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ABSTRACT
Upcoming biosignature searches focus on indirect indicators to infer the presence of life on
other worlds. Aside from just signalling the presence of life, however, some biosignatures
can contain information about the state that a planet’s biosphere has achieved. This additional
information can be used to measure what fractions of planets achieve certain key stages,
corresponding to the advent of life, photosynthesis, multicellularity, and technological
civilization. We forecast the uncertainties of each measurement for upcoming surveys, and
outline the key factors that determine these uncertainties. Our approach is probabilistic and
relies on large numbers of candidates rather than detailed examination of individual exoplanet
spectra. The dependence on survey size, likeliness of the transition, and several measures
of degrees of confidence are discussed, including discussion of geological false positives in
biosignatures as well as how combining data from different missions can affect the inference.
Our analysis should influence policy recommendations for future mission design and strategy
to minimize the impact of measurement uncertainties.

Key words: astrobiology – methods: statistical – planets and satellites: detection.

1 IN T RO D U C T I O N

The era of large exo-atmosphere surveys will quickly be upon us.
Near future experiments aim to measure the atmospheres of several
Earth-like planets, and in a few decades, large-scale surveys will
collect data on dozens of Earth-like worlds (Kiang et al. 2018).
This is exciting because life can potentially have a large impact on
a planet’s atmosphere, and so the measurement of the gas content
of an exoplanet atmosphere can serve as an indirect detection of
the presence of any life (Lovelock 1965). We address the following
issue via a probabilistic framework: what is the optimal number
of exoplanet targets? Our arguments are simple: we do not present
detailed spectral analyses of exoplanet atmospheres, undoubtedly
a crucial ingredient, but we focus on giving reasonable odds for
success based on having a sufficient number of targets and making
plausible assumptions about the nature of biosignatures.

The stated goal of many missions has been to clearly detect
atmospheric gases in as many systems as possible. However,
biosignatures may carry more information than just the presence or
absence of life: it is also possible to deduce the level of sophistication
that life on a planet has attained, relying on the fact that different
signatures signal alternative biochemical processes. The life history
of our own planet can be seen as a sequence of transitions wrought

� E-mail: mccullen.sandora@gmail.com

by evolutionary innovations, from biogenesis to the evolution
of photosynthesis, multicellularity, and technological civilization
(Szathmáry & Smith 1995). As far as these transitions can be
expected to be generic, they can each be sought for independently
through their characteristic atmospheric imprints. The question we
address here is, what fraction of planets undergoes each transition,
and more importantly, which can be measured with upcoming
surveys? By quantifying the uncertainty in measurements of each
of these quantities, we provide a framework for understanding
how they depend on proposed mission designs as well as on
atmospheric modelling. If the goal is to maximize the information
return to the extent possible, this also provides a means of policy
recommendation for which aspects of future missions most effort
should be devoted.

We begin in Section 2 with an overview of each of the different
transitions that we think are important, and some ideas for the
associated signatures that can be measured. Not all of these are
likely to be constrained in the immediate future, but enunciating
our ultimate desires for science return can then serve to focus
future research into some of the more challenging measurements.
In Section 3 we review current and future telescope missions, and
their expected return on each of these measurements. Then, we
outline the formalism for parameter estimation, as a function of
number of surveyed planets and detections: we begin in Section 4
with the simple case of detecting a single signal, and outline
how this is affected by priors. In Section 5, we discuss the

C© 2020 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/495/1/1000/5834560 by C
N

R
S user on 07 July 2023

mailto:mccullen.sandora@gmail.com


Biosignature surveys 1001

detection of multiple signals in a single data set, and find that
most effort should be spent measuring signals that correspond to
likely transitions. Section 5.1 is devoted to the subtleties that arise
when combining multiple, possibly incomplete data sets, and we
find recommendations for which mission yields to optimize. In
Section 6 we outline how false positives and negatives influence
the variance of our likelihoods, and find that generically the desired
confidence in our signal interpretation should be roughly the same
magnitude as the likelihood of the signal. Finally, in Section 7, we
provide a general prescription for maximizing science return.

2 SI G NAT U R E S

We focus here on what we expect to be a nested sequence of
biosignatures, corresponding to the major evolutionary transitions
that occur on Earth, as outlined in Carter (1983), Szathmáry & Smith
(1995). Many of the biosignatures reorganize the energy flow of the
entire biosphere, leaving a large imprint on the planet, most notably
via the vast increase in available energy that accompanies these
transitions.

The first step we take will be the presence of life in any form.
The next step is photosynthesis, the harvesting of energy from
the planet’s host star thereby providing a mechanism to harvest
the dominant source of free energy on a planet. After this, we
discuss the evolution of multicellularity on other worlds. Lastly,
and most speculatively, the detection of technological civilizations,
both of the level Earth has achieved and beyond, is considered.
Though most work has been done on detecting photosynthesis and
technosignatures, and these are likely the only ones which will be
unambiguously measurable with the next generation of telescopes,
our goal is to call attention to the importance of distinguishing the
other two, with the hopes of spurring the creativity needed to make
measuring these a reality.

2.1 Life

Any form of life is expected to be accompanied by chemosynthesis,
the rearrangement of chemical matter. Several simple gaseous
byproducts have been identified that are indicative of life. It is
important to note that most of the biosignatures that we discuss
do not unambiguously signal the presence of life, however: several
abiotic sources of these gases have been identified that could give
rise to false positives. Identifying combinations of observables that
would strengthen our confidence that life is the only possible source
(type III biosignatures in the terminology of Seager, Bains & Hu
2013) is an important industry, but here we wish to merely include
a sampling of the types of signatures that have been proposed.
Similarly, detecting the presence of one of these signatures will not
guarantee that none of the other, later stages have not been achieved,
only that this one has.

The most studied byproduct of simple life is methane (CH4)
(Guzmán-Marmolejo, Segura & Escobar-Briones 2013). Methano-
genesis evolved very early on Earth (Battistuzzi, Feijao & Hedges
2004), and is best detected in the 1.0–1.7μm wavelength regime.
Several of its spectral peaks coincide with those of water, but
observing the 0.84 and 0.92μm features at SNR>5 will unam-
biguously signal detection (Arney et al. 2017). Additionally, it has
a feature at 7.7μm that would be suitable for measuring with eclipse
spectroscopy on planets whose blackbody spectrum peaks near this
location (Fujii et al. 2018).

Though the methane on Earth is overwhelmingly produced by
life (Etiope & Sherwood Lollar 2013), there are several abiotic pro-

duction mechanisms, such as the serpentinization of rocks, so that
it may not automatically be considered a biosignature, especially if
the atmosphere is reducing, as on Titan. Ways to disambiguate these
two sources are to look for chemical disequilibria: for example, the
simultaneous presence of CH4, CO2, N2, and liquid water would
signal some prodigious methane source, most easily explained by
biology (Krissansen-Totton, Olson & Catling 2018b).

Methane was probably not detectable throughout all of Earth’s
history; oxygenation of the Proterozoic caused methane levels to
drop to undetectable levels (Reinhard et al. 2016). It is likely
that methane can only be detected when primary productivity
is very high, which requires an energy source as ubiquitous as
oxygenic photosynthesis (Wolstencroft & Raven 2002). However,
its associated byproduct, haze, can serve as an important indirect
indicator of its presence (Arney et al. 2017). Haze is only formed
(around sunlike stars) when biological levels of methane are
present, and can be detected fairly easily from its continuum NUV
signature, most relevant for the Archean eon, when methane levels
were 2–3 orders of magnitude higher than present (Pavlov et al.
2000).

It was found in Wang et al. (2018) that methane is detectable
with HabEx after 850 h of exposure time with favourable cloud
conditions, and after 25 h with LUVOIR under similar conditions.

An additional chemical signature of life is nitrous oxide N2O
(Des Marais et al. 2002). This gas is produced when other biogenic
nitrogen compounds react with atmospheric oxygen, and so requires
the presence of oxygenic photosynthesis, in the absence of any
other oxygen sources. In contrast with CH4, this biosignature was
enhanced during the mid-Proterozoic as a consequence of enhanced
oxygen levels (Buick 2007) and can be observed from its several
peaks in the 1.5–2.0μm range. Abiotic sources that would need to be
taken into account include lightning (Harman et al. 2018) and flares
(Airapetian et al. 2016). Additional biosignature gases have been
proposed as well, such as methyl chloride (CH3Cl) and dimethyl
sulfide (C2H6S) (Seager, Bains & Petkowski 2016), as well as the
generic strategy of searching for chemical disequilibrium. Another
generic feature of life is biological homochirality, the preference
for one molecular handedness over the other, which we discuss in
the next subsection.

2.2 Photosynthesis

The advent of oxygenic photosynthesis, the capability of using
sunlight to rip electrons off water molecules, was one of the key
innovations in the history of life on Earth. It likely only appeared on
Earth sometime between 3.7 Ga (Rosing & Frei 2004) and 2.4 Ga
(Kirschvink & Kopp 2008 and see Lyons, Reinhard & Planavsky
2014 for a review), though the date of its appearance is somewhat
controversial. This innovation had major consequences not only for
the size of the Earth’s biosphere and types of possible organisms,
but also for the entire chemistry of the planet itself: it was a key
contributor to the oxygenation of the atmosphere.

