
HAL Id: insu-03748190
https://insu.hal.science/insu-03748190

Submitted on 9 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A differentiable N-body code for transit timing and
dynamical modelling - I. Algorithm and derivatives

Eric Agol, David M. Hernandez, Zachary Langford

To cite this version:
Eric Agol, David M. Hernandez, Zachary Langford. A differentiable N-body code for transit timing
and dynamical modelling - I. Algorithm and derivatives. Monthly Notices of the Royal Astronomical
Society, 2021, 507, pp.1582-1605. �10.1093/mnras/stab2044�. �insu-03748190�

https://insu.hal.science/insu-03748190
https://hal.archives-ouvertes.fr

MNRAS 507, 1582–1605 (2021) https://doi.org/10.1093/mnras/stab2044
Advance Access publication 2021 July 19

A differentiable N-body code for transit timing and dynamical modelling –
I. Algorithm and derivatives

Eric Agol ,1,2‹† David M. Hernandez 3,4 and Zachary Langford 1

1Astronomy Department, University of Washington, Seattle, WA 98195, USA
2Institut d’Astrophysique de Paris, 98bis Boulevard Arago, Paris F-75014, France
3Harvard–Smithsonian Center for Astrophysics, 60 Garden St, MS 51, Cambridge, MA 02138, USA
4Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA

Accepted 2021 June 30. Received 2021 June 3; in original form 2021 March 22

ABSTRACT
When fitting N-body models to astronomical data – such as transit times, radial velocity, and astrometric positions at observed
times – the derivatives of the model outputs with respect to the initial conditions can help with model optimization and posterior
sampling. Here, we describe a general purpose symplectic integrator for arbitrary orbital architectures, including those with close
encounters, which we have recast to maintain numerical stability and precision for small step sizes. We compute the derivatives
of the N-body coordinates and velocities as a function of time with respect to the initial conditions and masses by propagating
the Jacobian along with the N-body integration. For the first time, we obtain the derivatives of the transit times with respect to the
initial conditions and masses using the chain rule, which is quicker and more accurate than using finite differences or automatic
differentiation. We implement this algorithm in an open source package, NbodyGradient.jl, written in the JULIA language,
which has been used in the optimization and error analysis of transit-timing variations in the TRAPPIST-1 system. We present
tests of the accuracy and precision of the code, and show that it compares favourably in speed to other integrators that are written
in C.

Key words: planetary systems – planets and satellites: dynamical evolution and stability.

1 IN T RO D U C T I O N

The gravitational N-body problem refers to the integration of the
positions and velocities of a set of N point-particles forward or
backward in time using Newton’s equations, after specifying their
masses and initial phase-space coordinates. The solution of the N-
body problem can be put to many uses, for example, matching
observational data on a set of astronomical bodies, estimating the
long-term stability or sensitivity to initial conditions of a model
system, or determining the outcome of interactions between bodies.

For each of these applications, it can be beneficial to be able to
compute the derivatives of the state of the system at a given time with
respect to the initial conditions and masses. As the N-body problem
is highly non-linear, non-linear optimizers are needed to find the
model parameters with the maximum a posteriori probability (MAP),
or maximum-likelihood estimate. Derivative-free optimization, such
as Nelder–Mead, can be slow to converge, and typically becomes
less efficient as the number of dimensions grows. Hence, derivatives
can significantly speed up the process of optimization. Once the
MAP is found, the Hessian can be computed with derivatives to
estimate the uncertainties on parameters. Then, each parameter can
be varied along a fixed grid, and the non-linear optimization can be
re-run to trace out the likelihood profile. Finally, the posterior can be

� E-mail: agol@uw.edu
†Guggenheim Fellow.

sampled using Bayesian techniques that take advantage of derivatives
to improve the efficiency of the sampling in high dimensions.

Finite-difference derivatives can be easy to compute numerically;
however, finite differences are computationally expensive and limited
by numerical precision. The computation of derivatives along with
N-body integration can yield higher precision with less computation
time, enabling more effective application of non-linear optimization
and parameter uncertainty estimation. This calculation can be la-
borious, involving propagating derivatives through each time-step
of an integration, but the result can be much more computationally
efficient and accurate relative to computing derivatives with finite
differences.

The calculation of derivatives of the N-body problem has been
investigated in prior work. Mikkola & Innanen (1999) and Rein &
Tamayo (2015) derive the variational equations of the symplectic
integrator of Wisdom & Holman (1991), the ‘Wisdom–Holman
(WH)’ method, to obtain the tangent map of an N-body system as a
function of time, from which the positional variations may be derived
as a function of variations in the initial phase-space coordinates.
This is implemented in the WHFast integrator in the REBOUND
package based on the WH method (Rein & Tamayo 2015). Second-
order variational equations were derived by Rein & Tamayo (2016)
for a high-order integrator (IAS15) that is assumed to exactly solve
the N-body equations. Pál (2010) used a Lie-integration scheme,
including derivatives with respect to the initial orbital elements
and masses, to fit for planet–planet perturbations in radial-velocity-
detected systems.

C© 2021 The Author(s)
Published by Oxford University Press on behalf of Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

http://orcid.org/0000-0002-0802-9145
http://orcid.org/0000-0001-7648-0926
http://orcid.org/0000-0001-7574-4440
mailto:agol@uw.edu

Derivatives of TTVs 1583

1.1 Algorithm

The purpose of this paper is to implement first-order derivatives in a
symplectic integrator, including the mass derivatives, and allowing
for a system hierarchy that is more general than standard symplectic
integrators, and which includes derivatives of the transit times with
respect to the initial conditions, which is currently absent in the
literature. Instead of using the variational equations, which assume
exact solution of the N-body problem for obtaining the derivatives,
we compute the derivatives of the N-body symplectic map, with
the goal of yielding a more precise result for the Jacobian of the
state of the system at a given time with respect to the specified
initial conditions. Although the Rein & Tamayo (2016) integrator
could have been put to use for this problem, we are interested
in developing a complementary code that trades generality and
precision for potentially more speed.

The basic integrator we use has been described in two prior papers:
Hernandez & Bertschinger (2015) and Dehnen & Hernandez (2017).
The novel aspect underlying the integrator is to allow all bodies to
be treated on equal footing. A universal Kepler solver (Wisdom &
Hernandez 2015) is used to integrate pairs of bodies with Keplerian
drifts forward in time, interspersed with constant-velocity corrections
that are negative in time, while using operator splitting to create a
symplectic and time-symmetric integrator out of the original concept
proposed by Gonçalves Ferrari, Boekholt & Portegies Zwart (2014).
A potential advantage of this approach is the adaptability to different
problems with various geometries, such as hierarchical triples,
pairs of binaries, or other more complex hierarchies (Hamers &
Portegies Zwart 2016). The popular WH method, and its variants, that
uses different coordinates and Hamiltonian splittings (Hernandez &
Dehnen 2017) assume that there is a dominant mass and widely
separated planets. For general applications, these assumptions can
be too constraining.

A drawback of this integrator is the potential for numerical
cancellation errors to accumulate due to alternating negative and
positive time-steps that are a necessary part of the algorithm. In
developing this code, we found that these cancellations caused
numerical errors that accrue in proportion to the number of time-
steps. This becomes more significant when the time-steps are short,
as more steps are required for a given integration time. We have
rectified this problem by combining the negative and positive time-
steps into a single step, and cancelling the terms analytically, which
we find reduces the numerical errors significantly. Thus, another goal
of this paper is to describe this improved integrator.

1.2 Motivation: TTVs and photodynamics

The particular application we have in mind is the detection and
characterization of exoplanet systems. Planetary interactions become
important when data are of high precision, or if integrations are
carried out on long time-scales to study system stability. The first
example of non-Keplerian interactions being important was the
pulsar exoplanet system PSR 1257 + 12 (Wolszczan & Frail 1992).
As had been predicted, the interactions of the planets were detected
in the pulsar timing, and then used to confirm the planetary nature
of the system, as well as measure the inclinations and masses
of the planets by breaking the mass-inclination degeneracy that
accompanies Doppler shifts (Malhotra et al. 1992; Rasio et al.
1992; Peale 1993; Wolszczan 1994). Secondly, high-precision radial
velocity measurements of exoplanet systems also require accounting
for planet–planet interactions. An early example of this is GJ 876,
which required an N-body integration to match the observed stellar

radial velocity instead of treating the radial velocity signal as a sum
of unperturbed Keplerians (Laughlin & Chambers 2001). Thirdly, the
Kepler spacecraft yielded sufficient precision of the times of transit of
exoplanets to produce a novel means of detecting and characterizing
exoplanets: transit-timing variations (TTVs; Holman & Murray
2005; Agol et al. 2005). The Kepler-9 planet system showed strong
anti-correlated variations in the times of transit relative to a fixed
ephemeris, which allows for measurement of the planet masses
(Holman et al. 2010; Freudenthal et al. 2018; Borsato et al. 2019).
Currently, several planets have been detected with TTVs, while
hundreds have been characterized (see Agol & Fabrycky 2017;
Jontof-Hutter 2019, and references therein).

TTVs are entirely due to non-Keplerian motion of the planetary
orbits. In the Newtonian two-body problem, transits occur at regular
intervals, and so the transit times are uniformly spaced in time
with the orbital period of the system. When three or more bodies
interact, each pair of bodies no longer follows a Keplerian orbit,
but is perturbed by the other bodies in the system. In the planetary
case, the perturbations of the times of transit by other planets are
typically small compared with the orbital period of the planet. TTVs
are defined as the residuals of a linear fit to the times of transit (Agol
et al. 2005), and so by definition TTVs are imparted by non-Keplerian
motion. Consequently, the presence of TTVs typically requires an
N-body model for the computation of the times of transit.

The advent of the detection of TTVs spurred theoretical models
for short-term planetary dynamics. Analytic prescriptions exist for
TTVs (e.g. Agol et al. 2005; Nesvorný & Beaugé 2010; Lithwick,
Xie & Wu 2012; Nesvorný & Vokrouhlický 2014; Deck & Agol
2015; Agol & Deck 2016; Deck & Agol 2016; Hadden & Lithwick
2016; Nesvorný & Vokrouhlický 2016). However, the dynamics
of multiplanet systems is sufficiently complex that any analytic
prescription is only accurate in a confined region of parameter
space and/or limited time-scales, and generally needs to be checked
against numerical integration since it is unknown beforehand whether
these restrictions apply to the masses and orbital elements of a
particular system (e.g. Deck & Agol 2015; Jontof-Hutter et al. 2016;
Hadden & Lithwick 2017; Linial, Gilbaum & Sari 2018; Yoffe, Ofir &
Aharonson 2021). On the other hand, numerical integration can be
much more computationally expensive and can accrue numerical
errors.

