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ABSTRACT
In astrophysics, we often aim to estimate one or more parameters for each member object in
a population and study the distribution of the fitted parameters across the population. In this
paper, we develop novel methods that allow us to take advantage of existing software designed
for such case-by-case analyses to simultaneously fit parameters of both the individual objects
and the parameters that quantify their distribution across the population. Our methods are
based on Bayesian hierarchical modelling that is known to produce parameter estimators for
the individual objects that are on average closer to their true values than estimators based on
case-by-case analyses. We verify this in the context of estimating ages of Galactic halo white
dwarfs (WDs) via a series of simulation studies. Finally, we deploy our new techniques on
optical and near-infrared photometry of 10 candidate halo WDs to obtain estimates of their
ages along with an estimate of the mean age of Galactic halo WDs of 12.11+0.85

−0.86 Gyr. Although
this sample is small, our technique lays the ground work for large-scale studies using data
from the Gaia mission.

Key words: methods: statistical – white dwarfs – Galaxy: halo.

1 IN T RO D U C T I O N

1.1 White dwarfs and the galactic halo age

In the astrophysical hierarchical structure formation model, the
present Galactic stellar halo is the remnant of mergers of mul-
tiple smaller galaxies (e.g. Freeman & Bland-Hawthorn 2002;
Tumlinson et al. 2010; Scannapieco et al. 2011), most of which
presumably formed some stars prior to merging, and some of which
may have experienced, triggered or enhanced star formation during
the merging process. The age distribution of Galactic halo stars
encodes this process. Any perceptible age spread for the halo thus
provides information on this complex star formation history.

At present, we understand the Galactic stellar halo largely through
the properties of its globular clusters. These star clusters are typi-
cally grouped into a few categories: (i) those with thick disc kine-
matics and abundances, (ii) those with classical halo kinematics
and abundances, (iii) the most distant population that is a few Gyr
younger than the classical halo population and (iv) a few globular
clusters such as M54 that are ascribed to known, merging systems, in
this case the Sagittarius dwarf galaxy (see Forbes & Bridges 2010;
Pawlowski, Pflamm-Altenburg & Kroupa 2012; Leaman,

� E-mail: ss2913@ic.ac.uk

VandenBerg & Mendel 2013). Globular clusters in category (ii) ap-
pear consistent with the simple collapse picture of Eggen, Lynden-
Bell & Sandage (1962), yet those of categories (iii) and (iv) argue
for a more complex precursor plus merging picture. The newly ap-
preciated complexity of multiple populations in many or perhaps
all globular clusters (Gratton, Sneden & Carretta 2004) adds rich-
ness to this story, and may eventually help us better understand the
earliest star formation environments.

Despite the tremendous amount we have learned from globular
clusters, they are unlikely to elucidate the full star formation history
of the Galactic halo because today’s globular clusters represent
a ∼1 per cent minority of halo stars. Without studying the age
distribution of halo field stars, we do not know whether globular
cluster ages are representative of the entire halo population. We do
know that globular clusters span a narrower range in abundances
than field halo stars (see Roederer et al. 2010; Yamada et al. 2013),
so there is every reason to be suspicious that there is more to the
story than globular clusters can themselves provide.

In order to determine the age distribution of the Galactic halo, we
need to supplement the globular cluster-based story with ages for
individual halo stars. This is not practical for the majority of main-
sequence or red giant stars because of well-known degeneracies in
their observable properties as a function of age. Gyrochronology
(see Barnes 2010; Soderblom 2010) does hold some hope for de-
termining the ages of individual stars, but this is unlikely to provide
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precise ages for very old stars even after the technique sees consid-
erably more development. Our best current hope for deriving the
Galactic halo distribution is to determine the ages of halo field white
dwarfs (WDs).

WDs have the advantages that they are the evolutionary end-
state for the vast majority of stars and their physics is relatively
well understood (Fontaine, Brassard & Bergeron 2001). A WD’s
surface temperature, along with its mass and atmospheric type, is
intimately coupled to its cooling age, i.e. how long it has been a
WD. The mass of a WD, along with an assumed initial–final mass
relation (IFMR), provides the initial main-sequence mass of the
star, which along with theoretical models provides the lifetime of
the precursor star. Pulling all of this information together provides
the total age for the WD. The weakest link in this chain is typically
the IFMR. Yet fortunately, the uncertainty in the IFMR often has
little effect on the relative ages of WDs, and thus the precision of
any derived age distribution. Additionally, among the higher mass
WDs, the uncertainty in the precursor ages can be reduced to a level
where the IFMR uncertainties do not dominate uncertainties in the
absolute WD ages.

While WDs provide all of these advantages for understanding
stellar ages, the oldest are very faint, and thus few are known, with
fewer still known with the kinematics of the Galactic halo. The
paucity of data for these important objects will shortly become a
bounty when Gaia both finds currently unknown WDs with halo
kinematics and provides highly accurate and precise trigonometric
parallaxes, which constrain WD surface areas and thus masses. The
number of cool, halo WDs is uncertain by a factor of perhaps 5, and
depending on the Galaxy model employed, Carrasco et al. (2014)
calculate that Gaia will derive parallaxes for ∼60 or ∼350 single
halo WDs with Teff ≤ 5000. Gaia will measure parallaxes for more
than 200 000 WDs with thick disc and disc kinematics.

We have developed a Bayesian statistical technique to derive
the ages of individual WDs (van Dyk et al. 2009; O’Malley, von
Hippel & van Dyk 2013) and intend to apply this to each WD for
which Gaia obtains excellent parallaxes. Yet the number of halo
WDs for which we can derive high-quality ages may still be mod-
est, particularly because we also require accurate optical and near-
infrared (near-IR) photometry. Because of the importance of the
age distribution among halo stars, we have developed a hierarchi-
cal modelling technique to pool halo WDs and derive the posterior
distributions of their ages.

1.2 Statistical analysis of a population of objects

In statistics, hierarchical models are viewed as the most efficient
and principled technique to estimate the parameters of each object
in a population (e.g. Gelman 2006b). In astrophysics, we often aim
to estimate a set of parameters for each of a number of objects in
a population, which motivates the application of hierarchical mod-
els. Noticeably, these models have gained popularity in astronomy
mainly for two reasons. First, they provide an approach to com-
bining multiple sources of information. For instance, Mandel et al.
(2009) employed Bayesian hierarchical models to analyse the prop-
erties of Type Ia supernova light curves by using data from Peters
Automated Infrared Imaging Telescope and the literature. Secondly,
they generally produce estimates with less uncertainty. By combin-
ing information from Type Ia supernova light curves, March et al.
(2014) and Shariff et al. (2016) illustrate how a hierarchical model
can improve the estimates of cosmological parameters. Similarly,
Licquia & Newman (2015) obtained improved estimates of several

global properties of the Milky Way by using a hierarchical model
to combine previous measurements from the literature.

However, fully modelling a population of objects within a hier-
archical model requires substantial computational investment and
often specialized computer code, especially for complicated prob-
lems. In this study, we develop novel methods to conveniently obtain
the improved estimates available under a hierarchical model. While
taking advantage of the existing code for case-by-case analyses,
our methods simultaneously estimate parameters of the individual
objects and parameters that describe their population distribution.
Our methods are based on Bayesian hierarchical modelling that are
known to produce estimators of parameters of the individual objects
that are on average closer to their true values than estimators based
on case-by-case analyses.

There are many possible applications of hierarchical models in
astrophysics. In this paper, we focus on the analysis of a sample of
candidate halo WDs. We perform a simulation study to illustrate the
advantage of our approach over the commonly used case-by-case
analysis in this setting. We find that approximately two thirds of the
estimated WD ages are closer to their true age under the hierarchi-
cal model. Using optical and near-IR photometry of 10 candidates
halo WDs, we simultaneously estimate their individual ages and
the mean age of these halo WDs, the latter which we estimate as
12.11+0.85

−0.86 Gyr. Another application to the distance modulus of the
Large Magellanic Cloud (LMC) is included in Appendix B as a
pedagogical illustration of our methods in a simpler setting.

One of the primary benefits of our approach is that it takes ad-
vantages of the existing code that fits one object at a time. We only
need to write wrapper code that calls the existing programs, see Si
et al. (in preparation) for more details.

This saves substantial human capital that might otherwise be
devoted to developing and coding a complex new algorithm. The
power of this approach can be conceived of as coming from (i) an
informative assumption, which is that all the objects belong to a
population with a particular distribution of the parameters of the
objects across the population, and (ii) that it otherwise is difficult to
come up with a technique that can combine the individual results
when they may have asymmetric posterior density functions.

