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ABSTRACT
The exoplanet detection rate from gravitational microlensing has grown significantly in re-
cent years thanks to a great enhancement of resources and improved observational strategy.
Current observatories include ground-based wide-field and/or robotic world-wide networks
of telescopes, as well as space-based observatories such as satellites Spitzer or Kepler/K2.
This results in a large quantity of data to be processed and analysed, which is a challenge
for modelling codes because of the complexity of the parameter space to be explored and
the intensive computations required to evaluate the models. In this work, I present a method
that allows to compute the quadrupole and hexadecapole approximations of the finite-source
magnification with more efficiency than previously available codes, with routines about six
times and four times faster, respectively. The quadrupole takes just about twice the time of a
point-source evaluation, which advocates for generalizing its use to large portions of the light
curves. The corresponding routines are available as open-source PYTHON codes.

Key words: gravitational lensing: micro – methods: numerical – planets and satellites: detec-
tion.

1 IN T RO D U C T I O N

Since the visionary work of Mao & Paczynski (1991), Galactic
gravitational microlensing has led to the discovery of dozens of
exoplanets and brown dwarfs1, and revealed an unexpected popu-
lation of cold, low-mass exoplanets located beyond the snow line
of their stars. Statistical studies have more recently settled that
exoplanets in the Milky Way are the rule rather than the excep-
tion (Cassan et al. 2012), thereby opening exceptional prospects to
discover exoplanets in a variety of systems and configurations. A
recent highlight of exoplanet’s microlensing search is the characteri-
zation of the mass and distance from Earth of planetary microlenses
through space parallax measurements, such observations are per-
formed simultaneously with ground-based observatories and from
space using Spitzer (e.g. Udalski et al. 2015; Street et al. 2016)
and Kepler/K2 (campaign C9, 2016 April 7 through July 1,
Henderson et al. 2016), with a strong involvement of the inter-
national microlensing community.

The recent upgrades of ground-based telescopes, including
robotic ones, have dramatically increased the amount of photo-
metric data that need to be processed, with thousands of data points
for which the models have to be computed. In fact, modelling is
currently the most difficult task in microlensing and in most cases
the bottleneck of detections delivery. Hence, the improvement of

� E-mail: cassan@iap.fr
1 http://exoplanet.eu/catalog/

both the strategy of the exploration of the parameter space and
the efficiency of the computations are of prime interest, in their
mathematical and numerical aspects.

Improved strategies to search the parameter space first include the
exploitation of features in the light curves to limit the region to be
explored. Albrow et al. (1999) have introduced a model to fit indi-
vidual caustic crossings independently from the whole light curve.
This strategy has been extended to binary-lens caustic-crossing
events through the definition of a specific parametrization (dates
of caustic entry and exit and corresponding positions of the source
centre on the caustics) that allows to limit the search to light curves
producing caustic magnification peaks at the dates seen in the data
(Cassan 2008; Cassan et al. 2010). To avoid unnecessary calcula-
tions of light curves, Penny (2014) has developed in a similar manner
the concept of caustic regions of influence, which are defined as em-
pirical analytic expressions limiting the parameter space to regions
where most low-mass planetary signals lie. A better understanding
of the link between the caustic topography and the resulting light
curves is a key ingredient to limit the region in the parameter space
to explore. A detailed study of this aspect has been conducted by
Liebig et al. (2015) in the binary lens case. In this work, the authors
have established a classification of all possible peaks in the light
curves into four types only and arranged the corresponding possible
light-curve morphologies into 73 categories. Hence, inspecting the
characteristics of the observed light curves (number and shape of
peaks for example) naturally provides clever initial guesses for the
subsequent minimization algorithms (in particular Bayesian algo-
rithms, e.g. Kains et al. 2012).
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A second direction of improvement is to design more efficient
mathematical methods and numerical codes to perform the cal-
culations of the probed microlensing models. Skowron & Gould
(2012) have proposed a new algorithm to solve complex poly-
nomial equations, which can solve the lens equation faster than
classical root finder codes. Nevertheless when finite-source calcu-
lations are required, the computation time significantly increases.
This has triggered the development of a number of methods or ap-
proximations to overcome the problem. While magnification maps
obtained by inverse ray shooting are well suited for a large number
of lenses (Wambsganss 1997), they are in general much too slow
to be computed in real time, even for triple lenses. Pre-computed
magnification maps are however useful for statistical studies where
a large number of simulated light curves need to be computed (e.g.
Kubas et al. 2008; Cassan et al. 2012). A refined image-centred ray-
shooting algorithm has been developed by Bennett (2010) to more
specifically address the calculation of high-magnification plane-
tary models, in which the source images are highly elongated. Im-
age contouring provides an interesting alternative to ray shooting
(Gould & Gaucherel 1997; Dong et al. 2006; Dominik 2007) be-
cause it is far less demanding in computation time. Bozza (2010)
has significantly improved the contouring method by including an
error control algorithm which optimizes the sampling of the contour
of the images.