Molecular oxygen (O2) is best detected by a strong spectral
line at 0.76μm, observation of which will necessitate having a
spectral resolution of greater than 70 (Gaudi et al. 2018). Detection
would require near-present day levels, and if Proterozoic levels were
0.1 per cent of present atmospheric level as some reconstructions
indicate, O2 would not have been directly observable during this
time (Planavsky et al. 2014).

However, it is much easier to infer the presence of O2 indirectly
through its photolytic byproduct ozone (O3). This has many features
in the range 0.3–0.7μm, and on modern Earth manifests itself as
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a sharp cutoff at 0.33μm (Gaudi et al. 2018). Ozone would have
been readily observable during the Proterozoic, independently of
atmospheric oxygen level (Team et al. 2019). Further, the production
of NO and OH can be used to infer the presence of an oxygen
atmosphere by their signatures at 5.3 and 1.7μm, respectively
(Airapetian et al. 2017b).

Several abiotic sources of oxygen have been detailed recently,
among them the photodissociation of water and subsequent loss
of hydrogen to space (Luger & Barnes 2015; Airapetian et al.
2017a). Most known abiotic production mechanisms produce a very
high atmospheric O/H ratio, which leads to a lack of water vapour
(Gao et al. 2015) and clouds (Wordsworth & Pierrehumbert 2014),
and so can be ruled out if atmospheric water content is accurately
measured. However, there may be certain planets that flaunt this
rule, and so a full contextual analysis must be undertaken if oxygen
is detected on any exoplanet (Meadows et al. 2018). Determining
the water abundance requires observing multiple spectral features
throughout the 0.8–2μm range, which will be achievable with a
spectral resolution of 70 (Team et al. 2019). Many of the abiotic
production mechanisms also lead to a much higher concentration of
oxygen than observed on Earth, which would lead to O4 absorption
features in the 0.3–0.8 and 1.0–1.4μm bands that can be searched
for (Luger & Barnes 2015). LUVOIR aims to take advantage of
these signals to be able to rule out all known oxygen false positives.
Additionally, seasonal O3 differences may be sought, but these will
only occur for low O2 levels, where the ozone layer has not saturated
to its maximal value (Mason 2008).

An additional signature of photosynthesis exploits the fact that
chlorophyll and other known photosynthetic pigments have opti-
mized their frequency response profile to maximize the number
of photons collected, while simultaneously screening out higher
energies that would cause overheating (Ford, Seager & Turner
2001). This leads to what is known as the red edge, a sharp
drop-off in the absorption properties at 0.7μm, giving rise to the
characteristic green appearance of our planet, which is spectrally
detectable from space (Arnold et al. 2002). This was proposed as a
promising biosignature for exoplanets in Seager et al. (2005), and
has no known false positives in the wavelength region where we may
observe it. It is important to note, however, that since photosynthesis
is optimized for the incident light spectrum, the edge may occur in a
different part of the spectrum for planets orbiting different mass stars
(Wolstencroft & Raven 2002). If so, then the reflectance profiles of
certain minerals, namely cinnabar and sulphur, which have edges
at 0.6 and 0.45μm, can mimic the edge expected from biology
(Schwieterman et al. 2018). Being a broad-band optical feature,
high resolution is not required for detection of this.

Homochirality manifests itself as a 0.01 per cent circular polar-
ization near the red edge (Sparks et al. 2009). Remote detection of
polarization from light scattered off vegetation has recently been
demonstrated in both linear (Berdyugina et al. 2016) and circular
(Patty et al. 2019) configurations, demonstrating the feasibility of
this search strategy. LUVOIR will contain a spectropolarimeter,
but only in the range of 0.1–0.4μm. However, it was suggested
in Kiang et al. (2007b, a) that the location of the spectral edge
is dictated by the stellar spectrum, so that around low mass
stars (∼0.3 M�) photosynthesis may be optimized in this range.
Polarization data are a core science goal of the ELF mission. A
final biosignature to note is biofluorescence (O’Malley-James &
Kaltenegger 2016), which would signal the downregulation of
harmful light to lower frequencies, and may present itself as a
detectable afterglow accompanying flares.

2.3 Multicellularity

Multicellularity represents an enormous reorganization of the bio-
sphere, and is easily argued to be a prerequisite for intelligent life.
All known multicellular organisms are eukaryotes, and it has been
argued that eukaryogenesis is a necessary precondition for multicel-
lularity to occur (Lane & Martin 2010). As opposed to prokaryotes,
eukaryotes have a tightly controlled internal structure which is
capable of selectively expressing genes when certain conditions are
met (Bains 2016). This, more than anything else, is what enabled
the multicellular cooperation necessary for microscopic organisms
to reorganize into a macroscopic creature with a single germline.
Important as eukaryogenesis was for life on Earth, however, it is
relatively invisible in terms of remote detection, with no proposed
strategies that the authors are aware of. Given the almost immediate
corollary of multicellularity, however, this latter transition can serve
as a proxy for the former, if we can find ways to search it out.

Many environments on Earth are only capable of being inhab-
ited by extremophiles, which are uniformly unicellular (Grant &
Horikoshi 1998). Additionally, it was recently pointed out that the
habitable zone for unicellular life is expected to be much broader
than the habitable zone for complex life (Schwieterman et al. 2019),
the latter being only 20 − 28 per cent the width of the former by
their estimates. Indeed, the complexity that we witness today only
began in the Cambrian era 540 Mya, so that the majority of Earth’s
history was exclusively populated by simple organisms (Marshall
2006).

Detection of multicellularity is much more difficult than the
previous steps, and consequently not as much attention has yet
been paid to this. One possible avenue of inference is the detection
of large forests: on Earth, the majority of land plant biomass is
in the form of multicellular organisms, as opposed to the mostly
unicellular sea plants (Sigman & Hain 2012). This is argued to be
a generic requirement of water and mineral collection, which are
not as available on land as in the ocean (Niklas 1997). The phase
dependence of broad-band properties of scattered light (Fujii et al.
2010) would provide a method of detecting land forests, as would
be multipixel imaging of target planets. Several proposed mission
designs aim to do just this: ELF can infer subcontinent resolution
of several nearby systems in the near future by inverting the time-
resolved photometry (Berdyugina et al. 2018), and further afield,
hypertelescopes would be able to obtain 30 × 30 pixel pictures of
Earth-like planets at or beyond 3 pc (Labeyrie 2016).

However, the presence of widespread lichens may confound
efforts to distinguish multicellular from unicellular life. Indeed,
evidence from weathering rates testifies for widespread land life as
early as 2.8 Ga on Earth (Stüeken, Catling & Buick 2012) and that it
covered a significant portion of the Earth’s surface at least as far back
as 1.1 Ga (Kenny & Knauth 2001). Work has been done on detecting
lichens remotely via satellite imagery in the visible to mid-infrared
bands (Gilichinsky et al. 2011) and, while subdominant on Earth,
lichens may potentially grow to cover the majority of a planet’s land
surface in the absence of multicellular competitors.

A method to distinguish tall forests from surface lichens was
developed in Doughty & Wolf (2010): by measuring the dependence
of reflectance on phase angle, the presence of tall shadows can be
inferred, even when averaged over the entire planet. These methods
have further been developed and applied to data collected from
Earth by the Galileo space probe (Doughty & Wolf 2016) and with
the POLDER satellite (Doughty et al. 2020).

It may be possible to infer that a photosynthetic signal is land-
based spectrally: for this, it is important to bear in mind that in the
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ocean, plankton occur throughout the euphotic zone, where light
can penetrate. In fact, the chlorophyll maximum occurs 80 m below
the ocean surface (Sigman & Hain 2012). This shifts the spectrum
of light collected by these cells, and their chlorophyll pigments have
evolved to harvest lower frequencies because of this (Kiang et al.
2007a). While this avenue would be fraught with several stages of
indirect inference, it represents a possible method to determine if
an observed signal may possibly imply multicellularity.

2.4 Technosignatures

Ultimately, we would like to determine how many other planets host
civilizations like our own. There has been ongoing effort to detect
evidence of radio communication through SETI (Tarter 2001), and
there is currently a push to search for more general signatures of
technological civilization (Technosignatures Workshop Participants
2018). In fact, it may be possible to find traces of technosignatures
in exoplanet spectra. In Lin, Abad & Loeb (2014), the possibility
of detecting the industrial pollutants CF4 and CCl3F were outlined,
where they found it would be possible around white dwarfs with
JWST for 1–2 d exposure time for 10× our current terrestrial levels.
These pollutants, along with all other chlorofluorocarbons, have no
known non-technological source (Seager et al. 2016), and have
residence times of 50 000 yr. They can be observed in the 7.8 and
11.6–12.0μm bands, respectively.

An additional technosignature includes a solar power panel
analogue to the red edge found in plants that can indicate stellar
energy harvesting (Lingam & Loeb 2017).

With multipixel resolution, it can become feasible to search for
signatures of metropolises on exoplanets, either through their waste
heat or artificial light (Berdyugina et al. 2018).