The remainder of this paper is organized into five sections. We in-
troduce hierarchical modelling and its statistical inference methods
in Section 2. We present methods for case-by-case and hierarchical
analyses of the ages of a group of WDs in Section 3. In Section 4,
we use a simulation study to verify the advantages of the hierar-
chical approach. In Section 5, we apply both the case-by-case and
our hierarchical model to 10 Galactic halo WDs, and then inter-
pret the Galactic halo age in the context of known Milky Way ages.
Section 6 summarizes the proposed methodology and our results. In
Appendix A, we describe the statistical background of hierarchical
models and explain why they tend to provide better estimates. We
illustrate the application of hierarchical models and their advanta-
geous statistical properties via the LMC example in Appendix B.
Appendices C and D outline the computational algorithms we use
to efficiently fit the hierarchical models.

2 H I E R A R C H I C A L M O D E L L I N G

Suppose we observe a sample of objects from a population of as-
tronomical sources, for example, the photometry of 10 WDs from
the Galactic halo, and we wish to estimate a particular parame-
ter or a set of parameters for each object. We refer to these as
the object-level parameters. By virtue of the population, there is a
distribution of these parameters across the population of objects.
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This distribution can be described by another set of parameters that
we refer to as the population-level parameters. Often we aim to
estimate both the object-level parameters and population-level pa-
rameters. As we shall see however, even if we are only interested in
the object-level parameters, they can be better estimated if we also
consider their population distribution.

Hierarchical models (e.g. Gelman et al. 2014), also called random
effect models, can be used to combine data from multiple objects in
a single coherent statistical analysis. Potentially, this can lead to a
more comprehensive understanding of the overall population of ob-
jects. Hierarchical models are widely used in many fields, spanning
the medical, biological, social and physical sciences. Because they
leverage a more comprehensive data set when fitting the object-level
parameters, they tend to result in estimators that on average exhibit
smaller errors (e.g. James & Stein 1961; Efron & Morris 1972;
Carlin & Louis 2000; Morris & Lysy 2012). Because a property of
these estimators is that they are ‘shrunk’ towards a common central
value relative to those derived from the corresponding case-by-case
analyses, they are often called shrinkage estimators. More details
about shrinkage estimators appear in Appendix A.

A concise hierarchical model is

Yi |θi ∼ N (θi, σ ), i = 1, 2, . . . , n, (1)

θi ∼ N (γ, τ ), (2)

where Y = (Y1, . . . , Yn) are observations, σ is the standard error
of the observations, θ = (θ1, . . . , θn) are objective-level parameters
of interest, γ and τ are the unknown population-level mean and
standard deviation parameters of a Gaussian distribution.1

Bayesian statistical methods use the conditional probability dis-
tribution of the unknown parameters given the observed data to
represent uncertainty and generate parameter estimates and error
bars. This conditional probability distribution is called the poste-
rior distribution and in our notation written as p(γ, τ, θ |Y ). To
derive the posterior distribution via Bayes theorem requires us to
specify a prior distribution that summarizes our knowledge about
likely values of the unknown parameters having seen the data, see
van Dyk et al. (2001) and Park, van Dyk & Siemiginowska (2008)
for applications of Bayesian methods in the context of astrophysical
analyses. Our prior distribution on θ is given in equation (2), and we
choose the non-informative prior distribution p(γ , τ ) ∝ 1 for γ and
τ , which is a standard choice in this setting (Gelman 2006a). Two
commonly used Bayesian methods to fit the hierarchical model in
equations (1) and (2) are the fully Bayesian (FB) and the empirical
Bayes (EB) methods.

FB (e.g. Gelman et al. 2014) fits all of the unknown parameters
via their joint posterior distribution

p(γ, τ, θ |Y ) ∝ p(γ, τ )
n∏

i=1

p(θi |γ, τ )
n∏

i=1

p(Yi |θi). (3)

Generally, we employ Markov chain Monte Carlo (MCMC) al-
gorithms to obtain a sample from the posterior distribution,
p(γ, τ, θ |Y ). The MCMC sample can be used to (i) generate param-
eter estimates, e.g. by averaging the sampled parameter values, (ii)
generate error bars, e.g. by computing percentiles of the sampled
parameter values, and (iii) represent uncertainty, e.g. by plotting

1 In this paper, we parametrize univariate Gaussian distributions in terms
of their means and standard deviations. Generally, we write Y|θ ∼ N(μ, σ )
to indicate that given θ , Y follows a Gaussian (or normal) distribution with
mean μ and standard deviation σ .

histograms or scatter plots of the sampled values. For intricate
hierarchical models, however it may be computationally challeng-
ing to obtain a reasonable MCMC sample.

EB (e.g. Morris 1983; Casella 1985; Efron 1996) uses the data to
first fit the parameters of the prior distribution in equation (2) and
then given these fitted parameters infer parameters in equation (1) in
the standard Bayesian way. Specifically, γ and τ are first estimated
as γ̂ and then τ̂ and the prior distribution θi ∼ N (γ̂ , τ̂ ) is used in
a Bayesian analysis to estimate the θ i. Thus, EB proceeds in two
steps.
Step 1. Find the maximum a posterior (MAP) estimates of γ and τ

by maximizing their joint posterior distribution, i.e.

(γ̂ , τ̂ ) = arg max
γ,τ

p(γ, τ |Y ) = arg max
γ,τ

∫
p(γ, τ, θ |Y )dθ . (4)

Step 2. Use N (γ̂ , τ̂ ) as the prior distribution for θ i, i = 1, . . . , n
and estimate θ i in the standard Bayesian way, i.e.

p(θi |Yi, γ̂ , τ̂ ) ∝ p(Yi |θi)p(θi |γ̂ , τ̂ ). (5)

When applying the EB to fit a hierarchical model, it is possible
that the estimate of the standard deviation τ is equal to 0, which
leads to θ1 = · · · = θn = γ̂ . This is generally not a desirable result.
We can avoid τ̂ = 0 by using the transformations ξ = log τ or
δ = 1/τ (e.g. Park et al. 2008; Gelman et al. 2014). We refer to
EB implemented with these transformations as EB-log and EB-inv,
respectively. Step 2 of EB-log and EB-inv remains exactly the same
as that of EB, but Step 1 changes. Specifically, Step 1 of EB-log is
Step 1. Find the MAP estimates of γ and ξ by maximizing their
joint posterior distribution, i.e.

(γ̂ , ξ̂ ) = arg max
γ,ξ

p(γ, exp(ξ )|Y ) exp(ξ )

and setting τ̂ = exp(ξ̂ ), where p(·|Y ) is the posterior distribution of
γ and τ . Thus,

(γ̂ , τ̂ ) = arg max
γ,τ

p(γ, τ |Y )τ. (6)

Comparing equation (6) with equation (4), the added τ in equation
(6) prevents τ from being zero. Step 1 of EB-inv proceeds similarly.

3 A NA LY S E S FO R F I E L D H A L O W D S

Our model is based on obtaining photometric magnitudes for n WDs
from the Galactic halo. We denote the l-dimensional observed pho-
tometric magnitudes for the ith WD by X i and the known variance-
covariance matrix of its measurement errors by �i . Our goal is
to use X i to estimate the age, distance modulus, metallicity and
zero-age main-sequence (ZAMS) mass of the WD. Our WD model
is specified in terms of the log10(age), distance modulus, metal-
licity and ZAMS mass of WDs, and we denote these parameters
by Ai, Di, Zi and Mi for i = 1, . . . , n, respectively. Because we
are primarily interested in WD ages, we group the other stellar pa-
rameters into �i = (Di, Zi, Mi). Finally to simplify notation, we
write X = (X i , . . . , Xn), A = (A1, . . . , An) and � = (�1, . . . ,�n).
Here we review a case-by-case analysis method for WDs and de-
velop convenient approaches to obtain the hierarchical modelling
fits with improved statistical properties.

3.1 Existing case-by-case analysis

The public-domain Bayesian software suite, Bayesian Analy-
sis of Stellar Evolution with 9 parameters (BASE-9), allows one
to precisely estimate cluster parameters based on photometry
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Table 1. Distributions used to simulate the parameter values.

Parameters Distributions

log10(age) N(γ = 10.09, τ ) truncated between 9.7 and
10.17

Distance modulus N(4.0, 2.52) truncated to interval (2.7, 5.7),
i.e. 34–138 pc

Metallicity N(−1.5, 0.02)
Mass log10(Mass) ∼ N(−1.02, 0.677 29) truncated

to (0.8, 3.0)

(von Hippel et al. 2006; DeGennaro et al. 2009; van Dyk et al. 2009).
We have applied BASE-9 to key open clusters (DeGennaro et al. 2009;
Jeffery et al. 2011; Hills et al. 2015), extended BASE-9 to study mass-
loss from the main sequence through the WD stage, the so-called
IFMR (Stein et al. 2013), and have demonstrated that BASE-9 can
derive the complex posterior age distributions for individual field
WD stars (O’Malley et al. 2013).