When optimizing a TTV model, the gradient of the likelihood
is often required to find the direction in which the variation of the
initial conditions will improve the likelihood. The likelihood gradient
in turn requires the gradient of each transit time with respect to the
initial conditions. Often finite differences are used to estimate this
gradient; however, finite-difference derivatives are limited by the
numerical accuracy of the integration; see Rein & Tamayo (2016)
regarding the drawbacks of finite-difference derivatives. This can
cause difficulty in optimizing numerical TTV model fits. In addition,
finite differences are expensive to compute as at least two integrations
are required for each parameter, and truncation or round-off errors
can limit the precision. For planetary systems, this requires 14N
integrations for N planets.

Computing the posterior parameter distributions for observed
systems requires numerous evaluations of the likelihood, which
becomes difficult to explore for high-dimensional planetary systems
due to the ‘curse of dimensionality’ making grid-based and Markov-
chain-based integrations prohibitive. This can be ameliorated by
Hamiltonian Markov chains, which require computation of the
derivatives of the likelihood function (Girolami & Calderhead 2011).

Dynamical interactions have also been measured in systems where
multiple stars are present. The triple-star KOI-126 was characterized

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

1584 E. Agol, D. M. Hernandez, and Z. Langford

with a ‘photodynamical’ model (Carter et al. 2011), which requires
coupling an N-body code to a photometric model. The architecture
of this system prohibits the use of a standard WH-type symplectic
integrator to describe the dynamics as there is a binary star in orbit
about a more massive star. Similarly, circumbinary planets, such as
Kepler-16b, have been found which require a photodynamical model
of the stars and planets (Doyle et al. 2011). One can imagine more
complex geometries, such as a planet–moon pair orbiting a binary
star, which would also require a photodynamical code to model.
The computational expense of each of these models is significant,
so that obtaining converged posterior parameters is a challenge. An
advantage of photodynamical models is that the covariance between
transit parameters and orbital parameters may be computed directly
from the light curve.

Given these observational modelling problems, the motivation for
this code is to provide derivatives of a general N-body integrator for
short-term integrations to model stellar and planetary systems with
arbitrary hierarchy, and to compute the derivatives of the model with
respect to the initial conditions to allow for better optimization of
the model likelihood and to explore parameter space more efficiently
with Hamiltonian Markov chain Monte Carlo.

In Section 2, we describe the original symplectic integrator
algorithm, and discuss its numerical instability. In Section 3, we
give the modifications to the algorithm we have made to prevent
numerical cancellation. In Section 4, we introduce the derivatives
of the algorithm. In Section 5, we describe the implementation and
precision of the algorithm. In Section 6, we compare the algorithm
with other N-body integrators. Finally, in Section 7 we conclude.
Throughout the paper, we provide hyperlinks via check marks
(�) after equations that point to the lines of code in GITHUB that
implement these equations. As the code has been tested with unit
tests, we interpret this as a validation of these equations.

2 OVERV IEW OF SYMPLECTIC INTEGRATO R

We carry out the N-body integration with a symplectic integrator
(Channell & Scovel 1991) that uses Kepler steps to integrate pairs
of bodies, interspersed with constant velocity corrections, thus
treating each and every body in an identical manner (Hernandez &
Bertschinger 2015). The advantage of this approach relative to the
WH method is that the integrator can be used as an all-purpose
integrator for studying systems with a range of architectures. The
integrator is especially powerful when binaries at any scale are
present. A fourth-order corrector gives higher precision to this
integrator without much additional computational cost (Dehnen &
Hernandez 2017); hence, we refer to the algorithm as DH171 in
what follows. DH17 is mathematically written by equation (29)
in Dehnen & Hernandez (2017), using α = 0. In Section 4.9 and
Algorithm 2, we present a generalization of the method, described
mathematically by equation (39) in Dehnen & Hernandez (2017).
This generalization is also referred to as DH17 as Dehnen &
Hernandez (2017) also called both methods the same name. The
methods described here are all time-reversible and time-symmetric
(Hairer, Lubich & Wanner 2006; Hernandez & Bertschinger 2018).
We give an overview of DH17, along with transit-time finding, in
algorithm 1, which uses a fixed time-step, h, from initial time t0 over
a duration tmax.

1In Dehnen & Hernandez (2017), this algorithm was called ‘DH16’. We have
used ‘DH17’ to reflect the publication year.

Unfortunately, the DH17 algorithm is numerically unstable. Con-
sequently, we have modified the DH17 algorithm, and present a
modified algorithm, which we will refer to as AHL21, in which we
combine pairs of steps of the DH17 algorithm into a single step. The
AHL21 algorithm is mathematically identical to the DH17 algorithm;
however, because of carrying out the cancellation analytically rather
than numerically, it is more numerically stable, as we describe in
Section 3. But first we start by outlining the DH17 algorithm and its
drawbacks.

2.1 DH17 algorithm summary

The original DH17 algorithm is given in Algorithm 1. The algorithm
is derived from splitting the Hamiltonian into pairwise Keplerian
terms:

H = T + V ,

= T +
∑

i

∑
j>i

Vij ,

= T +
∑

i

∑
j>i

(
Kij − Tij

)
, (1)

where T is the kinetic energy, V is the total potential energy, while
Tij, Vij, and Kij are the kinetic, the potential, and the total energy of
a pair of bodies i and j. The Kij term is the two-body Hamiltonian,
whose solution amounts to a Keplerian orbit whose centre of mass
moves at a constant velocity, hence the notation ‘K’ (Hernandez &
Bertschinger 2015). Note that the minus sign in front of the kinetic
energy term indicates a backward drift in time.

A symplectic integration is achieved by successively solving each
component of the Hamiltoninan, using a Kepler solver and a simple
drift, to give the positions and velocities at the start of the next
component (Dehnen & Hernandez 2017). The creation of a second-
order map from this splitting of the Hamiltonian involves division of
each time-step of duration h into two sub-steps of duration h/2. In
each of the substeps, the order of application of the terms is reversed
to cancel first-order error terms. In addition, a fourth-order velocity
corrector is added in the middle of the time-step, which amounts
to applying tidal accelerations to the velocities that are neglected
in the two-body elements of the Hamiltonian, yielding much higher
precision without much additional computational effort; this results
in Algorithm 1.

As mentioned, there is an unfortunate drawback to the DH17
algorithm, which is the negative time-step. In cases in which the
potential energy term is small, the Kij and −Tij terms nearly cancel.
What this means is that the motion induced by these terms in
the mapping can be nearly equal and opposite, causing numerical
cancellation which leads to round-off errors that accumulate with
time. This has two different causes. First, the centre-of-mass por-
tion of these Hamiltonians is identical, and thus cancels exactly
(Dehnen & Hernandez 2017). Secondly, if the acceleration is weak,
or the time-step is short enough that the acceleration does not result
in a significant change in velocity, then the Keplerian step is nearly
inertial, and so the entire Kepler step is very nearly equal and opposite
to the negative drift. These two sources of cancellation can lead to
numerical errors when implementing the algorithm. We found these
errors to be severe for long integrations, for weakly interacting bodies
(e.g. pairs of planets), or for very short time-steps, which compounds
the error more rapidly. We present a solution to this issue in the next
section, which is our first main result.

As a side note, the DH17 algorithm differs in its accuracy from
symplectic integrators typically used for planetary systems. Planetary

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

https://github.com/ericagol/NbodyGradient.jl

Derivatives of TTVs 1585

Data: Initial Cartesian coordinates and masses at time t = t0.
Result: Integration of N -body system over time tmax, and

resulting times of transit and derivatives.
for t − t0 < tmax do

Drift all particles for time h/2;
for all pairs of particles (i, j) do

Drift particles i and j for time −h/2;
Apply a Kepler solver to advance the relative

coordinates of i and j by h/2;
Advance center of mass coordinates of i and j by h/2;

end
Apply fourth-order velocity correction to all particles over

time step h;
for reversed pairs of particles (i, j) do

Apply a Kepler solver to advance the relative
coordinates of i and j by h/2;

Advance center of mass coordinates of i and j by h/2;
Drift particles i and j for time −h/2;

end
Drift all particles for time h/2;
if transit has occurred for particles i and j then

Refine transit time, and save.
end
Increment time t by h.

end
Algorithm 1: Transit times with DH17 symplectic integration

sytems with a dominant mass are described by a Hamiltonian:

H = HA + εHB, (2)

where ε � 1 in which the terms HA and HB are typically chosen
to be integrable. For this Hamiltonian, the WH method (Wisdom &
Holman 1991) has been developed which carries an energy error of
O(εh2),2 where h is the step size. In contrast, the DH17 algorithm is
fourth order and its error is O(εh4). However, while WH assumes ε

� 1, DH17 does not require this assumption.

3 TH E M O R E AC C U R AT E AHL21 A L G O R I T H M

In this paper, we present a modified version of the DH17 algorithm
in which the negative drifts (−Tij) and Keplerian steps (Kij) are
combined algebraically, so that leading-order terms are cancelled by
hand. This exact cancellation prevents the accumulation of round-
off and truncation errors that occur when implementing the DH17
algorithm. We find that this approach gives a higher precision
numerical algorithm yielding results that obey the expected h4 scaling
of the algorithm down to machine precision on the time-scales we
have tested.

To describe this new approach, we first need to summarize the
application of these two sub-steps.

3.1 Kinetic-energy drift

The drift term is the most straightforward: each particle (for T) or
pair of particles (for Tij) simply drifts inertially,

xi(t + h) = xi(t) + hvi(t), � (3)

2Different conventions are used for the scalings with ε. In the convention of
Hernandez & Dehnen (2017), the error scales as O(ε2h2). In this convention,
all scalings get an extra factor of ε.

for a time-step h, where xi(t) and vi(t) are, respectively, the position
and velocity vectors of the ith body at time t. Again, note that −Tij

in equation (1) indicates that h is negative.

