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Quadrupolar superexchange interactions, multipolar order, and magnetic phase transition in UO2
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The origin of noncollinear magnetic order in UO2 is studied by an ab initio dynamical-mean-field-theory
framework in conjunction with a linear-response approach for evaluating intersite superexchange interactions
between U 5 f 2 shells. The calculated quadrupole-quadruple superexchange interactions are found to unam-
biguously resolve the frustration of face-centered-cubic U sublattice toward stabilization of the experimentally
observed noncollinear 3k-magnetic order. Therefore, the exotic 3k-antiferromagnetic order in UO2 can be
accounted for by a purely electronic exchange mechanism acting in the undistorted cubic lattice structure. The
quadrupolar short-range order above magnetic ordering temperature TN is found to qualitatively differ from the
long-range order below TN .
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I. INTRODUCTION

The interplay of local spin and orbital degrees of freedom
(DOF) in strongly correlated electron systems is at the origin
of such remarkable phenomena as the multiferroic behavior
[1], dynamical single-ion and cooperative Jahn-Teller effects
[2], and colossal magnetoresistance [3]. In rare-earth and
actinides compounds with localized f shells a strong spin-
orbit coupling (SOC) in conjunction with the crystal-field
(CF) splitting may lead to emergence of local multipolar DOF.
Intersite interactions between such multipolar moments in
many cases result in their ordering; exotic multipolar-ordered
(MO) states might coexist with the usual magnetic one [4].
The rich physics of the multipolar DOF in f -electron systems
ranges from the quadrupole interaction mediated supercon-
ductivity [5] and quadrupolar Kondo effects [6] to phonon-
mediated electric multipolar interactions and the dynamical
Jan-Teller effect. Multipolar order parameters are invisible
to conventional neutron-diffraction probes and thus notori-
ously difficult to unambiguously identify experimentally. The
quantitative modeling of MO phenomena also represents a
significant theoretical challenge due to a large number of mul-
tipolar DOF and a rather small magnitude of relevant energy
scales compared to the conventional Heisenberg dipole-dipole
couplings [7].

The uranium dioxide is a prototypical example of the MO
in actinide magnetic insulators [4,7]. It has a simple cubic
fluorite structure, where U atoms occupy the fcc sublattice
(see Fig. 1). Due to its importance as a nuclear fuel [8]
and chemical catalyst [9] it has been thoroughly studied
experimentally. UO2 undergoes a first-order phase transition
into an antiferromagnetically (AFM) ordered state at the Néel
temperature TN of 30.8 K [10]. This transition is accompanied
by an onset of MO [11] affecting both phonons and magnons
dynamics [4,7,12,13]. Dynamical Jahn-Teller effects associ-
ated with a spin-lattice quadrupolar coupling is also observed
well above TN [10,12].

The magnetic structure of UO2 has been an experimental
and theoretical puzzle for a long time. The magnetic unit cell
of UO2 in the AFM phase contains four inequivalent simple
cubic uranium sublattices. Then the geometrical frustration of
the U fcc sublattice results in three distinct AFM structures
shown in Fig. 1 being degenerate in energy with respect to
the usual spin-spin anisotropic Heisenberg exchange [14].
These structures are described, respectively, by (a) the single
propagation vector k = [0, 0, 1] (1k-collinear structure in the
upper panel of Fig. 1), (b) two propagation k vectors (2k, mid-
dle panel of Fig. 1) with mutually perpendicular orientations
of the magnetic moments in the cubic face plane parallel to the
plane of the k vectors, and (c) three perpendicular k vectors
(3k, lower panel) with the moments oriented in different (111)
directions [14]. All three AFM structures have been observed
in different cubic uranium monopnictides (UX with X = N, P,
As, Sb) [14]. The 3k structure has been finally confirmed to
be the magnetic ground state of UO2 by neutron diffraction
and nuclear magnetic resonance experiments [10,15,16].

The mechanism leading to the stabilization of noncollinear
3k AFM in UO2 has not been clearly identified to date. The
crystal field splitting obtained in various experiments suggests
that the ground state of the U4+ ions in UO2 is a spherically
symmetric �5 triplet well separated from excited CF states
[10,17], thus the observed AFM structure cannot be due to
the single-ion anisotropy. The lattice induced quadrupole-
quadrupole (QQ) coupling might explain the first-order nature
of the magnetic transition in UO2, however, it seems to favor
the 1k structure rather than the 3k one [18,19]. Hence, the 3k
AFM should be rather due to a purely electronic mechanism
with lattice distortions subsequently induced by the magnetic
ordering [18]. The electronic quadrupolar superexchange (SE)
can in principle stabilize the 3k-magnetic order in the struc-
turally undistorted high-temperature phase as suggested by
Ref. [20]. They supported this conjuncture with a rather crude
estimation of SE interactions (SEI) within a semiempirical
kinetic exchange model.
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FIG. 1. 1k (upper panel), 2k (middle panel), and 3k (lower
panel) antiferromagnetic orders in the unit cell of UO2. Uranium
and oxygen sites are shown as large gray and small cyan balls,
respectively. The quadrupole moments on inequivalent simple-cubic
sublattices of the magnetic cell obtained by the mean-field solution
of the ab initio SE Hamiltonian, Eqs. (3) and (4), at T = 0 for each
antiferromagnetic structure are displayed on the right-hand side and
colored to indicate the corresponding U site in the unit cell.

A reliable estimation of the QQ superexchange couplings
in UO2 is thus crucial to unravel the origin of its unusual non-
collinear order. The theoretical evaluation of MIs by ab initio
density-functional-theory (DFT) methods have a recognized
vital importance in the field (see Refs. [21,22] for review).
However, the standard DFT framework in conjunction with
local or semilocal exchange correlation functionals is not ap-
plicable to localized U 5 f states in UO2. The DFT+U method,
which was extensively employed to study UO2 [23–25], is
able to capture this localization, but only in the symmetry-
broken ordered state. Pi et al. [26] has recently developed
an approach for evaluating MIs based on a simultaneous flip
of multipolar moments on two sites in a MO state described
within DFT+U. Pi et al. [26,27] predicted the spin-wave
spectra of UO2 in reasonable agreement with experiment, but
their calculated SE QQ interactions are ferromagnetic and
would favor the 1k AFM magnetic order instead of the 3k
one.