In this paper, we focus on the development of BASE-9 for fitting
the parameters of individual WD stars. BASE-9 employs a Bayesian
approach to fit parameters. The statistical model underlying BASE-9
relates a WD’s photometry to its parameters,

X i |Ai, �i ∼ Nl(G(Ai, �i), �i), (7)

where Nl represents an l-variate Gaussian distribution and G(·) rep-
resents the underlying astrophysical models that predict a star’s
photometric magnitudes as a function of its parameters. Specifi-
cally G combines models for the main sequence through red giant
branch (e.g. Dotter et al. 2008) and the subsequent WD evolu-
tion (e.g. Bergeron, Wesemael & Beauchamp 1995; Montgomery
et al. 1999).

The Bayesian approach employed by BASE-9 requires a joint prior
density on (Ai, �i) for each WD. We assume that this prior can be
factored into

p(Ai, �i) = p(Ai |μAi
, σAi

)p(Di |μDi
, σDi

)

× p(Zi |μZi
, σZi

)p(Mi), (8)

where the individual prior distributions on age, distance modulus
and metallicity p(Ai |μAi

, σAi
), p(Di |μDi

, σDi
) and p(Zi |μZi

, σZi
)

are normal densities each with its own prior mean (i.e. μAi
, μDi

and
μZi

) and standard deviation (i.e. σAi
, σDi

and σZi
). When possible,

these prior distributions are specified using external studies. The
prior on the mass Mi is specified as the initial mass function (IMF)
taken from Miller & Scalo (1979), i.e. log10(Mi) ∼ N(μ = −1.02,
σ = 0.677 29). BASE-9 deploys an MCMC sampler to separately
obtain an MCMC sample from each of the WD’s joint posterior
distributions,

p(Ai, �i |X i) ∝ p(X i |Ai, �i)p(Ai |μAi
, σAi

)

× p(Di |μDi
, σDi

)p(Zi |μZi
, σZi

)p(Mi). (9)

In this manner, we can obtain case-by-case fits of Ai and �i for
each WD using BASE-9.

In this paper for both the case-by-case and the hierarchical anal-
ysis, we obtain MCMC samples for most of the parameters. After
we obtain a reasonable MCMC sample for Ai, �i , i = 1, . . . , n,
we estimate these quantities and their 1σ error bars using the means
and standard deviations of their MCMC samples, respectively. For
example, letting A

(s)
i , s = 1, . . . , S be an MCMC sample for Ai of

size S, after suitable burn-in (DeGennaro et al. 2009), the posterior
mean and standard deviation of Ai are approximated by

Âi =
S∑

s=1

A
(s)
i /S, (10)

σ̂Ai
=

√√√√ S∑
s=1

(A(s)
i − Âi)2/(S − 1). (11)

When the posterior distribution of the parameter Ai is highly asym-
metric, its posterior mean and 1σ error bar may not be a good
representation of the posterior distribution. In this case, we might
instead compute the 68.3 per cent posterior interval of Ai as the
range between the 15.87 per cent and 84.13 per cent quantiles of
the MCMC sample.

3.2 Hierarchical modelling of a group of WDs

In this section, we embed the model in equation (7) into a hierar-
chical model for a sample of halo WDs,

X i |Ai, �i ∼ Nl(G(Ai, �i),�i),

Ai ∼ N (γ, τ ). (12)

In this hierarchical model, Ai, Di, Zi and Mi are the object-level
parameters, while γ and τ are population-level parameters, the mean
and standard deviation of the log10(age) of WDs in the Galactic
halo. The assumption of a common population incorporating an
age constraint is the source of the statistical shrinkage that we
illustrate below. For the prior distributions of each �i , we take
the same strategy as in the case-by-case analysis in equation (8).
For the population-level parameters γ and τ , we again choose the
uninformative prior distribution, i.e. p(γ , τ ) ∝ 1. The joint posterior
distribution for parameters in the hierarchical model is

p(γ, τ, A, �|X) ∝ p(γ, τ )
n∏

i=1

p(X i |Ai, �i)p(Ai |γ, τ )

× p(Di |μDi
, σDi

)p(Zi |μZi
, σZi

)p(Mi). (13)

3.2.1 FB method

The FB approach obtains an MCMC sample from the joint posterior
distribution in equation (13). Here we employ a two-stage algorithm

Table 2. Comparing the statistical properties of the various shrinkage and case-by-case estimates under five simulated settings.

EB EB-log EB-inv FB Case-by-case
Simulation settings MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

I: τ = 0.05,� = �0 0.028 0.038 0.029 0.042 0.033 0.052 0.032 0.047 0.084 0.18
II: τ = 0.03,� = 0.82�0 0.024 0.035 0.025 0.038 0.027 0.044 0.025 0.041 0.086 0.19
III: τ = 0.03,� = 1.22�0 0.023 0.031 0.024 0.034 0.026 0.037 0.025 0.035 0.099 0.20
IV: τ = 0.06,� = 0.82�0 0.038 0.063 0.038 0.070 0.040 0.074 0.034 0.049 0.12 0.26
V: τ = 0.06,� = 1.22�0 0.033 0.046 0.032 0.044 0.032 0.045 0.032 0.044 0.10 0.22
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(Si et al., in preparation) to obtain the FB results. This algorithm
takes advantage of the case-by-case samples in Section 3.1 and is
easy to implement. A summary of the computational details of FB
appears in Appendix C.

3.2.2 EB method

We also illustrate how to fit the hierarchical model in equation
(12) with EB. First, the joint posterior distribution for γ and τ is
calculated as

p(γ, τ |X) =
∫

· · ·
∫

p(γ, τ, A, �|X)dAd�. (14)

The integration in equation (14) is 4 × n dimensional, which is
computationally challenging. To tackle this, we use the Monte Carlo
expectation-maximization (MCEM) algorithm (see e.g. Dempster,
Laird & Rubin 1977; Wei & Tanner 1990) to find the MAP estimates
of γ and τ . To avoid estimating τ as zero when its (profile) poste-
rior distribution is highly skewed (e.g. Park et al. 2008), we again
implement EB-log (ξ = log τ ) or EB-inv (δ = 1/τ ). For EB-log,
the joint posterior distribution of γ and ξ equals

p(γ, exp(ξ )|X) exp(ξ ),

where p(·|X) is the joint posterior distribution of γ and τ . The
EB-log method proceeds in two steps.
Step 1. Deploy MCEM to obtain the MAP estimates of γ and ξ ,
and transform to γ and τ , i.e.

(γ̂ , τ̂ ) = arg max
γ,τ

p(γ, τ |X)τ. (15)

For details of MCEM in this setting, see Appendix D.
Step 2. For WD i = 1, . . . , n, we obtain an MCMC sample from

p(Ai, �i |X i , γ̂ , τ̂ ) ∝ p(X i |Ai, �i)p(�i)p(Ai |γ̂ , τ̂ )

using BASE-9.
EB-inv proceeds in a similar manner, but with equation (15) replaced
with

(γ̂ , τ̂ ) = arg max
γ,τ

p(γ, τ |X)τ 2,

where p(·|X) is again the posterior distribution of γ and τ .

4 SI M U L ATI O N ST U DY

To illustrate the performance of the various estimators of the object-
level WD ages and the population-level parameters γ and τ , we
perform a set of simulation studies. Because the relative advantage
of the shrinkage estimates compared with the case-by-case estimates
depends both on the precision of the case-by-case estimates and the
degree of heterogeneity of the object-level parameters, we repeat
the simulation study under five scenarios, each with different values
of observation error matrix � and population standard deviation of
log10(age), i.e. of τ . We simulate the parameters {Ai, Di, Ti, Mi, i = 1,
2, . . . , N1} for each group of WDs from the distributions in Table 1,
where γ = 10.09 (12.30 Gyr) is the population mean and τ varies
among the simulation settings given in Table 2. For consistency
with the data analyses in Section 5, we simulate u, g, r, i, z, J, H, K
magnitudes for all WDs. Using BASE-9 for each setting, we simulate
N2 = 25 replicate data sets, each composed of N1 = 10 halo WDs.
For each WD in every group, we generate its log10(age), distance
modulus, metallicity and mass from distributions in Table 1, where τ

is given in Table 2. The particular values and truncations in Tables 1

and 2 are chosen because they reflect plausible values for actual
halo WDs.