3.2 Universal Kepler step

To carry out the Kij mapping, we use a universal Kepler solver to
compute the change in the relative position between the bodies
(Wisdom & Hernandez 2015). The Kepler solver uses a universal
Kepler equation based upon the initial positions and velocities of a
pair of bodies at the start of a step. The solution of Kepler’s equation
enables a mapping of the initial phase-space coordinates to the final
phase-space coordinates after a time h assuming pairwise Keplerian
motion (i.e. neglecting every other body in the system).

The equation of motion in Cartesian coordinates derived from the
Kij Hamiltonian for each Kepler step is given by

ẍij = −kxij

r3
ij

, (4)

where k = Gmij, mij = mi + mj is the sum of the masses of the ith
and jth pair of bodies, xij = xi − xj,� and rij = |xij|. The universal
solver transforms the time dependence to an independent variable,
s, defined by ṡ = ds/dt = r−1, where r is the distance between the
bodies, which simplifies the equations of motion. In the rest of this
section, we drop the subscript ij from the mass, coordinate, and
velocity vectors, i.e. m = mij, r = rij, x ≡ xij , and v ≡ vij . We will
refer to the Cartesian coordinates for the Keplerian as (x0, v0) at the
start of a step and (x, v), a time h later.

A Kepler step uses the fact that in the two-body problem angular
momentum is conserved; thus, the final relative positions and
velocities of the two bodies, x and v, are in the same plane as the
initial relative positions and velocities, x0 and v0, while the centre-
of-mass velocity remains constant and the centre-of-mass position
drifts at a constant rate as there are no external perturbers. This means
that the final relative positions and velocities can be expressed as a
linear combination of the initial relative velocities and positions:

x = f x0 + gv0

v = ḟ x0 + ġv0, (5)

where f and g are Gauss’s functions, which we define in more detail
below as a function of x0, v0, h, and k, where k = Gm is the central
force constant.

Then, the equations describing the initial and final states are given
by Wisdom & Hernandez (2015), based on Mikkola & Innanen
(1999). We define r0 = |x0| is the initial separation, v0 = |v0| is
the initial relative speed, and r = |x| , v = |v| are the separation
and relative speed at the end of the step. We define two additional
quantities:

η0 = x0 · v0, � (6)

β = 2k

r0
− v2

0, � (7)

= 2k

r
− v2.

Expressing the final positions and velocities in terms of the initial
values requires the Gauss f and g functions, which are given by

f = 1 − k

r0
G2, (8)

g = r0G1 + η0G2, (9)

and their derivatives

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L314-L331
http://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L708-L711
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L785-L789
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L776

1586 E. Agol, D. M. Hernandez, and Z. Langford

ḟ = − k

rr0
G1, (10)

ġ = 1

r
(r0G0 + η0G1) , (11)

where Gi(β, s) are four functions whose definitions depend on the
sign of β for i = 0, ..., 3 (Table 1). With these definitions, Wisdom &
Hernandez (2015) show that

r(s) = r0G0 + η0G1 + kG2. � (12)

This equation may also be derived from conservation of angular
momentum, requiring x0 × v0 = x × v, which yields the condition
f ġ − gḟ = 1; this equation is equivalent to equation (12). We
transform these equations from s to γ = |β|1/2s, as γ is dimensionless.
Equation (12) can be integrated over a time-step, h, to give an implicit
Kepler’s equation for γ :

h = r0G1 + η0G2 + kG3, (13)

which can be solved using Newton’s method to find γ as a function
of h, r0, η0, k, and β. The functions G0, G1, G2, and G3 are defined in
Table 1 in terms of trigonometric and hyperbolic functions (Wis-
dom & Hernandez 2015), which differ based upon whether the bodies
are bound (elliptic) or unbound (hyperbolic).3 As the Gi functions
only depend upon γ and β, once γ � is found numerically, the
remainder of the Kepler step simply involves algebraic computation.

3.3 Combined Kepler and drift step

In the AHL21 algorithm, these two steps, −Tij and Kij, are combined
in different orders: either a negative drift followed by a Kepler step,
−Tij + Kij, or a Kepler step followed by a negative drift, Kij − Tij

(Algorithm 2). As these operations do not commute, we need to
handle each one separately. A diagram showing the order of these
mappings is given in Fig. 1. In each case, the position coordinate takes
on an intermediate value, which changes the nature of the combined
steps.

We describe these two options in the following subsections.

3.3.1 Drift then Kepler (DK)

In the first case, the negative drift is taken first, yielding an
intermediate position

x̂0 = x0 − hv0. (14)

With this modified value of the initial position, the Gauss f, g, ḟ , and
ġ functions need to be computed from (x̂0, v0, k, h) after solution
of Kepler’s equation for γ , so we indicate these functions with a
hat, e.g. f̂ ≡ f (x̂0, v0, k, h). In addition, we would like to find the
difference between the final and initial coordinates, �xDK = x̂ − x0

and �vDK = v̂ − v0; this allows for a more accurate computation of
these quantities when the step sizes are small. In the combined step,
-Drift + Kepler (which we indicate with ‘DK’), the resulting term
is

�xDK = (f̂ − 1)x0 + (ĝ − hf̂)v0, �

�vDK = ˙̂f x0 + (˙̂g − h ˙̂f − 1)v0, � (15)

3This equations simplifies to a cubic in the parabolic case when β = 0. The
solution of this cubic is also used as the starting guess for the Newton’s solver
in the elliptic and hyperbolic cases.

where, again, f̂ , ĝ, ˙̂f , and ˙̂g are all computed in terms of
(x̂0, v0, k, h). The scalar functions in equation (15) are given in
Appendix A.

Note that in these equations the 1’s are cancelled analytically; this
yields more stable computation of the changes in the positions and
velocities when these are small.

3.3.2 Kepler then Drift (KD)

In the other case, a Kepler step is applied first, followed by a
negative drift. The Kepler step can be computed in terms of the initial
coordinates, x0 and v0, yielding intermediate coordinates (x̌, v̌), and
then the negative drift is applied resulting in x = x̌ − hv̌ (Fig. 1).

We combine these and take the difference with the initial co-
ordinates, �xKD = x̌ − hv̌ − x0 and �vKD = v̌ − v0, to give the
resulting difference vectors

�xKD = (f − hḟ − 1)x0 + (g − hġ)v0, �

�vKD = ḟ x0 + (ġ − 1)v0, � (16)

where f, g, ḟ , and ġ are all computed in terms of (x0, v0, k, h),
and the ‘KD’ indicates that the Kepler step precedes the negative
drift, Kepler-Drift. The scalar functions in equation (16) are given in
Appendix A.

We take care that these functions are evaluated in a numerically
stable manner to avoid round-off error due to cancellations between
terms at small time-steps. With the combination of the drift and
Kepler steps, it turns out that we no longer need the drift of the
centre-of-mass coordinates in each Kepler step as these cancel
exactly.

Thus, the DH17 algorithm simplifies significantly at the expense of
making the substeps slightly more complicated. This new combined
algorithm we dub ‘AHL21’, which is given in Algorithm 2. The
fourth-order correction is the same as that given in Dehnen &
Hernandez (2017), and is summarized in Section 4.8. The transit-
time finding is described below in Section 4.11. An alternate
version of the algorithm in which the combined drift and Kepler
steps are replaced by a kick for some pairs of bodies is given in
Section 4.7.

The primary goal of this paper is to describe the implementation
and differentiation of the AHL21 algorithm, yielding the derivatives
of the transit times with respect to the initial conditions. Along
the way, we compute the derivatives of the state of the system at
each time-step with respect to the initial conditions, which may be
used for other applications such as photodynamics, radial velocity,
astrometry, or computation of Lyapunov exponents. Next we describe
the derivative computation.

4 D I FFERENTI ATI ON O F SYMPLECTI C
I N T E G R ATO R

We divide the differentiation of algorithm 2 into a series of steps:

(i) Derivative of coordinates at end of a symplectic step with
respect to coordinates at the beginning. This includes the Kepler
step, drifts, and kicks (Sections 4.4–4.7).

(ii) Derivatives of fourth-order velocity correction (Section 4.8).
(iii) Propagation of Jacobians through each of these steps (Sec-

tion 4.9).
(iv) Derivative of parameters output at specified times with respect

to the coordinates at the symplectic time grid. Here, we give the
example of the derivatives of the transit times with respect to the
initial conditions (Section 4.11), but this could also include eclipse

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L848
http://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L822
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L872-L875
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L876-L878
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl\protect $\relax \delimiter "026E30F $#L793
http://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L793
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L872-L875
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L876-L878

Derivatives of TTVs 1587

Table 1. Functions Gi(s) used in solving Universal Kepler equation, and functions Hi used later in the combined drift + Kepler step and its
derivatives.

Variable Elliptic Parabolic Hyperbolic

β >0 =0 <0
γ

√
βs –

√−βs

G0(β, γ) � cos γ = 1 − βG2 1 cosh γ = 1 − βG2

G1(β, γ) � β−1/2 sin γ = 2β−1/2 sin 1
2 γ cos 1

2 γ s (−β)−1/2 sinh γ = 2(−β)−1/2 sinh 1
2 γ cosh 1

2 γ

G2(β, γ) � β−1(1 − cos γ) = 2β−1 sin2 1
2 γ 1

2 s2 β−1(1 − cosh γ) = −2β−1 sinh2 1
2 γ

G3(β, γ) � β−1(γ − sin γ)/
√

β 1
6 s3 β−1(γ − sinh γ)/

√−β

H1(β, γ) � β−2(2 − 2cos γ − γ sin γ) 1
12 s4 β−2(2 − 2cosh γ + γ sinh γ)

H2(β, γ) � β−3/2(sin γ − γ cos γ) 1
3 s3 (− β)−3/2(− sinh γ + γ cosh γ)

H3(β, γ) � β−1 (4 sin γ − sin γ cos γ − 3γ) /
√

β 0 β−1 (4 sinh γ − sinh γ cosh γ − 3γ) /
√−β

H5(β, γ) � β−1 (3 sin γ − γ cos γ − 2γ) /
√

β 0 β−1 (3 sinh γ − γ cosh γ − 2γ) /
√−β

H6(β, γ) � 1
2 β−2 (9 − 8 cos γ − cos 2γ − 6γ sin γ) 0 1

2 β−2 (9 − 8 cosh γ − cosh 2γ + 6γ sinh γ)

Figure 1. The order of the combined substeps (from upper left corner to lower right corner) has two sequences: first a negative drift followed by a Kepler step,
then a Kepler step followed by a negative drift. These two options need to be handled separately, and notation for the intermediate steps is summarized in this
diagram.