Both the high-temperature paramagnetic phase and ordered
states of correlated f compounds can be in principle quantita-
tively described by combining DFT with the dynamical mean-
field theory (DMFT) [28] treatment of localized f shells. This
DFT+DMFT method [29–31] has been extensively employed
to study the electronic structure of paramagnetic UO2 [32,33].
However, low symmetries, small energy scales, and a vast
configurational space of MO phases render a direct applica-
tion of DFT+DMFT to the symmetry-broken phase of UO2

difficult.
In this work we first derive the ab initio electronic structure

and CF splitting of UO2 in its paramagnetic cubic phase and

then apply the linear-response post-processing of Ref. [34]
to these converged DFT+DMFT results evaluating all rel-
evant dipole and multipole SEIs for the CF ground state.
The resulting ab initio SE Hamiltonian is then solved within
the mean-field approximation. We find that its most stable
ordered structure is of the noncollinear 3k type and that
its stabilization originates from a particular anisotropy of
quadrupole-quadrupole SEIs in UO2.

The paper is organized as follows: in the next section
we outline the methodology of our electronic structure and
superexchange calculations also specifying relevant calcula-
tional parameters. The results of these calculations, namely
the ab initio superexchange Hamiltonian of UO2 and its
mean-field solution, are presented in Sec. III. In Sec. IV we
analyze the calculated superexchange interactions identifying
a mechanism for the stabilization of 3k magnetic order and
also study short-range order effects in UO2 above its ordering
temperature.

II. METHOD

Our self-consistent in the charge density DFT+DMFT
calculations were carried out employing the approach of
Refs. [35,36], which combines a linearized augmented plane-
wave band structure method [37] and the DMFT implemen-
tation [38,39]. The spin-orbit coupling for the UO2 Kohn-
Sham band structure was included within the standard second-
variation procedure as implemented in Ref. [37], which is
expected to be sufficient for the valence (but not semicore)
states of uranium.

Wannier orbitals ωmσ representing U 5 f states (where m
and σ are magnetic and spin quantum numbers, respectively)
were constructed from the manifold of 14 Kohn-Sham 5 f -
like bands located in the vicinity of the Fermi level. The
on-site repulsion between these orbitals was specified by the
Slater parameters F 0, F 2, F 4, and F 6. We made use of the
standard approximation fixing the ratios of F 2/F 4 and F 2/F 4

to the values obtained in Hartree-Fock calculations for the
corresponding free ions. We employ the ratios of 1.50 and
2.02, respectively, in good agreement with the values for
actinide ions reported, for example, in Ref. [40]. With this
choice the values of F 2, F 4, and F 6 are determined by the
Hund’s rule coupling JH [29]. We used F 0 = 4.5 eV and JH =
0.6 eV obtained for UO2 in recent constrained random-phase
calculations [41]. SEIs can exhibit a strong sensitivity to the
value of JH , hence, to verify the robustness of our results
we also performed calculations with JH = 0.7 eV previously
employed in Ref. [26].

The DMFT quantum impurity problem was solved in the
quasiatomic Hubbard-I approximation (HIA) [42], which is
expected to be reasonable for the paramagnetic high-T phase
of the Mott insulator UO2. The hybridization function is
neglected within the HIA, and the DMFT impurity problem
is reduced to diagonalization of the single-shell Hamilto-
nian Ĥat = Ĥ1el + ĤU = ∑

mm′σσ ′ εσσ ′
mm′ f †

mσ fm′σ ′ + ĤU, where
fmσ ( f †

mσ ) is the creation (annihilation) operator for the U
5 f orbital mσ , ĤU is the on-site Coulomb repulsion vertex
constructed as described above, and ε̂ is the noninteracting
level position matrix [30]. In the DMFT framework ε̂ obtained
by a high-frequency expansion of the bath Green’s function
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[43] reads

ε̂ = −μ + 〈ĤKS〉 f f − �DC, (1)

where μ is the chemical potential, 〈ĤKS〉 f f =∑
k∈BZ P̂kHk

KSP̂†
k is the Kohn-Sham Hamiltonian projected

to the basis of 5 f Wannier orbitals ωmσ and summed
over the Brillouin zone, P̂k is the corresponding projector
between the KS and Wannier spaces [35,39], and �DC is the
double-counting correction term. As the spin-orbit coupling
is included in the Kohn-Sham states it naturally appears in ε̂

together with the crystal-field splitting. The double-counting
correction �DC was calculated in the fully localized limit [44]
using the atomic occupancy [43] of the U 5 f 2 shell.

The DFT+DMFT self-consistent calculations employing
the HIA (we abbreviate this framework DFT+HIA below)
were carried out enforcing the uniform occupancy of U 5 f 2

states within its ground-state multiplet (GSM) in order to
suppress the impact of DFT self-interaction error onto the
CF splitting [45] and at the experimental lattice parameter
a = 5.47 Å of UO2.

In order to evaluate dipole and quadrupole SEIs acting
between U shells in UO2 state we employed the method
of Ref. [34]. Namely, after having converged DFT+HIA
for the symmetry-unbroken paramagnetic state one evaluates
the linear response of the DFT+DMFT grand potential �

to small fluctuations of the on-site density matrix on two
neighboring sites R and R′ with respect to its paramagnetic
configuration. These fluctuations are assumed to be limited
to the ground-state (GS) crystal-field (CF) level for the cases
when the magnitude of SEIs is much smaller than that of the
CF splitting.

The corresponding variational derivative of the
DFT+DMFT grand potential with respect to such fluctuations

δ2�
δραβ (R)δργ δ (R′ ) is then identified as the matrix element
〈αγ |V (R′ − R)|βδ〉 of SEI V (R′ − R) between the two-site
states |αγ 〉 and |βδ〉. The first and second letter in | · · · 〉
labels a given CF state of the CF GS level on the ions R
and R′, respectively. The lowercase Greek letters designate
states within the GS CF level, and ρ̂ is the density matrix
for the GS CF level. The dependence of V on R′ − R
only is due to the translational invariance. As shown in
Ref. [34], δ2�

δραβ (R)δργ δ (R′ ) = 1
β

Tr[GRR′ δ�
δργ δ GR′R

δ�
δραβ ], where the

variational derivative of the local self-energy � with respect
to a given fluctuation ραβ of the density matrix is evaluated
analytically within the HIA. The intersite Green’s function
(GF) GRR′ is obtained by a Fourier transform of the lattice GF
projected to the basis of correlated 5 f orbitals.