When finite-source effects are noticeable but are weak enough
(e.g. caustic or cusp passages without caustic crossing), multi-
pole approximations of the finite-source magnification (Pejcha &
Heyrovský 2009) have proven to be of great help because the com-
putation time is several order of magnitudes below that of the ex-
act finite-source magnification. A simple implementation of the
quadrupole and hexadecapole approximations has been proposed
by Gould (2008), using respectively 9 and 13 (point source) reso-
lutions of the polynomial lens equation to numerically evaluate the
corresponding coefficients of the expansion.

In this work, I present an improved implementation of the
quadrupole and hexadecapole approximations, based on the con-
struction of the image contours through a Taylor expansion around
the individual images of the source centre, which makes use of a
single resolution of the lens equation. In Section 2, I present the
method that yields the multipole coefficients of the expansion, and
in Section 3 I discuss its implementation and numerical efficiency.

2 MU LT I P O L E E X PA N S I O N

The main steps of the method are as follows. For a given position of
the source centre affix ζ0 = ξ0 + iη0 ∈ C (Witt 1990) in the source
plane, I first expand the image position z ∈ C around the exact
position of the image z0 of the source in the lens plane. I then
use this expansion to perform the integration of the area of the
image through the Green–Riemann formula, from which I obtain
the magnification as a series of powers of ρ2.

While the method itself seems fairly clear, in practice it is not
straightforward to obtain simple expressions of the coefficients of
the expansion, which should ideally be easy to calculate and fast to
compute numerically, as it is of main interest in this work. I find that
by using a combination of a Taylor expansion with respect to the
two coordinates in the source plane (ξ , η) and using properties of
complex numbers provide an elegant and powerful way to express
the expansion, as I show below.

Let us consider a microlensing system composed of L compo-
nents with mass ratio ql = Ml/M with respect to the total lens

mass M and located at positions sl ∈ C in the lens plane. The lens
equation then reads2

ζ = z −
L∑

l=1

ql

(z − sl)
= z − W1 , (1)

where I have introduced the Wk factors, k ≥ 1, as

Wk ≡ (−1)(k−1)(k − 1)!
L∑

l=1

ql

(z − sl)
k

. (2)

For a point-source ζ , the lens equation provides several images
j located at zj (3 or 5 for binary lenses and n + 1 to 5n − 5
for n lens components; Rhie 2003), but for clarity I have omitted
any explicit reference to j in z, Wk and other quantities introduced
later. The signed point-source magnification μ0 of an image is the
inverse of the determinant of the Jacobi matrix of transformation
(z, z) �→ (ζ, ζ ) (Witt 1990; Daněk & Heyrovský 2015), given by
J ≡ det ∂(ζ, ζ )/∂(z, z), or

