwise, we adopt the
following cosmological parameters: H0 = 100 h km s−1 Mpc−1

with h = 1, Ωm = 0.3, ΩΛ = 0.7 (Spergel et al. 2003). Magni-
tudes are given in the AB system.

2. Model: from parameters to image generation

In order to infer the physical properties of galaxies from ob-
served survey images without having to describe the complex
selection effects the latter contain, we propose the following
pipeline. We start from a set of physical input parameters, drawn
from the prior distribution defined for each parameter. These
parameters describe the luminosity and size distribution of the
various populations of modeled galaxies. From this set of param-
eters, our forward model generates a catalog of galaxies mod-
eled as the sum of their bulge and disk components, each with a
different profile. The projected light profiles of the galaxies are
determined by their inclination, the relative fraction of light con-
tained within the bulge, and the galaxy redshift as well as the
extinction of the bulge and disk components. The galaxies are
randomly drawn from the luminosity function of their respective
population. The catalog assumes that galaxies are randomly dis-
tributed on a virtual sky that includes the cosmological effects
of an expanding universe with a cosmological constant. The sur-
vey image is simulated in every band covered by the observed
survey, and reproduces all of its characteristics, such as filters
transmission, exposure time, point spread function (PSF) model,
and background noise model.

Then, a large number of “simulated” images are generated
via an iterative process (a Markov chain) generating new sets of
physical parameters at each iteration. Some basic flux and shape
parameters are extracted in the same way from the observed and
simulated images: after a pre-processing step (which is identical
for observed and simulated data) where observables are decor-
related and their dynamic range reduced, the multidimensional
distributions of simulated observables are directly compared to
the observed distributions using a custom distance function on
binned data.

The chain moves through the parameter space towards re-
gions of high likelihood, that is, regions that minimize the dis-
tance between the modeled and observed datasets. The path-
way of the chain is finally analyzed to reconstruct the

Physical parameters
Sections 7.1 and 5.1

multi-λ galaxy
catalog:
Stuff

Section 7.1

multi-λ
simulated

image:
Sky Maker

Section 2.2

multi-λ
observed

image

Source
extraction:

SExtractor
Section 3.1

Catalog compression
Sections 3.3 and 3.4

Binning
Section 3.5

Auxiliary likelihood
Section 4

MCMC chain
to maximize

likelihood
Section 5

Fig. 1. Summary of the workflow.

multidimensional posterior probability distribution and infer the
sets of parameters that most likely reproduce the observed cata-
logs, as well as the correlations between these parameters. The
main steps of this approach are detailed in the sections below,
and the whole pipeline is sketched in Fig. 1 of this article.

2.1. Physical parameters and source catalog generation

Artificial catalogs are generated with the Stuff package (Bertin
2009) in fields of a given size. Stuff relies on empirical scaling
laws applied to a set of galaxy “types”, which it uses to draw
galaxy samples with photometric properties computed in an ar-
bitrary number of observation passbands. Each galaxy type is
defined by its Schechter (1976) luminosity function parameters,
its spectral energy distribution (SED), as well as the bulge-to-
total luminosity ratio B/T and rest-frame extinction properties of
each component of the galaxy through a “reference” passband.

The photometry of simulated galaxies is based on the com-
posite SED templates of Coleman et al. (1980) extended by
Arnouts et al. (1999). Any of the six “E”, “S0”, “Sab”, “Sbc”,
“Scd”, and “Irr” SEDs can be assigned to the bulge and disk
components separately, for a given galaxy type. The version of
Stuff used in this work does not allow the SEDs to evolve with
redshift; instead, following Gabasch et al. (2004), galaxy evolu-
tion is modeled as a combination of density (Schechter’s φ∗) and
luminosity (Schechter’s M∗) evolution with redshift z:

M∗(z) = M∗(0) + Me ln(1 + z) (2)
φ∗(z) = φ∗(0)(1 + z)φe , (3)
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Fig. 2. Comparison between an observed survey image and a mock image generated by our model. On the left: a region of the CFHTLS D1 field
(stack from the 85% best seeing exposures) built from the gri bands. On the right: a simulated image with Stuff+Skymaker with the same
filters, exposure time, and telescope properties as the CFHTLS data. Both images are shown with the same color coding.

where Me and φe are constants. The reference filter (i.e. the filter
where the LF is measured) is set to the g-band in the present
article.

Bulges and elliptical galaxies have a de Vaucouleurs (1953)
profile:

µb(r) = Mb + 8.3268
(

r
rb

) 1
4

+ 5 log rb + 16.6337, (4)

where µb(r) is the bulge surface brightness in mag pc−2, Mb =
M − 2.5 log(B/T ) is the absolute magnitude of the bulge com-
ponent and M the total absolute magnitude of the galaxy, both
in the reference passband. As a projection of the fundamental
plane, the average effective radius 〈rb〉 in pc follows an empiri-
cal relation we derive from the measurements of Binggeli et al.
(1984):

〈rb〉 =

{
rknee10−0.3(Mb−Mknee) if Mb < Mknee
rknee10−0.1(Mb−Mknee) otherwise (5)

where rknee = 1.58 h−1 kpc and Mknee = −20.5. The intrinsic flat-
tening q of bulges follows a normal distribution with 〈q〉 = 0.65
andσq = 0.18 (Sandage et al. 1970), which we convert to the ap-

parent aspect-ratio
√

q2 sin2 i + cos2 i, where i is the inclination
of the galaxy with respect to the line of sight.

Disks have an exponential profile:

µd(r) = Md + 1.8222
(

r
rd

)
+ 5 log rd + 0.8710, (6)

where µd(r) is the disk surface brightness in mag pc−2, Md =
M−2.5 log(1−(B/T )) is the absolute magnitude of the disk in the
reference passband, and rd the effective radius. Semi-analytical
models where disks originate from the collapse of the baryonic
content of dark-matter-dominated halos (Dalcanton et al. 1997;
Mo et al. 1998) predict useful scaling relations. Assuming that

light traces mass and that there is negligible transport of angu-
lar momentum during collapse, one finds rd ∝ λL−βd , where λ
is the dimensionless spin parameter of the halo, Ld = 10−0.4Md

the total disk luminosity, and β ' −1/3 (de Jong & Lacey
2000). The distribution of λ, as seen in N-body simulations,
can well be described by a log-normal distribution (Warren et al.
1992), and is very weakly dependent on cosmological parame-
ters (Steinmetz & Bartelmann 1995), hence the distribution of rd
at a given Md should behave as:

n(rd|Md) ∝
1
rd

exp

−
(
ln(rd/r∗d) − 0.4βd(Md − M∗d)

)2

2σ2
λ

 · (7)

In de Jong & Lacey (2000), a convincing fit to I-band catalog
data of late-type galaxies corrected for internal extinction is ob-
tained, with βd = −0.214, σλ = 0.36, r∗d = 5.93 kpc, and
M∗d = −22.3 (for H0 = 65 km s−1). Both bulge and disk effec-
tive radii are allowed to evolve (separately) with redshift z us-
ing simple (1 + z)γ scaling laws (see, e.g., Trujillo et al. 2006;
Williams et al. 2010). The original values from Trujillo et al.
(2006) are modified to those in Table 5 based on the Hubble
Space Telescope Ultra Deep Field (UDF, Williams et al. 2010;
Bertin, priv. comm.).

Internal extinction is applied (separately) to the bulge and
disk SEDs S (λ) using the extinction law from Calzetti et al.
(1994), extended to the UV and the IR assuming an LMC law
(Charlot, priv. comm.):

S (λ) = S 0(λ)e−κτ(λ), (8)

where S 0(λ) is the face-on, unextincted SED and τ(λ) the uncali-
brated extinction law. The normalization factor κ is computed by
integrating the effect of extinction Aref , expressed in magnitudes,
within the reference passband pref(λ):

Aref = −2.5 log10

∫
pref(λ)S 0(λ)e−κτ(λ)dλ∫

pref(λ)S 0(λ)dλ
· (9)
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As the variation of τ(λ) is small within the reference passband,
we take advantage of a second order Taylor expansion of both
the exponential and the logarithm:

Aref ≈ −2.5 log10

(
1 − I1κ +

1
2

I2κ
2
)

(10)

≈ 1.086
I1κ +

I2
1 − I2

2
κ2

 , (11)

with

I1 =

∫
pref(λ)S 0(λ)τ(λ)dλ∫

pref(λ)S 0(λ)dλ
, I2 =

∫
pref(λ)S 0(λ)τ2(λ)dλ∫

pref(λ)S 0(λ)dλ
· (12)

Solving the quadratic Eq. (11) we obtain:

κ ≈
−2Aref

1.086
(
I1 +

√
I2
1 −

2
1.086 (I2

1 − I2)Aref

) · (13)

We adopt the parametrization of the extinction from the RC3
catalog (de Vaucouleurs et al. 1991):

Aref = −α(T) log10(cos i), (14)

where i is the disk inclination with respect to the line-of-sight,
and α(T ) (not to be confused with Schechter’s α) is a type-
dependent “extinction coefficient” that quantifies the amount of
extinction+diffusion in the blue passband. For simplicity we
identify this passband with our reference g passband, although
they do not exactly match. The extinction coefficient evolves
with de Vaucouleurs (1959) revised morphological type as:

α(T ) =

{
1.5 − 0.03(T − 5)2 for T ≥ 0
0 for T ≤ 0. (15)

Stuff applies to SEDs the mean intergalactic extinction curve
at the given redshift following Madau (1995) and Madau et al.
(1996), using the list of Lyman wavelengths and absorption co-
efficients from the Xspec code (Arnaud 1996). Galaxies are
Poisson distributed in 5 h−1 Mpc redshift slices from z = 20 to
z = 0. For now the model does not include clustering properties,
therefore the galaxies positions are uniformly distributed over
the field of view. Ultimately Stuff generates a set of mock cata-
logs (one per filter) to be read by the image simulation software,
containing source position, apparent magnitude, B/T , bulge and
disk axis ratios and position angles, and redshift. We note that
for consistency, we kept most of the default values applied by
Stuff to scaling parameters, although many of them come from
slightly outdated observational constraints dating back to the
mid-2000’s (and even earlier). This of course does not affect the
conclusions of this paper.