III. RESULTS

We start by discussing the electronic structure and many-
electron states of U 5 f shell as obtained by the DFT+HIA
method for the paramagnetic phase of UO2. In Fig. 2 we
display the calculated valence-band spectral function com-
pared to recent photoemission (PES) and bremsstrahlung
isochromat spectra (BIS) of Ref. [46]. These experimental
measurements employed high photon energies thus enhancing
the relative spectral weight of 5 f features. Our calculated
valence-band spectral function is in an overall qualitative

FIG. 2. The DFT+DMFT spectral function of UO2 within the
Hubbard-I approximation. The black, red, and green lines are
the total, partial U 5 f , and O 2p spectral functions, respectively.
The experimental emission and bremsstrahlung isochromat spectra
of Ref. [46] are displayed by blue circles.

agreement with the experimental results of Ref. [46]. The
width of the U 5 f upper Hubbard band is mostly due to
multiplet effects and in agreement with the experimental
spectra, while the width of the lower Hubbard band is due to
hybridization effects and underestimated due to well-known
limitations of the Hubbard-I approximation [47]. The overall
splitting between upper and lower Hubbard bands and the
multiplet splitting of excited states that are crucial to correctly
capture the superexchange phenomenon are quantitatively
well reproduced by our approach.

As outlined in the Method section, the DMFT impurity
problem within the HIA is reduced to a single 5 f shell
Hamiltonian Ĥat, its one-electron level positions (1) includes
both the spin-orbit and crystal-field effects. The value of spin-
orbit coupling parameter λ = 0.235 eV extracted from our
converged ε̂ is in agreement with Hartree-Fock calculations
for free U ion [48]. It is expected that λ being an essentially
intra-atomic quantity is not significantly affected by the solid-
state environment. By diagonalizing Ĥat we obtained the 3H4

ground-state multiplet (GSM) of U 5 f 2 shell with the �5

triplet being the CF ground state; the exited doublet �3, triplet
�4, and singlet �1 predicted to be 193, 197, and 207 meV
higher in energy, respectively. Our theoretical CF splitting is
thus in good agreement with experimental measurements [17]
that found the splitting of 150 to 180 meV between the �5

ground state and densely spaced exited CF levels, as well
as with previous DMFT calculations of Ref. [32]. This CF
splitting is much higher than TN of UO2, hence, the impact of
exited multiplets on the magnetic order can be neglected.

The calculated �5 eigenstates in the |J; mJ〉 basis

|1〉 = 0.908|4; +3〉 − 0.343|4; −1〉 − 0.032|5; −5〉,
|0〉 = 0.686|4; +2〉 − 0.686|4; −2〉 − 0.033|5; −2〉

− 0.033|5; +2〉,
| − 1〉 = − 0.908|4; −3〉 + 0.343|4; +1〉 − 0.032|5; +5〉

(2)

feature a small admixture of high-energy multiplets.

094439-3



LEONID V. POUROVSKII AND SERGII KHMELEVSKYI PHYSICAL REVIEW B 99, 094439 (2019)

TABLE I. Calculated U-U nearest-neighbor interactions for
the [1/2,1/2,0] bond (meV) as a function of the Hund’s rule
coupling JH .

JH (eV) V V ′ Vx,y V q
xy V q

xz(yz) V q
x2−y2 V q

z2 V q
xz,yz

0.6 1.42 3.85 −0.67 0.18 0.01 −0.16 0.14 0.04
0.7 1.39 3.73 −0.69 0.20 0.01 −0.18 0.17 0.04

We calculated the SEIs between the �5 states (2) by the
approach of Ref. [34] outlined in the Method section. There
are in total 34 = 81 SEIs 〈αγ |V (R′ − R)|βδ〉 for each U-U
bond. We have subsequently transformed these interactions
to more conventional SE couplings between the spherical
tensor dipole and quarupole moments. The �5 triplet (effec-
tive angular momentum J̃ = 1) can support both dipole and
quadrupole moments [49]. The SEIs between those moments
were obtained using the transformation

∑
αβγ δ〈βδ|V (R′ −

R)|αγ 〉OLM
αβ OL′M ′

γ δ = V LL′
MM ′ (R′ − R), where OLM

αβ is the αβ

matrix element of the real spherical tensor for the effective
angular momentum J̃ = 1 [4,34] of the rank L = 1 (dipole)
or 2 (quadrupole) and projection M. V LL′

MM ′ (R′ − R) is the
resulting SEI between the multipoles LM and L′M ′ located
at the sites R and R′, respectively.

Thus calculated SE Hamiltonian for the nearest-neighbor
(NN) U-U bond R′ − R = [1/2, 1/2, 0] is of the form HSE =
HDD + HQQ, where the dipole-dipole (DD) and QQ contribu-
tions (in the global coordinate system) read

HDD = V
∑

M=x,y

ÔM
R ÔM

R′ + V ′Ôz
RÔz

R′

+ Vx,y
[
Ôx

RÔy
R′ + Ôy

RÔx
R′

]
, (3)

HQQ =
∑

M∈t2g,eg

V q
MÔM

R ÔM
R′ + V q

xz,yz

[
Ôxz

R Ôyz
R′ + Ôyz

R Ôxz
R′

]
. (4)

The number of independent SE couplings is seen to be sig-
nificantly reduced due to the cubic symmetry of the problem.
Hence, for brevity we omit the rank L in the real tensors, as the
projection M is sufficient to identify them unambiguously, and
suppress superfluous indices for V . The QQ SEI are labeled
by the superscript q. SE Hamilonians for other NN bonds are
easily obtained from (3) and (4) by symmetry. Our choice for
the spherical tensors representing the dipole and quadrupole
DOFs of the �5 triplet is in agreement with Refs. [26,27],
however, following Santini et al. [4] we employ Ô to denote
real spherical tensors instead of T̂ in Refs. [26,27]. The
operator notation is also employed in the literature [7,20,50]
for the low-energy Hamiltonian of UO2. SEIs in the oper-
ator formalism are related to the tensor SEIs in (4) by a
simple renormalization that we specify in Appendix A. The
interactions of next-nearest neighbors (NNN) are an order of
magnitude smaller and induce no qualitative changes, they are
listed in Appendix B. More distant SEIs are negligible. The
calculated NN SEIs for two values of JH are listed in Table I.
One may see that the variation in JH has a rather insignificant
impact on the SEIs. Unless explicitly mentioned otherwise,
we use the SEIs for JH = 0.6 eV in all calculations below.