There is no reason to restrict our biosignature searches to
developments that the Earth has so far attained. If civilization’s heat
output rivals that of the host planet, this defines a Kardashev type
I civilization (Mullan & Haqq-Misra 2018). Kuhn & Berdyugina
(2015) find that planetary infrared anomalies can be detected with
a contrast two orders of magnitude greater than could be detected
in the visible spectrum.

Similarly, it is possible to search for Kardashev type II and III
civilizations by looking for anomalous luminosities of stars and
galaxies, respectively. Stars were searched in RAVE and GAIA data
in Zackrisson et al. (2018), but of the some 8000 suitable stellar
targets, no clear detection occurred. Galactic sized civilizations were
searched for in WISE data in Wright et al. (2014), but again, none
were detected.

3 TELESCOPES

It is important to determine the total number of systems that can be
observed with a given technology, in order to determine the mission
parameters that will maximize the scientific return. This has been
treated in many places (Agol 2007; Stark et al. 2014; Stark et al.
2016). Here, we provide a simple analytic approximation of the
total exoplanet yield, which will facilitate comparison between the
different missions we consider. For definiteness, we define the yield
as the number of Earth-like planets around main sequence stars.

The time it takes a telescope to make a measurement with a
signal-to-noise ratio of 10 can be summarized from Stark et al.
(2014) as

τ = 103 (24 rp + 4.2 ζ )D2
t + 431 rz λ2

φ� r2
p D4

t �λ
. (1)

Here rp is the ratio of planet to star flux, ζ is the starlight suppression
factor, rz is the ratio of zodiacal light to star flux, φ� is the stellar
photon flux per unit wavelength, Dt is the telescope diameter, and
�λ is the width of the passband. The first term in the numerator
is the noise arising from photon count number, and the second
from the background of the target stars. The third term represents a
combined contribution of solar and extrasolar zodiacal light, though
this depends on assumptions on its prevalence around other star
systems. This will become better measured with future missions
(Weinberger et al. 2015). The numerical coefficients will depend
on design efficiencies and the particular signal measured, but what
will be more important to us are the scalings with the parameters.

We recap the various mission designs, and how they affect the re-
quired integration time: first, upcoming telescopes are planned that
are both space-based and ground-based. Ground-based telescopes
can be larger, but the Earth’s atmosphere sets a lower limit on the
contrast that can be achieved at ζ = 10−8 (Wang et al. 2018). There,
the authors find that the second term in equation (1) dominates the
first unless ζ < 10−8 for M dwarfs and 10−10 for sunlike stars (Wang
et al. 2018), and so red dwarfs will be the only suitable targets for
upcoming ground-based experiments.

Telescopes can detect exoplanets through the transit method or
direct imaging. Most missions we discuss use a coronagraph, or
a starshade. The main advantage of the latter is a significantly
decreased inner working angle. Starshade missions will also face
constraints from fuel and repositioning time (Stark et al. 2016), but
this is not taken into consideration in our analysis.

The first two terms in equation (1) scale with the distance to
the target d as d2. If these are dominant, then we can compute the
number of systems observed if a telescope operates for a total time
T. To do so, we use the continuum limit, where observable systems
are uniformly distributed throughout space with density n, equal to
the fraction of stars that possess Earth-like planets multiplied by the
density of stars in our local neighbourhood (further multiplied by
the probability for transit alignment for telescopes using the transit
method). The total number of signals able to be processed in that
time will be

Ntot = 2 × 10−4

(
r2
p

92rp + 16ζ
n2/3 �� �λ D2

t T

)3/5

. (2)

Here �� = 4πd2φ� is the stellar luminosity per frequency. However,
if instead, the noise is dominated by the zodiacal contribution in
equation (1), it will scale as d4, and1

Ntot = 6.6 × 10−6

(
n4/3 �2

� r2
p �λ D4

t T

φz λ2

)3/7

. (3)

This can be compared to the scaling Ntot ∼ 17.29(T/yr).41 − 1.79
found in Stark et al. (2014), which uses a sophisticated target
selection algorithm and actual star catalogues: notice the exponent
closely matches 3/7 = 0.429. They also find that the number
scales with telescope diameter as N ∼ 0.39(Dt/m)1.80 − 0.9, which
corresponds nicely with our value of 12/7 = 1.71.

So, while the continuum approximation is not perfect for missions
aiming at sample sizes of 10–100, it provides a worthwhile approxi-
mation to bear in mind. It suggests that to increase return, telescope
area, bandwidth, and mission lifetime should be maximized, and

1If both contributions are important, a septic equation must be solved that
interpolates between these two behaviours along the lines of Agol (2007),
but this will not be undertaken here.
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Table 1. The number of Earth-like planets around main
sequence stars for which each transition could be measured
with different proposed telescope technologies.

telescope year life/photo tech

JWST 2021 2 –
WFIRST 2020s 4 –
GMT 2024 5 –
TMT 2027 5 –
E-ELT 2025 10 –
HabEx 2030s 12 12
OST (6 m) 2035 10 10
OST (9 m) 2035 20 20
LUVOIR (8 m) 2038 56 56
LUVOIR (15 m) 2038 108 108
RAVE/GAIA 2018 – 8365
ELF (20 m) – 12 –
ELF (50 m) – 100 100
OWL-MOON – 1000 1000
Hypertelescope – 50 000 50 000
FOCAL – 4 × 106 4 × 106

noise minimized, but that the returns for all but telescope diameter
will be sublinear. Additionally, as is already well known, it suggests
to look in directions of higher stellar density if the survey is not to
be full-sky, and to focus on intrinsically brighter planets.

3.1 Future missions

Now, we comment on future exoplanet missions, estimate their
yields, and comment on their various targets and constraints. The
result of this is summarized in Table 1.

JWST will be a 6.5 m space telescope with wavelength range 0.6–
29μm (Gardner et al. 2006). It has the coronagraphic sensitivity to
detect Jupiter at 30 pc, but its rather high noise floor of 10 ppm will
restrict its exoplanet targets to bright red dwarfs hosting large planets
(Greene et al. 2016). Though it will have to be incredibly lucky to
detect oxygen, JWST will be able to detect CH4 and CO2 around
Trappist-1 planets with 10 transits (Krissansen-Totton et al. 2018a)
and around GJ876 (Arney et al. 2017) after 65 h, so the expected
yield is at least 2. Its mid-IR capabilities make detecting larger
molecules possible, such as are produced by technosignatures,
though the sensitivity of these may only be feasible around white
dwarfs (Lin et al. 2014).

WFIRST (Spergel et al. 2015) is a future 2.4 m infrared space
telescope equipped with a coronagraph. Its noise floor will be a
few ppb, and though it will detect thousands of exoplanets down to
Mars mass, these will primarily be outside of the snow line of their
system. In Seager (2018) it was estimated that WFIRST will be able
to detect atmospheric gases around four Earth-like exoplanets.

ELTs are extremely large ground-based telescopes slated for the
2020s. Their contrast is limited by Earth’s atmosphere to be 10−8

in the near-infrared, and so red dwarf stars will be their primary
exoplanet targets. GMT (25 m) (Johns 2006) and TMT (30 m)
(Skidmore et al. 2015) are expected to yield 5–10 Earth-like planets,
and can detect oxygen on an Earth-like planet orbiting an M4 star
5 pc away in 70 h. The E-ELT (Gilmozzi & Spyromilio 2007) will
be 39 m and cover the 0.39–2.5μm range at high spectral resolution.
It will be able to target 10–20 rocky habitable zone planets that will
have been flagged for follow-up by TESS, GMT, and TMT (López-
Morales et al. 2019). In our analyses, we quote the pessimistic
values of these numbers.

HabEx (Gaudi et al. 2018) is a proposed 4 m space telescope
designed to directly image Earth-like planets around sunlike stars
out to a distance of 8 pc. It includes a UV spectrograph, coronagraph,
and is equipped with a starshade that can be used for the most
interesting 50–100 systems. The integration time needed to detect
the Earth-sun system at 7 pc is 1 month, and will spend 3.5 yr
detecting exo-Earth candidates, with an expected return of 12.
Because its frequency bands extend into the visible range, it will be
capable of characterizing technosignatures from city lights at night.

OST (OST 2018) is a proposed 9.1 m space telescope with
active cooling down to 4 K that can resolve terrestrial planets
from 5 to 660μm, primarily around M dwarfs. Though most of
this range has a contrast of 1 ppm, the 25–200μm range will
be 1–2 orders of magnitude better than JWST. Over its 5–10 yr
lifetime goal, it will be able to detect ice features, NH3, and, thanks
to its coronagraph with 10−7 contrast sensitivity in the infrared,
potentially technosignatures. It is projected to measure CO2 and
O3 on 30 and 20 rocky planets, respectively. An alternative design
consists of a 5.9 m primary mirror with the same science goals
but correspondingly decreased planet yield, which we infer using
equation (3) (Battersby et al. 2018).