We compute the empirical standard error for each simulated mag-
nitude by averaging the errors from the observed halo WDs in
Section 5, and we denote by �0 the variance matrix of observed
magnitudes, i.e. the square of empirical standard errors for all eight
magnitudes. Specifically, �0 is a diagonal matrix with diagonal
elements equal to (0.3042, 0.0922, 0.0272, 0.0262, 0.0682, 0.0622,
0.0862, 0.0832).

For simplicity in each setting, all stars share the same diagonal
observation variance, that is each �i = �, i = 1, 2, . . . , N1. The
observation error variances for five simulation settings are described
in terms of �0 in Table 2. In the entire simulation study, we employ
the Dotter et al. (2008) WD precursor models, Renedo et al. (2010)
WD interior models, Bergeron et al. (1995) WD atmospheres and
Williams, Bolte & Koester (2009) IFMR.

Subsequently, we recover parameters with multiple approaches:
EB, EB-log, EB-inv, FB and the case-by-case analysis. We spec-
ify non-informative broad prior distributions on each �i , namely
Di ∼ N(4.0, 2.42), Zi ∼ N(−1.5, 0.52) and log10(Mi) ∼ N(−1.02,
0.677 29). The case-by-case analyses require a prior distribution
on each Ai and we use p(Ai) ∝ 1. The hierarchical model in equa-
tion (12) requires priors on γ and τ , and we again use p(γ , τ ) ∝ 1. We
compare the case-by-case estimates with shrinkage estimates based
on the hierarchical model. Results from the case-by-case analyses
[obtained by fitting the model in equation (7)] are indicated with a
superscript I (for ‘individual’) and those from hierarchical analyses
[obtained by fitting to model in equation (12)] are indicated with
an H.

We denote log10(age) of the ith simulated WD in the jth replicate
group by Aij. Using both the case-by-case and hierarchical analyses,
we obtain MCMC samples of the parameters Aij, i = 1, 2, . . . , N1,
j = 1, 2, . . . , N2. We estimate Aij by taking the MCMC sample mean
as in equation (10) and denote the estimates based on case-by-case
and hierarchical analyses by ÂI

ij and ÂH
ij , respectively. We compute

the absolute value of the error2 of each estimator Âij as

error(Âij ) = |Âij − Aij |.
In our simulation study, we are mainly concerned with the difference
between absolute errors from shrinkage and case-by-case estimates

Diff(Aij ) = error(ÂI
ij ) − error(ÂH

ij )

= |ÂI
ij − Aij | − |ÂH

ij − Aij |,
which compares the prediction accuracy of the two methods. If
Diff(Aij) ≥ 0, then the absolute deviation of the case-by-case esti-
mate of star Aij is greater than that of the shrinkage estimate.

Fig. 1 compares the performance of shrinkage estimates under
simulated setting I (τ = 0.05, � = �0). The corresponding sum-
mary plots for the other simulation settings are similar and appear in
Figs 6–9 (the online supplement). The histograms in Fig. 1 demon-
strate that the estimates of γ and τ are generally close to their true
values (thick dashed red lines). Under all five settings, however,
for some replicate groups of halo WDs, EB produces estimates of
τ equal to 0, see the first row, middle panel of Fig. 1. (This phe-
nomenon is fully discussed in Appendix B and Fig. B1.) In these
cases, the shrinkage estimates of the age of each WD in these are
equal, which potentially leads to large errors. As we mentioned in
Section 3.2.2, this highlights a difficulty with EB, and demonstrates

2 We use this term to refer to the absolute value of the error.
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Hierarchically modelling the ages of WDs 4379

Figure 1. Results for simulated setting I, with τ = 0.05 [standard deviation of log10(age)] and 	 = 	0 (photometric error variances). The rows correspond
to various fitting methods: EB, EB-log, EB-inv and FB, respectively. Each row includes (i) a histogram of the fitted values of γ̂ across the N2 = 25 simulation
replicates, (ii) a histogram of τ̂ and (iii) a comparison of the difference in absolute errors in the fitted WD ages obtained with the case-by-case analysis versus
each of the hierarchical methods. The thick dashed red lines in each histogram indicate the true values of γ or τ . In the rightmost column, positive vertical
values indicate larger error for the case-by-case fit and the thin horizontal lines correspond to equal errors for the two methods. Figs 6–9 for simulated settings
II–V are shown in the online supplementary material.

the need for the transformed EB-log or EB-inv. Both of these ap-
proaches produce similar results to EB, but avoid the possibility of
τ̂ = 0. The third column in Fig. 1 shows the scatter plot of Diff(Aij)
against Aij, i = 1, 2, . . . , N1, j = 1, 2, . . . , N2. Because most of the
scatter in these plots is above the solid red zero line, the estimates of

log10(age) from the case-by-case analyses tend to be further from
the true values than the shrinkage estimates. Approximately two
thirds of the N1 × N2 simulated stars in each setting are better esti-
mated with the shrinkage method than the case-by-case fit. For stars
below the red solid lines, nominally the case-by-case fit is better,
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4380 S. Si et al.

Table 3. The percentage of WDs with improved age estimates.

Simulation settings EB EB-log EB-inv FB
(per cent) (per cent) (per cent) (per cent)

τ = 0.05 � = �0 65.6 69.6 68.8 66.8
τ = 0.03 � = 0.82�0 74.4 72.8 76.4 73.2

� = 1.22�0 67.6 69.6 70.4 72.8
τ = 0.06 � = 0.82�0 65.6 67.6 68.0 64.4

� = 1.22�0 60.4 64.0 66.8 63.2

but the advantage is small. In fact, for almost all simulated stars,
Diff(Aij ) = error(AI

ij ) − error(AH
ij ) > −0.1, so the shrinkage esti-

mates do not perform much worse than case-by-case estimates for
any WD and often perform much better. For some stars, we have
Diff(Aij) > 0.5. From the point of view of reliability of the tech-
nique, it is comforting that the four hierarchical fits (EB, EB-log,
EB-inv, FB) perform similarly, at least when τ̂ > 0 for EB.

Table 2 presents a numerical comparison of the shrinkage and
case-by-case estimates of log10(age). Specifically, it presents the
average mean absolute error (MAE) and the average root of the
mean squared error (RMSE) for each method, i.e.

MAE(A) = 1

N1 · N2

N2∑
j=1

N1∑
i=1

|Âij − Aij |,

RMSE(A) =
√√√√ 1

N1 · N2

N2∑
j=1

N1∑
i=1

(Âij − Aij )2.

Both MAE and RMSE measure the distance between the true values
and their estimates. Smaller MAE and RMSE indicate that the
estimate is more accurate. Table 2 summarizes the performance of
different estimators under the five simulated settings. In terms of
MAE and RMSE, all four shrinkage estimates (EB, EB-log, EB-inv,
FB) are significantly better than the case-by-case estimates, though
there are slight differences among the four shrinkage estimates.
Table 3 reports the percentage of simulated WDs that are better
estimated by shrinkage methods than the case-by-case fits for each
of the four statistical approaches and each of the five simulation
settings. We conclude that 60 per cent–75 per cent of simulated stars
have a more reliable age estimate from the hierarchical analyses than
from the case-by-case analyses.

From Tables 2 and 3, we conclude that shrinkage estimates from
both EB-type and FB approaches outperform the case-by-case anal-
yses in terms of smaller RMSE and MAE. Under the five simulated
settings, all four computational methods, EB, EB-log, EB-inv and
FB, behave similarly. Their MAEs and RMSEs are comparable.
Also, the percentages of better estimated WDs from these four ap-
proaches are consistent.

Simulation setting III (τ = 0.03, � = 1.22�0) benefits most
from the shrinkage estimates in terms of reduced RMSE. The
RMSE from the case-by-case fits under simulation setting III
is approximately 0.20, while the RMSE from the EB is around
0.031, less than one sixth of the former. Simulation setting IV
(τ = 0.06, � = 0.82�0) gains the least from the shrinkage esti-
mates; the RMSE of EB (0.063) is about a quarter of the RMSE
of case-by-case (0.26). Generally, when 	 is large and τ is small,
the advantage of shrinkage estimates is the greatest. With small
	 and large τ , the advantage of shrinkage estimates over case-by-
case estimates decreases. This is consistent with statistical theory
(see Gelman et al. 2014, chapter 5). Generally speaking, using EB-
log rather than EB to avoid a fitted variance of zero. In terms of

Table 4. Prior distributions for distance moduli and atmosphere composi-
tion for halo WD sample

WD Distance modulus Comp. Reference
(V − MV)

J0301−0044 N(4.35, 0.2)a He Paper IIId

J0346+246 N(2.24, 0.33)a H Paper IIc

J0822+3903 N(5.19, 2.4) H Paper IVe

J1024+4920 N(5.54, 2.4) He Paper IVe

J1102+4113 N(2.64, 0.13)a H Paper IIc

J1107+4855 N(3.41, 0.19)a H Paper IIId

J1205+5502 N(5.04, 2.4) He Paper IVe

J2137+1050 N(4.46, 2.4) H Paper Ib

J2145+1106N N(4.19, 2.4) H Paper Ib

J2145+1106S N(4.23, 2.4) H Paper Ib

Notes. aPrecise distance moduli are from trigonometric parallax measure-
ments.
bPaper I is Kilic et al. (2010).
cPaper II is Kilic et al. (2012).
dPaper III is Gianninas et al. (2015).
ePaper IV is Dame et al. (2016).

computational investment, the FB algorithm is less time-consuming
than all of our EB algorithms.