FIG. 3. (a) The expectation values of dipole and t2g quadrupole
tensors as a function of temperature. A phase transition at T = 56 K
is clearly seen. (b) The mean-field magnetic energy Emag at zero
temperature as a function of the anisotropy parameter r of the QQ
SE, see text.

We have subsequently solved the calculated ab initio SE
Hamiltonian including NN and NNN couplings within the
mean-field approximation (MFA) implemented in Ref. [51].
We considered three structures shown in Fig. 1 as well as
all single-k magnetic structures realizable within the 4 ×
4 × 4 fcc supercell. A clear phase transition is observed
in the evolution of specific heat at about TN = 56 K (with
only NN SEIs TN = 60 K) accompanied by appearance of
a nonzero on-site dipole moment oriented along the 〈111〉
direction and quadrupole moments of the t2g irreducible
representation (IREP) as shown in Fig. 3(a) [52]. The
obtained magnetic and quadrupole orders correspond to the 3k
structure plotted the lower panel of Fig. 1, which is the experi-
mental ordered structure of UO2. Predicted TN is substantially
higher than the experimental first-order transition temperature
of 30.8 K. A large overestimation of TN in the MFA is
expected for the fcc lattice due to its geometric frustration
[53,54].

IV. ANALYSIS AND DISCUSSION

Let us now analyze the calculated SEIs in order to identify
the origin of 3k-structure stabilization with respect to the com-
peting 1k and 2k ones. The DD interactions are antiferromag-
netic and very asymmetric. With J ′ < J < 0 all three AFM
structures shown in Fig. 1 become degenerated with respect
to HDD (3) having the same ordering energy Emag = −V ′ =
−3.85 meV/f.u. in the mean-field approximation [18,55]. The
quadrupole orders shown on the right-hand side of Fig. 1 are
obtained by solving the full SE NN Hamiltonian for the AFM
state of a given type. With the calculated SE QQ interactions
from Table I the QQ contribution to the ground state energies
is equal to 0.010, −0.047, and −0.060 meV/(f.u.) for the 1k,
2k, and 3k orders, respectively.

Therefore we conclude that the QQ SEI are stabilizing the
experimentally observed noncollinear 3k magnetic structure
in the absence of an SL mediated contribution; this order of
a purely electronic origin would subsequently result in the
Jahn-Teller distortion. The SL QQ coupling, however, might
be essential for the full description of the relative stability of
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TABLE II. Comparison of the SEI calculated in the present work
with previous DFT+U calculations of Ref. [27], and the values of
Ref. [7] from a fit of the experimental spin-wave spectra. Following
Refs. [7,27] we define the isotropic part of DD and QQ SEIs
as V ′ and V q

xy, respectively. and the corresponding dimensionless
anisotropy parameters δd/q defined as δd = V/V ′ and δq = V q

yz/V q
xy,

respectively. References [7,27] estimated only the SEI is relevant for
the 3k structure, thus only those four parameters are available for
comparison (note that Ref. [7] assumed δq = δd ).

V ′ δd V q
xy δq,

This work 3.85 0.37 0.18 0.22
Ref. [7] 3.1 0.25 1.9 0.25
Ref. [27] 1.70 0.3 −3.10 0.9

ordered magnetic structures as well as for the spin dynamics
in UO2 [7,50].

In Table II we compare our results to previous theoretical
and experimental estimates of SEIs in UO2. Our DD SE
is very close to the fit of experimental spin-waves spectra
of Ref. [7], however, our QQ SEIs are much smaller. The
qualitative difference with the DFT+U results [27] is in the
sign of the QQ interactions. The negative sign predicted in
Ref. [27] would stabilize 1k order having NN 〈ÔM

R ÔM
R′ 〉 = 0

for all M belonging to the t2g IREP (xy, xz, yz). AF t2g SEIs
favor the 3k structure because of a larger angle between
ordered quadrupoles in this case as compared to the 2k struc-
ture, where one third of NN pairs have parallel quadrupole
moments and the 1k structure, where all quadrupole moments
are parallel (see Fig. 1).

The magnitude of SEIs acting between the eg quadrupoles
has not been evaluated in Ref. [27] neither can it be estimated
from the spin-wave dispersion, as 〈ÔM

R ÔM
R′ 〉 = 0 for M = z2

and x2 − y2 in the experimental 3k AFM structure. However,
the contribution of eg SEIs is nonzero for the 1k and 2k com-
peting orders thus impacting the relative stability of magnetic
structures.

In order to further clarify the impact of QQ SEIs on the rel-
ative stability of these three structures one may evaluate their
single-site mean-field Hamiltonian in a local coordinate frame
[50], in which the on-site dipole moment is parallel to the local
z axis. In such a frame only the z2 quadrupole is active, while
other local quadrupole moments are zero thus simplifying the
analysis (see Appendix A for the definition of quadrupole
moments in terms of spin operators). The mean-field
Hamiltonian reads ĤMF = ĤMF

DD + ĤMF
QQ , where the dipole-

dipole contribution ĤDD = −4V ′〈Ôz
l 〉Ôz

l is the same for
all three structures. Ôz

l is the z projection of the dipole tensor
operator in the local frame, its expectation value 〈Ôz

l 〉 = 1/
√

2
at the full saturation.

The QQ term ĤMF
QQ reads VQQ〈Ôz2

l 〉Ôz2

l , where the

quadrupole operator Ôz2

l is defined in the local frame in the
same way as the dipole one. The mean-field QQ coupling
VQQ is equal to 6V q

eg , ( 3
8
√

2
+ 9

8 )V q
eg − 3V q

xy, and −4V q
xy for

the 1k, 2k, and 3k orders, respectively. Here we desig-
nate as V q

eg = V q
z2 + V q

x2−y2 the summed diagonal SEI between
eg quadrupoles. One sees that the relative stability of the

FIG. 4. The dipole-dipole and quadrupole-quadrupole nearest-
neighbor pair correlation functions above TN . The quadrupole-
quadrupole pair correlation functions are multiplied by 10.

structures is determined by the relative magnitudes of V q
eg and

the in-plain coupling between t2g quadrupoles V q
xy. In particu-

lar, the opposite signs of our calculated V q
z2 and V q

x2−y2 result in

the magnitude of V q
eg = −0.02 meV that is much smaller than

V q
xy = 0.18 meV. While V q

eg is negative and does help stabiliz-
ing 1k and 2k structures, its contribution is overweighted by
a larger prefactor for V q

xy in the case of 3k. Therefore, it is the
particular anisotropy of QQ SEIs of UO2 with a larger magni-
tude of positive V q

t2g
that is at the origin of 3k order in UO2.