LUVOIR (Team et al. 2019) is a proposed mission that will
be capable of directly imaging the Earth, Venus, and Jupiter at a
distance of 13 pc. The diameter will be either 8 or 15 m, depending
on budget choices, and will carry multiple instruments capable of
observing in the 0.1–2.5μm range. It would have a prime mission
lifetime of 5 yr, with a lifetime goal of 25 yr. The 15 m design has
an expected return of 54 Earth-like planets around AFGKM stars
after its initial survey, and the 8 m design anticipates 28. Using our
scaling from equation (3), this translates into an expected 108 and
56 Earth-like planets over the full 25 yr lifespan, respectively.

The RAVE DR5 and GAIA DR1 data sets were searched for
civilizations using a significant fraction of stellar light in Zackrisson
et al. (2018), which could in principle alter the star’s spectrum
and luminosity profile. There, 8365 stars in both catalogues were
selected by comparing parallax distance with IR spectra. Though six
potentially anomalous stars were found, these can all be explained
by measurement error and, in one case, a binary companion.

ELF (Berdyugina et al. 2018) is a potential ground-based circular
array of 9–25 4–8 m telescopes surveying in the 0.3–5μm range, and
with polarization capabilities. It will be able to directly image nearby
planets with continent-scale resolution, and the larger version would
be able to detect waste heat from a civilization that uses 25 times
our current energy output. It will be able to detect CFCs in about
a day’s exposure time. The proposal estimates that at least a dozen
Earth-like planets will be characterizable with a 20 m dsign, and
over 100 with a 50 m design.

OWL-MOON (Schneider et al. 2019) is a potential design that
would place an overwhelmingly large telescope in a crater on the
south pole of the moon. It could potentially be 50–100 m large
(or even larger), and would sidestep conventional ground-based
telescope challenges such as atmospheric noise, thermal noise, and
wind stresses. It would be able to resolve emission lines from an
Earth–Sun system at 40 pc in 3 h, and the total estimated yield for
the size given above is quoted as 1000.

The hypertelescope (Labeyrie 2016) is a potential ‘flotilla’ array
of interferometers potentially spanning 100 km across. This gives
it an effective collecting area comparable to a 39 m telescope. With
this setup, a 30 min exposure would be able to resolve the spectrum
of an Earth-like planet at 3 pc for a 30 × 30 pixel grid. This would
enable detection of continents and cities at night, should any be
present in this distance range. Extrapolating the yields of OWL-
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MOON to a 1 km design using equation (3), we find that even a
modest hypertelescope would yield 50 000 Earth-like planet spectra.

FOCAL (Turyshev et al. 2018) is a potential plan to put a tele-
scope to 550 AU and beyond in order to use the sun’s gravitational
lens to vastly enhance the collecting area. With this, a 1 m telescope
would be able to reposition itself to scan over the image of a planet,
giving it an effective diameter of 12 Earth radii. Over a 7 week
integration time for an Earth-like planet at 30 pc, it would be able
to create a megapixel image, which, to reiterate, corresponds to
1000 × 1000 pixels. Observing multiple targets with this technique
would be challenging, as repositioning would be prohibitive. To
estimate the total number of exo-Earths that could be detected with
this technology, we tally the total number within a 300 pc radius of
the sun.

Having overviewed the telescopes slated for deployment in the
near (and not so near) future, we now outline the general formalism
for how well each quantity can be measured for a given survey
size. We make our analysis as analytic as possible, in order to track
the dependence of the uncertainties on the various experimental
parameters as clearly as possible. We illustrate our formalism with
several idealized test cases first, in order of increasing complexity:
in Section 4, we begin with analysing the case where only one
biosignature is measured, and find that maximizing science return
in this case is indeed equivalent to maximizing the total number
of observed systems, as is so often stated in the literature. In
Section 5 we extend our analysis to the measurement of multiple
biosignatures, and explore how to combine two different data sets
in our framework. Depending on the precise setup, we find recom-
mendations for optimum survey size. In Section 6 we incorporate
false positives and false negatives, and study how these affect
our formalism. We find that the desired degree of confidence will
generically be of the order of the observed fraction of systems that
possess a given biosignature, in a variety of particular setups.

4 SI N G L E B I O S I G NATU R E

To begin, we make several simplifications: first, we treat the stellar
population as identical, having no characteristics that would affect
its probability of hosting a biosphere, or our ability to detect it.
Secondly, we assume all biosphere detections are unambiguous. If
we have the ability to survey Ntot planets and the fraction of planets
with detectable biospheres is fbio, then the number of detections Ndet

is given by a binomial distribution:

p(data|fbio) =
(

Ntot

Ndet

)
f

Ndet
bio (1 − fbio)Ntot−Ndet . (4)

When needed, this distribution will be referred to as B(Ntot, Ndet,
f) below, and data refers generically to the numbers of total and
detected systems relevant to the consideration at hand – here, Ndet

and Ntot.
We will be more interested in determining the ratio fbio, given the

number of surveyed planets and detected biospheres. This is related
to the above through Bayes’ Theorem,

p(fbio|data) ∝ p(data|fbio) pprior(fbio). (5)

As an example, let us take the case where pprior(fbio) is given by a
uniform distribution. Then the probability distribution for fbio will
be described by a beta distribution,

p(fbio|data) = β(Ntot, Ndet, fbio), (6)

where we define β(Ntot, Ndet, fbio) = (Ntot + 1)B(Ntot, Ndet, fbio). The
expected value and variance of fbio are given by (see e.g. Johnson,

Kotz & Balakrishnan 1995):

〈fbio〉 = Ndet + 1

Ntot + 2
, σ 2

fbio
= (Ndet + 1) (Ntot − Ndet + 1)

(Ntot + 3) (Ntot + 2)2 . (7)

In the limit where both Ndet and Ntot are large we have, defining the
observed fraction as rdet = Ndet/Ntot,

fbio ∼ rdet ±
√

rdet (1 − rdet)

Ntot
. (8)

As expected from generic properties of the beta distribution. This
informs us that to get a precise measure of the probability of hosting
a biosphere, the total number of surveyed planets should be larger
than 1/rdet.

If we fail to detect any biospheres after our survey, then the
probability distribution for fbio reduces to

p(fbio|0) = (Ntot + 1) (1 − fbio)Ntot+1 . (9)

This tends to 0 for fbio � 1/Ntot. Then, we could infer that fbio ∼
(1 ± 1)/Ntot.

If we want to ensure that we have probability p0 of detecting at
least one biosphere, we will need to design an experiment capable
of surveying at least

Ntot >
log (1 − p0)

log (1 − fbio)
(10)

different planets. In the limit fbio � 1, this reduces to Ntot �
O(1)/fbio, where the coefficient depends on the desired confidence.

4.1 Priors

We now address the question of what effect the prior distribution
pprior(fbio) has on the final inference. As usual, if enough samples
are taken, the form of the prior is diminished; however, the expected
return will likely not be quite large enough to completely extinguish
the prior’s influence. Here, we investigate several alternatives to a
uniform prior, and the effects they introduce.

As a first example, let us suppose that the prior distribution for
fbio is log-uniform, pprior(fbio) ∝ 1/fbio. For the most part, this does
not substantially alter the analysis: the result is simply a shift in the
parameters of the beta distribution, so that p(fbio|data) = β(Ntot −
1, Ndet − 1, fbio). The expected value of fbio and variance in this case
are given by

〈fbio〉 = Ndet

Ntot + 1
, σ 2

fbio
= Ndet (Ntot − Ndet + 1)

(Ntot + 2) (Ntot + 1)2 . (11)

These numbers can be seen to be shifts of those in equation (7).
These results hold as long as at least one detection is made. If Ndet =
0, however, it is necessary to introduce the smallest conceivable
probability of a planet hosting a biosphere pmin in order to regulate
the otherwise divergent expressions. This gives

fbio ∼ −1 ± 1

Ntot (γE + log (pmin Ntot))
, (12)

where γ E is the Euler-Mascheroni constant, and we have taken the
large Ntot, small fbio limit prior to displaying these formulas. For
this to be positive, pmin < 0.56/Ntot, which is a sensible condition
anyway if no life had been detected by that point. Similarly, using the
Jeffreys prior, pprior(fbio) ∝ 1/

√
fbio(1 − fbio), yields p(fbio|data) =

β(Ntot − 1, Ndet − 1/2, fbio), again tantamount to simply shifting the
survey size and number of detected signals by small numbers.