5 A NA LY S I S O F A G RO U P O F C A N D I DAT E
H A L O W D S

Now we turn to the hierarchical and case-by-case analysis of the
10 field WDs from the Galactic halo listed in Table 4. In the entire
analysis, we employ the Dotter et al. (2008) WD precursor models,
Renedo et al. (2010) WD interior models, Bergeron et al. (1995)
WD atmospheres and Williams et al. (2009) IFMR.

We acquire prior densities on Mi, Di, and Zi, i = 1, . . . , 10 from
the literature (Kilic et al. 2010, 2012; Gianninas et al. 2015; Dame
et al. 2016). The atmospheric compositions and priors on distance
moduli for these 10 stars are listed in Table 4. We use a ZAMS mass
prior IMF from Miller & Scalo (1979) on Mi and a diffuse prior on
metallicity Zi ∼ N(−1.50, 0.5). In this paper, we do not leave the
WD core composition as a free parameter, but instead, we use the
WD cooling model derived from the work of Renedo et al. (2010).

For the case-by-case fitting of each WD, we employ a minimally
informative flat prior on Ai, specifically Ai ∼ Unif(8.4, 10.176 09).

5.1 Case-by-case analysis

We derive the joint posterior density for the parameters using Bayes’
theorem:

p(Ai, Di, Zi,Mi |X i)

∝ p(X i |Ai,Di, Zi, Mi)p(Ai)p(Di)p(Zi)p(Mi). (16)

Before specifying a hierarchical modelling for the 10 WDs, we ob-
tain their case-by-case fits using BASE-9 (as in O’Malley et al. 2013).
By using the priors in Table 4 and as described above, we fit each of
10 halo WDs individually with BASE-9. We present results for five
typical stars in Fig. 2.

Each column in Fig. 2 corresponds to one WD. The rows provide
different two-dimensional projections of the posterior distributions.
The asymmetric errors in the fitted parameters, including age, are
evident. The first row illustrates that the correlation between the
metallicity and age for these five WDs is weak. In the second row,
the distance and age of WDs have a strong positive correlation for
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Hierarchically modelling the ages of WDs 4381

Figure 2. Case-by-case results: projections of the joint posterior distributions on to the two-dimensional planes of (from top to bottom) age–metallicity,
age–distance, age–ZAMS mass and distance–ZAMS mass for five of the Galactic halo WDs (columns).

ages less than 10 Gyr. However, this pattern generally disappears
for ages greater than 10 Gyr. From the third and fourth rows, the
ZAMS mass displays a clear negative correlation with both age and
distance.

The plot shows that the range of possible ages for these five stars
is large, from 8 to 15 Gyr. Assuming that each of these 10 WDs is a
bona fide Galactic halo member, we expect their ages to be similar.
However, their masses, distance moduli and metallicities may vary
substantially. In this situation, it is sensible to deploy hierarchical
modelling on the ages of these 10 WDs, which provides substantial
additional information.

5.2 Hierarchical analysis

Here we deploy both EB-log and FB to obtain fits of the hierarchical
model in equation (12) based on 10 candidate Galactic halo WDs.
In Fig. 3, we compare the posterior density distributions of the age
of each WD obtained with the case-by-case method and with that
obtained with both EB-log and FB.

Fig. 3 demonstrates that the posterior distributions of the ages
under the hierarchical model – both EB-log and FB – peak near a
sensible halo age, whereas the case-by-case estimates (solid lines)
disperse over a much wider range. Both EB-log and FB estimates
are consistent, which we discuss further below.

The photometric errors of these 10 WDs are close to 	0 in the
simulation study. So the data are similar to simulation setting I (τ =
0.07, � = �0). Hence, the advantage of the shrinkage estimates
over the case-by-case estimates shown in simulation setting I should
be predictive, and we expect that the hierarchical fits (dotted lines)
in Fig. 3 are better estimates of the true ages of these halo WDs.

Table 5 and Fig. 4 summarize the estimated ages. The
68.3 per cent posterior intervals of ages of WDs from EB-log and
FB are generally narrower than those from the case-by-case analy-
ses, which means that shrinkage estimates (FB and EB-log) produce
more precise estimates. The fits and errors from EB-log and FB are
quite consistent.

In both BASE-9 and the hierarchical model (equation 12), the ages,
Ai, of stars are specified on the log10(Year) scale. Given an MCMC
sample from the posterior distribution of age on the log10(Year)
scale, we can obtain an MCMC sample on the age scale by
backwards transforming each value in the sample via

age = 10(Ai−9), (17)

where the units for age and log10(age) are Gyr and log10(Year),
respectively. For the population-level parameters γ and τ , however,
the transformation from the log10(Year) scale to the Gyr scale is
more complicated. Again, starting with the MCMC sample of γ and
τ , for each sampled pair, we (i) generate a Monte Carlo sample of Ai,
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4382 S. Si et al.

Figure 3. Comparison of the posterior distributions of ages of WDs obtained with the hierarchical analyses and with the case-by-case analysis. The left-hand
panel uses the FB approach to fit the hierarchical model, whereas the right-hand panel uses EB-log. Both hierarchical approaches give age estimates that are
more consistent with each other than with the case-by-case estimates.

Table 5. Estimates of the ages (in Gyr) of 10 candidate halo WDs.

WD name FB EB-log Case-by-case
Mean Posterior interval Mean Posterior interval Mean Posterior interval

J0301−0044 11.97 (10.26, 13.65) 11.85 (10.24, 13.5) 11.84 (9.6, 14)
J0346+246 10.68 (9.24, 12.97) 9.92 (9.18, 10.56) 10.23 (9.07, 10.88)
J0822+3903 11.33 (10, 12.91) 11.12 (9.97, 12.43) 11.1 (9.81, 12.74)
J1024+4920 10.65 (8.57, 12.5) 10.55 (8.98, 11.9) 8.94 (7.43, 10.9)
J1102+4113 13.41 (12.74, 14.23) 13.41 (12.74, 14.22) 13.64 (12.84, 14.53)
J1107+4855 10.4 (8.82, 12.48) 10.07 (8.83, 11.51) 9.46 (8.53, 10.35)
J1205+5502 10.89 (8.78, 13.01) 10.67 (8.88, 12.45) 9.77 (8.22, 11.83)
J2137+1050 13.47 (12.93, 14.08) 13.46 (12.91, 14.06) 13.63 (13.03, 14.35)
J2145+1106N 13.25 (12.74, 13.84) 13.24 (12.73, 13.81) 13.4 (12.8, 14.15)
J2145+1106S 11.68 (10.87, 12.71) 11.54 (10.83, 12.37) 11.65 (10.84, 12.64)

(ii) transform this sample to the Gyr scale as in equation (17), and
(iii) compute the mean and standard deviation of the transformed
Monte Carlo sample. Histograms of the resulting sample from the
posterior distribution of the mean and standard deviation of the age
on the Gyr scale appear in Fig. 5.

We present estimates of the population distribution of the age
of Galactic halo WDs in Table 6, on both the Gyr and log10(Year)
scales. In the first two rows, we report the 68.3 per cent posterior
intervals for the mean (γ ) and standard deviation (τ ) of the distri-
bution of ages of halo WDs, 12.11+0.85

−0.86 Gyr and 1.18+0.57
−0.62 Gyr, re-

spectively. The point estimates of the population mean (11.43 Gyr)
and standard deviation (1.86 Gyr) from EB-log are quite consis-
tent with results of FB. EB-log does not directly provide error esti-
mates for the population mean and standard deviation, but bootstrap
techniques (Efron 1979) could be used. We do not pursue this here,
because it is computationally expensive and uncertainties are pro-
vided by FB.