2.2. Image generation

Stuff catalogs are turned into images using the SkyMaker
package (Bertin 2009). Briefly, SkyMaker renders simplified
images of galaxy models as the sum of a Sérsic (1963) “bulge”
and an exponential “disk” on a high resolution pixel grid. The
models are convolved by a realistic PSF model generated inter-
nally, or derived from actual observations using the PSFEx tool
(Bertin 2011a). Each convolved galaxy image – or point source
for stars – is subsampled at the final image resolution using a
Lanczos-3 kernel (Wolberg & George 1990) and placed on the
pixel grid at its exact catalog coordinates. The next step involves

large scale features: convolution by a PSF aureole (e.g., Racine
1996), addition of the sky background, and simulation of satu-
ration features (bleed trails). Finally, photon (Poisson) and read-
out (Gaussian) noise are added according to the characteristics
of the instrument being simulated, and the data are converted to
ADUs (analog-to-digital units). An example of a simulated deep
survey field is shown Fig. 2.

3. Compression of data: from source extraction
to binning

3.1. Source extraction

The SExtractor package (Bertin & Arnouts 1996) produces
photometric catalogs from astronomical images. Briefly, sources
are detected in four main steps: first, a smooth model of the im-
age background is computed and subtracted. Second, a convolu-
tion mask, acting as matched filter, is applied to the background-
subtracted image for improving the detection of faint sources.
Third, a segmentation algorithm identifies connected regions of
pixels with a surface brightness in the filtered image higher than
the detection threshold. Finally, the same segmentation process
is repeated at increasing threshold levels to separate partially
blended sources that may share light at the lowest level.

Once a source has been detected, SExtractor performs a
series of measurements according to a user-defined parameter
list. This includes various position, shape, and flux estimates. For
this work we rely on FLUX_AUTO photometry. FLUX_AUTO
is based on Kron’s algorithm (Kron 1980) and gives reasonably
robust photometric estimates for all types of galaxies. For object
sizes we choose the half-light radius estimation provided by the
FLUX_RADIUS parameter, which is the radius of the aperture
that encloses half of the FLUX_AUTO source flux. We note that
this size estimate includes the convolution of the galaxy light
profile by the PSF. In order to retrieve properties such as color,
SExtractor is run in the so-called double image mode, where
detection is carried out in one image and measurements in an-
other. By repeating source extraction with the same “detection
image”, but with “measurement images” in different filters, we
ensure that the photometry is performed in the exact same object
footprints in all filters.

SExtractor flags all issues occurring during the detection
and measurements processes. In this work, we consider only de-
tections with a SExtractor FLAG parameter less than four,
which excludes sources that are saturated or truncated by the
frame boundaries.

3.2. Parallelization

By construction, our sampling procedure based on MCMC (cf.
Sect. 5) cannot be parallelized, because the knowledge of the
n − 1th iteration is required to compute the nth iteration. We
can, however, parallelize the process of source extraction and,
most importantly, image simulation. In fact, we find in perfor-
mance tests that the pipeline runtime is largely dominated by the
image generation process (cf. Fig. 4), and that the image gener-
ation time scales linearly with the area of the simulated image.
Simulating a single image per band containing all the sources
for every iteration would make this problem computationally
unfeasible in terms of execution time. In order to limit the run-
time of an iteration, the image making step is therefore split into
Nsub × Nf parallel small square patches, as illustrated in Fig. 3,
where Nf is the number of filters fixed by the observed data and
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Fig. 3. Illustration of the parallelization process of our pipeline, described in detail in Sect. 3.2. Stuff generates a catalog, that is, a set of
files containing the properties of simulated galaxies, such as inclination, bulge-to-disk ratio, apparent size, and luminosity. Each file lists the
same galaxies in a different passband. The parallelization process is performed on two levels: first, the Stuff catalogs are split into sub-catalogs
according to the positions of the sources on the image. These sub-catalogs are sent to the nodes of the computer cluster in all filters at the same time
using the HTCondor framework. Each sub-catalog is then used to generate a multiband image corresponding to a fraction of the total field. This step
is multiprocessed in order to generate the patches in every band simultaneously. SExtractor is then launched on every patch synchronously, also
using multiprocessing. The source detection is done in one pre-defined band, and the photometry is done in every band. Finally, the SExtractor
catalogs generated from all the patches are merged into one large catalog containing the photometric and size parameters of the extracted sources
from the entire field.

Nsub the user-defined number of patches per band. Both quanti-
ties must be chosen so that their product optimizes the resources
used by the computing cluster.

We start with Nf input catalogs generated from the model,
each containing a list of sources’ positions in a full-sized square
field of size Lf , as well as their photometric and size properties.
The sources are then filtered according to their spatial coordi-
nates and dispatched to their corresponding patch. Each patch
has a size Lf/

√
Nsub, where Nsub is a square number. In prac-

tice, the sources are extracted from a box 150 pixels wider than
the patch size in order to include the objects outside the frame
that partially affect the simulated image. All the sources of po-
sition (x, y) are within a patch of coordinate (i, j) ∈ [0,

√
Nsub −

1] × [0,
√

Nsub − 1] if x ∈ [i Lf√
Nsub
− 150, (i + 1) Lf√

Nsub
+ 150], and

y ∈ [ j Lf√
Nsub
− 150, ( j + 1) Lf√

Nsub
+ 150].

As a result, all the sources are scattered through Nsub cata-
log files per band. We then use the HTCondor distributed jobs
scheduler on our computing cluster to generate and analyze all
the patches at the same time. The flexibility of HTCondor offers

many advantages to a pipeline that requires distributed comput-
ing over long periods of time. Thanks to its dynamic framework,
jobs can be check pointed and resumed after being migrated if a
node of the cluster becomes unavailable, and the scheduler effi-
ciently provides an efficient match-making between the required
and the available resources. This framework also has its draw-
backs, in the form of inherent and uncontrollable latencies when
jobs input files are sent to the various nodes.

In our case, each job corresponds to a single patch, and the
Nsub × Nf resulting catalogs serve as input files for the jobs. We
found that HTCondor latencies represent between 7% and 50%
of the run time of each iteration, as illustrated in Fig. 4 in the
context of the application described below (cf. Sect. 7).

For each job, the image generation and source extraction pro-
cedures are multiprocessed: SkyMaker is first launched simul-
taneously in every band on the Lf /

√
Nsub-sized patch and, when

all the images are available, SExtractor is launched in double
image mode. Condor then waits until all jobs are completed. Fi-
nally, the catalog files generated from all the patches are merged
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Fig. 4. Benchmarking of a full iteration of our pipeline, obtained with 50 realizations of the same iteration. An iteration starts with the Stuff
catalog generation (here we consider a case where ∼55 000 sources spread into two populations of galaxies are produced), and ends with the
posterior density computation. The runtime of each subroutine called is analyzed in terms of the fraction of the total runtime of the iteration. In
this scheme, the image simulation step clearly dominates the runtime, followed by the source extraction step and the HTCondor latencies. Source
generation, pre-processing, binning and posterior density calculation (labeled lnP_CALC), however, account for a negligible fraction of the total
runtime.

into one, so that in fine, a single catalog file per band contains all
the extracted sources.

3.3. Reduction of the dynamic ranges

Observables such as fluxes may have a large dynamic range that
goes up to the saturation level of the chosen survey. This can
be problematic for the binning process of our pipeline, in the
sense that it will create many sparsely populated bins. We must
therefore reduce the dynamic range of the photometric properties
of the sources. We cannot simply use the log of the flux arrays,
because the noise properties of background-subtracted images
can provide faint objects with negative fluxes. We therefore use
the following transform g(X), which has already been applied
to model-fitting and machine learning applications (e.g., Bertin
2011b):

Xr = g(X) =

 κcσ ln
(
1 + X

κcσ

)
if X ≥ 0,

−κcσ ln
(
1 − X

κcσ

)
otherwise,

(16)

where σ is the baseline standard deviation of X (i.e., the aver-
age lowest flux error), and κc a user-defined factor which can be
chosen in the range from 1 to 100, typically. In all the test cases
that we describe in Sect. 7, we set κc = 10. In practice we ap-
ply this compression to each dimension of the observable space,
with a different value of σ for each observable. We separate the
σ values into two categories for each kind of observable: σf for
flux-related observables and σr for size-related ones. These val-
ues are affected by the galaxy populations in the observed field
as well as the photometric properties of the field itself, such as
the bands used and the noise properties. For fluxes and colors, a
root mean square error estimate of the flux measurement is given
by SExtractor: FLUXERR_AUTO. We set σf to the median
value of the distribution of FLUXERR_AUTO values for the
sources extracted from input data, and this operation is repeated
on each filter. However, SExtractor provides no such error es-
timate for FLUX_RADIUS. For this kind of observable we rely
on the distribution of FLUX_RADIUS of the extracted sources
with respect to the corresponding FLUX_AUTO. For each pass-
band, the value of σr is set to the approximate FLUX_RADIUS
of the extracted sources’ distribution when FLUX_AUTO tends
to 0. The exact values actually do not matter, because the same
compression is applied on the observed and simulated data.

3.4. Decorrelation of the observables: whitening
transformation

The choice of the nature and number of observables is a com-
promise between computational cost and informational content.
In fact, memory limitations intrinsic to the computational cluster
when binning observed and synthetic data (cf. Sect. 3.5) prevent
us from using an arbitrary number of observables in the pipeline.
Observables such as fluxes or magnitudes in different passbands
also tend to be correlated with one another, as they originate
from the same spectrum of a given galaxy from a given popu-
lation. These correlations can be high if the passbands are too
narrow, too close to each other, and not covering a large enough
wavelength baseline. One must thoughtfully choose the appro-
priate set of filters a priori in order for the resulting set of ob-
servables to be able to disentangle the luminous properties of
the different galaxy populations.