Data: Initial Cartesian coordinates and masses at time t = t0.
Result: Integration of N -body system over time tmax, and

resulting times of transit and derivatives.
for t − t0 < tmax do

Kick particles in AC for time h/6;
Drift all particles for time h/2;
for pairs of particles (i, j) in A do

Apply a combined -Drift+Kepler step for bodies i and j

over a time h/2 togive the changes in position and
velocity of �xDK and�vDK and update xij and vij ;

end
Apply velocity correction and a kick, both multiplied by

2/3, to particles in AC ;
Apply velocity correction to particles in A;
for reversed pairs of particles (i, j) in A do

Apply a combined Kepler-Drift step for bodies i and j

over a time h/2 togive the changes in position and
velocity of �xKD and�vKD and update xij and vij ;

end
Drift all particles for time h/2;
Kick particles in AC for time h/6;
if transit has occurred for particles i and j then

Refine transit time, and save.
end
Increment time t by h.

end
Algorithm 2: Transit times with AHL21 symplectic integration.

times, radial velocity at pre-specified time, or relative positions of
the bodies at times of observation. This step involves an AHL21 step
with a fractional time duration.

We describe each of these steps in turn, after some preliminaries.

4.1 Notation conventions

The integration is carried out in inertial Cartesian coordinates
(Hernandez & Bertschinger 2015), while the initial conditions of the
N bodies are specified in either of two forms: Cartesian coordinates
of N bodies, or orbital elements in a hierarchy of N − 1 Keplerians
(which we leave to a future paper). The initial time of the start of the
integration, t0, requires a snapshot of the phase-space coordinates or
orbital elements, which fully specify the problem with the addition
of the masses of the bodies, m = {m1, ..., mN }, which are constant
in time. In this section, we describe the phase-space coordinates.

4.2 Code units

We utilize units for masses in M�, positions in au, and time in
days. Our gravitational constant is given by GM� = 0.00029598
au3d−2M−1

� . The initial conditions, then, simply need to be specified
in terms of masses in M�, positions in au, and velocities in au d−1.

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L844
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L842
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L843
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/utils.jl#L124-L135
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/utils.jl#L167-L178
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/utils.jl#L211-L223
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/utils.jl#L256-L269
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/utils.jl#L305-L318
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/utils.jl#L351-L362

1588 E. Agol, D. M. Hernandez, and Z. Langford

Figure 2. Cartesian coordinate system. Body i is at position xi = (xi, yi, zi)
with velocity vi = (ẋi , ẏi , żi).

4.3 Cartesian coordinates

The Cartesian coordinates utilize a right-handed coordinate system
for which the sky plane is the x−y plane, while the z-axis is along the
line of sight, increasing away from the observer (Fig. 2). Positions for
each body are denoted with a vector xi(t) = (xi(t), yi(t), zi(t)), while
velocities are denoted with vi(t) = (ẋi(t), ẏi(t), żi(t)), with subscript
i = 1, .., N labelling each body, and ċ = dc

dt
indicates time derivative

of variable c. The observer is located at xobs = (0, 0, −d), where d is
the distance of the observer to the centre of mass of the system.

The initial conditions are completely specified via q(t0), where
q(t) = {xi(t), vi(t), mi; i = 1, ..., N}. The vector q(t) has 7N elements,
where the 7(i − 1) + jth element refers to planet i and the jth element
of the vector

q i(t) = {xi(t), yi(t), zi(t), ẋi(t), ẏi(t), żi(t),mi}, (17)

where j = 1, ..., 7. Note that we take the origin of the coordinates to
be the centre of mass of the system, so that a constraint on the initial
conditions is

∑
imiqi, j(t0) = 0 for j = 1, ..., 6, where qi, j denotes the

jth element of of qi(t).4

The coordinate system is right-handed, with the x-axis pointing
to the right on the sky, then the y-axis points downwards, so that
x̂ × ŷ = ẑ points away from the observer, for unit vectors {x̂, ŷ, ẑ}
(Fig. 2).

4.4 Derivative of a combined Drift and Kepler step

The building block of this integrator is the universal Kepler solver
for integrating pairs of bodies (Wisdom & Hernandez 2015), which
we combined with a negative drift, before or after, described in
Section 3.3. Standard WH N-body symplectic integrators (Wis-
dom & Holman 1991) use an elliptic (bound) Kepler solver for
the ‘unperturbed’ motion, while the weaker interactions between
low-mass or distant bodies are treated as impulses or kicks al-
ternating with the Kepler-drifts. In the case of the DH17 inte-
grator, a hyperbolic step is needed for the pairwise Keplerian
integration of bodies that are unbound; this is used as an alter-
native to kicks. In this section we summarize the computation
of the the Jacobian of the final relative coordinates with respect
to the initial coordinates over a time-step with duration h, and

4In general, the centre-of-mass is allowed to move at a constant velocity,
which is not implemented in our initial conditions, but could be if required.

then the transformation to the coordinates of the individual bod-
ies.

The variational equations for the Cartesian coordinates depends on
the ordering of the negative drift and Kepler step. For the combined
negative drift followed by a Kepler step, the change in relative
position and velocity is

δ�xDK = (f̂ − 1)δx0 + (ĝ − hf̂)δv0

+ δ(f̂ − 1)x0 + δ(ĝ − hf̂)v0, � (18)

δ�vDK = ˙̂f δx0 + (˙̂g − h ˙̂f − 1)δv0

+ δ ˙̂f x0 + δ(˙̂g − h ˙̂f − 1)v0, � (19)

while for a combined Kepler step followed by a negative drift, the
variation of the change in relative coordinates is

δ�xKD = (f − hḟ − 1)δx0 + (g − hġ)δv0

+ δ(f − hḟ − 1)x0 + δ(g − hġ)v0, � (20)

δ�vKD = ḟ δx0 + (ġ − 1)δv0

+ δḟ x0 + δ(ġ − 1)v0, � (21)

where we have taken the differential of equations (15) and (16).
The first line of each equation we have already computed, while the
differentials of the Gauss functions in the second lines remain to be
computed.

Each of the differential Gauss function terms involve the basis
(x0, v0, k, h), while each of these functions is defined in terms
of Gi(β, γ), β, γ , r0, r and η0 (or Ĝi(β̂, γ̂), β̂, γ̂ , r̂0, r̂ and η̂0).
Note that if h is varied as a function of phase space, symplec-
ticity is lost; however we accept a small symplecticity violation
at a single time-step when searching for transit times. A similar
choice was made in Deck et al. (2014). Thus, we first need to
compute the differential of these Gauss function terms with re-
spect to these intermediate quantities, and then propagate through
these differentials using the chain rule to obtain the derivatives
with respect to the basis. There is an extra step involved in
the drift-first case (DK): since the functions on the right-hand
side are defined in terms of x̂0 = x0 − hv0, we also need to
apply the chain rule to x̂0 to transform the derivatives to the
basis.

The differentials of intermediate quantities are given in Ap-
pendix B1.

4.4.1 Differential of drift-then-Kepler step

The differential of the scalar quantities δ(f̂ − 1), δ(ĝ − hf̂),δ(˙̂f),

and δ(˙̂g − h ˙̂f − 1) should also be scalars, and can be expressed in
terms similar to the δγ and δr terms given in Apppendix B1. Note,
however, that as the Kepler step takes place after the negative drift,
all of these functions are to be computed in terms of x̂0 substituted
for x0, and so we need to add an extra step in the derivation to
find the differentials in terms of x0 in lieu of x̂0. The differential of
these functions in terms of intermediate scalar quantities is given in
appendix B2.

Substituting these differentials into equations (18) and (19), we
arrive at expressions for ∂�xDK/∂x0, ∂�xDK/∂v0, ∂�xDK/∂k,
∂�vDK/∂x0, ∂�vDK/∂v0, and ∂�vDK/∂k. We also know ∂k/∂x0

= 0, ∂k/∂v0 = 0, and ∂k/∂k = 1, which we insert into a Jacobian,
Jkep, which is a 7 × 7 matrix. In addition, we need the time derivatives
of the coordinates with respect to the time-step, h, ∂�xDK/∂h,

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L939-L951
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L985-L997
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1071-L1082
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1106-L1117

Derivatives of TTVs 1589

∂�vDK/∂h, to obtain the time derivatives of the transit times with
respect to the initial coordinates.

This completes the summary of the Jacobian of the combined
negative drift then Kepler step for the variation of the relative
coordinates of bodies i and j (recall that we dropped the ij subscripts
in this section). In the next subsection, we discuss the results for the
Kepler step followed by a negative drift.

4.4.2 Differential of Kepler then drift step

The Kepler step followed by a negative drift is slightly simpler as the
Gauss functions can be expressed in terms of x0 rather than x̂0. The
differentials of the scalar functions are given in Appendix B3.

As with the prior combined step, the terms in these differentials
may be inserted into a Jacobian, Jkep, as well as give the derivatives
with respect to h. This completes the description of the Jacobians
computed for the combined drift and Kepler steps for the change
in the relative coordinates between bodies i and j. This needs to be
translated into the variations of the positions and velocities of the
individual bodies i and j, which we describe next.

4.5 Jacobian of combined Kepler + drift step

The foregoing computation gives the variation in the relative dif-
ference between the positions and velocities of bodies i and j. This
translates into variations in the positions of bodies i and j given by

�xi,DK = mj

mi + mj

�xDK, �

�xj,DK = − mi

mi + mj

�xDK, �

�vi,DK = mj

mi + mj

�vDK, �

�vj,DK = − mi

mi + mj

�vDK, � (22)

and likewise for DK → KD, where xi(t + h) = xi(t) + �xi,DK is
carried out with compensated summation.