J = ∂ζ

∂z

∂ζ

∂z
− ∂ζ

∂z

∂ζ

∂z
= 1 −

∣∣∣∣∂ζ

∂z

∣∣∣∣
2

= 1 − |W2|2 . (3)

Hence, the point-source magnification reads

μ0 = 1

1 − |W2|2
, (4)

the sign of which (in fact, the sign of J) gives the parity of the
image. The critical curves correspond to infinite values of μ0,
or W2 = −e−iφ , with φ a phase parameter ranging from 0 to 2π

(Witt 1990, see the Appendix for two interpretations of φ).
I proceed now with the first step, the expansion of z around z0,

the exact image of the source centre ζ 0. At order p ≥ 1, the Taylor
expansion of z as a function of coordinates (ξ, η) ∈ R

2 in the source
plane is

z (ξ, η) = z (ξ0 + δξ, η0 + δη)

� z0 +
∑
p≥1

1

p!

[
∂z

∂ξ
δξ + ∂z

∂η
δη

][p]

, (5)

in which [p] refers to the symbolic binomial expansion of the terms
inside the brackets3, and where the derivatives are evaluated at (ξ 0,
η0). In the following, I will use a more compact notation of the
derivatives,

ap−n,n = ∂pz

∂ξp−n∂ηn
, (6)

for 0 ≤ n ≤ p. Until this point, I have used the linearity of the
complex notation as a convenient way to write the Taylor expan-
sion of z = x + iy. A naive approach would be to differentiate x
and y with respect to ξ and η, but this requires to separate real
and imaginary parts of the lens equation (1), which results in cum-
bersome, numerically time-consuming expressions of the deriva-
tives, and furthermore depends on the detailed form of the adopted
lens equation. In the following, I will therefore use the complex

4 A shear can be added in the equation, with minor changes in the expansion
as explained in footnote 4.
3 For example, [p] = 2 gives ∂2z

∂ξ2 δξ2 + 2 ∂2z
∂ξ∂η

δξδη + ∂2z
∂η2 δη2.
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Table 1. Coefficients ck
n−p,n (with k referring to column Wk) as defined in equation (16), for orders 2 ≤ p ≤ 5. Since the formal expression of Qi, j is the same

as Qj, i (but Qi, j 
= Qj, i), interchanging all indices (i, j) appearing in the expressions of Qp − n, n gives the expression of Qn, p − n, so it is enough to provide
ck
n−p,n for n ≤ �p/2�.

W3 W4 W5 W6

Q2, 0 a2
1,0 – – –

Q1, 1 a1, 0 a0, 1 – – –

Q3, 0 3 a1, 0 a2, 0 a3
1,0 – –

Q2, 1 2 a1, 0 a1, 1 + a0, 1 a2, 0 a2
1,0 a0,1 – –

Q4, 0 4 a1,0 a3,0 + 3 a2
2,0 6 a2

1,0 a2,0 a4
1,0 –

Q3, 1 3 a1, 0 a2, 1 + a0, 1 a3, 0 + 3 a1, 1 a2, 0 3 a2
1,0 a1,1 + 3 a1,0 a0,1 a2,0 a3

1,0 a0,1 –
Q2, 2 2 a1,0 a1,2 + 2 a0,1 a2,1 a2

1,0 a0,2 + 4 a1,0 a0,1 a1,1 a2
1,0 a2

0,1 –
+a2,0 a0,2 + 2 a2

1,1 +a2
0,1 a2,0

Q5, 0 10 a2, 0 a3, 0 + 5 a1, 0 a4, 0 15 a1,0 a2
2,0 + 10 a2

1,0 a3,0 10 a3
1,0 a2,0 a5

1,0
Q4, 1 6 a2, 0 a2, 1 + 4 a1, 1 a3, 0 + 4 a1, 0 a3, 1 12 a1,0 a1,1 a2,0 + 3 a0,1 a2

