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ABSTRACT
The extension of the singular perturbative approach to the second order is presented in this
paper. The general expansion to the second order is derived. The second-order expansion
is considered as a small correction to the first-order expansion. Using this approach, it is
demonstrated that in practice the second-order expansion is reducible to a first order expansion
via a re-definition of the first-order pertubative fields. Even if in usual applications the second-
order correction is small the reducibility of the second-order expansion to the first-order
expansion indicates a potential degeneracy issue. In general, this degeneracy is hard to break.
A useful and simple second-order approximation is the thin source approximation, which offers
a direct estimation of the correction. The practical application of the corrections derived in
this paper is illustrated by using an elliptical NFW lens model. The second-order pertubative
expansion provides a noticeable improvement, even for the simplest case of thin source
approximation. To conclude, it is clear that for accurate modelization of gravitational lenses
using the perturbative method the second-order perturbative expansion should be considered. In
particular, an evaluation of the degeneracy due to the second-order term should be performed,
for which the thin source approximation is particularly useful.
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1 IN T RO D U C T I O N

The singular perturbative method is a non-parametric approach to
gravitational lenses offering a direct relation between the descrip-
tion of the lens and the observations. The direct relation between the
lens and the data minimize the degeneracy problems generally en-
countered in gravitational lenses modelling (see for instance Saha &
Williams 2006, Wucknitz 2002, and Chiba & Takahashi 2002).

It is interesting to note that this method is general and does not
depend on a particular geometry. Due to the direct relation between
the equations in this method and the observations, the modeliza-
tion of the lens is straightforward and free of assumptions. A di-
rect comparison between the perturbative method and conventional
method (see Alard 2010) demonstrates an un-biased and more ac-
curate reconstruction of the lens. The method has also the potential
to reconstruct very complicated lens systems, which are very dif-
ficult to model using conventional methods (see Alard 2009 and
Alard 2017).

1.1 Basics of the first-order perturbative expansion

The first-order singular perturbative method was introduced a se-
ries of papers, see Alard (2007) for the basics of the method and
Alard (2008), Alard (2009), Alard (2010), and Alard (2017). Let’s
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first recall the basics of the first-order method. The main idea is
to consider that gravitational arcs are a small perturbation of the
perfect ring situation. In general, a larger perturbation of the circu-
lar potential will not produce very elongated images looking like
gravitational arcs. A direct illustration of this fact is to consider an
elliptical potential, as the ellipticity of the potential increases the
angular extent of the images formed near the critical lines decrease.

The perfect ring situation is obtained when a point source is at
the centre of a circular potential. The images of the central point
source is an infinity of points situated on a circle. The radius of
this circle is the Einstein radius associated with the circular po-
tential. For simplicity, the Einstein radius is reduced to unity by
adopting a proper set of distance units. The introduction of a non-
circular perturbation to the circular potential results in the breaking
of the circle with the consequence that the central point has now a
finite number of images in the vicinity of the circle. In practice, the
source itself is not reduced to a point but has a finite size, which is of
the order of the potential perturbation. Additionally, the source may
not be exactly at the centre of the circular potential φ0(r) and as a
consequence has an impact parameter, which is also of the order of
the potential perturbation which we call ε, with ε � 1. Using polar
coordinates (r, θ ) in the lens plane, the potential reads

φ(r, θ ) = φ0(r) + εψ(r, θ ). (1)

The functional φ0(r) in equation (1) represents the mean circular
potential and ψ(r, θ ) represents the small anisotropic part of the
potential. The lens equation relating the lens plane coordinates r to
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the source plane coordinates rS reads

rS = r − ∇φ. (2)

The radial deviation from the circle is of the same order as
the potential perturbation, thus by introducing the deviation from
the circle dr we obtain, r = 1 + εdr. By inserting equation (1) in
the lens equation and developing to the first order in ε, we obtain a
set of equations already presented in Alard (2007)

rS = (κ2 dr − f1) ur − df0

dθ
uθ (3)

and

f1 =
[

∂ψ

∂r

]
r=1

; f0 = ψ(1, θ ); κ2 = 1 −
[

d2φ0

dr2

]
r=1

. (4)

We define the source impact parameter, r0 = (x0, y0) and the new
variable r̃S = rS − r0. It is convenient to re-write equation (3) using
the variable r̃S :

r̃S = (
κ2 dr − f̃1

)
ur − df̃0

dθ
uθ . (5)

With the following definition for the corrected fields:

f̃i = fi + x0 cos(θ ) + y0 sin(θ ), i = 0, 1 (6)

The fields f1 and df0
dθ

have direct and simple physical meaning.
To illustrate this direct relation to the observation, we will now
consider a circular source. It is straightforward to solve equation (3)
and obtain the images of the circular contour of the source. For a
contour with radius r0, equation (3) is of second order in dr leading
to the following two solutions:

κ2dr = f̃1 ±
√

r2
0 −

[
df̃0

dθ

]2

. (7)

Equation (7) provides a direct relation between the contours of
the images and the perturbative fields f̃1 and df̃0

dθ
. The field f̃1 is

the mean position of the image contour at each angular position θ .
While the field df̃0

dθ
is related to the angular extent of the images.