The Jacobian may be found by differentiating these equations
with respect to the initial conditions of the Kepler-drift step, which
is straightforward � for the position, velocity, and time-step
derivatives. However, since this equation involves the masses mi

and mj, the mass derivative of a combined Kepler/drift step involves
an additional term, where

∂�xi,DK

∂mi

= − mj

(mi + mj)2
�xDK + Gmj

mi + mj

∂�xDK

∂k
, �

∂�xi,DK

∂mj

= mi

(mi + mj)2
�xDK + Gmj

mi + mj

∂�xDK

∂k
, � (23)

and the same equations apply for x → v, i↔j, and DK → KD. The
first of these two equations has a cancellation due to the difference
in sign between the two terms on the right-hand side. Specifically,
�xDK ∝ k, so there is a term in the derivative, ∂�xDK/∂k, which
equals �xDK/k, which exactly cancels the first term in the equation.
We carry out this cancellation algebraically, thus avoiding roundoff
errors which can occur when this term is much larger than the others
in ∂�xDK/∂k. The second equation has both terms with the same
sign, so this cancellation does not occur when the derivatives are
with respect to the mass of the other body. Here we give the resulting
derivatives:

∂�xi,DK

∂mi

= G2mj

β̂r̂ r̂2
0

[J1x0 − J2v0] , � (24)

∂�vi,DK

∂mi

= G2mj

β̂r̂3r̂2
0

[J3x0 + J4v0] , � (25)

where J1 − J4 are functions given in Appendix C. Note that the
derivatives of �xj,DK and �vj,DK with respect to mj look identical
save for replacing mj with −mi.

Similarly, the mass derivatives in the Kepler followed by drift step
are given as

∂�xi,KD

∂mi

= G2mj

βr3r2
0

[J5x0 + J6v0] , � (26)

∂�vi,KD

∂mi

= G2mj

βr3r2
0

[J7x0 + r0J8v0] , � (27)

where J5 − J8 are given in Appendix C. As above, the derivatives
of �xj,KD and �vj,KD with respect to mj look identical save for
replacing mj with −mi. We place all of these derivatives into a
Jacobian matrix for each drift + Kepler substep, �JDK,ij or �JKD,ij .

This completes the computation of the Jacobian of the drift plus
Keplerian evolution of bodies i and j with respect to one another.
Next, we describe the derivatives of the drift step applied at the start
and end of each time-step.

4.6 Drift

The drift of an individual body is given by

xi(t + h) = xi(t) + hvi(t), (28)

vi(t + h) = vi(t). (29)

This has the straightforward differential of

δxi(t + h) = δxi(t) + hδvi(t) + δhvi(t), (30)

δvi(t + h) = δvi(t). (31)

There are two stages at which the drifts are applied: all particles
drift at the start and end of each AHL21 step with a duration h/2 (see
algorithm 2). We refer to this as I + �JD(h) for drifting all of the
planets. In some cases, it proves to be faster and sufficiently accurate
to use instantaneous kicks between pairs of bodies rather than solving
the Kepler problem; we now turn to describing this option.

4.7 Derivative of kicks

Hernandez & Bertschinger (2015) show that for some pairs of
particles (typically distant or unbound), sufficient accuracy may be
obtained by applying a gravitational kick between particles, rather
than a Keplerian step and negative drift. Letting A be the set of pairs (i,
j) advanced with drift + Kepler steps, then AC is the complementary
set which receives pairwise kicks such that A ∩ AC = ∅. Note that
if all pairs are in AC, the integrator becomes leapfrog.

Algorithm 2 implements this method by applying the pairwise
kicks (to set AC) for a time-step h/6 before the initial drifts, then after
the combined drift-Kepler is applied to set A, a second set of kicks
is applied for a time-step 2h/3 along with separate correction terms
for the pairs in A and AC, and then after the second Kepler-drift step
is applied to A in reverse order, there is a final set of pairwise kicks
applied to AC for a time h/6 after the final drifts (on set AC).

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L727
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L728
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L731
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L732
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl\protect $\relax \delimiter "026E30F $#L735-L742
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L743-L750
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L743-L750
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L950
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L996
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1081
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1116

1590 E. Agol, D. M. Hernandez, and Z. Langford

For a pair of particles i and j, the kicks applied over a time-step h
are given by

�vi = −h
Gmj xij

r3
ij

, �

�vj = h
Gmi xij

r3
ij

, � (32)

where, as above, xij = xi − xj, rij = |xij|, which has derivatives given
by

δ�vi = −h
Gmj

r5
ij

[
xij

δmj

mj

r2
ij + wij

]
, � (33)

δ�vj = h
Gmi

r5
ij

[
xij

δmi

mi

r2
ij + wij

]
, � (34)

wij = δxij r
2
ij − 3xij xij · δxij .� (35)

These differentials yield a Jacobian for the kicks between all pairs
of bodies (i, j) ∈ AC. We now move on to describing the derivatives
of the fourth-order correction that is used to improve the order of the
algorithm.

4.8 Derivative of correction

Dehnen & Hernandez (2017) reduced the error in the Hernandez &
Bertschinger (2015) mapping, obtaining a symplectic integrator
accurate to h4. We incorporate this correction into our integrator,
using α = 0 (equation 40 of Dehnen & Hernandez 2017) that only
requires one call of the corrector in between the sequences of binary
drift-Kepler and Kepler-drift steps (in the middle of algorithm 2).
Two corrections need to be computed: one for the pairs in A, and one
for those in AC. We describe these in the next two subsections.

4.8.1 Drift + Kepler pairs correction (A)

The first correction is applied to the velocities of the bodies that are
treated with the Kepler + drift splitting, with an impulse term for the
ith body in A of

�vi = h3

24

∑
i,j∈A

Gmj

r5
ij

T ij , � (36)

T ij = xij

(
2Gm

rij

+ 3aij · xij

)
− r2

ij aij , (37)

where m = mi + mj, aij = ai − aj, and

ai = −
∑
i,j∈A

Gmj

r3
ij

xij . � (38)

Note that the sum is only taken over the particles in A, and no
correction is required for the positions. We will define a constant
C = (Gh3)/24 in what follows.

The derivative of this correction term can be computed in two
steps, first computing the derivative of ai, and then the derivative of
�vi,

δai = −
∑
i,j∈A

Gmj

r5
ij

[
xij

δmj

mj

r2
ij + δxij r

2
ij − 3xij xij · δxij

]
, � (39)

δ�vi = C
∑
i,j∈A

[
δmj

r5
ij

− mj

r6
ij

5xij · δxij

rij

]
T ij

+C
∑
i,j∈A

mj

r5
ij

δT ij , � (40)

with

δT ij = δxij

(
2Gm

rij

+ 3aij · xij

)

+ 2Gmxij

rij

(
δmi + δmj

m
− xij · δxij

r2
ij

)

+ xij

(
3xij · δaij + 3aij · δxij

)
− 2(xij · δxij)aij − r2

ij δaij . � (41)

When implementing these equations as computer code, we pre-
compute and store the dot products to save computational time.

4.8.2 Correction for fast-kick pairs (AC)

The pairs in AC also require a correction, but with a slightly simpler
relation:

�vi = h3

36

∑
i,j∈AC

Gmj

r5
ij

[
3xij (aij · xij) − aij r

2
ij

]
, (42)

where the sum is taken only over pairs in AC. The derivatives are
computed in a manner similar to that described in the prior sub-
section.

The overall Jacobian for this step is given by I + �J4th(h),
which is the identity matrix for the position and mass component,
and is given by ∂�vi/∂xj for the offdiagonal components relating
bodies i and j. The time derivatives are straightforward as they
involve derivatives with respect to h3, and so involve the same
formulae multiplied by 3/h. With the Jacobians now defined for
each component of a time-step, we next describe how we combine
these into the Jacobian of a full time-step.

4.9 Jacobian of a time-step

With the Jacobian transformations computed at each step of algo-
rithm 2, we can now compute the complete derivative of each transit
time with respect to the initial conditions, keeping track of the product
of Jacobians throughout algorithm 2. Now, in each case we compute
the change in the coordinates over a time-step, and so the Jacobian
of each substep has the form:

J substep = I + �J substep, (43)

where �J substep is the Jacobian of the change in coordinates at the
end of the substep with respect to the coordinates at the beginning of
the substep. Consequently, the Jacobian can be written as

J current = (I + �J substep) Jprior

= Jprior + �J substep Jprior. � (44)

The propagation of the Jacobian involves adding terms to the prior
Jacobian as a function of each substep. Now, when the time-step
is small, this involves very small additions to the Jacobian which
can increase the impact of round-off error during the propagation of
the derivatives. To mitigate the impact of this, we use compensated
summation (Kahan 1965).

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L356
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L357
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L364
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L366
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L368-L380
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L624-L630
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L578-L579
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L567-L602
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L634-L694
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L645-L694
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/utils.jl#L25-L46

Derivatives of TTVs 1591

As an example, in the 3-body case, an individual AHL21 step
looks like

JAHL21(h) =
(

I + �JD

(
h

2

))(
I + �JDK,12

(
h

2

))

×
(

I + �JDK,13

(
h

2

))(
I + �JDK,23

(
h

2

))
× (I + �J4th (h))

×
(

I + �JKD,23

(
h

2

))(
I + �JKD,13

(
h

2

))

×
(

I + �JKD,12

(
h

2

))(
I + �JD

(
h

2

))
. (45)

In this example, we do not use fast kicks for any pair of bodies. Note
that each Jacobian in this product is computed with the updated state
of the system from the prior substep.

We have also implemented a version of the integrator which allows
the drift + Kepler interactions to be replaced with kicks for some
subset of pairs bodies (Section 4.7). For this version of the integrator
an additional three Jacobians must be multiplied.

After taking n + 1 steps whereby the first transit occurs in between
steps n and n + 1, a substep is taken to find the intermediate time,
�t = t − nh − t0, which minimizes the sky separation between
the two bodies at time t. To compute the derivatives of the times of
transit requires computing the Jacobian of a step with intermediate
time �t, which is used to compute the derivatives of the time of
transit with respect to the initial conditions, which we describe
next.