Let us also note an important factor when measuring more
advanced biosignatures: because what we often measure will be
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1006 M. Sandora and J. Silk

Figure 1. Inferred value of f̄ n (with one standard deviation width) for various values of number of compounded steps n, as given by equation (14). Two curves
are displayed for each: one with the fraction of systems that display the signal equal to 0.1, the other with 0.9.

products of sequential probabilities, each of which we take to be
uniform, the prior we should assign to the measured quantity will
not in fact be uniform. If we measure f̄ n = ∏n

k=1 fk , then the prior
distribution for this can be found by successively integrating over
the latent variables, assuming a uniform distribution for each:

pprior(f̄ n) = 1

(n − 1)!
log

(
f̄ −1

n

)n−1
. (13)

So that, not only will the inferred distribution depend on the prior,
but also on the number of steps we choose to include in our counting
scheme. As the number of steps to include is far from clear, this
makes the desire to collect enough samples to circumvent this issue
quite strong. But how many is enough? For this, we compute the
mean and variance by integrating equation (4) with the above prior,
and take the large Ntot limit:

〈f̄ n〉 → r + 1 − 2r

Ntot
+ (n − 1)(1 − r)

log(r)Ntot
, (14)

where r = Ndet/Ntot. The first term in the O(1/Ntot) correction
is present even for a uniform prior, and simply results from an
expansion of equation (7). The term proportional to n represents a
systematic negative shift of the average value of f̄ n, arising from
the preference for smaller compound probabilities. The variance,
however, is unchanged to leading order in Ntot: σ 2 → r(1 − r)/Ntot.
The number of samples needed for the negative shift to be within a
standard error is then

Ntot > n2 1 − r

r log(r)2
. (15)

This diverges for r close to 0 or 1, and attains a minimum of 1.54n2

at r = 0.20. The dependence of the mean and standard deviation on
n and Ndet are displayed in Fig. 1.

For the remainder of this paper, we will only report on the leading
behaviour of these quantities.

5 MULTIPLE NESTED BIOSIGNATURES

Here we extend the results of the previous section, which dealt
with the detection efficiency of a single biosignature, to the case
where a number of different biosignatures are observed. Our chief
concern will be to determine how well we will be able to measure the
states of various exoplanet biospheres: for the various transitions
discussed in Section 2, we wish to determine the transition rates

for each level, the extent to which they can be measured with a
given technology, and a means to inform policy recommendations
for instrument design in order to maximize the scientific profit
towards this goal. If the returns for the various biosignatures are
forecast for a specific mission, as is collated for several upcoming
telescopes in Table 1, the final numbers may be easily imported
into the expressions we derive to find the achievable measurement
accuracies.

The quantities we wish to determine with as much precision as
possible are fi, the fraction of planets that, having achieved level i
− 1, also achieve level i. As before, the setup will be to assume that
we have the ability to survey a number Ntot of systems. Then, the
total number of observed planets of each types will be given by a
conditional binomial distribution:

p(data|{fi}) =
∏

i

B(Ni−1, Ni, fi), (16)

where N0 = Ntot, {fi} refers to the full collection of inferred
fractions, and we have made the simplification that the detection
efficiency of each biosignature is perfect (to be discussed further
in Section 6). The crucial feature of this distribution is that aside
from the nested dependence on the number of available systems at
each level, the distribution of each variable functions independently
of the others. Because of this, inverting this to yield a likelihood
function for the variables fi given the observational yield Ni, we
have simply

p({fi}|data) =
∏

i

β(Ni−1, Ni, fi). (17)

The normalization assumes that the fi are distributed uniformly, and
equation (7) may be used to compute

〈fi〉 = Ni

Ni−1
, σ 2

fi
=

Ni

Ni−1

(
1 − Ni

Ni−1

)
Ni−1

. (18)

The most important feature of these expressions is that the variance
of each quantity is controlled by the number of systems displaying
the previous signal. A consequence is that, as long as the probability
of attaining each successive transition is not 1, the confidence in
measuring each successive variable will diminish. This is illustrated
in Fig. 2 for the case where all fi = 1/2, and for a total sample
of 100 stars, as would be appropriate for LUVOIR or ELF, from
Table 1. Here, while the measurement of flife can be determined

MNRAS 495, 1000–1015 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/495/1/1000/5834560 by C
N

R
S user on 07 July 2023



Biosignature surveys 1007

Figure 2. Inferable distributions for fis under a random realization of 100 total samples. Here, the distributions are given by equation (17), with expected
values equal to 1/2 for each, and the number of systems possessing each successive quality are 46, 27, 15, and 6. Note that the uncertainties grow for each
successive biosignature fraction. It is worth stressing that in this figure, it is assumed that the detection of the biosignature would unambiguously signal the
presence of the stage of life under consideration. This assumption will be relaxed in Section 6.

Figure 3. The same as above, except taking all fi = 0.9 except for fmult = 0.1. The number of systems with each quality in this sample are 90, 78, 7, and 6.
Here, the uncertainties for the first three biosignatures are roughly the same, but the uncertainty for the last is very large, as it is dictated by the small number
that precedes it.

with reasonable accuracy, the latest stages of innovation are highly
dominated by sample noise.

This may be contrasted to another possible case displayed in
Fig. 3, where all but one transition is taken to occur rather frequently,
fi = 0.9, leading to one bottleneck in the road of progress which
we have chosen for purely illustrative purposes to be fmult = 0.1.
From here, it can be seen that for all transitions up to and including
the bottleneck, the underlying fraction of systems can be measured
quite accurately. The transitions which occur after the bottleneck,
however, are rather poorly constrained.

However, as the initial sample size is increased, the remainder
after the bottleneck transition can attain statistically significant
values. This suggests that if we do expect one of the transitions
to be a bottleneck, we should not invest much effort in designing a
mission to measure the transition probabilities that occur after this
until we are able to pool from a large enough number of systems to
beat the sample noise. From above, the number required will be

Ntot ≥ 1∏b

i=1 fi

. (19)

Then we will not do well to invest in measuring fb until enough
systems have been harvested so that this equality is satisfied. For
any value of total sample given in Table 1, this defines values for
the fi for which this measurement will be worthwhile.

Alternatively, one strategy will be to design a supplemental
mission capable of measuring the effects of some transition, but
not the previous targets, provided that the survey is much larger
than the one originally under discussion. Such a mission would
only be able to measure the compound probability

∏b

i=1 fi , but
supplementing with information gleaned from the original mission
on each individual transition rate before that will enable us to
disentangle the separate effects.

As it stands now, though, we do not know the individual fis, which
were needed in our heuristic for the threshold number of systems
to observe. It would serve us well, then, to determine the most
primitive of these values first, and then work our way through the
succession as more information becomes available. Only through
this method will we be able to accurately determine the expected
yields of future missions with any sort of certainty.

We also display a 2D joint pdf in Fig. 4, so as to give a feel for
the correlations between variables.

5.1 Combining two data sets

We wish to discuss the scenario where incomplete data on each of
the desired signals is gained, and the limits on what we can infer
for each of the fis. Our treatment will be far from comprehensive,
but we will illustrate several examples of situations where we are
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1008 M. Sandora and J. Silk

Figure 4. Three different likelihood functions, superposed, illustrating the range of uncertainties on these parameters that will be possible with the upcoming
surveys. The distributions are given by equation (17), with values taken to be (flife = 0.8, fphoto = 0.25, Ntot = 10), (flife = 0.8, fphoto = 0.25, Ntot = 100), and
(flife = 0.25, fphoto = 0.8, Ntot = 10). Though the fractions are simply swapped between the first and third plots, the uncertainties are magnified in the third,
reflecting the diminution of successive samples in the latter case.

likely to find ourselves in the future. For simplicity, we restrict
ourselves here to just two signals to be measured, f1 and f2, where
transition 1 precedes number 2 in our ordering. For example, we
could be measuring the fraction of planets which attain life and
photosynthesis.

Suppose we take a population Ntot with N1 instances of signal 1
and N2 instances of signal 2, and similarly a separate population
Mtot with measurements M1 and M2. This may come about from
data from two different telescopes, for instance, or else from data
from the same telescope where we expect not to be able to measure
some of the signals in each population. Let us go through several
different possible cases, which are illustrated in Fig. 5.

5.1.1 Case 1: All present

This case is quite easy to handle: one can simply combine the
two data sets into one larger one. The inferred distributions of the
parameters is then

p(f1|data) = β(Mtot + Ntot, M1 + N1, f1),

p(f2|data) = β(M1 + N1, M2 + N2, f2) (20)

the analysis of the previous section can be straightforwardly applied
to derive the mean and variance of these two quantities. The means
are 〈f1〉 = r̂1 and 〈f2〉 = r̂2/r̂1, and, more importantly for our
analysis, the variances are.

σ 2
1 = r̂1 (1 − r̂1)

Mtot + Ntot
, σ 2

2 =
r̂2
r̂2
1

(
1 − r̂2

r̂1

)
Mtot + Ntot

, (21)

where r̂i = (Mi + Ni)/(Mtot + Ntot). As can be seen, Mtot and Ntot

here are on an equal footing, so that in order to maximize the
desired signal, one could choose to increase either quantity, giving
preference to whichever would be cheapest.

5.1.2 Case 2: N2 = 0

In this case, we have information about the more primitive signal
in both data sets, and the more advanced signal only in one.
This scenario could arise, for instance, when combining data
from two different telescopes, such as JWST and WFIRST, as
displayed in Table 1. Alternatively, this situation could be relevant

if measurement of the second signal is impossible for part of the
sample from a single telescope, due to faintness or other factors. For
this, the probability distributions are rather simple to write down:

p(f1|data) = β(Mtot + Ntot, M1 + N1, f1),

p(f2|data) = β(M1, M2, f2). (22)

The statistics for f1 are the same as in case 1, but now 〈f2〉 = r2/r1,
and

σ 2
2 =

r2

(
1 − r2

r1

)
r2

1 Mtot
. (23)

This is usually going to be larger than the variance of f1 unless 〈f2〉
is either very close to 0 or 1. As such, in this case priority should be
given to increasing Mtot rather than Ntot: this will, after all, improve
measurements of both quantities, rather than just one.