Strong correlations between input vector components can
also make binning very inefficient, therefore an important pre-
processing step is to decorrelate them. In that regard, we ap-
ply a linear transformation called principal component analysis
whitening, or sphering (Friedman 1987; Hyvärinen et al. 2009;
Shlens 2014; Kessy et al. 2017) to our reduced matrix of observ-
ables Xr of size p × Ns, where p is the number of observables
and Ns is the number of sources. Principal component analysis
(PCA) is an algorithm commonly used in the context of dimen-
sionality reduction. Its goal is to find a set of orthogonal axes in a
dataset called principal components that encapsulate most of the
variance of the data. This can be performed via a singular values
decomposition (SVD) of the covariance matrix of the data:

〈
XrXT

r

〉
= UΛVT, (17)

where U and V are orthogonal matrices and Λ the diagonal ma-
trix containing the non-negative singular values of the covari-
ance matrix, sorted by descending order.

PCA whitening is the combination of two operations: rota-
tion and scaling. First the dataset (previously centered around
zero by subtracting the mean in each dimension) is projected
along the principal components, which removes linear correla-
tions, and then each dimension is scaled so that its variance
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equals to one. The whitening transform can therefore be sum-
marized by:

Xw = Λ−
1
2 VT(Xr − µ), (18)

where Xw is the whitened version of the observables matrix Xr
and µ is the average matrix. The PCA whitening transformation
results in a set of new variables that are uncorrelated and have
unit variance (〈XwXT

w〉 = I). During the chain iterations, the ob-
served and simulated data are centered, rotated, and scaled in
the same way to ensure that both distributions can be well super-
posed and compared (cf. Sect. 4).

In practice, the simulated data is whitened using the Λ, VT,
and µ of the observed data. The number of principal components
to keep is left to the choice of the user. Retaining only the compo-
nents with the highest variance and therefore reducing the com-
putational cost of the pipeline may be tempting. Nevertheless,
subtle but important features can arise from low variance com-
ponents, and deleting them comes at a price. In our application
(cf. Sect. 7), we choose not to reduce the dimensionality of the
problem.

3.5. Binning in the observational space

It remains to quantify the similarity between the two multivari-
ate datasets, one containing preprocessed observables from the
observations and the other from a simulation. Following the idea
of Robin et al. (2014) and Rybizki & Just (2015), who grouped
their data representing stellar photometry into bins of magnitude
and color, we choose to bin our datasets, considering the relative
simplicity and advantageous computational cost of this method.
However, binning comes with some inevitable drawbacks: the
number of bins increases exponentially with the number of di-
mensions. For a fixed-size dataset, multivariate histograms are
also sparser than their univariate counterparts and display more
complex shapes. Finally the choice of the binning scheme can
significantly influence the information content of the dataset, and
that choice is not trivial in high-dimensional spaces (Cadez et al.
2002). This class of problems is known as “the curse of dimen-
sionality” (Bellman 1972).

Several binning schemes have been developed, like the
Freedman & Diaconis (1981) rule extended to several dimen-
sions, Knuth’s rule (Knuth 2006), which uses Bayesian model
selection to find the optimal number of bins, Hogg’s rule (Hogg
2008), or Bayesian blocks (Scargle et al. 2013). But all these
rules face the curse of dimensionality as the number of observ-
ables becomes high. Alternatives to binning for density estima-
tion can also be used and are discussed in Sect. 9.

In our specific case, the dimensionality of the observable
space is determined by the number p of photometric and size
parameters in every passband extracted from the survey images.
We use ten bins of constant width per dimension throughout the
article. More bins per dimension would lead to memory issues
caused by the limitations of our computing cluster in the applica-
tions that we propose in Sect. 7.6. The bin width for dimension
k ∈ [1, p] in this scheme is therefore given by:

Wk =
max(Xw,k) −min(Xw,k)

10
, (19)

where Xw,k is the pre-processed observables matrix for the ob-
served data.

In this pipeline, the binning pattern is only computed once
and for the observed data only. The same binning is then directly
applied to the simulated data to ensure better execution speed

and comparability between histograms. Because the number of
counts per bin is directly affected by the model parameters that
rule the number density of galaxies, such as φ∗ in our applica-
tion (see Sect. 7), the resulting p-dimensional histograms are not
normalized to prevent a loss of information in the minimization
of distance between the synthetic and observed data.

4. Comparison between simulated and observed
data

Estimating the discrepancy between the observed and simulated
binned datasets in high-dimensional space is highly non-trivial,
as the choice of a good distance metric is problem dependent.
The observables’ distributions may be multimodal and skewed,
and many metrics rely on the assumption of normality. Others,
such as the Kullback-Leibler divergence (Kullback & Leibler
1951) or the Jensen-Shannon distance (Lin 1991), cannot be
used without estimating an analytical underlying PDF, which
can be very computationally expensive in a high-dimensional
observable space.

Here is a non-exhaustive list of non-parametric (i.e.,
distribution-free) distance metrics found in the literature that can
be used on multivariate data in the ABC framework. A more
complete review is available in Pardo & Menéndez (2006) and
Palombo (2011); however, no study to quantify their relative
power has been performed so far. These metrics include:

– The χ2 test (Chardy et al. 1976) is a simple and widely used
way of determining whether observed frequencies are signif-
icantly different from expected frequencies. The main draw-
back of this approach is that χ2 test results are dependent
on the binning choice (Aslan & Zech 2002). For example,
Kurinsky & Sajina (2014) use the χ2 distance to compare
color-color histograms.

– The Kolmogorov-Smirnov (KS) test (Chakravarti et al.
1967) estimates the maximum absolute difference between
the empirical distribution functions (EDF) of two samples.
A generalization of this test for multivariate data has been
proposed (Justel et al. 1997). However, as there is no unique
way of ordering data points to compute a distance between
two EDF, it is not as reliable as the one-dimensional version
without the help of resampling methods such as bootstraping
(Babu & Feigelson 2006).

– The Anderson-Darling (AD) test (Stephens 1974) is a mod-
ification of the KS test. This method uses a weight function
that gives more weight to the tails of the distributions. It is
therefore considered more sensitive than the KS test, but it
also suffers from the same problems in the multivariate case.

– The Mahalanobis distance (Mahalanobis 1936) is similar to
the Euclidean norm but has the advantage of taking into
account the correlation structure of multivariate data. The
Mahalanobis statistics, coupled with an univariate KS test,
are used by Akeret et al. (2015) to compare photometric pa-
rameters for cosmological purposes. However, this distance
only works for unimodal data distributions.

– The Bhattacharyya distance (Bhattacharyya 1946) is related
to the Bhattacharyya coefficient, which measures the quan-
tity of overlap between the two samples. It is considered
more reliable than the Mahalanobis distance in the sense that
its use is not limited to cases where the standard deviations
of the distributions are identical.

– The Earth Mover’s distance (EMD; Rubner et al. 1998) is
based on a solution to the Transportation problem. The dis-
tributions are represented by a user-defined set of clusters
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called signatures, where each cluster is described by its mean
and by the fraction of the distribution encapsulated by it. The
EMD is defined as the minimum cost of turning one signa-
ture into the other, the cost being linked to the distance be-
tween the two. A computationally fast approximate version
of this distance using the Hilbert space-filling curve can be
found in Bernton et al. (2017).

In the present article, we place ourselves within the pBIL frame-
work to perform the inference process. In this context, the bin-
ning structure constructed in Sect. 3.5 and the assumption of
a Poisson behavior of the number counts in each bin represent
the auxiliary model that describes the data. The “auxiliary likeli-
hood” derived from this structure is inspired from the maximum
likelihood scheme of Cash (1979), a likelihood that has been
used in previous studies like Robin et al. (2014), Bienayme et al.
(1987), or Adye (1998):

ln L =

b∑
i=1

(oi ln(si) − si) (20)

where b is the total number of bins, si is the number count in bin i
for the simulated data, and oi is the number count in bin i for
the observed data. The underlying assumptions for this choice of
auxiliary likelihood can be found in Appendix A.

In that scheme, as the logarithm of si is used, empty bins
cause a problem. In order to avoid singularities, a constant small
value (that we set to 1) is added to every bin up to the edges of
the observables space. This process is done in both modeled and
observed data so that it does not bias our results.

5. Sampling procedure: Adaptive Proposal
algorithm

Initialize parameters θ(0) from prior distribution;
Initialize covariance matrix and temperature;
for t = 0 to T do

Every S iterations:
Update covariance matrix and temperature;

Propose new state θ∗ from proposal distribution;
while θ∗ is outside the prior bounds do

Propose another state
end
Compute ln P(θ∗|D) from proposed state (Eq. (24))
if ln P(θ∗|D) ≥ ln P(θ(t)|D) then

Accept the jump
else

Compute acceptance probability a;
Draw uniformly distributed random number RN in
the interval [0, 1];
if RN < a then

Accept the jump
else

Refuse the jump
end

end
end

Algorithm 2: Proposed sampling algorithm based on the
AP algorithm (Haario et al. 1999).

MCMC methods are a set of iterative processes which perform a
random walk in the parameter space to approximate the posterior

distribution with the help of Markov chains. A Markov chain is
a sequence of random variables {θ(0), θ(1), θ(2), ..., } in the param-
eter space (called states) that verifies the Markov property: the
conditional distribution of θ(t+1) given {θ(0), ..., θ(t)} (called transi-
tion probability or kernel) only depends on θ(t). In other words,
the probability distribution of the next state only depends on the
current state.