From the mean-field Hamiltonian derived above one may
easily evaluate the effect of a variation in the relative value of
the QQ SEIs V q

eg and V q
xy on the ground-state magnetic struc-

ture of UO2. One may introduce renormalized SEIs V q
eg (1 − r)

and V q
xy(1 + r) with r ∈ [−1 : 1]. Hence, r = 0 corresponds

to the actual calculated QQ SEIs, while at r = −1 (1) only V q
eg

(V q
xy) are nonzero. The resulting evolution of the mean-field

ordering energy Emag vs r is plotted in Fig. 3(b). One finds
that the 1k is stabilized with r → −1, while the actual 3k is
stabilized in the opposite limit. At r ≈ −0.713 one obtains a
transition between the 1k and 3k orders. Interestingly, the 2k
structure is unstable relative to the 1k order for r < −0.707
and relative to the 3k one for r > −0.732, meaning that over
the whole range of r the ground state is never of the 2k type.

The phase transition in UO2 is of the first order and
dynamical Jahn-Teller effects are also observed well above TN

[10,12] hinting at a non-negligible short-range order (SRO)
present in UO2. We have analyzed SRO effects above the
Néel temperature using an Oguchi-like method [56]. To this
end we diagonalized the ab initio SE Hamiltonian, Eqs. (3)
and (4), with the SEIs from Table I, for each NN pair of
U ions. We then calculated the DD and QQ pair correlation
functions 〈ÔM

R ÔM ′
R′ 〉 by averaging them over all NN bonds. The

calculated NN pair correlation functions vs T/TN are shown
in Fig. 4. Strong dipole SRO effects are clearly observed well
above Néel temperature as expected for the frustrated fcc
lattice [57]. The dominating AFM dipole SRO forces a ferro-
quadrupole SRO for both the t2g and eg quadrupoles for T >

TN as one sees in Fig. 4. The constrain of antiparallel orienta-
tion of the neighboring dipole moments is lifted in the ordered
state by the AFM frustration. The t2g quadrupole order is then
antiferro due to the corresponding sign of QQ SEIs, while the
eg pair correlation functions are zero. Hence, the structure of
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QQ pair correlation function below and above the phase tran-
sition is qualitatively different. This observation has two im-
portant consequences. First, a SRO that is opposite to the cor-
responding pair correlation function in the ordered state is as-
sociated with a first-order magnetic phase transition [58–60].
This hints at a purely electronic SE mechanism for the ob-
served first-order type of magnetic transition in UO2. Second,
the dynamical Jahn-Teller distortions above TN might be quite
different from the static one in the AFM phase. The last pre-
diction can be possibly verified in future experimental studies.

V. CONCLUSIONS

In conclusion, our calculations point out at the anisotropy
of quadrupole superexchange as a likely origin of noncollinear
3k antiferromagnetic order in UO2 and the first-order type
of the corresponding Néel transition. The present ab initio
approach seems to be highly promising for studies of other
localized f -electron systems featuring complex unexplained
magnetic or “hidden” orders and local multipole degrees of
freedom.
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APPENDIX A: SUPEREXCHANGE IN
SPHERICAL-TENSOR AND

ANGULAR-MOMENT-OPERATOR FORMALISMS

In the present work we represent the dipole and quadrupole
DOF of the �5 triplet by the real-valued spherical ten-
sors [4,61] Ô similarly to Refs. [26,27]. Some authors
[7,20,50] employ instead the conventional angular-moment
and quadrupole operators. The SEIs defined in the two
formalisms are related to each other by simple prefactors.
Namely, for the effective angular momentum J̃ = 1 the dipole
spherical tensors ÔM = ŜM/

√
2, where ŜM is the angular-

moment operator for the same projection M = x, y, or z,
see Ref. [61]. Hence, one sees that the dipole-dipole SEIs
in the angular-momentum formalism JMM ′ are related to our
spherical-tensor ones by the prefactor 1/2, JMM ′ ≡ VMM ′/2.

The quadrupole spherical tensors for J̃ = 1 can be ex-
pressed as products of dipole ones:

Ôxy = −
√

2(ÔxÔy + ÔyÔx ),

Ôxz =
√

2(ÔxÔz + ÔzÔx ),

Ôyz =
√

2(ÔyÔz + ÔzÔx ),

Ôz2 =
√

2/3[3(Ôz )2 − 1],

Ôx2−y2 =
√

2(ÔxÔx − ÔyÔy).

(A1)

They are converted to the corresponding quadrupole operators
employed by Refs. [7,20,50] by multiplying them by

√
6 for

TABLE III. Calculated U-U next-nearest-neighbor interactions
for the [0,0,1] bond (meV) for JH = 0.6 eV.

V V ′ V q
xy V q

xz(yz) V q
x2−y2 V q

z2

0.143 0.156 0.004 −0.015 −0.003 0.053

z2 and
√

2 for all other projections. Hence, the corresponding
conversion factors between the spherical-tensors QQ SEIs V q

M
(Tables I and III) and QQ interactions KM in Refs. [7,20,50]
are 1/6 for the SEI coupling M = z2, Kz2 ≡ Vz2/6, and 1/2 for
all other V q

M .
The ordered states analyzed in this paper are specified by

the following expectation values of the dipole tensors:
1k structure:

〈
ÔR

x

〉 = ei2πRy

√
2

;
〈
ÔR

y

〉 = 0;
〈
ÔR

z

〉 = 0, (A2)

2k structure:

〈
ÔR

x

〉 = ei2πRz

2
;
〈
ÔR

y

〉 = 0;
〈
ÔR

z

〉 = ei2πRy

2
, (A3)

3k structure:

〈
ÔR

x

〉 = ei2πRz

√
6

;
〈
ÔR

y

〉 = ei2πRx

√
6

;
〈
ÔR

z

〉 = ei2πRy

√
6

, (A4)

where R is the lattice vector in units of the lattice
parameter a.