The field df̃0
dθ

is zero at the centre of the image and has precisely the
value r0 at the image edge. As a consequence the morphology of the
fields df̃0

dθ
controls the formation of the images. This direct relation

between the theory and the observations is a unique feature of the
perturbative model. A direct consequence is that in this circular
source model given a set of image contours it is always possible
to find a solution for the two perturbative fields f1 and df0

dθ
. In

practice, the circular source model may lead to highly complex and
unphysical solution for the fields, and is used only to build a first
guess. The general reconstruction of the field and source contours
from the image contours is carried out using equation (5). The first-
order reconstruction of gravitational lenses is very successful, but
for the consistency of the method it is interesting to understand and
estimate the effect of the second order terms. To be more specific the
effect of the second-order terms can be understood by the discussion
of the two following points. The first point (i) is the estimation of
the amplitude of the correction due to the second-order terms on
the reconstruction of fields, and the second point (ii) is about the
development of an efficient procedure to reconstruct the correction
to the first order contours.

2 SE C O N D - O R D E R EX PA N S I O N

The perturbative development of the perfect circle situation is not
limited to the first order in ε. The expansion may be carried out

to any order. The second-order expansion of the potential requires
the introduction of an additional field f2(θ ). The equations for the
second-order expansion and the field f2 reads⎧⎪⎪⎨
⎪⎪⎩

φ(r, θ ) = φ0(r) + εψ(r, θ )

ψ(r, θ ) = f0(θ ) + f1(θ )(r − 1) + f2(θ ) (r−1)2

2 .

f2 =
[

∂2ψ

∂r2

]
r=1

(8)

Inserting in equation (2) and developing to second order in ε

r̃S =
(

κ2 dr − κ3
dr2

2
− f̃1 − f2dr

)

ur −
(

df̃0

dθ
+

(
df1

dθ
− df0

dθ

)
dr

)
uθ . (9)

With the definition of the additonal parameter κ3

κ3 =
[

d3φ0

dr3

]
r=1

.

The order of equation (9) in dr implies that for circular source
contours the equation for dr is of fourth order instead of second
order for the first order expansion (Alard 2007). However we will
consider a regime where the second-order displacement dr2 is small
with respect to the first-order displacement dr1. As a consequence

dr = dr1 + εdr2. (10)

Where dr1 corresponds to the first-order expansion and dr2 is the
second-order correction. By re-expanding equation (9) to second
order in ε using equation (10) we obtain

r̃S =
(

κ2dr − f̃1 − κ3
dr2

1

2
− f2dr1

)

ur −
(

df̃0

dθ
+

(
df1

dθ
− df0

dθ

)
dr1

)
uθ . (11)

It is straightforward to reduce equation (11) to the first-order ex-
pansion equation (5) by making the following substitutions:⎧⎨
⎩ f1 = f1 + κ3

dr2
1

2 + f2dr1

df0
dθ

= df0
dθ

+ ( df1
dθ

− df0
dθ

)
dr1.

(12)

Note that the second-order correction to the fields presented in
equation (12) can be iterated. Once the fields have been corrected
new positions for the images can be estimated and used as new
entries to estimate another correction for the fields. By iterating
this process a full convergence to the second-order expansion is
obtained. A practical and useful approximation is to consider a
source with a small size. Since the typical scale of all quantities is
ε, by definition a small source will have a typical size r0, which has
to be of second order. We will call such a source with second order
typical size a ‘thin source’. As a consequence r0 ≡ ε2r0, which also
means that at the first order in ε the radius of the source is zero. The
first-order perturbative equation for a circular source (equation 7)
indicates that in this case dr1 = f̃1

κ2
. Note that a thin source implies a

thin arc, equation (7) indicates that the thickness of the arc is of the
order of the source radius. As a result for thin arcs the second-order
expansion reads

r̃S =
(

κ2dr − f̃1 − κ3
f̃ 2

1

2κ2
2

− f̃1f2

κ2

)

ur −
(

df̃0

dθ
+

(
df1

dθ
− df0

dθ

)
f̃1

κ2

)
uθ . (13)
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246 C. Alard

Figure 1. The source position and its associated images for the NFW lens.
The images contours (black) corresponds to the circular source contour
(red). The diamond shaped curve at the centre corresponds to the caustics
of the NFW elliptical lens.