After a period (whose length depends on the starting point
and the random path taken by the chain) where the chain travels
from low to high probability regions of the parameter space, the
MCMC samples ultimately converge to a stationary distribution
in such a way that the density of samples is proportional to the
posterior PDF, also called target distribution. The portion of the
chain which is not representative of the target distribution (i.e.,
the first iterations where the chain has not yet reached stationar-
ity) is called burn-in, and is usually discarded from the analysis
a posteriori. Well optimized MCMC methods provide an effi-
cient tool to avoid wasting a lot of computing time sampling re-
gions of very low probability. There is a great variety of MCMC
algorithms, and the choice of a specific algorithm is problem-
dependent. The reader is referred to Roberts & Rosenthal (2009)
for a complete review of these methods.

To estimate the posterior distribution P(θ|D) defined in
Eq. (1) in a reasonable amount of time, one must explore
the parameter space in a fast and efficient way. For our pur-
poses, we designed a custom sampling procedure, described
in Algorithm 2, based on the MCMC Adaptive Proposal (AP)
algorithm (Haario et al. 1999), which is itself built upon the
Metropolis-Hastings algorithm (Metropolis et al. 1953; Hastings
1970). The Metropolis-Hastings algorithm is one of the most
general MCMC methods. In this algorithm, given a state θ(t)
sampled from the target distribution P(θ), a proposed state θ∗ is
generated using a user-defined transition kernel Q(θ∗|θ(t)), which
represents the probability of moving from θ(t) to θ∗. The propo-
sition is accepted with probability:

a = min
{

P(θ∗)
P(θ(t))

Q(θ(t)|θ
∗)

Q(θ∗|θ(t))
, 1

}
. (21)

If the proposed sample is accepted, then θ(t+1) = θ∗ and the chain
jumps to the new state. Otherwise, θ(t+1) = θ(t).

The choice of the transition kernel Q(θ∗|θ(t)) is crucial to
guarantee the rapid convergence of the chain. We opt for the pop-
ular choice of a multivariate Normal distribution N(0,Σ) cen-
tered on the current state and with a covariance matrix Σ which
determines the size and orientation of the jumps, so that:

θ∗ = θ(t) + ζ(t+1), (22)

where ζ(t+1) follows N(0,Σ).
A good way to assess convergence speed is to monitor the

acceptance rate, that is, the fraction of accepted samples over
previous iterations. The acceptance rate is mainly influenced by
the covariance matrix of the transition kernel Σ. If the jump sizes
are too high, the acceptance rate is too low, and the chain stays
still for a large number of iterations. If the jump sizes are too
small, the acceptance rate is very high but the chain needs a high
number of iterations to move from one region of the parameter
space to another. These situations are illustrated in Fig. 7. The
desired acceptance rate depends on the target distribution, and
there is no universal criterion for its optimization, but Roberts
et al. (1997) proved that for any d-dimensional target distribu-
tions (with d ≥ 5) with independent and identically distributed
(i.i.d.) components, optimal performance of the Random Walk
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Metropolis algorithm is attained for an asymptotic acceptance
rate of 0.234.

As the modeling process is very time-consuming and the di-
mensionality of the problem may be high, we cannot afford to
rely on trial and error to find the roughly optimal covariance ma-
trix. We therefore opt for an adaptive MCMC scheme to limit
user intervention as much as possible and achieve fast conver-
gence. In the AP algorithm proposed by Haario et al. (1999), the
covariance matrix of the Gaussian kernel Σ is tuned on-the-fly
every fixed number of iterations using previously sampled states
of the chain, and it therefore “learns” the target distribution co-
variance matrix. In our custom version of the algorithm, every
S iterations the empirical covariance matrix from every different
accepted state of the Nlast iterations is computed. We then add
a fixed diagonal matrix with elements very small relative to the
empirical covariance matrix elements, set to 10−6, to prevent it
from becoming singular (Haario et al. 2001) while not impacting
the results much (but to which extent remains presently an open
question). The choice of S , also called the update frequency, is
left to the user and weakly influences the performance of the al-
gorithm, so we set it arbitrarily to 500. As for Nlast, we set it to 50
in order to minimize the chance of the covariance matrix being
strongly influenced by a potential rapid evolution of the last few
states.

In order to be able to converge in any case, a Markov chain
must be ergodic. A stochastic process is said to be ergodic if
its statistical properties can be retrieved by a finite random sam-
ple of the process. It is well known that adaptation can perturb
ergodicity (see, e.g., Andrieu & Moulines 2006). In order to en-
sure that an adaptive sampling algorithm has the right ergodic
properties, and hence converges to the right distribution, it must
verify the Vanishing Adaption condition: the level of adaption
must asymptotically depend less and less on previous states of
the chain. Haario et al. (1999) showed that the AP algorithm
is not ergodic in most cases. To tackle this issue, Haario et al.
(2001) later released a revised version of their algorithm: the
Adaptive Metropolis (AM) algorithm. In the AM algorithm, in-
stead of using a fixed number of previous states, the proposal
distribution covariance matrix is computed using all the previous
states, which solves the ergodicity problem of the AP algorithm.
However, we show in Sect. 7 that our custom implementation of
the AP algorithm still yields robust results to our problem.

5.1. Prior

In any Bayesian inference problem, the choice of the prior dis-
tribution P(θ) is of crucial importance, because different prior
choices can result in different posterior distributions from the
same data. Without any information on what parameter values
most probably explain our data, our choice by default is that of
an uninformative prior, that is, a multivariate continuous uniform
distribution whose boundaries are chosen according to the limits
currently given for each parameter in the literature. The uniform
prior is defined as:

P(θ) =


Np∏
i=1

1
di−ci

if di ≤ θi ≤ ci ∀i ∈ [1,Np]

0 else,
(23)

where ci and di are the lower and upper limit of the PDF for pa-
rameter i and θ = (θ1, θ2, ..., θNp ) is the parameter values vector.

If more precise information is available on a given subset of
parameters, a convolution with a more informative PDF (e.g.,

Normal, Beta, ...) can be performed, but in any case a finite in-
terval is needed in order to provide the source generation soft-
ware with realistic input parameters. In fact, an infinite interval
can result in situations in which no galaxies are generated by
the model, or conversely when too many galaxies are generated,
which would dramatically increase the computing time.

5.2. Acceptance probability
In practice, one uses the ratio of the posterior density at the
proposed and current states to measure the acceptance proba-
bility. More specifically, we use the difference between the log
of these quantities in order to avoid floating-point numbers pre-
cision problems when dealing with very small probabilities. In
log probability space, Bayes’ theorem (cf. Eq. (1)) becomes:

ln P(θ|D) ∝ ln P(θ) + ln P(D|θ), (24)

where D is the input data, P(θ|D) is the posterior, P(θ) is the
prior defined in Sect. 5.1, and P(D|θ) is the auxiliary likelihood
defined in Eq. (20).

The target distribution can have a complex shape and if no
particular precaution is taken, our sampling algorithm is not im-
mune to getting stuck in a local maximum of likelihood. To
tackle this issue, Kirkpatrick (1983) exploited the analogy be-
tween the way a heated metal cools and the search for a global
optimum of a function. In the so-called simulated annealing al-
gorithm, the acceptance probability a depends on a “tempera-
ture” parameter τ, initialized at high value and slowly decreasing
over the iterations. In this scheme, the higher the temperature,
the higher the algorithm is prone to accept large moves and to
get away from a nearby local maximum:

a =

exp− ln P(θ(t) |D)−ln P(θ∗ |D)
τ

if ln P(θ∗|D) − ln P(θ(t)|D) < 0
1 if ln P(θ∗|D) − ln P(θ(t)|D) ≥ 0

(25)

where ln P(θ(t)|D) and ln P(θ∗|D) are respectively the log of the
posterior density at the current (i.e., at iteration t) and the pro-
posed state. In other words, if a proposition is considered more
probable, it is accepted. Otherwise, it is accepted with proba-
bility a (defined in Eq. (25)). To perform the latter operation in
practice, a uniformly distributed random number RN is drawn
in the interval [0, 1]. If RN < a, the jump is accepted. As ex-
pected, for τ = 1, the acceptance probability is the same as that
of the Metropolis-Hastings algorithm in Eq. (21) for the par-
ticular case of a symmetric proposal distribution, that is, when
Q(θ(t)|θ

∗) = Q(θ∗|θ(t)).
Because of the intrinsic stochasticity of our model, many re-

alizations of the model at the same state θ(t) can lead to many
ln P(θ(t)|D) values. Therefore, artificial local maxima of the tar-
get distribution appear, because each iteration relies on a single
realization of the model. The simulated annealing algorithm was
designed to find the global maximum of the target distribution
without knowing the posteriori distribution, and this requires us
to lower τ in a user-defined scheme. But our goal is distinct as we
need to freely explore the parameter space landscape in order to
estimate the full posterior distribution. The main constraint for τ
is to be comparable to the posterior density difference resulting
from the jump. Here we define it as the root mean square (rms)
of the current state, as suggested by Mehrotra et al. (1997). In
that scheme, a high noise level or a small difference between the
proposed and the current state leads to a higher probability of
jumping to this state.

The temperature is computed every S iterations by running
an empirically-defined number of realizations NR of the model
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at the current state θ(t), storing every ln P(θ(t)|D) value returned
in a vector, and computing the standard deviation of the resulting
distribution. In the application below, we find that 20 realizations
are sufficient to give a reasonable estimate of the rms (cf. Fig. 8)
and that the temperature quickly reaches a stationary distribution
at a relatively low level τ ' 30, after the first few 103 iterations
(cf. Fig. 9).

5.3. Initialization of the chain

The initial state θ(0) is drawn randomly from the prior distribu-
tion (see Sect. 5.1). The initial position will only affect the speed
of convergence, because the final distribution shall not depend
on the initial position, if the chain converges. The initial temper-
ature is then computed from this state. As for the proposal distri-
bution, it is initialized so that no direction in the parameter space
is preferred by the sampling algorithm at first. The initial covari-
ance matrix is therefore diagonal, whose non-zero elements are
set to:

Cii =
ui − li

E
∀i ∈ [1,Np], (26)

where ui and li are respectively the upper and lower bounds of the
prior distribution for parameter i, Np the number of parameters,
and E a value set empirically to 200 in order to ensure reason-
able acceptance rates at the beginning of the chain. According to
Haario et al. (1999), the adaptive nature of the algorithm implies
that the choice of E should not influence the output of the chain.