5.1.3 Case 3: N2 = 0, M1 = 0

In this case, we have information about the first transition from
the first data set, but the second data set only gives us information
about the product f1 f2. This scenario could come about with the
combination of any of the first five entries delineated in Table 1 with
the technosignature search results of RAVE/GAIA. In this case, we
have

p1(f1|data) = β(Ntot, N1, f1),

p12(f1f2|data) = β(Mtot, M2, f1f2). (24)

In order to reconstruct the desired distribution p2(f2|data), we
integrate over f1:

p2(f2|data) =
∫ 1

0
df1 p1(f1|data) p12(f1f2|data). (25)

This integral, along with most of the subsequent ones we will
encounter, can be expressed exactly in terms of hypergeometric
functions, essentially by definition. However, these are rarely
illuminating and often difficult to manipulate, so we choose not
to display them explicitly unless they are unavoidable for our
conclusions. Note that we do not include the extra Jacobian factor of
f2, and instead utilize the standard measure df1df2. This is the only
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Biosignature surveys 1009

Figure 5. Different possible cases when combining two data sets. Here, the orange glow indicates the presence of a more primitive signal, and the green a
more advanced.

appropriate prescription, as the other would break the degeneracy
between f1 and f2 in the Ntot = 0 case.

In order to estimate the total variance for this distribution, it is
useful to note that in the large sample limit, beta distributions can
be well approximated by Gaussians:

β(Ntot, N1, f ) → N (r1, σ1), (26)

where r1 = N1/Ntot and σ 2
1 = r1(1 − r1)/Ntot. Then equation (25)

becomes (assuming p1(f1) is well localized away from 0 or 1 and
that r12 = M2/Mtot < r1 for compatibility):

p(f2|data) → e

(
− (r1f2−r12)2

2(f 2
2 σ2

1 +σ2
12)

)

√
2π

(
f 2

2 σ 2
1 + σ 2

12

) . (27)

This is plotted for several different survey totals in Fig. 6. The
variance of this distribution is approximately

σ 2
2 → r2

12(1 − r1)

r3
1 Ntot

+ r12(1 − r12)

r2
1 Mtot

. (28)

If r12 = r1, corresponding to f2 ≈ 1, then the two contributions
to the variance will be equal when the two surveys are the same
size. Otherwise, the second term will dominate. Correspondingly,
one should prefer to make Mtot much larger than Ntot. The two
contributions are equal when

Ntot

Mtot
= r12(1 − r1)

r1(1 − r12)
. (29)

An ideal mission would be designed so that the survey sizes
match this ratio. This advice is only useful if there is some prior
information about r1 and r12 beforehand; otherwise, the mission
needs to be completed before it can be optimized. In the absence of
this information, one may as well use the expectation value of this
quantity: if r1 and r2 = r12/r1 are both uniform, then the mission
should be designed so that

Ntot

Mtot
= 2 − π2

6
= 0.36 (30)

Let us also note that, specifically when combining exoatmosphere
searches with technosignature surveys, the number yields of the
latter will vastly outnumber the former, at least for the foreseeable
future. In this case, Mtot  Ntot, and the first term in equation (28)
will dominate as long as ftech > Ntot/Mtot. Taking the projection for
the E-ELT yields, this threshold is 0.001.

The above assumed that the probability distributions are well
approximated by a Gaussian, which holds true if the observed
values are well separated from 0. In the current situation, with
the absence of technosignature detections, this approximation does
not hold, and instead we have p12(f1f2) ∼ U(0, 1/M2), where
U(0, t) is a uniform distribution. When the integral in equation
(25) is performed it results in p2(f2) ∼ M2c1(min(1, 1/(f2M2))) ∼
U(0, 1/M2), irrespective of the distribution of f1. In this case, we
recover no additional information about the fraction of life that
develops into technological societies by measuring the prevalence
of life.

5.1.4 Case 4: M1 = 0

The most difficult case to handle is when the more primitive signal
is unable to be measured in one data set. Again, this situation may
arise from one telescope if the signal is unavailable for part of
the sample, or else by the combination of data from two different
telescopes. In this case, the data do not allow for the distributions
of the two fractions to be factorized, so the full joint distribution of
f1 and f2 must be employed:

p(f1, f2|data) ∝ B(Ntot, N1, f1) B(N1, N2, f2) B(Mtot, M2, f1 f2) . (31)

As in case 3, the variance can be estimated in the large survey size
limit, when all binomial distributions can be well approximated by
Gaussians. For the variance we find

σ 2
2 →

⎛
⎜⎝ 1

r2
12(1−r1)

r3
1 Ntot

+ r12(1−r12)
r2
1 Mtot

+ 1
r2(1−r2)
r1 Ntot

⎞
⎟⎠

−1

. (32)
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Figure 6. The distribution for f2 in case 3, as given by equation (25). Here, we have set f1 = 1/2 and f2 = 1/5. Notice that the variance is rather insensitive to
Ntot, but is rather sensitive to Mtot.

And a similar expression for σ 2
1 , with labels interchanged 1↔2. This

combines the variance from case 3 with a new term ‘in parallel’,
and so the total variance will resemble the smallest of the terms.
Usually, this will be most readily given by the new term, and so
the recommendation for this scenario is to increase Ntot as much as
possible. Again, the intuitive reasoning behind this is that increasing
this gives information on both signals, whereas increasing Mtot only
gives information about f2.

The rest of the possible cases omit even more measurements from
the survey and so are trivial. Having gained some general insights
into how to maximize return when combining two data sets, we now
turn our attention to the effects of imperfect surveys.

6 FALSE POSITIVES, FALSE NEGATIVES,
AND FA LSE SAMPLES

Up to this point, we have operated under the simplification that any
biosignature detection will be able to be unambiguously interpreted
as the presence of life. This is a drastic oversimplification, as
false positives are expected to be pernicious obstacles that need
to be overcome in order to assess the reliability of any feature.
Common methods are to search for a degree of redundancy with
correlated signatures that may boost our confidence that the signal
we measure is biotic (see Harman & Domagal-Goldman 2018 for a
recent review). But what is the desired degree of confidence when
it comes to inferring the fis? Obviously, the higher confidence the
better, but in this section we show that there is a diminishing return
beyond a certain point, and delineate the conditions for when effort
should be expended in raising the confidence levels rather than
optimizing some other part of the mission.

To address this, we again restrict our attention to a single tran-
sition. As an example, this could be the advent of photosynthesis.
As discussed above, the primary signature of this is detection of
oxygen in a planet’s atmosphere, but myriad abiotic processes are
capable of oxygen production as well. Searching for correlated
signatures such as water vapour and other gases would reduce this
ambiguity but would be more difficult, require a more expensive
mission, and would take more time which may potentially be used
to explore other systems. Let us say, then, that for the measurement
of some abstract biosignature, the confidence that can be ascribed
to it being biotic in origin can be determined to be c. We also take
the opportunity to define the diffidence d = 1 − c. In this case,
if we detect Ndet systems with this signature in our mission, we
would only expect Nbio ≈ cNdet to be biotic. Though this will hold
on average, imperfect confidence introduces additional uncertainty

in the number of systems which have attained the biogenic state
we wish to measure. The main problem here is that we observe
Ndet, but wish to infer Nbio, which determines f. To do this, we must
average over each individual case, in which the sample we observe
can have any number due to biotic and abiotic effects, weighted by
the probability for each. The distribution for f will be given by

p(f |data, c) =
Ndet∑

Nbio=0

B(Ndet, Nbio, c) β(Ntot, Nbio, f ). (33)

This is simply the marginalization over the unobservable number
Nbio, which sums over all possible values that are consistent with
the number of detections Ndet. This summation can be performed
by explicitly using equation (4) for each distribution, leading to the
pdf being expressible in terms of hypergeometric functions:

p(f |data, c) = (Ntot + 1)(1 − c)Ndet (1 − f )Ntot

× 2F1

(
−Ndet, −Ntot, 1,

c f

(1 − c)(1 − f )

)
. (34)

It will not really be necessary to use this full form in this section,
but it will be used in later sections.

Then, the average can be determined from

〈f 〉 =
Ndet∑

Nbio=0

B(Ndet, Nbio, c) 〈 f | Nbio 〉 = c Ndet + 1

Ntot + 2
, (35)

where we have used equation (7) for 〈f|Nbio〉, the average given Nbio

systems that have life. This indeed goes to 〈f 〉 → c rdet in the large
survey limit, in agreement with our expectations.