2,0 4 a3
1,0 a1,1 + 6 a0,1 a2

1,0 a2,0 a0,1 a4
1,0

+ a0, 1 a4, 0 +6 a2
1,0 a2,1 + 4 a0,1 a1,0 a3,0

Q3, 2 3 a1, 2 a2, 0 + 6 a1, 1 a2, 1 + 3 a1, 0 a2, 2 6 a1,0 a2
1,1 + 3 a2

1,0 a1,2 a0,2 a3
1,0 + 6 a0,1 a2

1,0 a1,1 a2
0,1 a3

1,0
+ a0, 2 a3, 0 + 2 a0, 1 a3, 1 +3 a0,2 a1,0 a2,0 + 6 a0,1 a1,1 a2,0 +3 a2

0,1 a1,0 a2,0

+6 a0,1 a1,0 a2,1 + a2
0,1 a3,0

formalism and exploit the property that Wk is a single function of z,
so that4

dWk

dz
= Wk+1 . (7)

I use this property to compute the derivatives equation (6), starting
with p = 1 for which I provide the explicit expressions and use
p = 2 to explain the general method for any p.

From the lens equation, one has

∂ζ

∂α
= ∂z

∂α
− W2

∂z

∂α
, (8)

where the differentiation is made with respect to α ∈ {ξ , η}. To
eliminating derivatives of z, I conjugate equation (8), isolate ∂z/∂α

and introduce it back into equation (8), which leads to

∂z

∂α

(
1 − W2W2

) = ∂ζ

∂α
+ W2

∂ζ

∂α
. (9)

Considering that 1 − W2W2 = 1/μ0 and that

∂ζ

∂ξ
= 1 ,

∂ζ

∂η
= i , ∀p > 1,

∂pζ

∂ξp−n∂ηn
= 0 , (10)

I obtain the two derivatives a1, 0 and a0, 1 (p = 1) by successively
choosing α = ξ and η,

a1,0 = μ0

(
1 + W2

)
, a0,1 = iμ0

(
1 − W2

)
. (11)

For p = 2, I derive equation (8) a second time with respect to
variables (α, β) ∈ {ξ , η} × {ξ , η}, which leads to three different
combinations a2 − n, n (n = 0, 1 and 2) satisfying

∂2ζ

∂α∂β
= ∂2z

∂α∂β
− ∂W2

∂β

∂z

∂α
− W2

∂2z

∂α∂β
= 0 . (12)

Using the rule equation (7), the derivative of W2 can be expressed
as

∂W2

∂β
= dW2

dz

∂z

∂β
= W3

∂z

∂β
, (13)

4 The method can be extended to any expression Wk depending on z only, as
for example adding a shear γ . Then, ζ = z + γ z − W1, W ′

1 = −γ z + W1,
W ′

2 = −γ + W2 and for k ≥ 3, W ′
k = Wk .

so that equation (12) involves derivatives of z and z, and constants
depending on z0 only. With the same procedure as for p = 1 (con-
jugating and replacing), I get

a2,0 = μ0

(
W3 a2

1,0 + W2 W3 a2
1,0

)
,

a1,1 = μ0

(
W3 a1,0 a0,1 + W2 W3 a1,0 a0,1

)
,

a0,2 = μ0

(
W3 a2

0,1 + W2 W3 a2
0,1

)
. (14)

More generally for p ≥ 1 and 0 ≤ n ≤ p, it appears that ap − n, n can
be expressed as

ap−n,n = μ0

(
Qp−n,n + W2 Qp−n,n

)
, (15)

where the Qp − n, n coefficients can be iteratively calculated using
the prescriptions given above. Factoring the Wk, I define