6. Convergence diagnostics
The goal of an MCMC chain is to reach a stationary distribu-
tion that is supposed to be representative of the target distri-
bution. Unfortunately there is no theoretical criterion for con-
vergence: in other words it is impossible from a finite MCMC
chain to assess convergence with certainty. Many convergence
diagnostics have been developed (the reader can find an exten-
sive review of those and a comparison of their relative perfor-
mances in, e.g., Cowles & Carlin 1996), but these diagnostics
can only tell if a chain has not converged. So in order to have
confidence in the convergence of the chains, we must perform
multiple diagnostics.

The first check is carried out by visual inspection of the trace
plot for each parameter. Trace plots are used to diagnose poor
mixing, that is, when the chain is highly autocorrelated, or slow
sampling caused by too small a step size, which suggests that
the majority of the MCMC output is not representative of the
target distribution (see Fig. 7). We also use trace plots to esti-
mate the length of the burn-in phase. The latter is determined by
eye, by a rough estimate of the minimum number of iterations
D necessary for all the parameters to reach a seemingly station-
ary distribution. We then discard the D first iterations, where D
depends on the chain.

Finally, one of the most popular convergence diagnostics is a
test proposed by Gelman & Rubin (1992). Given m chains {θ j

(t)}

( j = 1, ...,m and m ≥ 3, and typically ∼10), each of length n after
discarding burn-in (t = 1, ..., n) and with different starting points,
the test compares the variance between the mean values of the m
chains B and the mean of the m within-chain variances W:

B =
n

m − 1

m∑
j=1

(θ̄ j
. − θ̄...)

2, (27)

W =
1
m

m∑
j=1

 1
n − 1

n∑
i=1

(θ j
(i) − θ̄

j
. )

2

 , (28)

where θ̄ j
. = 1

n
∑n

t=1 θ
j
(t) is the mean value of chain j, and θ̄... =

1
m

∑m
j=1 θ̄

j
. is the average value over the m chains.

An overestimate of the true marginal posterior variance is
given by the unbiased estimator

V̂ =
n − 1

n
W +

1 + m
nm

B. (29)

Finally convergence is estimated using the potential scale reduc-
tion factor (PSRF) R̂:

R̂ =
V̂
W
· (30)

Here we use the Gelman Rubin diagnostic implemented in
this form in the PyMC package (Patil et al. 2010) to per-
form our convergence tests, and we consider that convergence
has been reached if

√
R̂ < 1.1 for all model parameters

(Brooks & Gelman 1998); otherwise, more iterations are per-
formed until the criterion is met.

7. Application to a toy model

As a proof-of-concept of the method, we apply our pipeline to a
selection of idealized cases, where the “observed” data is a syn-
thetic image containing one or two populations of galaxies gen-
erated by a set of known input parameters of the Stuff model.
Our goal is to infer the values of the input parameters in this
framework.

7.1. Simulated survey characteristics

As data image, we choose to reproduce a full-sized stack of
the CFHTLS Deep field (e.g., Cuillandre & Bertin 2006). The
CFHTLS Wide and Deep fields offer carefully calibrated stacks
with excellent image quality. Covering 155 deg2 on the sky in
total, the Wide field allows for a detailed study of the large
scale distribution of galaxies. As for the Deep field, which cov-
ers 4 deg2 in total, it beneficits from long time exposures (33
to 132 h), which ensure reliable statistical samples of different
populations of bright galaxies up to z ∼ 1. Each stack of the
CFHTLS Deep field is a 19 354 × 19 354 pixel image cover-
ing 1 deg2 on the sky. We simulate one stack of the Deep field
in three bands: Megacam u and i from the CFHTLS, and the
WIRcam Ks infrared channel from the WIRcam Deep Survey
(WIRDS) that covers part of the CFHTLS Deep fields. In ac-
cordance with CFHTLS product conventions, the image expo-
sure time is normalized to one second and the AB magnitude
zero-point is 30. The overall characteristics of the simulated im-
ages are summarized in Table 1.

The SkyMaker PSF model for the CFHTLS image is gen-
erated within the software. The aureole simulation step is deac-
tivated to speed up the image generation process. For the same
reason, we exclude from the Stuff list all galaxies with appar-
ent magnitudes in the reference band brighter than 19 or fainter
than 30, in order to avoid simulating both very large and very
numerous galaxies. There is no stellar contamination, as Stuff
does not yet offer the possibility to simulate realistic star fields.

7.2. Source extraction configuration

SExtractor is configured according to the prescription of the
T0007 CFHTLS release documentation (Hudelot et al. 2012).
We use it in double image mode, with the i-band image as the
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Table 1. Imaging characteristics of the CFHTLS+WIRDS surveys used for SkyMaker.

Passband u i Ks

Image size [pixels] 19 354 × 19 354 19 354 × 19 354 19 354 × 19 354
Effective gain [e−/ADU] 74 590 6807 2134
Well capacity [e−] ∞ ∞ ∞

Saturation level [ADU] 6465 4230 110 884
Effective read-out noise [e−] 4.2 4.2 30
Total exposure time [s] 1 1 1
Zero-point magnitude [“ADU/s”] 30 30 30
Effective wavelength [µm] 0.381 0.769 2.146
Sky level [AB mag/arcsec2] 22.2 20.0 15.4
Seeing FWHM [arcsec] 0.87 0.76 0.73

Table 2. Uniform prior boundaries for the parameters of the luminosity and size functions, and their evolution with redshift.

Parameter φ∗ M∗ α φe Me Mknee rknee γb

Lower bound 10−7 –22 –2.5 –3 –2.5 –21 0 –2
Upper bound 10−2 –17 0 2 0 –19 3 0

Notes. All the parameters above are given for H0 = 100 km s−1 Mpc−3.

detection image, and the background is estimated and subtracted
automatically with a 256 × 256-pixels background mesh size. In
order to optimize the detectability of faint extended sources, de-
tection is performed on the images convolved with a 7× 7 pixels
Gaussian mask having a full width at half maximum (FWHM) of
three pixels, that approximates the size of the PSF and acts as a
matched filter. Finally, the detection threshold is set to 1.2 times
the (unfiltered) rms background noise above the local sky level.

In order for the results concerning faint sources near the de-
tection limit not to depend too closely on the details of noise
statistics, all negative fluxes and radii are clipped to 0 after
extraction.

7.3. Pipeline configuration

We adopt non-informative, uniform priors for the free param-
eters of all the considered models, with boundaries defined in
Table 2. The boundaries are chosen to prevent the pipeline from
exploring non physical domains, such as a very steep LF faint
end, which leads to an unreasonably high number of generated
galaxies and dramatically increases the computing time. We se-
lect the least constraining prior possible, which corresponds to a
large interval around generally accepted values, such as the val-
ues reviewed in de Lapparent et al. (2003) for example.

To perform the dynamic range compression as defined in
Sect. 3.3, we need an estimate of the noise level in the conditions
of a CFHTLS Deep field. To that end, we use the population of
∼104 pure bulge elliptical galaxies described in Sect. 7.6 and ap-
ply the recipe described in Sect. 3.3. The resulting parameters
for the dynamic range reduction function in the uiKs filters are
summarized in Table 3. For the various cases considered in this
article, we use for all galaxy populations the σFLUX_AUTO and
σFLUX_RADIUS values measured for the elliptical galaxies.

We consider two cases in the following sections: the first
contains two types of galaxies, a mix between ellipticals and
lenticulars, and late-type spirals, which undergo both luminos-
ity and size evolution. But we limit the inference to the LF shape
and evolution parameters for both populations. The second case
focuses on a single population of pure bulge ellipticals, but this

Table 3. Parameters of the dynamic range reduction function used in
Eq. (16).

Filter u i Ks

σFLUX_AUTO 3.4 3.6 54.0
σFLUX_RADIUS 3.5 2.7 2.6

κc 10 10 10

time the inference is performed on both the LF and the distribu-
tion of effective radii (both including the evolution parameters).

7.4. Multi-type configuration: luminosity evolution

Astronomical survey images contain multiple galaxy popula-
tions. We need to emulate this situation in order to test the be-
havior of our pipeline in realistic conditions. To do so we use as
input data a simulated CFHTLS Deep image in uiKs containing
two types of galaxies: a population of early-type galaxies (an av-
erage between E ans S0) of morphological type T = −5 and a
population of late-type spirals (Sp) of morphological type T = 6.
We rely on published results to define these populations. Using
data from SDSS, the 2dF Galaxy Redshift Survey, COMBO-17,
and DEEP2, Faber et al. (2007) split their distribution of galax-
ies into two populations by color, using the rest-frame MB ver-
sus U − B color−magnitude diagram: a blue population and a
red population. We use their derived evolving LF parameters to
build an E/S0 and Sp populations. The detailed conversion pro-
cess from the LF parameters of Faber et al. (2007) to the values
used in Stuff (which include a magnitude system conversion, a
band transformation, and a cosmological correction) is provided
in Appendix B. This provides us with values for M∗ (LF charac-
teristic magnitude) and the evolution parameters Me and φe for
both populations.