In Table 6, we also report the 68.3 per cent predictive intervals
of the age distribution from FB and EB-log, which summarizes
the underlying distribution of halo WD ages. These are our es-
timates of an interval that contains the ages of 68.3 per cent of
halo WDs. From FB, the 68.3 per cent predictive interval for the

distribution of halo WD ages is 12.11+1.40
−1.53 Gyr. In other words, we

predict that 68.3 per cent of WDs in the Galactic halo have ages
between 10.58 and 13.51 Gyr. The 68.3 per cent predictive interval
from EB-log is 11.43 ± 1.86 Gyr, slightly broader than that from
the FB.

In summary, our hierarchical method finds that the Galactic halo
has a mean age of 12.11+0.85

−0.86 Gyr. Furthermore, the halo appears
to have a measurable age spread with standard deviation 1.18+0.57

−0.62

Gyr. This result is preliminary as we await Gaia parallaxes to tightly
constrain distances, which constrains both ages and stellar space
motions. If one or a few of these WDs have anomalous atmospheres,
are unresolved binaries or are not true halo members, including them
in this hierarchical analysis could artificially increase the estimated
halo age spread.

Our mean halo age estimate is consistent with other WD-based
age measurements for the Galactic halo. For halo field WDs, these
estimates are 11.4 ± 0.7 Gyr (Kalirai 2012), 11–11.5 Gyr (Kilic
et al. 2012) and 10.5+2.0

−1.5 (Kilic et al. 2017). Although broadly con-
sistent, these studies all use somewhat different techniques. The
study of Kalirai (2012) relies on spectroscopic determinations of
field and globular cluster WDs. The Kilic et al. (2012) analysis
depends on photometry and trigonometric parallaxes, as does our
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Hierarchically modelling the ages of WDs 4383

Figure 4. The EB-log, FB and case-by-case estimates of the ages of the
10 candidate halo WDs. The interval estimates are central 68.3 per cent
posterior intervals of the posterior distributions. The dashed, solid and dotted
intervals are computed from FB, case-by-case and EB-log, respectively. The
triangle, circle and cross signs are the posterior means of the ages for each
approach. The hierarchical age estimates of J1205+5502 and J1024+4920
in particular are shrunk towards the age estimates of the other WDs.

work, yet at that point only two halo WDs were available for their
study. The Kilic et al. (2017) study is based on the halo WD lu-
minosity function isolated by Munn et al. (2017). Although this
sample contains 135 likely halo WDs, there are as yet no trigono-
metric parallaxes or spectroscopy to independently constrain their
masses. Thus, all of these samples suffer some defects, and it is
comforting to see that different approaches to these different halo
WD data sets yield consistent halo ages.

Another comparison to the field WD halo age is the WD age
of those globular clusters that have halo properties. Three globular
clusters have been observed to sufficient depth to obtain their WD
ages, and two of these (M4 and NGC 6397) exhibit halo kinemat-
ics and abundances. The WD age of M4 is 11.6 ± 2 Gyr (Bedin
et al. 2009) and that age for NGC 6397 is 11.7 ± 0.3 Gyr (Hansen
et al. 2013). These halo ages for globular cluster stars are almost
identical to those for the halo field. If there is any problem with these
ages, it may only be that they are too young, at ∼2 Gyr younger
than the age of the Universe. At this point, we lack sufficient data
to determine whether this is a simple statistical error, with most
techniques having uncertainties in the range of 1 Gyr, or whether
there is a systematic error with the WD models or IFMR for these
stars, or whether these WD studies have simply failed to find the
oldest Galactic stars. Alternatively, as mentioned above, the field
halo age dispersion may really be of the order of ±2 Gyr, in which
case the halo field is sufficiently old, yet these globular clusters may
not be. We look forward to future results from Gaia and LSST that
should reduce the observational errors in WD studies substantially
while dramatically increasing sample size. This will allow us to pre-
cisely measure the age distribution of the Galactic halo and place
the globular cluster ages into this context.

6 C O N C L U S I O N

We propose the use of hierarchical modelling, fitted via EB and
FB to obtain shrinkage estimates of the object-level parameters
of a population of objects. We have developed novel computational
algorithms to fit hierarchical models even when the likelihood func-
tion is complicated. Our new algorithms are able to take advantage
of available case-by-case code, with substantial savings in software
development effort.

By applying hierarchical modelling to a group of 10 Galactic
halo WDs, we estimate that 68.3 per cent of Galactic halo WDs
have ages between 10.58 and 13.51 Gyr. This tight age constraint
from the photometry of only 10 halo WDs demonstrates the power
of our Bayesian hierarchical analysis. In the near future, we expect
not only better calibrated photometry for many more WDs, but also
to incorporate highly informative priors on distance and population

Figure 5. Histograms of MCMC samples from the posterior distribution of the mean and standard deviation of the population of halo WD ages on the Gyr
scale, obtained using FB fit to 10 candidate Galactic halo WDs.
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Table 6. The 68.3 per cent posterior/predictive intervals for the age of Galactic halo WDs

Items Units FB EB-log

Posterior interval for the mean age of halo WDs log10(Year) 10.07+0.03
−0.04 n.a.

Gyr 12.11+0.85
−0.86 n.a.

Posterior interval for the standard deviation of ages of halo WDs log10(Year) 0.05 ± 0.03 n.a.
Gyr 1.18+0.57

−0.62 n.a.
Predictive interval for the age distribution of halo WDsa log10(Year) 10.08 ± 0.05 10.06 ± 0.07

Gyr 12.11+1.40
−1.53 11.43 ± 1.86

Note. aThe 68.3 per cent predictive interval for the ages of WDs in the Galactic is an estimate of an interval that contains 68.3 per cent
of halo WD ages, taking account of uncertainties of both population-level parameters, γ and τ , and of the variability in the ages of halo
WDs.

membership from the Gaia satellite’s exquisite astrometry. We look
forward to using these WDs to fit our hierarchical model in order to
derive an accurate and precise Galactic halo age distribution.
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J. J., Canton P., Agüeros M. A., 2015, MNRAS, 449, 3966
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S U P P O RTI N G IN F O R M AT I O N

Supplementary data are available at MNRAS online.

Figure 6. Results for Simulated Setting II, with τ = 0.03 (stan-
dard deviation of log10(age)) and 	 = 0.82	0 (photometric error
variances).
Figure 7. Similar to Fig. 6, but for Simulated Setting III (τ = 0.03,
	 = 1.22	0).
Figure 8. Similar to Fig. 6, but for Simulated Setting IV (τ = 0.06,
	 = 0.82	0).
Figure 9. Similar to Fig. 6, but for Simulated Setting V (τ = 0.06,
	 = 1.22	0).
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A P P E N D I X A : SH R I N K AG E E S T I M AT E S

In this appendix, we discuss shrinkage estimates and their advan-
tages. Consider, for example, a Gaussian model,

Yi |θi ∼ N (θi, σ ), i = 1, 2, . . . , n, (A1)

where Y = (Y1, . . . , Yn) is a vector of independent observations of
each of n objects, θ = (θ1, . . . , θn) is the vector of object-level pa-
rameters of interest and σ is the known measurement error. A simple
technique to fit equation (A1) is to estimate each θ i individually,

θ̂ ind
i = Yi , i.e. θ̂

ind = Y , using only its corresponding data. If a pop-
ulation is believed to be homogeneous, however, we might suppose,
in the extreme case, that all of the objects have the same parameter,
θ1 = θ2 = ··· = θn. For example, one might suppose stars in a cluster
all have the same age. Under this assumption, the pooled estimate,

θ̂
pool
i = Ȳ = 1

n

∑
Yi , i.e. θ̂

pool = (Ȳ , . . . , Ȳ ), is appropriate.
The mean squared error (MSE) is a statistical quantity that can be

used to evaluate the quality of an estimator. As its name implies, it
measures the average of the squared deviation between the estimator

and true parameter value. Thus, the MSE of θ̂
ind

is

MSE(θ̂
ind

) = E

[
n∑

i=1

(θ̂ ind
i − θi)

2|θ
]

= nσ 2,

where E(·|θ ) is the conditional expectation function that assumes

that θ is fixed and here that θ̂
ind = Y varies according to the model

in equation (A1). It is well known in the statistics literature that

the individual estimators θ̂
ind

are inadmissible if n > 3. This means
that there is another estimator that has smaller MSE regardless
of the true values of θ or σ 2. In particular, the James–Stein esti-

mator of θ , θ̂
JS = (1 − B̂)θ̂

ind + B̂ θ̂
pool

, where S2 = ∑
(Yi − Ȳ )2/

(n − 1) and B̂ = (n − 3)σ 2/(n − 1)S2, is known to have smaller

MSE than θ̂
ind

if n > 3 (James & Stein 1961; Efron & Morris 1972;

Morris 1983).3 When n > 3, B̂ > 0 and the James–Stein estimator
of θ i is a weighted average of the individual estimates, θ̂ ind

i = Yi ,
and the pooled estimates, θ̂

pool
i = Ȳ . The James–Stein estimator is

an example of shrinkage estimators, which are estimates of a set of
object-level parameters that are ‘shrunk’ towards a common central
value relative to those derived from the corresponding case-by-case
analyses.