Qp−n,n =
p+1∑
k=3

ck
n−p,n Wk , (16)

where the coefficients ck
n−p,n are given in Table 1 up to order p = 5

(we shall see later that expanding z up to this order provides the
hexadecapole term of the finite-source magnification). For p ≥ 3,
I find that Qp − n, n can be obtained with the following algorithm:
let us introduce p variables (αp, . . . , α1) ∈ {ξ , η} × ··· × {ξ ,
η}. For 3 ≤ k ≤ p + 1, the general expression of ck

n−p,n is
obtained from

Rk
p = ∂Rk

p−1

∂αp

+
(

Rk−1
p−1 + δ(k, 3)

∂p−1z

∂αp−1 . . . ∂α1

)
∂z

∂αp

, (17)

with δ(3, k) = 1 only if k = 3, and in which n of the αi variables are
chosen to be η, and the remaining p − nare chosen to be ξ .

The second step of the method consists in calculating the area of
the image using the previous expansion of z, with the provisional
assumption that the source is uniformly bright. Let ρ be the source
radius in Einstein units. For ρ � 1, the (circular) contour of the
source can be parametrized as ζ = ζ 0 + ρcos θ + i ρsin θ , i.e. by
choosing δξ = ρcos θ and δη = ρsin θ in the expansion of z written
in equation (5). As a matter of fact, z is now a function of (ρ, θ ),
and to avoid confusions I introduce

Z(ρ, θ ) ≡ z
(
ξ0 + ρ cos θ, η0 + ρ sin θ

)
− z0 . (18)
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3996 A. Cassan

This expression hence involves powers of ρ as well as powers of
cos θ and sin θ . For a given source size ρ, the (signed) area S of the
image can be performed through the Green–Riemann (or Stokes)
formula,

S = Im

[ ∮
C

Z dZ

2

]
= 1

2
Im

[ ∫ 2π

0
Z

∂Z

∂θ
dθ

]
, (19)

since for Z = X + iY one has −YdX + XdY = Im[Z dZ]. As the
expression of Z obtained in equation (18) is analytical, it is also
the case for ∂Z/∂θ . The integral equation (19) involves terms like
(cos aθsin bθ ), and the integration is easily handled formally with a
software like MATHEMATICA. It is interesting to remark that all terms
with odd values of a or b cancel out, so after the integration only
terms with even powers of ρ remain. Furthermore, it can be found
by inspecting Z and ∂Z/∂θ that pursuing the expansion to order
p adds term factors of ρm, where m ≥ p + 1. In other words, the
expansion of Z is complete in ρm for p = m − 1.

Expanding S in the form

S(ρ) =
∑
p≥1

πρp+1

(p − 1)!
μp−1 (20)

yields, up to order p = 5, the following non-vanishing terms:

μ0 = Im
[
a1,0 a0,1

]
, (21)

μ2 = 1

4
Im[a1,0 (a2,1 + a0,3) + 2 (a1,1 a2,0 + a1,1 a0,2)

+ a0,1 (a1,2 + a3,0)], (22)

μ4 = 1

8
Im

[
a1,0 (a4,1 + 2 a2,3 + a0,5) + 4 a2,0 (a1,3 + a3,1)

+ 4 a1,1 a4,0 + 6 (a0,3 a1,2 + a1,2 a2,1 + a2,1 a3,0)

+ 2 a0,3 a3,0 + 4 a1,1 a0,4 + 4 a0,2 (a1,3 + a3,1)

+ a0,1 (a1,4 + 2 a3,2 + a5,0)
]
. (23)

The first term μ0 is indeed the point-source magnification defined in
equation (21), since from equation (11) one has a1,0 a0,1 = iμ2

0(1 −
|W2|2 − W2 + W2), the imaginary part of which is μ2

0(1 − |W2|2) =
μ0. Let us now consider a limb-darkened source with brightness
profile

I (r) = 1 − 

⎛
⎝1 − 3

2

√
1 − r2

ρ2

⎞
⎠ , 0 ≤ r ≤ ρ , (24)

where for all  the surface integral of I(r) over the source face S
always equals πρ2,
“

S
I (r) ds =

∫ 2π

0
dφ

∫ ρ

0
I (r)rdr = πρ2 . (25)

The uniformly bright source has  = 0. The signed magnification
is now given by the ratio

μ ≡
∫ ρ

0 I (r) dS∫∫
S I (r) ds

= 1

ρ2

∑
p≥1

(p + 1) μp−1

(p − 1)!