The B/T ratios in the g adopted reference band are de-
termined using the distribution of B/T in g-band as a func-
tion of morphological type from EFIGI (Extraction of Ideal-
ized Forms of Galaxies in Image processing) data (Baillard et al.
2011; de Lapparent, priv. comm.). To limit run time, the φ∗
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(a) Initial (b) Reduced

(c) Whitened

Fig. 5. Distribution of observables before and after each step of pre-processing from the mock input data with 2 populations of galaxies (Ellipti-
cals+Spirals) described in Sect. 7.4. The dark red, orange and yellow areas in the contour plots are the regions that enclose 99%, 95% and 68%
of the points respectively. Top left panel: scatter plot of the FLUX_AUTO of extracted sources (in ADUs) in filters uiKs and their covariances.
Top right panel: same plot, but with the dynamic range of the FLUX_AUTO distributions reduced via Eq. (16). Bottom panel: same plot, after
whitening of the reduced distribution of observables. The latter distribution is uncorrelated, centered on the mean of the distribution and rescaled,
allowing for a much more efficient binning process than on raw fluxes, and a more practical comparison with the simulated observables.

values for each population are set to have ∼4×104 galaxies in to-
tal generated quickly by Stuff in the field area. In this scheme,
we have ∼104 E/S0, and ∼3 × 104 Sp, which corresponds to a
φ∗ value for each population of ten times lower than the values
given by Faber et al. (2007). We indeed do not match the number
counts of a CFHTLS Deep field as it would lead to unreasonable
computing time: reproducing realistic number counts over a full
Deep field would actually imply Stuff generating a number of
galaxies one order of magnitude higher for E/S0 and Sp, and

also adding a population of ∼105 Irr which dominates the num-
ber counts fainter than 22 to 24 mag, depending on the filter.

The input parameters used to generate both populations are
listed in Table 4. The parameters to infer in this case are the five
evolving LF parameters for each of the populations: φ∗, M∗, α,
φe, and Me, that is a total of ten parameters (we do not infer the
size distribution and evolution parameters). The observables are
the SExtractor FLUX_AUTO in each of the three passbands,
which leads to a three-dimensional observable space. Using ten
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(a) Multi-type case (b) Fattening E case

Fig. 6. Histogram of the number of sources extracted per bin for the pre-processed input data of the test cases presented in Sect. 7. In the left panel,
three observables are considered: the FLUX_AUTO in uiKs. In the right panel, six observables are considered: the FLUX_AUTO in uiKs and the
FLUX_RADIUS in uiKs. With the binning rule described in Sect. 3.5, between the “Multi-type” case and the “Fatrtening E” case, the number of
bins increases by a factor 103, and the number of empty bins is increased by roughly the same amount. This illustrates the curse of dimensionality
we face in this method, and puts computational limits on the number of observables we can use.

Fig. 7. Traceplots depicting three typical situations that can arise in a standard MCMC chain with the (non-adaptive) Metropolis-Hastings algo-
rithm. The input data is a set of 20 points normally distributed with mean 0 and standard deviation 1. The parameter to infer is the mean µ of the
input data distribution. The prior is a Normal distribution with mean 0 and standard deviation 1, and the transition kernel is a Normal distribution
centered on the current state and width σp. In each case the chain starts from µ = 3 and is run for 10 000 iterations. The target distribution sampled
is the same, but the width of the proposal distribution, thatis, the jump size, is different for each case. Left panel: the jump size is too small. The
burn-in phase is very long and a much longer chain is needed to sample the target distribution. Central panel: the jump size is optimal, therefore
the target distribution is well sampled. Right panel: the jump size is too big. Hence the chain spends a lot of iterations in the same position, which
makes the sampling of the target distribution inefficient.

Table 4. Characteristics of the galaxy test populations.

Population SEDb
a SEDd

a φ∗ [h3 Mpc−3] M∗ α φe Me B/T Tb α(T ) Numberc

Multi-type: E/S0 E E 0.003 –19.97 –0.5 –1.53 –1.77 0.65 –5 0.0 10 447
Multi-type: Sp E Scd 1.4e–4 –19.84 –1.3 0.03 –1.95 0.2 6 1.47 28 281

Fattening E E E 0.0035 –19.97 –0.5 –1.53 –1.77 1.0 –5 0.0 11 353

Notes. The LF parameters are given for H0 = 100 km s−1 Mpc−3. (a) The disk and bulge SEDs are Coleman et al. (1980) templates.
(b) de Vaucouleurs (1959) revised morphological type. (c) Number of sources generated by one realization of Stuff.

bins for each observable as indicated in Sect. 3.5, we obtain
a total number of 103 bins in the observable space. Over the
∼4× 104 galaxies generated by Stuff, we find that ∼2× 104 are
extracted with SExtractor. The number of extracted galaxies
per bin is presented in Fig. 6.

7.5. Results of the “multi-type” configuration

We run the pipeline on a hybrid computing cluster of seven
machines totaling 152 central processing unit (CPU) cores.
We launched three chains in parallel for 18 357, 18 565, and
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Table 5. Size parameters for the bulge and disk of each galaxy test population.

Disk Bulge
βd r∗d [h−1 kpc] γd σλ Mknee rknee [h−1 kpc] γb

–0.214 3.85 –0.80 0.36 –20.0 1.58 –1.00

Notes. All the parameters above are given for H0 = 100 km s−1 Mpc−3, and “b” refers to bulge, and “d” to disk.

Fig. 8. Normed distribution of ln P for various numbers of realizations
NR of the model. Each distribution is generated in the conditions of the
“Fattening E” case, at “true” input values (cf. Table 4) and with the same
seed for galaxy generation in Stuff. Standard deviation of the distribu-
tions do not appear to differ significantly. We conclude that 20 realiza-
tions of the model are enough to characterize the order of magnitude of
rms.

16 211 iterations respectively, with randomly distributed start-
ing points, using 50 400 CPU hours in total. The burn-in phase
is estimated by visual examination of the trace plot. All the it-
erations before the upper and lower envelope of the trace be-
comes constant for all the chains and for all the parameters si-
multaneously are discarded as burn-in, which in the case under
study corresponds to the first 104 iterations. Then convergence
over the f last iterations of each chain is assessed based on
the Gelman-Rubin test (cf. Table 6), where f is the minimum
length over the three chains after burn-in, as the convergence
test requires the same number of iterations for all the chains:
f = 6211 iterations. Table 6 lists the results of the Gelman-Rubin
test, which suggest that all the chains have converged to the same
stationary distribution.

The final joint posterior distribution is the result of the com-
bined accepted states of all the chains run after burn-in. The pos-
terior PDF plot is shown in Fig. 10: it contains 3017 accepted
iterations out of 23 132 propositions, corresponding to an over-
all 13% acceptance rate after burn-in. The graph shows that the
“true” input values all lie within the 68% credible region, which
in Bayesian terms means that there is a 68% probability that the
model value falls within the credible region, given the data. Sum-
mary statistics of the posterior PDF are listed in Table 7. As the
pipeline generates constraints that are consistent with the input

Fig. 9. Temperature evolution with the number of iterations of the
MCMC process in the “Fattening E” case described in Sect. 7.6. Here
the temperature is computed every 500 iterations at current state with
20 realizations of the model. We note that for each chain, the temper-
ature values quickly converge to the level of noise of the model near
input values.

parameters, we therefore conclude that our approach can be used
to perform unbiased inference on the photometric parameters
of galaxies using two broad classes of galaxy types given non-
informative priors.

Moreover, we find in Fig. 10 some strong correlations or anti-
correlations between various pairs of parameters, that are symp-
tomatic of the degeneracies in the parameters for our specific set
of observables (fluxes). For example, a strong anti-correlation is
found between M∗ and Me in the two populations. This can be
explained by the fact that a brighter (lower) M∗ population at
z = 0 can be partly compensated by a shallower (higher) redshift
evolution.

7.6. Fattening ellipticals: size and luminosity evolution

We then test whether our pipeline can also infer the character-
istic size evolution of galaxies. Because of memory limitations,
we perform this test in a simplified framework. We use as input
data a CFHTLS image in uiKs containing ∼104 E/S0 (pure bulge)
galaxies generated with Stuff. The input photometric parame-
ters are listed in Table 4 and those for bulge size are listed in
Table 5. The parameters to infer are the five evolving LF param-
eters, as well as three parameters governing the bulge distribu-
tion and evolution: Mknee, rknee, and γb (as defined in Sect. 7.4).
That is a total of eight parameters. No extinction is included in
this case. As the size evolution parameters cannot be retrieved
with the photometric information only (FLUX_AUTO), the
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Fig. 10. Joint posterior distribution resulting from the “Multi-type” test described in Sect. 7.4. The diagonal plots show the marginal distribution
for each parameter (the projection of the posterior onto that parameter). Each panel is bounded by the prior range values. The dark red, orange,
and yellow areas in the contour plots represent the 99%, 95%, and 68% credible regions respectively. The black crosses and red dots are the mean
of the posterior and input true value respectively. In the marginalized posterior panels, the black dotted and red lines represent the posterior mean
and the true value respectively.

Table 6. Results of the Gelman-Rubin test.

Population log10(φ∗) M∗ α φe Me Mknee rknee [h−1 kpc] γb

Multi-type: E/S0 1.015 1.006 1.014 1.012 1.005 ∅ ∅ ∅
Multi-type: Sp 1.020 1.013 1.028 1.007 1.012 ∅ ∅ ∅

Fattening E 1.013 1.003 1.020 1.003 1.001 1.008 1.010 1.008

Notes. The values of
√

R are obtained using 3 chains for each case, whose burn-in phase for each chain is determined by eye. All values are <1.1,
which is a hint that in each case, all the chains have converged to the same distribution. The parameters above are given for H0 = 100 km s−1 Mpc−3.
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Table 7. Summary statistics on the marginalized posterior distributions for the galaxy test populations and comparison with the input values.