4.10 Time derivative of a step

The derivative of the positions and coordinates as a function of
the time-step duration, �t, requires a propagation of the time-step
derivative through all of the substeps of a single time-step. The
involves applying the chain rule through each of the sub-steps
in algorithm 2. Let qcurrent = �q + qprior be the coordinates and
velocities of all bodies after applying one component of a substep.
Then,

dqcurrent

d�t
= (I + �J substep)

dqprior

d�t
+ ∂�q

∂�t

∣∣∣∣
qprior

, � (46)

where ∂�q
∂�t

is the partial derivative of a particular sub-step with
respect to the time-step �t. Note that in the AHL21 algorithm (2),
the combined drift and Kepler steps take place over a time �t = h/2,
which introduces a factor of 1/2 in the partial derivatives with respect
to h.

At the end of the step we refer to the derivative over the time-step
with respect to �t as

dq(t)

d�t
, (47)

where t is the total simulation time upon completion of the time-step
of duration �t. This may then be used to compute the transit times
and their derivatives, as described next.

4.11 Derivative of transit times

We define the times of transit between bodies i and j as the point in
time where the sky-projected separation is at a minimum, and body
i is in front of body j (Fabrycky 2010). Since multiple transits can
occur between two bodies, we count these with a third index, k, so
that the set of transit times during the time integration is given by {tijk;
∀i, j, k}. At a transit time, the sky-velocity between the two bodies

must be perpendicular to their sky separation, where the ‘sky plane’
is the x−y plane; this guarantees an extremum of the sky separation
between the bodies. The dot product of the relative sky separation
and sky velocity of the two bodies equals zero at the time of transit,
and is negative/positive just before/after transit. So, transit times are
computed from the constraints

gsky,ij (tijk) = (xi − xj)(vx,i − vx,j) + (yi − yj)(vy,i − vy,j) = 0, �

zi < zj

dgsky,ij

dt
> 0, (48)

where i is the index of the planet, and j is the index of the star
(Fabrycky 2010), and k is an index for the number of transits between
the bodies.

Throughout the time-integration of a system, transits between a
planet and star (or any pair of bodies) are checked for by identifying
when gsky, ij(t) changes sign from negative to positive between two
time-steps, and the planet (or occultor) is nearer to the observer than
the star. Once a transit time has been identified as occurring between
time-steps n and n + 1, where tn = t0 + nh, by the condition gsky, ij(tn)
< 0 and gsky, ij(tn + 1) > 0 and zi(tn) < zj(tn), then the time of transit is
solved for with Newton’s method, which makes use of our Jacobian
calculation. Newton’s method is applied to obtain the time tijk = tn

+ �t,� where �t is the time after tn at which gsky, i, j = 0, which is
taken as the time of transit. The initial guess for the time of transit,
�tinit, is found by linear interpolation:

�tinit = − gsky,ij (tn)h

gsky,ij (tn+1) − gsky,ij (tn)
. � (49)

To implement Newton’s method, the system is integrated in
between these time-steps with a single AHL21 step, but with a time
�t < h, instead of h, giving q(tn +�t). From these coordinates, gsky(tn

+ �t) is computed between the two bodies, and refined using

δ�t = −gsky

(
dgsky

dtijk

)−1

, � (50)

where

dgsky

dtijk

= xij

(
dvx,i

d�t
− dvx,j

d�t

)
+ yij

(
dvy,i

d�t
− dvy,j

d�t

)

+ vx,ij

(
dxi

d�t
− dxj

d�t

)
+ vy,ij

(
dyi

d�t
− dyj

d�t

)
, � (51)

and xij = xi − xj, etc. and the time derivatives with respect to �t
are computed with equation (47). Note that in practice since the
integration time-step, h, is fixed, for the transit time derivatives δtijk =
δ(�t).

Once a transit time is found, how does it vary with the initial
conditions? We focus on the initial conditions just before transit at
time tn, qn = q(tn). If qn is perturbed slightly, then the time of transit
will change, but the new time of transit must still satisfy gsky, ij(tijk +
δ�t) = 0, where the new time of transit is at tn + �t + δ(�t). So,

∂gsky

∂qn

δ(qn) + dgsky

dt
δ(�t) = 0, (52)

where we have dropped the i, j, k subscripts from t in this equation.
Thus, the gradient of each transit time with respect to the state,

qn = q(tn), at the beginning of the nth time-step just preceding the

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L13-L14
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/transits/timing.jl#L139-L144
http://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/transits/timing.jl#L83
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/transits/timing.jl#L20
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/transits/timing.jl#L62
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/transits/timing.jl#L146-L149

1592 E. Agol, D. M. Hernandez, and Z. Langford

transit is given by

d(�t)

dqn

= −
(

dgsky

dtijk

)−1 [(
∂xi

∂qn

− ∂xj

∂qn

)
(vx,i − vx,j)

+
(

∂vx,i

∂qn

− ∂vx,j

∂qn

)
(xi − xj)

+
(

∂yi

∂qn

− ∂yj

∂qn

)
(vy,i − vy,j)

+
(

∂vy,i

∂qn

− ∂vy,j

∂qn

)
(yi − yj)

]
, � (53)

where the gradients are computed over the partial time-step, so that,
for example, ∂xj

∂qn
is the component of JAHL21(�t) associated with

the x-component of body j. Note again that the transit time is tijk =
t0 + nh + �t, but since h and t0 are fixed, dtijk/dqn = d�t/dqn.

In addition to the transit time, tijk, it is also useful to compute the
sky velocity, vsky, ijk, and the impact parameter squared, b2

sky,ijk , at the
time of transit. These can be used to compute transit light curves, as
well as measure the variation of the impact parameter and duration
as a function of time as additional dynamical constraints on a system.
These two quantities are given by

vsky,ijk(qn, tijk) =
√

(vx,i − vx,j)2 + (vy,i − vy,j)2, � (54)

b2
sky,ijk(qn, tijk) = (xi − xj)2 + (yi − yj)2, � (55)

where there is a direct dependence upon qn which is propagated to
the time of transit within the time-step, �t, and there is an indirect
dependence upon qn through the fact that these are evaluated at the
time of transit, tijk(qn).

Taking the derivative of these with respect to qn gives

dvsky,ijk

dqn

= ∂vsky,ijk

∂qn

+ dvsky,ijk

d�t

∂�t

∂qn

, � (56)

∂vsky,ijk

∂qn

= v−1
sky,ijk

[
(vx,i − vx,j)

(
∂vx,i

∂qn

− ∂vx,j

∂qn

)

+ (vy,i − vy,j)

(
∂vy,i

∂qn

− ∂vy,j

∂qn

)]
, � (57)

dvsky,ijk

d�t
= v−1

sky,ijk

[
(vx,i − vx,j)

(
dvx,i

d�t
− dvx,j

d�t

)

+ (vy,i − vy,j)

(
dvy,i

d�t
− dvy,j

d�t

)]
, � (58)

db2
sky,ijk

dqn

= 2

[
(xi − xj)

(
∂xi

∂qn

− ∂xj

∂qn

)

+ (yi − yj)

(
∂yi

∂qn

− ∂yj

∂qn

)]
.� (59)

Note that we compute b2
sky rather than bsky to avoid the problem that

when the orbits are edge-on, the impact parameter is zero at mid-
transit, causing the derivative of bsky to be divided by bsky = 0, which
results in a NaN.

This completes the computation of all of the Jacobians needed to
propagate the derivatives of the transit times, and sky velocity/impact
parameter, through to the initial conditions, which we describe next.

4.12 Jacobians of positions, velocities, transit times

With the Jacobians computed at each of the steps, we can recursively
compute the Jacobian at step n with t = t0 + nh as

Jn = JAHL21(h) Jn−1. (60)

Starting with the initial state q0 = q(t0) and initial Jacobian J0 =
∂q0
∂q0

= I (the identity matrix), we iteratively compute the Jacobian at
step n with respect to the state at initial time, t0 (n = 0), giving the
Jacobian transformation from q0 to qn,

Jn = ∂qn

∂q0
. (61)

Then, the gradient of the transit times is given by

d�t

dq(t0)
= d�t

dq(tn)
Jn. (62)

We save this gradient for each transit time in an array that is pre-
allocated when calling the routine.

In our implementation, we do not compute JAHL21(h) for each
step, directly; instead, we iteratively multiply the current Jacobian
by the Jacobian for each sub-step.

This completes the description of the algorithm and its derivatives.
We now turn to the implementation and testing of the code.

5 IMPLEMENTATI ON AND TESTI NG

We have developed NbodyGradient.jl5 in the JULIA language
for carrying out the foregoing computations. This involves the
initialization of the algorithm, the N-body integration, the finding of
transit times, and the Jacobian propagation. Given the complicated
nature of the calculations, we have written unit tests for each of the
steps in the algorithm; these were critical in developing the code
for computing the derivatives, and helped to pinpoint inaccuracies in
the DH17 algorithm which led to developing the AHL21 algorithm.
We have also created tests of the code as a whole, and carried out
comparisons with other codes for both speed and accuracy, which
are summarized here.

In this section, we describe some aspects of the implementation of
the code (Section 5.1) and the tests we have carried out. We test the
N-body algorithm for accuracy by varying the step size and checking
for conservation of energy and angular momentum (Section 5.2),
while we check the transit-time algorithm for accuracy by measuring
the variation in transit times with step size (Section 5.4). We compare
the N-body integrator with a C implementation to check for speed
(Section 5.3). We check the numerical precision of the code by
carrying out comparisons with extended precision (Section 5.5), and
we check the accuracy of the derivatives by comparing with finite-
differences carried out in extended precision (Section 5.5). Most of
our tests are carried out with integrations of the outer Solar system
and of the TRAPPIST-1 system.

We start by describing the implementation of the algorithm in
JULIA.

5.1 JULIA implementation

We chose the JULIA language to develop this code (Bezanson et al.
2017), given its several advantages. The high-level, interactive
(REPL) capability can make debugging code more straightforward.
The just-in-time compiler can make the code execution competitive
with compiled C, if attention is paid to memory allocation and type
stability. An advantage of JULIA for testing code accuracy is that
different numerical types can easily be changed which allows for
straightforward computation at different precisions. JULIA also uses
multiple dispatch that allows us to automatically select versions

5http://github.com/ericagol/NbodyGradient.jl

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/transits/timing.jl#L168-L169
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/transits/timing.jl#L152
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/transits/timing.jl#L151
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/transits/timing.jl#L185
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/transits/timing.jl#L185
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/transits/timing.jl#L178
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/transits/timing.jl#L187
http://github.com/ericagol/NbodyGradient.jl

Derivatives of TTVs 1593

of functions that match in precision, and gives us control over
computing gradients, transit times, and other outputs. Finally, JULIA

is open-source, and thus amenable to distribution and usage amongst
scientists.