∫ ρ

0
I (r) rp dr , (26)

where the enumerator of the first integral is already integrated over
the angle, and in which I have changed variable dS = dS

dr
dr accord-

ing to equation (20). The integral can be performed analytically for

any value of p and yields

μ = μ0 + μ2

2!

(
1 − 1

5


)
ρ2 + μ4

4!

(
1 − 11

35


)
ρ4 + O (

ρ6
)
.

(27)

As expected, the monopole of the finite-source expansion (p = 1) is
the point-source magnification of the source, and there is no dipole
(p = 2). The quadrupole is obtained for p = 3 and the hexadecapole
for p = 5.

Finally, the total magnification of the source A(ζ 0) is the sum of
the absolute values of the individual magnification factors μ(zj) of
each of the images j. If εj denotes the parity of image j (εj = 1 if
μ > 0, −1 otherwise), one has

A =
∑

j

∣∣μ(zj )
∣∣ =

∑
j

εj μ(zj ) , (28)

so that after factorizing ρ2 and ρ4 amongst the different images, the
total magnification A has the same form5 as equation (27) with Aq

instead of μq, where Aq is a combination of εjμq.

3 A PPLI CATI ON

An example of light curves obtained with the various finite-source
approximations is displayed in Fig. 1. In this example, the lens is
a binary with parameters s = 1.7 (separation in Einstein units) and
q = 0.2 (lens mass ratio), and the source radius is ρ = 0.01 in
Einstein units (slightly larger than typical source sizes to better see
the differences). The source crosses two caustics (entry at t ∼ −4
and exit at t ∼ 8) and later approaches a cusp (t ∼ 25). The exact
finite-source magnification is displayed as the bold, dark grey curve,
while the blue, red and green curves are respectively the monopole,
quadrupole and hexadecapole approximations. The middle panel
shows a zoom on the residuals (approximated minus exact magnifi-
cations) in the linear scale, while the lower panel shows the absolute
value of the residuals in the logarithmic scale. The latter panel can
be used to compare the precision of the approximations to the preci-
sion of the photometry expected from future space-based missions
such as Wide-Field Infrared Survey Telescope, which is expected to
be of the order of a mmag.

It appears that the quadrupole expansion already provides a
much better approximation than the monopole (point-source mag-
nification), in particular near cusp approaches. The hexadecapole
appears essentially as an approximation that allows the source
to approach the caustics slightly closer than the quadrupole be-
fore the approximation breaks down (see also the discussion
in Gould 2008).

Since one of the drivers of this work was to improve the numerical
efficiency in calculating the quadrupole and hexadecapole approxi-
mations, I have tested a non-fully optimized python routine to esti-
mate the potential gain for a binary lens. I find that the quadrupole
(respectively hexadecapole) is about two times (respectively five
times) slower than point source. The quadrupole and hexadecapole
implementations presented here are respectively six times and four
times faster than the implementation of Gould (2008). It is likely
that going to higher orders in the finite-source approximation will
not help, though, not only because the gain in precision will be lim-
ited, but also because the additional calculations (such as ap − n, n)
grow substantially with increasing order p. It is also clear that the

5 This is the same expansion as Gould (2008) but with a different choice of
numerical factors.
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Fast quadrupole and hexadecapole computation 3997