Population Parameters Input value Mean MAPa 68% interval 95% interval 99% interval
log10(φ∗) –2.52 –2.56 −2.57 [–2.72, –2.40] [–2.85, –2.29] [–2.95, –2.19]

M∗ –19.97 –20.15 −20.12 [–20.54, –19.74] [–20.95, –19.38] [–21.20, –19.08]
Multi-type: E/S0 α –0.5 –0.53 −0.54 [–0.68, –0.43] [–0.77, –0.24] [–0.82, –0.06]

φe –1.53 –1.48 −1.37 [–1.82, –1.15] [–2.16, –0.81] [–2.35, –0.49]
Me –1.77 –1.66 −1.70 [–1.99, –1.29] [–2.36, –0.96] [–2.46, –0.75]

log10(φ∗) –3.85 –3.93 −3.96 [–4.15, –3.67] [–4.35, –3.54] [–4.53, –3.40]
M∗ –19.84 –20.18 −19.81 [–20.68, –19.43] [–21.59, –19.01] [–21.93, –18.84]

Multi-type: Sp α –1.3 –1.30 −1.33 [–1.37, –1.25] [–1.42, –1.17] [–1.44, –1.13]
φe 0.03 0.18 0.15 [–0.16, 0.47] [–0.34, 0.75] [–0.48, 0.94]
Me –1.95 –1.68 −1.81 [–2.39, –1.29] [–2.49, –0.87] [–2.49, –0.19]

log10(φ∗) –2.46 –2.46 −2.51 [–2.60, –2.31] [–2.75, –2.18] [–2.84, –2.08]
M∗ –19.97 –20.04 −20.08 [–20.41, –19.63] [–20.84, –19.23] [–21.15, –19.12]
α –0.5 –0.49 −0.51 [–0.62, –0.40] [–0.72, –0.25] [–0.78, –0.13]
φe –1.53 –1.49 −1.56 [–1.84, –1.09] [–2.22, –0.74] [–2.41, –0.49]

Fattening E Me –1.77 –1.65 −1.61 [–2.04, –1.29] [–2.35, –0.96] [–2.47, –0.73]
Mknee –20.00 –20.10 −19.99 [–20.32, –19.79] [–20.68, –19.58] [–20.90, –19.46]
rknee 1.58 1.64 1.56 [1.47, 1.77] [1.34, 1.97] [1.27, 2.09]
γb –1.00 –1.03 −1.07 [–1.18, –0.87] [–1.31, –0.71] [–1.50, –0.65]

Notes. (a) Maximum A Posteriori. The LF parameters are given for H0 = 100 km s−1 Mpc−3.

FLUX_RADIUS parameters of SExtractor for all galaxies in
each passband are added to the observables space. This leads to a
six-dimensional observable space. Over the ∼104 E generated by
Stuff, we find that ∼7 × 103 are found by SExtractor. With
ten bins as indicated in Sect. 3.5, this results in a total number
of bins of 106. The number of extracted galaxies per bin is pre-
sented in Fig. 6.

7.7. Results of the “fattening ellipticals” configuration

We run our pipeline with three chains in parallel for 18 898,
14 056, and 20 110 iterations respectively, with uniformly dis-
tributed starting points, using 19 656 CPU hours in total. The
first 104 iterations of each chain are discarded as burn-in. Con-
vergence is reached over the f = 4323 last iterations of each
chain, as assessed by the Gelman-Rubin test results displayed in
Table 6. The resulting posterior distribution is shown in Fig. 11.
It contains 6287 accepted iterations over 38 064, which leads to
an acceptance rate of 16.5%.

Each marginalized posterior plot exhibits a main mode, with
the peak and the mean almost indistinguishable from the input
values. The joint posterior distribution shows that the input val-
ues all fall within the 68% credible region. Summary statistics of
the posterior PDF are listed in Table 7. Here again, our pipeline
produces constraints that are consistent with the true parameters.
So we conclude that our pBIL method can reliably infer the lumi-
nosity and size distribution of one population of galaxies without
any systematic bias.

The joint posterior PDF also reveals covariances between pa-
rameters. For instance, the φ∗ and φe parameters are naturally
anti-correlated because an increase of φ∗ (at z = 0) can partially
be compensated by a steeper decrease of the normalization with
redshift, hence a smaller value of φe.

8. Comparison with SED fitting

As demonstrated above, our pBIL method is efficient at recover-
ing the input parameters used to define the luminosity and size

evolutions in the mock CFHTLS image. One may wonder how
it compares with the classical, less CPU-expensive method for
measuring LFs – SED fitting – which provides, from a multi-
band photometric catalog, estimates of the photometric redshifts
as well as rest-frame luminosities. Luminosity functions can then
be derived using independent redshift bins.

The simulated field used for this comparison is the “Fat-
tening E” sample, with a single population of pure bulges
with the Coleman et al. (1980) “E” template. The Z-PEG code
(Le Borgne & Rocca-Volmerange 2002) is applied to the u, i,
and Ks photometric catalog obtained with SExtractor in the
same configuration as described for the pBIL method in Sect. 7.
Photometric redshifts are measured together with g-band lumi-
nosities for every i-band detected object down to uAB = 30. The
fits were performed using the whole range of SED templates
from Coleman et al. (1980), from E to Irr galaxies. The discrete
LFs obtained in each redshift bin were volume weighted with
a Vmax correction at the faint magnitude bins, and a Schechter
(1976) function was fitted to the data independently in each red-
shift bin with a Levenberg-Marquardt algorithm with Φ∗, M∗,
and α as free parameters.

Comparison of the evolution with redshift of the LF param-
eters between the pBIL approach (green dashed line for mean of
posterior, and 68% light green shaded region) and the results
from SED fitting (red symbols with error bars) are shown in
Fig. 12. As expected, they both roughly follow the trends set by
the evolution of the input parameters (blue solid line), with some
offsets that can be explained by the fact that SED fitting is done
on only three photometric bands. This is clearly a major limiting
factor, albeit partly compensated by the choice of the SED tem-
plates: the input SED and the templates share a common SED
(the “E” SED, even if all SEDs from Coleman et al. 1980 are
also used for the SED fitting). We believe that this choice is fair
because in the pBIL method, the same set of SEDs was also used
for data generation and for the inference of LF parameters.

The significant systematic offset in α from SED fitting com-
pared to the input and pBIL curves in Fig. 12 shows that
the faint-end slope parameters α is poorly estimated, with a
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Fig. 11. Joint posterior distribution resulting from the “Fattening E” test described in Sect. 7.6. The diagonal plots show the marginal distribution
for each parameter. Each panel is bounded by the prior range values. The dark red, orange, and yellow areas in the contour plots represent the
99%, 95%, and 68% credible regions respectively. The black crosses and red dots are the mean of the posterior and input true value respectively.
In the marginalized posterior panels, the black dotted and red lines represent the posterior mean and the true value respectively.

significant systematic offset at z ≥ 0.7. This is caused by the
negative input slope (see Table 4), which yields few faint galax-
ies in the sample. Moreover, because of numerous catastrophic
outliers in the photometric redshifts (caused by the u, i, Ks-only
photometric catalog), there is a mismatch between the true red-
shift of many faint objects and the redshift bin to which they are
assigned. This leads to an underestimate of the error bars on the
individual points.

For this comparison of the LF parameters between the two
approaches, we had to derive the envelop of the LF parameters
as a function of redshift for the trace elements of the MCMC
chains within the 68% credible region of the parameters space.
Of course, the area appears in Fig. 12 as much smoother than the
individual points derived from SED fitting because the chosen
LF model for the inference evolves smoothly with redshift. Still,
it is remarkable that the region is tight and almost centered on the
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Fig. 12. Evolution of the LF parameters as defined in the mock data
image (blue solid line) and inferred from the pBIL method in the “Fat-
tening E” population described in Sect. 7.6 (the green dotted line is the
mean of the posterior and the shaded area represents the 68% credible
region), compared to the direct measurement of the LF obtained per red-
shift bin and estimated using a Vmax weighting, after determination of
the photometric redshifts from SED fitting (red dots).

values of the true parameters at all redshifts. This is because the
various covariances between the five LF parameters of the model
tend to narrow down the shaded areas in these graphs, therefore
implying that galaxies at all redshifts in the images contribute to
constrain the parameters of the model in the pBIL approach.

9. Discussion
One issue of concern in the posterior distributions that we de-
rived with our pipeline (Figs. 10 and 11) is illustrated by the fact
that in Fig. 12, the 68% shaded region is large compared to the
distance between the input parameters (blue solid line) and the
mean of the posterior (green dashed line), which are almost in-
distinguishable in all three graphs. We suspect that this results
from an enlargement of the posterior because of the “tempera-
ture” term that we use in order to circumvent the stochastic na-
ture of each model realization (see Sect. 5.2). In essence, the
model’s stochasticity itself (galaxies are randomly drawn from
the distribution functions) inevitably contributes to the uncer-
tainty in the posterior. We have no quantitative estimate of this
enlargement and we suspect it might be a limiting factor on the
precision of the parameter inference. Estimating this enlarge-
ment from simulated data would have required us to generate
a very large number of realizations for each step of the chain
(hence we could have turned off the “temperature” term). This
would, however, be prohibitive in computing time, even in the
considered simple tests performed in this article. We note that
using surveys with large statistics in the number of characteristic
population of galaxies is, as always, preferable, and should limit
this bias.

Moreover, there is room for several technical improvements
of our pipeline, in order to guarantee a faster convergence and a
more accurate inference:

– As implemented in the present article, our method faces the
inevitable curse of dimensionality. In fact, as we bin each

observable over ten intervals, for each observable added the
hyper-dimensional number of bin increases by one order of
magnitude. This limits our approach to a restricted number
of observables in order to prevent memory errors. In order
to adapt this method to higher numbers of observables, we
may have to change our strategy and bin projections of the
datasets instead of binning the complete observable space,
with the drawback of losing mutual information.

– Instead of binning the distribution of observables, whose re-
sults depend on the bin edges and bin width, a more reliable
method for density estimation for multivariate data is Kernel
Density Estimation (KDE). KDE transforms the data points
into a smooth density field, and alleviates the dependence of
the results on the bin edges by centering a unimodal func-
tion with mean 0, the kernel, on each data point. In practice,
KDE is more computationally expensive than binning, and
also requires some level of hand tuning, in the form of the
right kernel function and the optimal bandwidth, which in
KDE is the analog of bin width in histograms.