We have optimized the code keeping in mind several unique
aspects of JULIA. Memory allocation and garbage collection were
minimized by defining arrays at higher levels that were then passed
to subroutine functions to avoid repeated allocation of large arrays.
Matrix multiplication can be sped up by utilizing the BLAS linear
algebra routines (Blackford et al. 2002), specifically gemmv, which
gave significant reduction in run-time for the multiplication of Jaco-
bians at each step. For multiplication of the JDK/KD,ij Jacobian, we
found more efficiency by copying the portion of Jn (times the prior
substeps) relevant to bodies i and j to a new 14 × 7N matrix, then using
the BLAS routine to carry out the multiplication, and then copying
the result back into Jn. For loops in which we access elements
of arrays successively, we try to step through elements which are
adjacent in memory, and we also avoid index-checking to save time.
Finally, we try to avoid changing the types of variables, and we define
the types up front to make this explicit. Thanks to these details, we
find a favourable run-time comparison with C (Section 5.3).

Another aspect of our implementation is that the code is simple
to use and extendable. Here is an example of running the integrator
and computing transit times interactively from the JULIA prompt
(REPL), or from within a Jupyter or Pluto notebook6 (a slightly
modified version of the script used in the comparisons with other
codes in Section 6):

using NbodyGradient

Set up initial conditions from file of or-
bital elements
(Initial time, # of bodies, orbital ele-
ments file)
ic = ElementsIC(0.0, 8, "elements.txt")
Time-step. Period of planet b / 100
h = ic.elements[2,2]/100
Set up integrator (time-
step, initial time, elapsed time)
intr = Integrator(h, 0.0, 4533.0)
Compute and store initial Cartesian coordinates
s = State(ic)
Allocate arrays for transit times and deriva-
tives
tt = TransitTiming(intr.tmax, ic)
Run integration & compute tran-
sit times w/ derivatives.
intr(s, tt)

Here, the initial conditions are specified by a file containing rows of
orbital elements, elements.txt.7 An integration is triggered by

6Further details on running the code can be found in the documentation at
http://github.com/ericagol/NbodyGradient.jl.
7We leave discussion of initial conditions to future work, but for sake of
completeness the elements file is set up as follows. Each row is given by
the mass, period, time of initial transit, eccentricity vector components,
Inclination, and Long. of Ascending Node for each body. The columns are
delimited by a comma (’,’). The eccentricity vector is defined by (ecos(�),
esin(�)) where e is the eccentricity and � is the long. of periastron. The
orbital elements are given in Jacobi coordinates which are converted to
Cartesian coordinates to start the integration.

passing aState type (s in the example) to anIntegrator (intr
in the example), along with any ‘output’ type (tt in the example):
intr(s,tt). The State holds the Cartesian coordinates and
Jacobian which are updated at each step. Passing the output structure
tt of type TransitTiming tells the integrator to compute transit
times of the system and store the results in the tt structure. The
transit times can be accessed within the structure as tt.tt, which
is a two dimensional array of size N by Ntt, which holds the transit
times for each planet, each of which have a count in the vector
tt.count with a maximum allowed value of Ntt. The derivatives
with respect to the initial Cartesian coordinates and masses are stored
as tt.dtdq0which is a 4-dimensional array with the same first two
dimensions as tt.tt, and the last two dimensions of sizes 7 and
N which hold the derivatives with respect to x, v, and m for each
body (q0). By utilizing multiple dispatch, adding functionality to the
code consists of simply making a new Integrator method and a
structure to hold the output.

Next, we describe the accuracy of the N-body algorithm by
checking conservation of energy and angular momentum.

5.2 Energy and angular momentum conservation

To test the accuracy of the algorithm, we have carried out integrations
of the outer Solar system. We start with positions, velocities, and
masses given in Hairer et al. (2006), only including the giant planets
(Jupiter, Saturn, Uranus, and Neptune). The mass of the Sun is added
to the sum of the masses of the terrestrial planets for a fifth inner body.

We compute the total energy and angular momentum of the system
as a function of time. We measured the RMS value for the energy
and all three components of the total angular momentum, and varied
the time-steps by factors of 2. We expect the energy precision to
scale with time-step to the fourth power, ∝h4. Fig. 3 shows that this
scaling holds over a range of two orders of magnitude in the time-
step. We used time-steps from 1.5625 to 200 d, and the RMS energy
and angular momentum was measured over ≈106 time-steps in each
case. The upper end of the time-steps was set by the requirement that
the time-step be smaller than 1/20 of the shortest orbital period, in
this case Jupiter. At the lower end of this range (1.5625 and 3.125 d)
we see a deviation from the h4 scaling thanks to the limit of double-
precision representation of the energy. This occurs at approximately
2−52 = 2.2 × 10−16 of the absolute error value of each conserved
quantity, which is plotted as dotted lines in each panel in Fig. 2
(the energy is ≈−3 × 10−8 M� au2 d−2, while the total angular
momentum is ≈6 × 10−5 M� au2 d−1). The three components of
angular momentum show a better conservation precision that is close
to double precision for all values of the time-step. Numerical errors
accumulate with time-step, and the expectation is that these scale as
≈ εerrh

1/2t1/2 = εerrhN
1/2
S , where NS is the number of time-steps and

εerr is a random numerical error (Hairer, McLachlan & Razakarivony
2008). This is also borne out in Fig. 3 that shows a scaling of the
error with time-step h (NS is held fixed in these integrations).

Our conclusion is that the numerical integration is behaving as
expected: energy is conserved with an accuracy ∝h4 above the
double-precision limit, and angular momentum is conserved close
to double precision, but grows according to Brouwer’s law. Note that
the RMS relative error (defined as �E/E0, with E0 the initial energy,
and �E the change in this energy) measures an oscillation that can
be orders of magnitude larger than the mean relative error over time.

Given this evidence of accurate behaviour of the N-body algo-
rithm, we next ask: how does the N-body implementation fare in
computation time?

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

http://github.com/ericagol/NbodyGradient.jl

1594 E. Agol, D. M. Hernandez, and Z. Langford

Figure 3. (Top) Conservation of energy. Standard deviation of energy versus
step size (the blue dots). The orange line shows h4 scaling. The green-
dotted line shows double-precision limit. (Bottom) Angular momentum
conservation. The standard deviation of each component is plotted versus step
size. The dotted lines shows the double-precision limit for angular momentum
(Ly is zero, so this is not shown). The black-dashed curve shows that angular
momentum error scales ∝ h according to Brouwer’s law.

5.3 Comparing with C implementation

To check that we have optimized the computational speed of the
N-body integrator, we carried out a comparison of the JULIA version
of our code with a C implementation without derivatives (Hernandez
2016). First, we compared the Kepler solver (Wisdom & Hernandez
2015) and found that our JULIA implementation matches the C
version. Both versions take 0.15μs per Kepler step for a bound
orbit with e = 0.5.8 Note that in this comparison we used a version
of the Kepler step which is not combined with a backward drift.

Next, we carried out an integration of the outer Solar system
(with five bodies, as described in the prior section) with the C
implementation. We found that the C implementation runs at the
same speed as our JULIA implementation of AHL21. With 50-d
time-steps, both versions take about 4.7μs per time-step.9 In this
comparison, we use the same convergence criterion for the Kepler
solver; when we include the fourth-order corrector in AHL21
it increases the run time by ≈ 10 per cent for the outer Solar

8These comparisons were made on a Macbook with a 2.8 GHz Intel Core i7
processor with JULIA v1.6. The C code was compiled with cc -O3.
9See footnote 8.

system problem. Thus, we conclude that the speed of the JULIA

implementation is comparable to compiled C.
When using the convergence that a fractional tolerance of 10−8

is reached for the solution to Kepler’s equation – we find a bias in
the long-term energy conservation that causes it to drift with time. If
instead we use the convergence criterion that the eccentric-anomaly,
γ , remains unchanged relative to one of the prior two iterations of
Newton’s solver – then we find that this bias is significantly reduced.
This adds iterations to the Kepler-solver, typically 1-2, and thus
causes the code to take about 10 per cent longer to run, but with the
trade-off of better energy conservation. Thus, using the fourth-order
corrector and this criterion adds about 20 per cent to the overall run-
time, amounting to 5.7μs per time-step compared with the example
above.

Now that we have verified the speed and accuracy of the N-body
algorithm, we next examine the accuracy and precision of the transit
times as a function of step size.

5.4 Transit-timing accuracy

Since the numerical accuracy of the integration depends upon the
step size parameter, h, as the AHL21 integrator is fourth order in
h (Fig. 3), we also expect that the accuracy of transit times should
scale with h4. Further precision could be obtained if we were to use
a corrector at the start of the integration; however, such a corrector
is left for future work.

Fig. 4 shows the change in the transit times with stepsize for a
simulation of TRAPPIST-1 b and c over 400 d. Compared with the
times computed with a very small step-size, the transit times drift
with time. This behaviour is expected due to the difference between
the symplectic Hamiltonian and the full Hamiltonian that contains
high-frequency terms that cause the coordinates of the symplectic
integrator to be offset from the real coordinates. This offset causes
the longitudes to drift with time, and due to the slight difference in
orbital frequency, the drift grows linearly as shown in Fig. 4. Since the
AHL21 algorithm has order h4, these offsets decrease with step-size
as h4 (Fig. 4), and so at small stepsize the symplectic integrator better
approximates the real system. In practice, these coordinate offsets
are not expected to be important for transit-timing analyses as they
will lead to very small differences between the inferred parameters
and real parameters, even for large h. We recommend that the user
determine which step size is appropriate by checking the difference
in transit times as a function of step size.

For the purposes of TTVs, we are primarily interested in the
precision of the non-linear portion of the transit times versus epoch.
So, to assess the TTV precision, we subtract a linear fit from the
difference between an integration with large h with an integration
with small h, and then compute the RMS of the residuals. We expect
the RMS to scale as h4, and Fig. 4 indeed shows that this is the
case for large step size for a system with two planets of periods
1.5 and 2.4 d, masses 3 × 10−5 of the star, low eccentricity, and
integrated over 400 d (this approximates the inner two planets of
the TRAPPIST-1 system). In both cases the TTV precision reaches
a value that is ≈10−14 of each planet’s orbital period. We also
find that this precision scales in proportion to the ratio of the
masses of the planets to the star, as expected (see discussion under
equation 2).