In the thin arc approximation, it is possible to derive an explicit
substitution to recover the first order expansion:⎧⎨
⎩

f1 = f1 + κ3
f̃ 2

1
2κ2

2
+ f2

f̃1
κ2

df0
dθ

= df0
dθ

+ ( df1
dθ

− df0
dθ

)
f̃1
κ2

.
(14)

The corrective terms in equation (14) could be included in f1 and f0

or be considered as genuine order 2 corrections. As a consequence
equation (14) describes explicitly the degeneracy in the reconstruc-
tion of the fields. Breaking this degeneracy is difficult since it would
require information at sufficient radial distance for the same angular
position θ , which is a requirement very hard to fulfill in practice.
The best opportunity to break this degeneracy would be to have sev-
eral sources situated at different distances and thus having different
effective Einstein radius.

3 PR AC T I C A L I M P L E M E N TAT I O N B Y U S I N G
A N U M E R I C A L E X P E R I M E N T

We consider the contour of a circular source situated near the caustic
of a NFW halo lens. The potential for an elliptical NFW halo is
(Meneghetti, Bartelmann percent Moscardini 2003)⎧⎨
⎩

φ(u) = 1
1−ln(2) g(u).

u =
√(

(1 − η)x2 + (1 + η)y2
)
.

(15)

The parameter η is related to the ellipticity of the halo. The potential
normalization implies that the associated Einstein radius is equal to
the typical halo size, which is a common situation for gravitational
lenses. The definition of the function g(u) reads

g(u) = 1

2
ln

(u

2

)2
+

⎧⎪⎨
⎪⎩

2arctan2
(√

u−1
u+1

)
u ≥ 1

−2arctanh2
(√

1−u
u+1

)
u < 1.

(16)

The source configuration in the potential defined in equation (15) is
presented in Fig. 1 with the images of the source circular contour.
All reconstructions of the circular source contour with radius r0

are performed using the first-order formula(Alard 2007) and the
modified fields defined in equations (12) and (14) for the second-

Figure 2. A detailed view of the left-hand side of the image (see Fig.1).
The actual image contour (black) is superimposed with the first-order re-
construction (blue), the second-order thin source approximation (light blue),
the first iteration of the second-order reconstruction (green) and the iterated
second order reconstruction (red).

order reconstructions. The first-order circular contour equation is

κ2dr = f1 ±
√

r2
0 −

[
df0

dθ

]2

. (17)

The results obtained in Fig. 2 indicates that the first-order recon-
struction is not very accurate for the left-hand side of the image. All
second-order expansions provide a clear improvement in accuracy.
Even the simplest second-order expansion, the thin source approx-
imation (see equations 13 and 14) already represents a significant
improvement over the first-order expansion. The first iteration of
the second-order expansion (see equations 11 and 12) is more accu-
rate than the thin source approximation. Iterating the second order
allows us to reach the level of accuracy corresponding precisely
to the second-order perturbative expansion. It is interesting to note
that the typical order of the second-order correction is the same as
the error due to the noise in the data for reconstruction performed
using high-quality HST data. A good illustration can be found in
Alard (2017), where the typical amplitude for both the second-order
correction and the error due to the noise is about 10−3 in units of the
Einstein radius (see Section 2.5 and 3.1). Even if the second-order
correction is compared to the error due to the noise, this correction
is not an error in itself but a small degeneracy. The presence of
this degeneracy issue does not alter the accuracy of the modelling,
which still reach a level that is close the statistical expectation (see
Alard 2017, table 1). The results for the right-hand side of the im-
age (see Fig. 3) are similar although the first-order approximation
is noticeably more accurate for this image.

4 C O N C L U S I O N

It is relatively simple to estimate the second-order perturbative ex-
pansion as a correction of the first-order expansion. In particular, the
correction in the thin source limit is straightforward and provide a
noticeable improvement over the first-order pertubative expansion.
The iterative full second-order correction converge to the second-
order perturbative correction but in most cases provides only a small
additional improvement with respect to the thin source approxima-
tion. Additionally, it is interesting to note that larger sources can
always be de-composed in a number of thinner sources for which
the thin source approximation is valid. Another important issue
is the problem of the degeneracy of the second-order correction.
Even if in most case the correction is small, the problem of the
possible degeneracy of first-order expansion should be addressed.
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Figure 3. A detailed view of the right-hand side of the image (see Fig. 1).
The actual image contour (black) is superimposed with the first-order re-
construction (blue), the second-order thin source approximation (light blue),
the first iteration of the second-order reconstruction (green) and the iterated
second-order reconstruction (red).

For an evaluation of the amplitude of the degenerate term, the thin
source approximation should be particularly useful as it offers a di-
rect estimation. In some particular application when the degeneracy

of the second-order term can be broken, the full estimation of the
second-order expansion should be useful.
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