– The mean runtime of an MCMC chain in the context of
the test cases described in Sect. 7 is approximately two
weeks. Up to 50% of this runtime is currently spent in job
scheduling latencies for each iteration (as shown in Fig. 4).
A more integrated approach, based, for example, on Mes-
sage Passing Interface (MPI) and operating only in mem-
ory might reduce those latencies. The next step would be
to increase computational efficiency by offloading the most
time-consuming image rendering and source extraction tasks
to graphics processing units (GPUs), especially convolutions
and rasterizations.

– We emphasize that on the order of 104 iterations is needed
to attain convergence in the test cases studied. Considering
the high computational cost of this approach, one may won-
der how to attain faster convergence in realistic frameworks.
In that regard, Gutmann & Corander (2016), who explored
the computational difficulties arising from likelihood-free in-
ference methods, proposed a strategy based on probabilistic
modeling of the relation between the input parameters and
the difference between observed and synthetic data. This ap-
proach would theoretically reduce the number of iterations
needed to perform the inference.

Finally, more realistic mock astrophysical images are required
before running our pipeline on real survey data:

– The addition of a likely stellar field to the simulated im-
ages would contaminate the source extraction process in
a realistic way. This could be done via the use of photo-
metric catalogs from real or simulated stellar surveys (e.g.,
Gaia Collaboration 2016; Robin et al. 2012).

– It is now well known that the contribution of cluster-
ing and environmental effects influence the colors (e.g.,
Madgwick et al. 2003; Bamford et al. 2009) and spectral
types (Zehavi et al. 2002) of galaxies: red and quiescent
galaxies are mostly distributed in regions of high density,
such as the centers of clusters, whereas blue and star form-
ing galaxies are less clustered. Galaxy clustering also has an
impact on source blending and confusion. These effects are
not implemented in Stuff, and this might bias our results in
a way that is difficult to estimate. In order to limit this effect,
one could select the areas of the analyzed survey that contain
only field galaxies and use these areas as input data.

– The present application uses as a reference the CFHTLS
Deep survey, which sensitivity is very homogeneous over the
field of view. This is, however, not the case for many surveys.
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A more general application of the method would require sim-
ulating each individual raw survey exposure, and performing
the very same co-addition as with the observed data to gen-
erate stacks, hence reproducing all the observational effects
affecting the reduced images. However, this dramatically in-
creases computing time and is currently out-of-reach except
for the shallower surveys.

Because the pipeline in this work makes it possible to con-
strain not only the galaxy luminosity evolution, but also the
evolution of galaxy sizes, it opens interesting perspectives for
addressing the current debate on the evolution of galaxy sizes
with cosmic time. The contradictory results of, for exam-
ple, Longhetti et al. (2007), Trujillo et al. (2007), Saracco et al.
(2010), and Morishita et al. (2014) on the growth of massive
early-type galaxies may be plagued with the varying selection
effects in the surveys on which these analyses are based.

10. Conclusions

In the present article we lay the basis for a new method to infer
robust constraints on galaxy evolution models. In this method,
populations of synthetic galaxies are generated with the Stuff
empirical model, sampled from luminosity functions for each
galaxy type, and determined by the SEDs of the bulge and disk
components, and the B/T ratio. In order to reproduce the se-
lection effects affecting real catalogs, we use the Skymaker
software to simulate realistic survey images with the appropriate
instrumental characteristics. Real and mock images undergo the
same source extraction, using SExtractor, and pre-processing
pipeline. The distributions of extracted observables (fluxes and
radii) are then compared, and we minimize their discrepancy
using an adaptive MCMC sampling scheme in the parametric
Bayesian indirect likelihood framework, designed for an efficient
exploration of the parameter space.

This is the first attempt in the field of galaxy evolution to
make image simulation a central part of the inference process.
We have tested the self-consistency of this approach using a sim-
ulated image of a CFHTLS Deep field covering 1 deg2 on the
sky in three bands: u and i in the optical, and Ks in the near
infrared, generated with the Stuff model containing E/S0 and
spiral galaxies with evolving size and luminosity.

Starting from non-informative uniform priors, we find that
our pipeline can reliably infer the input parameters governing the
luminosity and size evolution of each of the galaxy populations
in ∼104 iterations, using few and disjointed observables, that is,
the photometry (fluxes and radii) of the extracted sources in uiKs.
In each test performed, the input parameters lie within the 68%
highest posterior density region.

We have also compared the results of our method with those
of the classical photometric redshifts approach, with measure-
ments from SED fitting on one of the mock sample, and found
that when using the same set of observables (uiKs photometry),
our inference pipeline yields more accurate results.

Now that the validity of our pipeline is established on mock
data, we intend to apply it to the observed CFHTLS Deep fields.
We could also combine these data with several extragalactic sur-
veys at various depths and with different instrumental setups si-
multaneously, such as UDF (Williams et al. 2010) at z ∼ 2, and
SDSS (Blanton et al. 2003) at z ∼ 0.1, in order to better con-
strain galaxies in a wide range of redshifts. Nevertheless, this
application will raise various modeling issues. In particular, real
survey images display a continuum of galaxy populations, and

our model only generates a discrete number of galaxy popula-
tions, defined by their bulge and disk SEDs and their B/T ratio.
In practice, the number of modeled populations will be limited
by computing time, as more populations lead to more free pa-
rameters to infer, hence to more iterations for the pipeline to find
the high probability regions. This will certainly require a com-
promise between the desired accuracy of the modeled universe
and convergence of the chains within a reasonable computing
time.
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Appendix A: Derivation of the auxiliary likelihood
function used in the present article

If one assumes that the number count in each bin i is described
by a Poisson distribution, the probability of oi given the model
si is:

li =
e−si soi

i

oi!
· (A.1)

The likelihood function for the histogram is then:

L =

b∏
i=1

e−si soi
i

oi!
· (A.2)

Correlations between adjacent bins are neglected here. The log-
likelihood is therefore given by:

ln L =

b∑
i=1

(−si + oi ln(si) − ln(oi!)). (A.3)

As we are interested in maximizing ln L, ln(oi!) is a constant that
can be eliminated, so in fine, we obtain Eq. (20).

Appendix B: Conversion LF parameters from
Faber et al. (2007) to STUFF parameters

In order to provide Stuff with realistic LF parameters, we use
Faber et al. (2007), who used data from SDSS (York et al. 2000;
Blanton et al. 2003), COMBO-17 (Wolf et al. 2001; Wolf et al.
2003), 2dF (Norberg et al. 2002), and DEEP2 (Davis et al. 2003)
to derive the evolving LF parameters for two populations of red
and blue galaxies. We associate the red and blue populations
with our populations of E/S0 and spirals respectively. The LF
parameters found by Faber et al. (2007) are listed in Table B.1,
and apply to z = 0.5. In order to obtain the LF parameters for
z = 0, we use the fitted functions provided by Faber et al. (2007)
for each population:

M∗B(z = 0) = M∗B(z) −
Q log10(1 + z)

log10(2)
(B.1)

log10 φ
∗(z = 0) = log10 φ

∗(z) −
P log10(1 + z)

log10(2)
· (B.2)

Table B.1. Luminosity function parameters of the blue and red populations of galaxies at z = 0.5 inferred from SDSS, 2dF, COMBO-17, and
DEEP2 data, adapted from Tables 3, 4, and 6 of Faber et al. (2007).

Population M∗B(z = 0.5) log10(φ∗[Mpc−3])(z = 0.5) P Q α

Red –20.80 –2.72 –0.46 –1.23 –0.5
Blue –20.84 –2.55 0.01 –1.35 –1.3

Notes. The redshift evolution is fitted by y = a0(z = 0.5) + a1[log10(1 + z) − log10(1 + 0.5)]/ log10(2), where M∗
B and log10(φ∗) are the zero points

and Q and P are the slopes resp. The LF parameters in Faber et al. (2007) are given for H0 = 70 km s−1 Mpc−1

The absolute magnitude in Eq. (B.1) is given in the Johnson sys-
tem. Because in our simulation Stuff operates in the AB sys-
tem, we use the AB offset calculated by Frei & Gunn (1994):

BAB = BJohnson − 0.163. (B.3)

We then apply the transformation equations of Jester et al.
(2005) for stars with Rc − Ic < 1.15 and U − B > 0,

BAB = g + 0.39(g − r) + 0.21, (B.4)

in order to derive g-band magnitudes:

M∗(z = 0)g = M∗B(z = 0) − 0.39(g − r) − 0.21 − 0.163. (B.5)

We subsequently adopt average colors of (g − r)E/S0 = 0.75 and
(g − r)Sp = 0.5 from EFIGI data (de Lapparent, priv. comm.) to
derive the value of M∗(z = 0)g for each population.

In Stuff, the input LF parameters are provided assuming
H0 = 100 h km s−1 Mpc−3 with h = 1. As Faber et al. (2007)
provide their results assuming h = 0.7, an additional conversion
is needed:

M∗STUFF = M∗(z = 0)g − 5 log10 h (B.6)

φ∗STUFF = φ∗h−3. (B.7)

In Stuff, the LF evolution parameters are defined as:

M∗(z) = M∗(z = 0) + Me ln(1 + z) (B.8)
log10 φ

∗(z) = log10 φ
∗(z = 0) + φe log10(1 + z). (B.9)

Combining Eqs. (B.1) and (B.2) with Eqs. (B.8) and (B.9) re-
spectively, we obtain:

Me =
Q

ln(10) log10(2)
(B.10)

φe =
P

log10(2)
· (B.11)

The values of P and Q listed in Table B.1 are used to derive the
LF parameters for the populations of E/S0 and Sp. In fine, the
φ∗(z = 0) of each population is reduced by a factor ten to limit
computation time. The final LF parameters are listed in Table 4
(Sect. 7.4).
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