APPENDIX B: NEXT-NEAREST-NEIGHBORS
SUPEREXCHANGE INTERACTIONS IN UO2

The calculated SE Hamiltonian for the next-nearest-
neighbor bond [001] HNNN

SE = HNNN
DD + HNNN

QQ reads

HNNN
DD = V

∑

M=x,y

ÔM
R ÔM

R′ + V ′Ôz
RÔz

R′ , (B1)

HNNN
QQ =

∑

M∈t2g,eg

V q
MÔM

R ÔM
R′ , (B2)

where the dipole-dipole (DD) and QQ contributions take a
simpler form compared to the nearest-neighbor SE Hamilto-
nian [Eqs. (2) and (3) of the main text] due to the absence
of off-diagonal terms. The SE Hamiltonians for other NNN
bonds are obtained from that for [001] by the corresponding
rotations, that amounts in the case of HNNN

DD to permutations
of the x, y, and z labels. The L = 2 tensors in HNNN

QQ transform
upon these rotations like the corresponding l = 2 real spheri-
cal harmonics.

The calculated values of the NNN SEIs are listed in
Table III. By comparing it with Table I of the main text one
sees that the NNN SEIs are about one order of magnitude
smaller compared to the NN ones.

094439-6



QUADRUPOLAR SUPEREXCHANGE INTERACTIONS, … PHYSICAL REVIEW B 99, 094439 (2019)

[1] N. A. Spaldin, Nat. Rev. Mater. 2, 17017 (2017).
[2] K. I. Kugel’ and D. I. Khomskii, Sov. Phys. Usp. 25, 231

(1982).
[3] Y. Tokura, Rep. Prog. Phys. 69, 797 (2006).
[4] P. Santini, S. Carretta, G. Amoretti, R. Caciuffo, N. Magnani,

and G. H. Lander, Rev. Mod. Phys. 81, 807 (2009).
[5] H. Kotegawa, M. Yogi, Y. Imamura, Y. Kawasaki, G.-q. Zheng,

Y. Kitaoka, S. Ohsaki, H. Sugawara, Y. Aoki, and H. Sato,
Phys. Rev. Lett. 90, 027001 (2003).

[6] A. Yatskar, W. P. Beyermann, R. Movshovich, and P. C.
Canfield, Phys. Rev. Lett. 77, 3637 (1996).

[7] R. Caciuffo, P. Santini, S. Carretta, G. Amoretti, A. Hiess, N.
Magnani, L.-P. Regnault, and G. H. Lander, Phys. Rev. B 84,
104409 (2011).

[8] L. B. Skinner, C. J. Benmore, J. K. R. Weber, M. A. Williamson,
A. Tamalonis, A. Hebden, T. Wiencek, O. L. G. Alderman, M.
Guthrie, L. Leibowitz et al., Science 346, 984 (2014).

[9] G. J. Hutchings, C. S. Heneghan, I. D. Hudson, and S. H. Taylor,
Nature (London) 384, 341 (1996).

[10] G. Amoretti, A. Blaise, R. Caciuffo, J. M. Fournier, M. T.
Hutchings, R. Osborn, and A. D. Taylor, Phys. Rev. B 40, 1856
(1989).

[11] S. B. Wilkins, R. Caciuffo, C. Detlefs, J. Rebizant, E. Colineau,
F. Wastin, and G. H. Lander, Phys. Rev. B 73, 060406(R)
(2006).

[12] R. Caciuffo, G. Amoretti, P. Santini, G. H. Lander, J. Kulda, and
P. de V. Du Plessis, Phys. Rev. B 59, 13892 (1999).

[13] E. Blackburn, R. Caciuffo, N. Magnani, P. Santini, P. J. Brown,
M. Enderle, and G. H. Lander, Phys. Rev. B 72, 184411
(2005).

[14] P. Monachesi and F. Weling, Phys. Rev. B 28, 270 (1983).
[15] P. Burlet, J. Rossat-Mignod, S. Quezel, O. Vogt, J. Spirlet, and

J. Rebizant, J. Less-Common Met. 121, 121 (1986).
[16] K. Ikushima, S. Tsutsui, Y. Haga, H. Yasuoka, R. E. Walstedt,

N. M. Masaki, A. Nakamura, S. Nasu, and Y. Ōnuki, Phys. Rev.
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[44] M. T. Czyżyk and G. A. Sawatzky, Phys. Rev. B 49, 14211

(1994).
[45] P. Delange, S. Biermann, T. Miyake, and L. Pourovskii, Phys.

Rev. B 96, 155132 (2017).
[46] S.-W. Yu, J. G. Tobin, J. C. Crowhurst, S. Sharma, J. K.

Dewhurst, P. Olalde-Velasco, W. L. Yang, and W. J. Siekhaus,
Phys. Rev. B 83, 165102 (2011).

[47] X. Dai, K. Haule, and G. Kotliar, Phys. Rev. B 72, 045111
(2005).

[48] H. Ogasawara, A. Kotani, and B. T. Thole, Phys. Rev. B 44,
2169 (1991).

[49] The observable dipole magnetic and quadrupole moments are
related to the corresponding tensor moments defined in the �5

basis (2) by the prefactors 2.88, 0.153, and 0.217 for the dipole,
quadrupole eg, and quadrupole t2g, respectively.

[50] S. Carretta, P. Santini, R. Caciuffo, and G. Amoretti, Phys. Rev.
Lett. 105, 167201 (2010).

[51] M. Rotter, J. Magn. Magn. Mater. 272-276, E481 (2004).
[52] Using the SEIs evaluated with JH = 0.7 eV we obtain the same

ordered structures at almost identical temperature of 54 K.
[53] W. Minor and T. M. Giebultowicz, J. Phys. Colloques 49, C8-

1551 (1988).