A similar calculation may be carried out for the variance,
yielding

σ 2
f =

〈f 〉
(

1 − 〈f 〉 + d
)

Ntot
, (36)

where we have taken the large Ntot limit. This reduces to the previous
expression (7) when the confidence is exactly 1, but includes an
additional contribution to the variance from the diffidence of our
measurements. If the goal is to minimize this, 〈f〉 should be treated
as a fixed number, but either Ntot can be increased, as usual, or
the diffidence can be decreased (confidence increased). This gives
conditions for which should be preferred: since the diffidence
contributes to the variance additively with respect to the usual
1 − f term, the gain in precision from increasing the confidence
only occurs while c < 〈f〉. Expending effort to increase confidence
beyond this value will lead to diminishing returns. If one takes
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the ratio of maximally confident to maximally diffident standard
deviations, for instance, one finds it to be σf (d = 0)/σf (d = 1) =√

(1 − 〈f 〉)/(2 − 〈f 〉): this yields a factor of 1.4 for f → 0, but
can be arbitrarily small for f → 1, a consequence of the fact that
the ordinary contribution to the variance vanishes in this limit.
This suggests that we ought to invest more time in raising our
confidence of measurements of those transitions which have a high
probability of occurring, and not bother as much with the relatively
rare transitions.

6.1 Confidence of the confidence

Before, we were treating the confidence c as if it were a known
quantity with which we could assess the number of signals in our
sample which were produced biotically. However, this is likely to not
be the case. To account for this, we must marginalize the expression
(33) over all possible values, weighted according to the probability
we assign to any given value of the confidence. In this instance, we
have

p(f |data) =
∫ 1

0
dc pc(c)

Ndet∑
Nbio=0

B(Ndet, Nbio, c) β(Ntot, Nbio, f ) . (37)

For instance, if the confidence is completely unknown, it can be
treated as a uniform random variable c ∼ U(0, 1). This expression
acts as an approximate step function, making any value of f less
than Ndet/Nbio equally probable, and excluding values above this
threshold, so that p(f ) ≈ U(0, Ndet/Ntot). This is plotted in Fig. 7,
where it can be seen that the width of the transition regime decreases
with increasing Ntot. While a measurement like this would provide
us with an upper bound on fbio, this situation is far from ideal, and so
it is recommended that at least some effort be spent on determining
the value of c before the measurement takes place.

From the figure, we can see that this information erasure persists
in the large sample limit, being a property of marginalizing over
uncertainties in the setup rather than arising from measurement
error. For a more general pc(c), the resultant distribution for f will
take the same form, only scaled to vanish for f > rdet. This can be seen
by noting that in the large sample limit, B(Ndet, Nbio, c) → δNbio,cNdet

and β(Ntot, Nbio, f) → δ(Nbio − fNtot), so that equation (37) gives
p(f|data) → pc(f/rdet)/rdet. From this we conclude that in order to
maximize information gain we would want to make pc(c) as close
to a delta function as possible.

6.2 Conditional confidence

A further complication is introduced when the confidence depends
on the fraction of systems which possess life, which is unknown
before the measurement is made. In this case, the confidence that
our signal is biotic is related to fbio, the quantity we are trying to
measure! This can be summed up in the expression

c = fbio

fbio + fabio
, (38)

where fbio is the fraction of systems that produce the signal in
question biotically, and fabio is the fraction of systems that produce
the signal abiotically. This was discussed in Catling et al. (2018)
and Walker et al. (2018), who use a Bayesian framework for
inferring fbio. From here, we can see that if enough care is taken
to remove all false positives, by searching for enough independent
lines of evidence that we can be certain the signal could not have
been produced abiotically, then c → 1. Apart from that, then our
confidence in the signal depends on the value fbio itself. This subtlety
is actually rather straightforward to deal with: one may simply

substitute this expression for c into the probability density for f
given by equation (34) (taking care to set the normalization of the
distribution so that it integrates to 1). However, when this is done,
an alarming conclusion is reached: the distribution actually peaks
at two places: one at f ∼ rdet = Ndet/Ntot, and the other at f = 0! This
effect persists even for large Ntot, and can be understood as follows:
imagine the simplified scenario where we have detected Ndet stars
from a sample of Ntot, but are unable to determine between the case
c = 0 and c = 1. Then, our inferred value of fbio will be given by

p(fbio|Ndet) = α

(
Ntot

Ndet

)
f Ndet (1 − f )Ntot−Ndet + (1 − α)(1 − f )Ntot ,

(39)

where α is our confidence that c = 1. Even in this simple setting,
two peaks are evident, at fbio = rdet − fabio and fbio = 0. Furthermore,
since the second peak is a stronger function, it can carry more
weight than the other unless α is close enough to 1. This tells us that
unless we are sure enough in our systematic account for the signal’s
origin, the conclusion of our measurement is that it almost certainly
occurred abiotically. In this situation, it would not be necessary to
invoke the presence of life to explain any of the detections we make.

In order to quantify the certainty required to avoid this situation,
let us return to the full analysis: several example distributions are
depicted in Fig. 8.

In order to estimate the relative likelihood that fbio ≈ 0, we can
make a crude linear approximation around fbio = 0 to determine the
total probability that the inferred fraction is within this regime:

p(fbio|data) ≈ (Ntot + 1)

(
1 −

(
Ntot + Ndet

fabio

)
fbio

)
+ O(f 2

bio),

(40)

which gives

p(fbio ∼ 0|data) ≈ 1

2

Ntot + 1

Ntot + Ndet
fabio

→
{ 1

2 fabio  rdet

fabio
rdet

fabio � rdet

. (41)

From here, we can see that in order to avoid any contribution from
the fbio ∼ 0 peak, we would like to be in the fabio � rdet regime.
This is intuitively clear, as since the peaks of the pdf occur at 0 and
fbio ≈ rdet − fabio, they will merge if the fraction of abiotic signals is
close to the detected fraction into a single peak at fbio ≈ 0.

6.3 False negatives

Just as there may be false positive biosignatures, there may be false
negatives as well. These can come about if an existing biosphere
does not produce the signal we expect of it, in which case it is termed
cryptic (Cockell 2014), or if the signal is produced but obscured,
say by clouds or haze (Zugger et al. 2011). It is worthwhile to
bear in mind that due to haze, many of the proposed biosignatures
would have been unobservable on Earth during the Proterozoic eon
(Reinhard et al. 2016), which represented a substantial fraction of
Earth’s history. For this reason it will be important to understand
obscuration as well as we possibly can, and efforts to understand
the diversity of biological and planetary environments will mitigate
some of these uncertainties. However, even if these factors are
understood perfectly, there will still be considerable uncertainty in
the observed number of exoplanet biospheres: if a seemingly lifeless
planet is mostly obscured, how sure can we be that it actually does
not possess life? We outline the statistical framework for how to
handle this here.

If we survey Ntot planets and make Ndet detections of life, this
leaves Ntot − Ndet where no life has been detected. If our confidence

MNRAS 495, 1000–1015 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/495/1/1000/5834560 by C
N

R
S user on 07 July 2023



1012 M. Sandora and J. Silk

Figure 7. The inferred pdf of fbio as given by equation (37) when marginalizing over a uniform pc(c). Here rdet = 1/2. As can be seen, the full distribution
approximately mimics the confidence prior, scaled to be between 0 and rdet. This effect persists, and indeed becomes more exact, for large Ntot.

Figure 8. The pdf of fbio when the confidence is related to fbio, found by inserting expression (38) into the distribution (34). All graphs here have Ntot = 100
and rdet = 0.9. Notice that the peak at 0 still persists, even for the fabio = 0.1 case, and that the main peak is offset from the observed by the fraction of abiotic
signals. The desired situation is when these two peaks are well separated and most of the weight is in the one centred on the non-zero value, which occurs
when fabio � rdet.

that life is absent on each of these is given by ca, then the number of
inhabited planets in our sample is between Ndet ≤ Nbio ≤ Ntot. The
distribution for the fraction of inhabited planets is given by

p(fbio|data, ca) =
Ntot∑

Nbio=Ndet

B(Ntot − Ndet, Ntot − Nbio, ca)

×β(Ntot, Nbio, fbio). (42)

This resembles the result we had for false positives in equation (33),
and reduces to the standard beta distribution in the limit that ca →
1.

The average and variance can be computed for this distribution:
the average is

〈fbio〉 = rdet + (1 − ca)(1 − rdet) (43)

and the variance

σ 2 → (〈fbio〉 + da)(1 − 〈fbio〉)
Ntot

. (44)

If we wish to minimize the uncertainty of our measurement, we
should minimize the diffidence da = 1 − ca, but only to the point
where it is the same order as 〈fbio〉. Notice a key difference in
interpretation here: if ca → 0, 〈fbio〉 → 1, independent of the

number of biosignatures measured. In this limit, our complete lack
of confidence implies that we are actually certain that the lack of
signal from a given planet is due to life being present there, but
the signal being obscured. This is a somewhat pathological limit,
and does not express ignorance as well as the c → 1/2 limit, for
example.

As before, the confidence in the interpretation of the absence of
a biosignature depends on the likelihood of life occurring, which is
the quantity we set out to measure. If the confidence is given by

ca = fabsent

fabsent + fhiddenfbio
= 1 − fbio

1 − (1 − fhidden)fbio
(45)

then the distribution for fbio can be found with this substitution into
equation (42) (again, by altering the normalization to ensure that
it integrates to 1). This is plotted for several values of fabsent in
Fig. 9. Here, a peak at fbio ≈ 1 is prominent unless fhidden < fbio. The
explanation is the same as for the false positive case.