The population-level parameters that describe the distribution of
(θ1, . . . , θn) are often also of interest. Suppose we model the pop-
ulation by assuming that θ i follows a common normal distribution,
i.e. we extend the model in equation (A1) to

Yi |θi ∼ N (θi, σ ), i = 1, 2, . . . , n; (A2)

θi ∼ N (γ, τ 2), (A3)

where γ and τ are unknown population-level parameters. The model
in equations (A2) and (A3) is a hierarchical model and can be
fitted using EB (e.g. Morris 1983; Efron 1996). We choose the
non-informative, p(γ , τ ) ∝ 1, which is a standard choice in this
setting (e.g. Gelman 2006a). The EB approach is Bayesian in that it
views equation (A3) as a prior distribution and is empirical in that
the parameters of this prior are fitted to the data. Specifically, EB
proceeds by first deriving the marginal posterior distribution of γ

and τ 2,

p(γ, τ 2|Y ) = p(γ, τ 2)
n∏

i=1

∫
p(Yi |θi)p(θi |γ, τ 2)dθi, (A4)

and then estimating γ and τ 2 with the values that maximize equation

(A4). These estimates are γ̂ = Ȳ and τ̂ 2 = max

{ ∑ n
i=1(Yi−Ȳ )2

n+1 −

σ 2, 0

}
. [Even with the normal assumptions in equations (A2) and

(A3), closed form estimates of γ and τ 2 are available only under
the simplifying assumption that the measurement errors for each
Yi are the same, i.e. σ 2

1 = σ 2
2 = · · · = σ 2

n .] Finally, the posterior
distribution of θ i can be expressed as

p(θi |Yi, γ̂ , τ̂ 2) ∝ p(Yi |θi)p(θi |γ̂ , τ̂ 2). (A5)

Each θ i can be estimated with its posterior mean under equa-
tion (A5). Under certain conditions, EB is consistent with James–
Stein estimators (e.g. Morris 1983). EB can produce estimators
having the same advantages as James–Stein, and it is readily able
to handle more complicated problems whereas James–Stein would
require model-specific derivation of MSE-reducing estimators.

A P P E N D I X B : L A R G E MAG E L L A N I C C L O U D

We illustrate the construction and fitting of hierarchical models and
the advantages of shrinkage estimates through an illustrative appli-
cation to data used to estimate the distance to the LMC. The LMC

3 It can be shown that the MSE of θ̂
JS

is

E

[
n∑

i=1

(θ̂ JS
i − θi )

2|θ
]

= nσ 2 − σ 2(n − 3)E(B̂)

< nσ 2 = E

[
n∑

i=1

(θ̂ ind
i − θi )

2|θ
]
,

which shows the advantage of James–Stein estimator in terms of MSE over
the individual estimator when n > 3.
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Table B1. Population I distance indicators.

Method Reported distance modulus References

Cepheids: trig. paral. 18.70 ± 0.16 Feast & Catchpole (1997)
Cepheids: MS fitting 18.55 ± 0.06 Laney & Stobie (1994)
Cepheids: B-W 18.55 ± 0.10 Gieren, Fouqué & Gómez (1998); Di Benedetto (1997)
Cepheids: P/L relation 18.575 ± 0.2 Groenewegen (2000)
Eclipsing binaries 18.4 ± 0.1 Fitzpatrick et al. (2002)
Clump 18.42 ± 0.07 Clementini et al. (2003)
Clump 18.45 ± 0.07 Clementini et al. (2003)
Clump 18.59 ± 0.09 Romaniello et al. (2000)
Clump 18.471 ± 0.12 Pietrzyński & Gieren (2002)
Clump 18.54 ± 0.10 Sarajedini et al. (2002)
Miras 18.54 ± 0.18 van Leeuwen et al. (1997)
Miras 18.54 ± 0.14 Feast (2000)
SN 1987a 18.54 ± 0.05 Panagia (1998)

Figure B1. The profile posterior distribution of τ (left-hand panel) and of ξ = ln τ (right-hand panel). The modal estimate of τ is zero and is less representative
of the distribution than is the modal estimate of ξ .

is a satellite galaxy of the Milky Way. Numerous estimates based on
various data sources have been made of the distance modulus to the
LMC. The population of stars used affects the estimated distance
modulus. Estimates based on Population I tend to be larger than
those based on Population II stars. We use a set of estimates based
on Population I stars, and formulate a hierarchical model for these
estimates in order to develop a comprehensive estimate. We use the
data in Table B1, which was compiled by Clementini et al. (2003).

Besides statistical errors, the various distance estimates may be
subject to systematic errors. We aim to estimate the magnitude of
these systematic errors. If we further assume that the systematic
errors tend to average out among the various estimators, we can
obtain a better comprehensive estimator of the distance modulus.
Let μi be the best estimate of the distance modulus that could
be obtained with method i, i.e. with an arbitrarily large data set.
Because of systematic errors, μi does not equal the true distance
modulus, but is free of statistical error.

Consider the statistical model,

Di ∼ N (μi, σi), i = 1, . . . , 13, (B1)

μi ∼ N (γ, τ ), (B2)

where Di is the actual estimated distance modulus based on the
method/data set i including statistical error, σ i is the known standard
deviation of the statistical error, γ is the true distance modulus of
the LMC and τ is the standard deviation of the systematic errors
of the various estimates. Equation (B2) specifies our assumption
that the systematic errors tend to average out. We denote D =
(D1, . . . , D13) and μ = (μ1, . . . , μ13).

We take an EB approach to fitting the hierarchical model in equa-
tions (B1) and (B2). This involves first estimating the population-
level parameters γ and τ and then plugging these estimates in
equation (B2) and using it as the prior distribution for each μi.
Finally, the individual μi are estimated with their posterior ex-
pectations, E(μi |D, γ̂ , τ̂ ), and their posterior standard deviations,
SD(μi |D, γ̂ , τ̂ ), are used as 1σ uncertainties. Our EB approach
requires a prior distribution for γ and τ . We choose the standard
non-informative prior, p(γ , τ ) ∝ 1, in this setting.

We estimate γ and τ by maximizing their joint posterior density,

p(γ, τ |D) ∝
∫

p(τ, γ, μ|D)dμ

= p(γ, τ )
13∏
i=1

∫
p(Di |μi)p(μi |γ, τ )dμi. (B3)
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Hierarchically modelling the ages of WDs 4387

Figure B2. Posterior density distributions of the LMC distance modulus
based on hierarchical fitting (red dashed lines) and based on the case-by-
case analysis (blue solid lines). Those based on hierarchical fitting shrink
towards the centre relative to those based on the case-by-case analysis.

The values of γ and τ that maximize equation (B3) are known as
maximum a posterior (MAP) estimates. For any τ , equation (B3) is
maximized with respect to γ by

γ̂ (τ ) =
∑13

i=1 Di/(τ 2 + σ 2
i )∑13

i=1 1/(τ 2 + σ 2
i )

, (B4)

where γ̂ (τ ) is a function of τ . The profile posterior density of τ is ob-
tained by evaluating equation (B3) at γ̂ (τ ) and τ , i.e. p(γ̂ (τ ), τ |D).
The global maximizer of the profile posterior distribution is the
MAP estimate of τ and must be obtained numerically.

As shown in the left-hand panel of Fig. B1, the profile posterior
density of τ monotonically decreases from its peak at 0, which

means that the MAP estimator of τ is 0, a poor summary of the
profile posterior. This is because 0 is the lower boundary of the
possible values of τ . A better estimate can be obtained using a
transformation of the population standard deviation, specifically,
ξ = ln τ . The joint posterior of γ and ξ can be expressed as

p(γ, ξ |D) = p(γ, exp(ξ )|D) exp(ξ ),

where p(·|D) is the posterior distribution of γ and τ . The profile
posterior of ξ is plotted in the right-hand panel of Fig. B1, is more
symmetric and is better summarized by its mode. After having
estimated ξ with its MAP estimate, we compute τ̂ = exp(ξ̂ ) and
γ̂ = γ (τ̂ ). See Park et al. (2008) for a discussion of transforming
parameters to achieve approximate symmetry in the case of mode-
based estimates.