094439-7

https://doi.org/10.1038/natrevmats.2017.17
https://doi.org/10.1038/natrevmats.2017.17
https://doi.org/10.1038/natrevmats.2017.17
https://doi.org/10.1038/natrevmats.2017.17
https://doi.org/10.1070/PU1982v025n04ABEH004537
https://doi.org/10.1070/PU1982v025n04ABEH004537
https://doi.org/10.1070/PU1982v025n04ABEH004537
https://doi.org/10.1070/PU1982v025n04ABEH004537
https://doi.org/10.1088/0034-4885/69/3/R06
https://doi.org/10.1088/0034-4885/69/3/R06
https://doi.org/10.1088/0034-4885/69/3/R06
https://doi.org/10.1088/0034-4885/69/3/R06
https://doi.org/10.1103/RevModPhys.81.807
https://doi.org/10.1103/RevModPhys.81.807
https://doi.org/10.1103/RevModPhys.81.807
https://doi.org/10.1103/RevModPhys.81.807
https://doi.org/10.1103/PhysRevLett.90.027001
https://doi.org/10.1103/PhysRevLett.90.027001
https://doi.org/10.1103/PhysRevLett.90.027001
https://doi.org/10.1103/PhysRevLett.90.027001
https://doi.org/10.1103/PhysRevLett.77.3637
https://doi.org/10.1103/PhysRevLett.77.3637
https://doi.org/10.1103/PhysRevLett.77.3637
https://doi.org/10.1103/PhysRevLett.77.3637
https://doi.org/10.1103/PhysRevB.84.104409
https://doi.org/10.1103/PhysRevB.84.104409
https://doi.org/10.1103/PhysRevB.84.104409
https://doi.org/10.1103/PhysRevB.84.104409
https://doi.org/10.1126/science.1259709
https://doi.org/10.1126/science.1259709
https://doi.org/10.1126/science.1259709
https://doi.org/10.1126/science.1259709
https://doi.org/10.1038/384341a0
https://doi.org/10.1038/384341a0
https://doi.org/10.1038/384341a0
https://doi.org/10.1038/384341a0
https://doi.org/10.1103/PhysRevB.40.1856
https://doi.org/10.1103/PhysRevB.40.1856
https://doi.org/10.1103/PhysRevB.40.1856
https://doi.org/10.1103/PhysRevB.40.1856
https://doi.org/10.1103/PhysRevB.73.060406
https://doi.org/10.1103/PhysRevB.73.060406
https://doi.org/10.1103/PhysRevB.73.060406
https://doi.org/10.1103/PhysRevB.73.060406
https://doi.org/10.1103/PhysRevB.59.13892
https://doi.org/10.1103/PhysRevB.59.13892
https://doi.org/10.1103/PhysRevB.59.13892
https://doi.org/10.1103/PhysRevB.59.13892
https://doi.org/10.1103/PhysRevB.72.184411
https://doi.org/10.1103/PhysRevB.72.184411
https://doi.org/10.1103/PhysRevB.72.184411
https://doi.org/10.1103/PhysRevB.72.184411
https://doi.org/10.1103/PhysRevB.28.270
https://doi.org/10.1103/PhysRevB.28.270
https://doi.org/10.1103/PhysRevB.28.270
https://doi.org/10.1103/PhysRevB.28.270
https://doi.org/10.1016/0022-5088(86)90521-7
https://doi.org/10.1016/0022-5088(86)90521-7
https://doi.org/10.1016/0022-5088(86)90521-7
https://doi.org/10.1016/0022-5088(86)90521-7
https://doi.org/10.1103/PhysRevB.63.104404
https://doi.org/10.1103/PhysRevB.63.104404
https://doi.org/10.1103/PhysRevB.63.104404
https://doi.org/10.1103/PhysRevB.63.104404
https://doi.org/10.1088/1742-6596/251/1/012002
https://doi.org/10.1088/1742-6596/251/1/012002
https://doi.org/10.1088/1742-6596/251/1/012002
https://doi.org/10.1088/1742-6596/251/1/012002
https://doi.org/10.1016/0304-8853(87)90722-0
https://doi.org/10.1016/0304-8853(87)90722-0
https://doi.org/10.1016/0304-8853(87)90722-0
https://doi.org/10.1016/0304-8853(87)90722-0
https://doi.org/10.1103/PhysRevB.22.4718
https://doi.org/10.1103/PhysRevB.22.4718
https://doi.org/10.1103/PhysRevB.22.4718
https://doi.org/10.1103/PhysRevB.22.4718
https://doi.org/10.7566/JPSJ.87.041008
https://doi.org/10.7566/JPSJ.87.041008
https://doi.org/10.7566/JPSJ.87.041008
https://doi.org/10.7566/JPSJ.87.041008
https://doi.org/10.1016/j.crhy.2014.07.003
https://doi.org/10.1016/j.crhy.2014.07.003
https://doi.org/10.1016/j.crhy.2014.07.003
https://doi.org/10.1016/j.crhy.2014.07.003
https://doi.org/10.1103/PhysRevB.88.195146
https://doi.org/10.1103/PhysRevB.88.195146
https://doi.org/10.1103/PhysRevB.88.195146
https://doi.org/10.1103/PhysRevB.88.195146
https://doi.org/10.1103/PhysRevB.80.035121
https://doi.org/10.1103/PhysRevB.80.035121
https://doi.org/10.1103/PhysRevB.80.035121
https://doi.org/10.1103/PhysRevB.80.035121
https://doi.org/10.1103/PhysRevB.80.125127
https://doi.org/10.1103/PhysRevB.80.125127
https://doi.org/10.1103/PhysRevB.80.125127
https://doi.org/10.1103/PhysRevB.80.125127
https://doi.org/10.1103/PhysRevLett.112.077203
https://doi.org/10.1103/PhysRevLett.112.077203
https://doi.org/10.1103/PhysRevLett.112.077203
https://doi.org/10.1103/PhysRevLett.112.077203
https://doi.org/10.1103/PhysRevB.90.045148
https://doi.org/10.1103/PhysRevB.90.045148
https://doi.org/10.1103/PhysRevB.90.045148
https://doi.org/10.1103/PhysRevB.90.045148
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1088/0953-8984/9/4/002
https://doi.org/10.1088/0953-8984/9/4/002
https://doi.org/10.1088/0953-8984/9/4/002
https://doi.org/10.1088/0953-8984/9/4/002
https://doi.org/10.1103/PhysRevB.57.6884
https://doi.org/10.1103/PhysRevB.57.6884
https://doi.org/10.1103/PhysRevB.57.6884
https://doi.org/10.1103/PhysRevB.57.6884
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/PhysRevB.92.085125
https://doi.org/10.1103/PhysRevB.92.085125
https://doi.org/10.1103/PhysRevB.92.085125
https://doi.org/10.1103/PhysRevB.92.085125
https://doi.org/10.1103/PhysRevLett.118.126401
https://doi.org/10.1103/PhysRevLett.118.126401
https://doi.org/10.1103/PhysRevLett.118.126401
https://doi.org/10.1103/PhysRevLett.118.126401
https://doi.org/10.1103/PhysRevB.94.115117
https://doi.org/10.1103/PhysRevB.94.115117
https://doi.org/10.1103/PhysRevB.94.115117
https://doi.org/10.1103/PhysRevB.94.115117
https://doi.org/10.1103/PhysRevB.80.085101
https://doi.org/10.1103/PhysRevB.80.085101
https://doi.org/10.1103/PhysRevB.80.085101
https://doi.org/10.1103/PhysRevB.80.085101
https://doi.org/10.1103/PhysRevB.84.054529
https://doi.org/10.1103/PhysRevB.84.054529
https://doi.org/10.1103/PhysRevB.84.054529
https://doi.org/10.1103/PhysRevB.84.054529
https://doi.org/10.1016/j.cpc.2015.04.023
https://doi.org/10.1016/j.cpc.2015.04.023
https://doi.org/10.1016/j.cpc.2015.04.023
https://doi.org/10.1016/j.cpc.2015.04.023
https://doi.org/10.1016/j.cpc.2016.03.014
https://doi.org/10.1016/j.cpc.2016.03.014
https://doi.org/10.1016/j.cpc.2016.03.014
https://doi.org/10.1016/j.cpc.2016.03.014
https://doi.org/10.1103/RevModPhys.81.235
https://doi.org/10.1103/RevModPhys.81.235
https://doi.org/10.1103/RevModPhys.81.235
https://doi.org/10.1103/RevModPhys.81.235
https://doi.org/10.1103/PhysRevLett.119.056401
https://doi.org/10.1103/PhysRevLett.119.056401
https://doi.org/10.1103/PhysRevLett.119.056401
https://doi.org/10.1103/PhysRevLett.119.056401
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1103/PhysRevB.76.235101
https://doi.org/10.1103/PhysRevB.76.235101
https://doi.org/10.1103/PhysRevB.76.235101
https://doi.org/10.1103/PhysRevB.76.235101
https://doi.org/10.1103/PhysRevB.49.14211
https://doi.org/10.1103/PhysRevB.49.14211
https://doi.org/10.1103/PhysRevB.49.14211
https://doi.org/10.1103/PhysRevB.49.14211
https://doi.org/10.1103/PhysRevB.96.155132
https://doi.org/10.1103/PhysRevB.96.155132
https://doi.org/10.1103/PhysRevB.96.155132
https://doi.org/10.1103/PhysRevB.96.155132
https://doi.org/10.1103/PhysRevB.83.165102
https://doi.org/10.1103/PhysRevB.83.165102
https://doi.org/10.1103/PhysRevB.83.165102
https://doi.org/10.1103/PhysRevB.83.165102
https://doi.org/10.1103/PhysRevB.72.045111
https://doi.org/10.1103/PhysRevB.72.045111
https://doi.org/10.1103/PhysRevB.72.045111
https://doi.org/10.1103/PhysRevB.72.045111
https://doi.org/10.1103/PhysRevB.44.2169
https://doi.org/10.1103/PhysRevB.44.2169
https://doi.org/10.1103/PhysRevB.44.2169
https://doi.org/10.1103/PhysRevB.44.2169
https://doi.org/10.1103/PhysRevLett.105.167201
https://doi.org/10.1103/PhysRevLett.105.167201
https://doi.org/10.1103/PhysRevLett.105.167201
https://doi.org/10.1103/PhysRevLett.105.167201
https://doi.org/10.1016/j.jmmm.2003.12.1394
https://doi.org/10.1016/j.jmmm.2003.12.1394
https://doi.org/10.1016/j.jmmm.2003.12.1394
https://doi.org/10.1016/j.jmmm.2003.12.1394
https://doi.org/10.1051/jphyscol:19888710
https://doi.org/10.1051/jphyscol:19888710
https://doi.org/10.1051/jphyscol:19888710
https://doi.org/10.1051/jphyscol:19888710