6.4 Total number unknown

Another scenario that may occur is that the number of detections
could be precisely measured, yet the total number in the sample
may be unknown. An example of this would be if the mass of
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Biosignature surveys 1013

Figure 9. Probability distributions for fbio with false negatives of various degrees of confidence taken into account, as found by inserting equation (45) into
the distribution (42). Here, Ntot = 100 and Ndet = 20 throughout. As with the false positive case, peak around the detected value dominates only when fhidden

� fbio.

the planet were determined through radial velocity techniques only
in the combination m sin i, with i the inclination angle, it would
not be clear whether the planets in the sample are Earth-like or
not. Additionally, any false positives or negatives in surveys of
primitive biosignatures would manifest as an unknown total number
in surveys of more advanced ones. Here, we outline the effects of
this type of uncertainty, and how best to mitigate it.

For our setup, we will take Ndet as the number of detections, cT as
the confidence that a non-detection should be included in the total
count, and Ntop as the upper limit of possible systems in the sample.
The inferred distribution for fbio will then be

p(fbio|data, cT ) ∝
Ntop∑

Ntot=Ndet

B(Ntop, Ntot, cT ) B(Ntot, Ndet, f )

= B(Ntop, Ndet, cT f ). (46)

Here, we have taken the lower limit to be the number of detections in
the sample: in general, this could be an arbitrary number instead, but
the analysis is complicated considerably, and the insights we glean
from this simpler exercise hold in the more general case. Now, the
average can be given in terms of incomplete beta functions:

〈fbio〉 = βcT
(Ndet + 2, Ntop − Ndet + 1)

cT βcT
(Ndet + 1, Ntop − Ndet + 1)

→
{

rdet
cT

cT → 1

1 cT → 0
,

(47)

where rdet = Ndet/Ntop. These limits are as expected. The variance
is similarly given by

σ 2
fbio

= βcT
(Ndet + 3, Ntop − Ndet + 1)

c2
T βcT

(Ndet + 1, Ntop − Ndet + 1)
− 〈fbio〉2

→
⎧⎨
⎩

rdet(1−rdet)
c2
T

Ntop
cT → 1

1
N2

top
cT → 0

. (48)

This latter limit is somewhat unusual, since here the total number
in the sample is bound to be Ndet. The real question, though, is
what value of cT sets the transition between these two different
behaviours. This can be determined by finding the subleading
corrections to the asymptotic expressions above. When this is done,
it is found that these expressions lose their validity when cT ≈ rdet.
As before, the desired confidence, even in this slightly different

setting, should be greater than the observed ratio in order to garner
useful information from the measurement.

7 D ISCUSSION

Let us summarize the lessons we’ve garnered from Sections 4–6. We
first noted, somewhat obviously, that uncertainty in measurement of
any biosignature decreases with sample size. An observation with
somewhat more content is that when measuring multiple biosigna-
tures, if a bottleneck transition is present, then the uncertainties in all
the transitions that occur after that are doomed to be large, and so not
much will be gained in trying to measure them. When combining
data sets that both measure two biosignatures, the variances are
proportional to the combined survey sizes. If one survey only
measures the more primitive biosignature, then the uncertainty in
that depends on a sum of the two survey sizes, while the second
biosignature depends only on the size of the second survey. If the
first survey only measures the more primitive and the second the
more advanced biosignature, then uncertainty in the more advanced
is a sum of two terms, and minimizing this will usually occur when
the two are equal. When false positives are taken into account, the
measurement uncertainty picks up an additional term that becomes
important when the uncertainty in interpretation is of the order of the
signal prevalence. This conclusion holds true when considering false
negatives, false samples, and signal confidence which is conditional
on the rate of occurrence: it behooves a survey planner to ensure
that the confidence in interpretation is greater than the measurement,
but not necessarily much more than that, if resources could instead
be devoted to increasing the survey volume. These general lessons
will hopefully bear useful to bear in mind when future missions are
being designed.

The stated goal of many missions is to ‘maximize science return’.
When attempting something that has never been done before, merely
accomplishing the goal once, in the cheapest and most guaranteed
manner possible, suffices. Once this is done, the method can be
extended to larger data sets, with the ultimate goal of generating new
knowledge. In the context of measuring atmospheres of Earth-like
exoplanets, we are still at the stage where satisfying the task should
be our top priority. With the next generation of experiments, it will
be possible to obtain the spectra of dozens of Earth-like worlds,
but we should not be too discriminate about which are worthy
of observation time: any within reach should be targeted. Moving
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1014 M. Sandora and J. Silk

beyond that, when the characterization of hundreds of worlds is
possible, we should rather focus on studying those that we suspect
can teach us something qualitatively new.

Is it possible to formalize this intuition? This is the task we are
trying to accomplish above. Our main point is that data about various
biosignatures can be used to infer values for the fraction of planets
undergoing successive biosphere transitions. The uncertainties in
these measurements serve as natural candidates for the quantities to
be minimized.

Though we have illustrated how this approach may be used to
given design and/or target selection recommendations in several ide-
alized scenarios, our discussion to this point has made no pretense
at providing a comprehensive framework. In particular, since there
are actually multiple simultaneous quantities to be measured, which
one should be prioritized? Here, we offer a proposal: the science
return of a mission can, loosely, be equated with the information that
is gained. We propose that this sentiment should be taken literally,
in the technical sense. Then the science return can be defined as
S = − ∫

dnf p(fi |data) log p(fi |data), where p is the joint pdf of
all measured quantities. Though this is somewhat cumbersome to
compute, an analytic expression for science return can be found. In
the case of a single biosignature with confidence c = 1, equation
(6) can be used to compute S as:

S = log

(
(Ntot + 1)!

Ndet!(Ntot − Ndet)!

)
+ Ndet H (Ndet)

−Ntot H (Ntot + 1) + (Ntot − Ndet) H (Ntot − Ndet), (49)

where H (n) = ∑n

k=1 1/k is the nth harmonic number. In the large
survey limit, the full science return can be approximated as

S ≈ −1

2

∑
i

log σ 2
i , (50)

where the variance of each quantity is summed. This definition
has a number of attractive features. First, in the standard case of an
unambiguous measurement of a single quantity, the variance is given
by that of a binomial distribution, equation (7), and maximizing
the science return corresponds simply to increasing the number of
samples as much as possible. When there are multiple measured
quantities, if we can abstractly parametrize how each depends on a
single quantity e, denoting effort, then, if the derivative of each is
denoted by Ri = dσ i/de, we have dS/de = −∑

iRi/σ i. To maximize,
effort should be invested into whichever term in this sum is the
largest, corresponding to whichever has a large Ri or a small σ i

where improvement is easy and precision is possible.
In Table 2, we display the science return for the upcoming

missions we referred to in Section 3. This table treats biosignature
detection as having absolute certainty, but folding additional anal-
yses such as confidence levels into this expression would merely
shift the numbers, leaving the overall trends unaltered. Note that
in the first half of the table, the information gain is greater for
smaller fi; this is because, when measuring the rate of a rare a
event and a common event to the same precision, the measurement
of the rare event yields more information. In the lower half of
the table, however, more information is gained if the fractions are
more common; this is because these missions will measure multiple
biosignatures, which will probably be non-existent in the samples
if the fractions are small. This should give some indication of the
merit of these missions, though again we stress that these numbers
are only in terms of the particular question we pose, and are meant
as a rough heuristic only. Taking this quantity too seriously can run
afoul of Goodhart’s law of perverse incentives, but as a heuristic it

Table 2. The expected science return for different pro-
posed telescope technologies, as given by equation (49).
Different columns correspond to different values for the
actual fractions of each type of biosignature, and we have
used log base 2 so as to assign an interpretation as the
number of bits of information that a given mission will
return.

telescope S(fi = 1/2) S(fi = 1/10)

JWST 0.18 0.44
WFIRST 0.39 0.80
GMT 0.47 0.93
TMT 0.47 0.93
E-ELT 0.81 1.39
HabEx 1.47 1.76
OST (6 m) 1.29 1.59
OST (9 m) 2.03 2.31
LUVOIR (8 m) 3.33 3.61
LUVOIR (15 m) 4.22 4.51
RAVE/GAIA 4.97 4.54
ELF (20 m) 0.91 1.51
ELF (70 m) 4.11 4.40
OWL-MOON 7.38 7.69
Hypertelescope 13.02 13.33
FOCAL 19.34 19.65

can serve to quickly clarify which features of a complex mission
should be improved.

Though our discussion was highly idealized, we were capable of
gleaning several lessons. We were able to quantify how large our
sample should be to avoid prior bias, which signals will be too weak
to bother measuring, which survey to spend time maximizing when
combining two, and how well we should establish the confidence
of our measurements. Though our recommendations are always
phrased in terms of desired relative sample sizes or degrees of
confidence, if this is coupled with a model for how these scale with
price for a particular telescope, more concrete recommendations
can be made. Extensions to our work could be equally profitable.
Perhaps the most urgent task is to relax the assumption that all
exoplanet systems are identical, and allow the fractions we discuss
to depend on environmental variables. Extending our analysis to
cover this scenario should be capable of yielding recommendations
on which hypothesized trends to focus on measuring in upcoming
data sets.
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