Figure 1. Upper panel: simulated microlensing light curve (magnitude of total magnification A as a function of time t in units of source radius crossing time, for
s = 1.7, q = 0.2 and for a uniformly bright source) displaying two clear caustic crossings (t ∼ −4 and t ∼ 8) and a cusp approach (t ∼ 25). The exact finite-source
magnification is the bold, dark grey curve, while the blue, red and green curves are respectively the monopole, quadrupole and hexadecapole approximations.
Middle panel: residual magnitudes of the different finite-source approximations with respect to the exact magnification. Lower panel: absolute value of the
residuals in the logarithmic scale, for reference to future space-based microlensing missions that are expected to reach mmag precision light-curve photometry.
The small wiggles below the fraction of mmag come from errors in computing the exact magnification rather than from the multipole approximations.

gain in time will increase with the number of lens components since
solving the lens equation will take more time, while the additional
calculations do not, as they depend only on the set of input complex
numbers Wk.

Additionally, a further advantage of using the exact multipole
expansion rather than a numerical estimation resides in the fact that
the discontinuities of the magnification happen at the same positions
in the light curve than with point source, so there are no spurious
wiggles of the magnification close to the caustics.

An open-source code with a first implementation of the equations
presented here is available for download in my GitHub repository6.
The file multipoles.py includes two functions that return the
quadrupole and hexadecapole approximations of the finite-source
magnification: quadrupole(Wk,rho,Gamma) and hexade-
capole(Wk,rho,Gamma), whose arguments are Wk (a 2D

6 https://github.com/ArnaudCassan/microlensing/
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complex array in which one of the dimension refers to the indi-
vidual images), ρ (the source radius in Einstein units) and  (the
source linear limb-darkening coefficient). In practice (as shown in
theexample() function provided), for each position of the source,
one needs to compute the images of the source centre, discard the
virtual ones and evaluate the corresponding Wk (up to k = 4 for the
quadrupole and k = 6 for the hexadecapole) that are inputs of the
two functions. It is likely that these functions will gain in speed from
a re-writing in CYTHON or C++ with a more efficient use of complex
number calculations. For information, further orders of ap − n, n for
p ≥ 6 can be displayed using function Q(p) in file Rkp.py, as an
implementation of equation (17).

4 C O N C L U S I O N

I have presented a method that allows to compute the quadrupole
and hexadecapole approximations with more efficiency than previ-
ously available codes (respectively about six times and four times
faster). It appears that the quadrupole approximation already pro-
vides a much more precise approximation than point source, for a
computing time only about two times slower. This advocates for
using the quadrupole in place of point source in most part of the
light curve, except at baseline. The hexadecapole seems well suited
to make the link between exact finite source and quadrupole in lim-
ited regions of the light curves close to sharp magnification peaks.
Open-source codes of the algorithms presented here are available
for download and welcome numerical optimization updates.
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A P P E N D I X A : T WO I N T E R P R E TAT I O N S
O F W I T T ’ S φ

In his original article, Witt (1990) introduced a phase parameter φ

∈ [0, 2π ] to compute the critical curves7,

W2 = −e−iφ . (A1)

In this appendix, I propose two interpretations of φ.
The first one is geometrical. Starting from the lens equation (1),

one can write

dζ

dφ
= dz

dφ
− W2

dz

dφ
, (A2)

which, after conjugating the whole expression and replacing dz/dφ

in equation (A2), yields

dζ

dφ
= eiφ dζ

dφ
. (A3)

Since dζ/dφ defines in the source plane a vector T tangent to the
caustic curve parametrized by φ, the former equation means that
φ is the oriented angle between the symmetrical vector of T with
respect to the horizontal axis and T. In other words, φ/2 modulo π

is the geometric angle between the horizontal axis and the tangent
to the caustic.