LEONID V. POUROVSKII AND SERGII KHMELEVSKYI PHYSICAL REVIEW B 99, 094439 (2019)

[54] H. T. Diep and H. Kawamura, Phys. Rev. B 40, 7019
(1989).

[55] J. Jensen and P. Bak, Phys. Rev. B 23, 6180
(1981).

[56] T. Oguchi, Prog. Theor. Phys. 13, 148 (1955).
[57] S. Khmelevskyi, Phys. Rev. B 86, 104429 (2012).

[58] E. L. Nagaev and A. A. Kovalenko, JETP Lett. 29, 492
(1979).

[59] A. A. Kovalenko and E. L. Nagaev, JETP Lett. 35, 24 (1982).
[60] E. L. Nagaev, Sov. Phys. Usp. 25, 31 (1982).
[61] K. Blum, Density Matrix Theory and Applications (Plenum,

New York, 1996).

094439-8

https://doi.org/10.1103/PhysRevB.40.7019
https://doi.org/10.1103/PhysRevB.40.7019
https://doi.org/10.1103/PhysRevB.40.7019
https://doi.org/10.1103/PhysRevB.40.7019
https://doi.org/10.1103/PhysRevB.23.6180
https://doi.org/10.1103/PhysRevB.23.6180
https://doi.org/10.1103/PhysRevB.23.6180
https://doi.org/10.1103/PhysRevB.23.6180
https://doi.org/10.1143/PTP.13.148
https://doi.org/10.1143/PTP.13.148
https://doi.org/10.1143/PTP.13.148
https://doi.org/10.1143/PTP.13.148
https://doi.org/10.1103/PhysRevB.86.104429
https://doi.org/10.1103/PhysRevB.86.104429
https://doi.org/10.1103/PhysRevB.86.104429
https://doi.org/10.1103/PhysRevB.86.104429
https://doi.org/10.1070/PU1982v025n01ABEH004495
https://doi.org/10.1070/PU1982v025n01ABEH004495
https://doi.org/10.1070/PU1982v025n01ABEH004495
https://doi.org/10.1070/PU1982v025n01ABEH004495