Plugging γ̂ and τ̂ into the prior for μi given in equation (B2), we
can compute the posterior distribution of each μi as

p(μ|D, γ̂ , τ̂ 2) ∝
13∏
i=1

p(Di |μi)p(μi |γ̂ , τ̂ ).

Fig. B2 shows the hierarchical and case-by-case posterior distribu-
tions of the individual estimates, μi. The hierarchical results (dashed
red lines) are shrunk towards the centre relative to the case-by-case
results (blue solid lines). The case-by-case density functions of μi

range from 18.0 to 19.2, whereas the hierarchical posterior density
functions are more precise, ranging from 18.3 to 18.7. This is an
example of the shrinkage of the case-by-case fits towards their av-
erage that occurs when fitting a hierarchical model. We can also see
this effect in the posterior means,

E(μi |τ, D) = γ̂ (τ )/τ 2 + Di/σ
2
i

1/τ 2 + 1/σ 2
i

, (B5)

which are weighted averages of the case-by-case estimates, Di, and
the combined (MAP) estimate of the distance modulus, given in
equation (B4). The MAP estimate of the distance modulus is γ̂ =
18.525 and the standard deviation of the systematic errors is τ̂ =
0.045 and the distance modulus is γ̂ = γ (τ̂ ) = 18.525. We compute

Figure B3. Conditional posterior means of distance modulus E(μi |τ, D), as a function of the standard deviation of the systematic errors τ . The red dashed
line indicates our estimate τ̂ = 0.045. The 13 solid round dots of different colours show the hierarchical estimates of the distance modulus to the LMC using
various methods, whereas the plus signs are estimates from the case-by-case analyses. (Plus signs and round dots of the same colour correspond to the same
published result; see Table B1.)
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τ̂ via the MAP estimate of ξ as described above. It measures the
extent of heterogeneity between 13 different published results. To
compute the uncertainty of γ̂ , we generate 200 bootstrap samples
(Efron 1979) of D, and for each we compute the MAP estimate for
γ , resulting in 200 bootstrap estimates of γ with standard deviation
0.024. Thus, our estimate of γ , the distance modulus of LMC, is
18.53 ± 0.024, that is, 50.72 ± 0.56 kpc.

For illustration, in Fig. B3, we plot the posterior expectation
E(μi |τ, D) of each of the best estimates of the distance moduli
from each method as a function of τ as 13 coloured lines. The black
solid line is the MAP estimate γ̂ (τ ) plotted as a function of τ . When
τ is close to zero, the conditional posterior means of each μi shrink

towards the overall weighted mean γ̂ (0) =
∑

Di/σ
2
i

1/σ 2
i

. The τ = 0 case

corresponds to no systematic error and relatively large statistical er-
ror. As τ becomes larger, the conditional posterior means approach
the case-by-case estimators of the distance moduli marked by plus
signs at the far right in Fig. B3. The red dashed vertical line in-
dicates our estimate of τ and intersects the coloured curves at the
hierarchical estimates of each μi. Fig. B3 shows how the hierarchi-
cal fit reduces to the case-by-case analyses as the variance of the
systematic errors goes to infinity. We include Fig. B3 to illustrate
the ‘shrinkage’ of the estimates produced with hierarchical models,
but such a plot is not needed to obtain the final fit.

A P P E N D I X C : TH E T WO - S TAG E A L G O R I T H M
F O R FB

In this appendix, we illustrate how to fit the hierarchical model (in
equation 12) via our two-stage algorithm. For more details about
this algorithm, see Si et al. (in preparation).
Step 0a. For each WD, run BASE-9 to obtain an MCMC sample
of p(Ai, �i |X i) under the case-by-case analysis. Thin each chain
to obtain an essentially independent MCMC sample and label it
{A(t)

1 ,�
(t)
1 , . . . , A(t)

n ,�(t)
n , t = 1, 2, . . . , tMC}.

Step 0b. Initialize each WD age at Ã
(1)
i = A

(1)
i and the other param-

eters at �̃
(1)
i = �

(1)
i .

For s = 1, 2, . . . , we run Step 1 and Step 2.
Step 1. Sample γ̃ (s) and τ̃ (s) from p(γ, τ |Ã(s)

1 , . . . , Ã(s)
n ).

Step 2. Randomly generate n integers between 1 and tMC, and de-
note them r1, . . . , rn. For each i, set A∗

i = A
(ri )
i , �∗

i = �
(ri )
i as

the new proposal and set Ã(s+1) = A∗
i , �

(s+1) = �∗
i with probabil-

ity α = min{1,
p(A∗

i |γ̃ (s),τ̃ (s))/p(A∗
i |μAi

,σAi
)

p(Ã(s)
i |γ̃ (s),τ̃ (s))/p(Ã(s)

i |μAi
,σAi

)
}. Otherwise, set Ã(s+1) =

Ã(s), �̃
(s+1)
i = �̃

(s)
i .

Steps 1 and 2 are iterated until a sufficiently large MCMC sam-
ple is obtained. If a good sample from the case-by-case analysis is
available, this two-stage sampler only takes a few minutes to ob-
tain an MCMC sample from the FB posterior distribution for the
hierarchical model in equation (12).

A P P E N D I X D : MC E M - T Y P E A L G O R I T H M

In this appendix, we present our algorithm to optimize population-
level parameters in Step 1 of EB-type methods (EB, EB-log and EB-
inv). We employ an MCEM algorithm with importance sampling
for our EB-type methods. MCEM is a Monte Carlo implementation
of expectation-maximization (EM) algorithm. See van Dyk & Meng
(2010) for more details on EM and MCEM, and an illustration of

their application in astrophysics. To apply EM, we treat the object-
level parameters, namely A1, M1, D1, T1, . . . , An, Mn, Dn, Tn as latent
variables. Due to the complex structure of this astrophysical model,
it is impossible to obtain the expectation step (E-step) of the ordinary
EM algorithm in closed form. MCEM avoids this via a Monte Carlo
approximation to the E-step. We employ two algorithms to compute
the MAP estimate of (γ , τ ): Approach 1 is MCEM and Approach 2
uses importance sampling to evaluate the integral in the expectation
step instead of drawing samples from the conditional density of the
latent variables.

Using Approach 1 to update γ and ξ = ln τ requires in-
voking BASE-9 once for each WD at each iteration of MCEM.
This is computationally expensive and motivates Approach 2. We
suggest interleaving Approaches 1 and 2 to construct a more effi-
cient algorithm for computing the MAP estimates of γ and τ .
Approach 1: MCEM
Step 0. Initialize γ = γ (1), ξ = ξ (1), d1 = 1 and τ = exp (ξ (1)).

Repeat for t = 1, 2, . . . , until an appropriate convergence criterion
is satisfied.
Step 1. For star i = 1, . . . , n, sample A

[s,t]
i , �

[s,t]
i , s = 1, . . . , St

from their joint posterior distribution

p(Ai, �i |X i , γ
(t), τ (t)) ∝ p(X i |Ai, �i)p(Ai |γ (t), τ (t))p(�i),

where St is the MCMC sample size at the tth iteration and should
be an increasing function of t (we take St = 1000 + 500t).
Step 2. Set

γ (t+1) = 1

St · n

I∑
i=1

St∑
s=1

A
[s,t]
i ,

ξ (t+1) = log

(
1

St · (I − 1)

n∑
i=1

St∑
s=1

(A[s,t]
i − γ (t+1))2

)
/2;

τ (t+1) = exp(ξ (t+1)).

Approach 2: EM with importance sampling
Suppose we have a sample at the ∗th iteration, (A[∗,s]

i , �
[∗,s]
i ), i =

1, . . . , n, s = 1, . . . , S∗ from the joint posterior distribution
p(Ai, �i |X i , γ

∗, τ ∗) given γ = γ ∗, τ = τ∗. Set

w
[t,s]
i =

φ(A[∗,s]
i |γ (t),τ (t))

φ(A[∗,s]
i |γ ∗,τ∗)∑St

s=1
φ(A[∗,s]

i |γ (t),τ (t))

φ(A[∗,s]
i |γ ∗,τ∗)

;

γ (t+1) = 1

n

n∑
i=1

St∑
s=1

A
[∗,s]
i w

[t,s]
i ;

ξ (t+1) = log

(
1

(n − 1)

n∑
i=1

St∑
s=1

[A[∗,s]
i − γ (t+1)]2

)
/2;

τ (t+1) = exp(ξ (t+1));

where φ(x|μ, σ ) = 1√
2πσ 2

exp(− (x−μ)2

2σ 2 ).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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