A second interpretation of φ is related to curves in the lens plane
obtained with φ = cst. From the definition of the Jacobian J in
equation (3) and since J < 1, one has

J = 1 − W2W2 = 1 −
(
−e−iφ

√
1 − J

) (
−eiφ

√
1 − J

)
, (A4)

from which we write

W2 = −e−iφ
√

1 − J . (A5)

Solving this equation for a given φ ∈ [0, 2π[ and J ∈ ] − ∞, 1[ leads
to four possible solutions z in the lens plane. Varying φ for a given
J draws iso-magnification curves (as four distinct branches that
connect), which I will refer to as J-curves. Let us study the curves
obtained for φ constant. Differentiating both sides of equation (A5)
with respect to φ and J yields

W3
∂z

∂φ
= −iW2 , W3

∂z

∂J
= − W2

2(1 − J )
, (A6)

and

∂z

∂φ
= i2 (1 − J )

∂z

∂J
. (A7)

Since ∂z/∂J defines in the lens plane a vector TJ tangent to the
J-curves, ∂z/∂φ hence defines a vector Tφ perpendicular to those,
as long as Tφ 
= 0 (or equivalently TJ 
= 0). It means that φ = cst
lines can be interpreted as field lines (perpendicular to the J-curves)
parametrized by J and crossing the critical lines at J = 0. I will call
them φ-lines.

An example is given in Fig. A1 for a binary lens with separation
s = 1 and mass ratio q = 0.25. The φ-lines are the green, radial lines
crossing the (thin black) J-curves orthogonally (except at saddle
points, marked as black +, see below). The thick black line is the
critical curve. φ-lines can be of finite length or semi-infinite. For
J → −∞, the only possibility is that at least one of the z → sl,
so that all φ-lines start at one of the lens component positions. For
J → 1, one has W2 → 0, which results in two possibilities for z:
either z → ∞ and the line goes to infinity or z converges to a finite

7 The two − signs reflect the different conventions between the formalisms.
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Figure A1. Binary lens with the less massive component on the left-hand
side (z2 = −s, with z = x + iy) and the more massive body at the centre of the
coordinate system (z1 = 0), the positions of which are marked as black × on
the horizontal axis. The relative mass ratio of the system is q = μ2/μ1 < 1.
The thick black curve is the critical line (J = 0), and the thin black lines
are the J-curves (J = cst). The φ-lines (φ = cst) are plotted as thin green
lines. They are orthogonal to the J-curves except at saddle points, which are
marked as the two off-axis black +. The two off-axis black × mark the two
extrema (maxima) of J(x, y). The thick magenta lines mark the boundaries
between the different kinds of field lines (finite or semi-infinite, starting at
lens positions or at extrema of J). There are six of them in the binary lens
case, which all (necessarily) pass through a saddle point.

value, which geometrically necessarily corresponds to an extrema of
mapping J(z). Expanding equation (A5) and setting

√
1 − J → 0,

one finds
L∑

l=1

ql

∏
k 
=l

(z − zk)2 = 0 . (A8)

Therefore for L lens components, there are 2(L − 1) extrema of
J(z). In the binary lens case, with the convention that the origin of
the coordinate system is at the position of the more massive body
z1 = 0 and that the less massive body is located at z2 = −s, with
q = μ2/μ1 < 1 their relative mass ratio, there are two extrema at

z± = − s

1 + q

(
1 ± i

√
q
)
, (A9)

which are marked as off-axis × in Fig. A1.
Finally, the boundary values of φ which separate regions of dif-

ferent kinds of φ-lines (finite or semi-infinite, starting at one or
another lens position) correspond to lines that necessarily cross the
J-curves at saddle points as stated before, where W3 = 0 (Daněk &
Heyrovský 2015), i.e.

L∑
l=1

ql

∏
k 
=l

(z − zk)3 = 0 . (A10)

The boundary φ-lines may start and/or end at one of the lens po-
sition, at a maxima of J(z) or at infinity, but they all necessar-
ily pass through a saddle point. Once the saddle points are found
through equation (A8), the corresponding values of φ are obtained
from equation (A1) and the corresponding boundary φ-lines can be
drawn. In the binary lens case, it appears that there exist six such
boundary φ-lines, displayed in Fig. A1 as thick magenta lines.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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