Having demonstrated that the accuracy of the transit times scales as
expected, we next examine the numerical precision of the computed
times, as well as their derivatives.

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

Derivatives of TTVs 1595

Figure 4. (Top) Variation in the transit times with step size. The absolute
value of the difference in times between the indicated step size and a step
size of h/128 is plotted for the inner two planets of TRAPPIST-1 (solid and
dashed, respectively) simulated over 400 d with a nominal step size of h =
0.06 d. The dotted curve shows a linear scaling, while the arrow indicates
a 1/24 decrease in timing difference when the step-size is halved. (Bottom)
RMS precision of TTVs for the TRAPPIST-1 b/c two-planet system with six
stepsizes, compared with an integration which is 1/2 of the shortest stepsize,
after removing a linear fit from the difference to isolate the comparison to
the transit-timing variations. For both planets the TTV errors scale as h4 until
double-precision is reached at ≈10−9 s.

5.5 Precision of transit times and their derivatives

Given a fixed step size for the algorithm, we next ask the question:
how numerically precise are the transit times computed for that step
size? And, how precise are the derivatives computed as a function
of the initial conditions? These questions involve the control of
truncation and round-off errors in the algorithm, which motivated
the development of the AHL21 algorithm.

We check the numerical precision of the algorithm by comparing
the transit times and their derivatives computed at both double preci-
sion and extended precision (using the double-precision Float64
type with 64 bits, and the extended-precision BigFloat type with
256 bits in JULIA). Fig. 5 shows the difference in the times of transit in
the TRAPPIST-1 b and c case computed in double-precision relative
to BigFloat precision. We find that the computational errors grow
at a rate that is bounded by ≈ 2−52hN

3/2
S , where NS is the number

of elapsed time-steps (Fig. 5), as expected for phase-errors based on

Figure 5. (Top) Fractional numerical error of transit times computed over
40 000 d for TRAPPIST-1 b and c computed from double and BigFloat
integrations. The error is plotted relative to the time step, h. (Bottom)
Fractional numerical error on the transit time derivatives with respect to the
initial Cartesian coordinates and masses. The green-dotted lines in both panels
scale as 2−52N

3/2
S , where NS is the number of time-steps. The maximum

absolute derivative differences have been taken over 20 steps, and divided by
the maximum absolute derivatives to give the fractional differences.

Brouwer’s Law (Brouwer 1937). The computation was carried out
for 400,000 d for an inner orbital period of 1.5 d, for a total of ≈107

time-steps.
Next, we carry out tests of the numerical precision of the Jacobians

at each substep in the calculation, as well as for the entire integration
interval, and for the transit time derivatives. We do this in two
ways: (1) by computing finite-difference derivatives in extended
precision and (2) by comparing the derivatives in double precision
with derivatives computed with extended precision arithmetic. The
finite-difference test checks that the formulas derived in Section 4
are valid, while the extended precision test checks that the numerical
implementation is precise.

To compute the finite-difference derivatives, we carry out inte-
grations for each parameter using BigFloat, and compute a finite
difference approximation of the partial derivative with parameters
perturbed just above and below the nominal value:

∂t

∂qi,j

≈ �t

�qi,j

= t(qi,j (1 + εdiff)) − t(qi,j (1 − εdiff))

2εdiffqi,j

, (63)

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

1596 E. Agol, D. M. Hernandez, and Z. Langford

where t(qi, j) indicates the transit time evaluated at initial conditions
q0 with the i, jth initial condition given by qi, j. Typically we use εdiff =
10−18, and we find that the finite-difference derivative is insensitive
to this value when rounded back to double-precision. We used these
finite differences in writing and debugging each substep of the code,
and we have created a suite of tests which can be used when further
modifying or developing the code. We found that the finite difference
derivatives agree with the derivatives computed from propagating
the Jacobian, at a level close to the double-precision limit, which
validates our implementation of the algorithm based on the formulae
in Section 4.

Next, we estimate the fractional numerical errors on the derivatives
of the transit times with respect to the initial conditions and masses
propagated through the numerical integration (Fig. 5, bottom panel)
by comparing the derivatives computed at double precision with
those computed at extended precision. We find that these double-
precision numerical errors also shows a growth that is bounded by
2−52N

3/2
S , according to Brouwer’s Law. In this case, we filtered the

derivatives before computing the fractional error taking the maximum
absolute value of each derivative over 20 transit times normalized by
the maximum absolute derivative over the same 20 times to avoid
the case in which the values of the derivatives approach zero. We
did not find that the Brouwer’s law limit applied to be the DH17
algorithm – the errors significantly exceeded the Brouwer’s law limit
for long integrations – that motivated the development of the AHL21
algorithm. We did not carry out longer integrations due to the high
computational expense for BigFloat precision.

We conclude that based on these tests the code is performing as
expected: the N-body code is fast and as accurate as the algorithm
allows; the transit times are precise; the derivative formulae are
correct; and the derivatives are precise. With these validations of
the code completed, we now turn to compare our code with other
publicly available N-body and transit-timing codes.

6 C O M PA R I S O N W I T H OTH E R C O D E S

In this section, we compare with two existing open-source N-
body integrators that have been used for transit-timing and N-body
integration: TTVFast and REBOUND. Although other codes are
available, such as SYSTEMIC (Meschiari & Laughlin 2010) and
TRADES (Borsato et al. 2014), as well as numerous proprietary codes
for modelling transit timing, TTVFast and REBOUND are both
widely used and open source. These comparisons provide further
validation of the accuracy of our code, as well as timing benchmarks
of the relative speeds.

6.1 Comparison of transit times with TTVFast and REBOUND

The TTVFast approach uses a WH integrator (Wisdom & Holman
1991) with a central dominant body, appropriate for planetary
systems orbiting a single star (or planets orbiting a single star
in a wide binary). A third-order corrector is used at the start of
each simulation to transform from real coordinates to symplectic
coordiates. Two versions of TTVFast have been developed in
FORTRAN and C; here we describe comparisons with the latter.10

The initial conditions may be specified in either Jacobi or heliocentric
orbital elements, or heliocentric Cartesian coordinates. We use the
initial Cartesian coordinates from NbodyGradient transformed
to heliocentric coordinates, and then rotated by 180◦ about the y-axis

10https://github.com/kdeck/TTVFast

so that the observer is located along the + z-axis, the convention
adopted in TTVFast.

The TTVFast algorithm uses an approximate method to find
times of transit. When a transit time is found to occur for one of
the planets between two time-steps, then two Keplerian integrations
between the planet and star are integrated forwards and backwards
from the prior and subsequent time-steps, and weighted to approxi-
mate the position of the planet relative to the star. Newton’s method
is then used to find the time of transit in the same manner described
above (Section 4.11).

We have made a comparison of the transit times fromNbodyGra-
dientwithTTVFast using the best-fitting initial conditions for the
seven-planet TRAPPIST-1 system (Agol et al. 2021). For this com-
parison, we use a time-step for TTVFast which is 0.05 per cent11

of the orbital period of planet b (Fig. 6) to reduce the difference
between the symplectic and real coordinates (we use a larger step
of 0.1 per cent for NbodyGradient as this integrator is higher
precision). We find that over a time-scale of ∼4532 d (an estimate
of the total time between initial and final TRAPPIST-1 observations
over the lifetime of JWST), the difference between TTVFast and
NbodyGradient is better than a few milliseconds for all seven
planets, with better agreement for the inner planets than for the
outer. This agreement is quite good, and we attribute the remaining
differences, which grow with time, as being due to differences
between the initial mapping and real coordinates which cause phase
errors to grow with time.

Although REBOUND is not primarily designed for transit-timing,
there is a PYTHON notebook in the REBOUND repository that gives
an example of transit-time computation.12 We used the same initial
Cartesian coordinates as the NbodyGradient computation for
TRAPPIST-1, and computed the transit times with a tolerance of
10−12 d forREBOUND. We transform z→-x, x→y, and y→-z to allow
for the fact that the REBOUND computation places the observer along
the x-axis rather than along the -z-axis (as assumed in NbodyGradi-
ent, Fig. 2). Fig. 6 shows that over 4000 d for TRAPPIST-1, the times
agree between NbodyGradient and REBOUND at the <4μs level.
This was computed with a time-step of 0.0015 d for NbodyGradient,
about 1/1000 of the orbital period of the inner planet, TRAPPIST-1b,
to reduce the difference between the symplectic and real coordinates.

Unfortunately, TTVFast does not include derivatives, which was
part of the motivation for developing the NbodyGradient code.
However, given that the transit times compare well, and that we have
compared the NbodyGradient derivatives with finite-differences
computed at high precision (Section 5.5), this gives us confidence
that the NbodyGradient derivatives are also being computed
accurately. We have made scripts available for reproducing this
comparison in the NbodyGradient repository.

Next, we compare the run-time of NbodyGradient with RE-
BOUND, with and without gradients.

6.2 Run-time comparison with REBOUND

The REBOUND integrator IAS15 (Rein & Tamayo 2015) allows for
the computation of the variational equations, and may be used to

11We also had to modifyTTVFast to avoid accumulation of numerical errors
that occur for such a small time-step. Rather than adding the time-step to the
elapsed time every time-step, we multiply the current number of steps by the
time-step to obtain the elapsed time.
12See https://rebound.readthedocs.io/en/latest/ipython examples/TransitTim
ingVariations for a description.

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

https://github.com/kdeck/TTVFast
https://rebound.readthedocs.io/en/latest/ipython_examples/TransitTimingVariations.html

Derivatives of TTVs 1597

Figure 6. Transit-timing comparison for TRAPPIST-1. (Left) TTVs from NbodyGradient (in colour), and TTVFast and REBOUND (the black dots) for
the seven TRAPPIST-1 planets over 4000 d. (Right) Timing differences in seconds between NbodyGradient and TTVFast (top) and REBOUND (bottom);
the colours are same as in left-hand panel. Note that the panel in the upper right has a range that has been expanded by 6 × 106 relative to the left-hand panels,
while the lower right-hand panel is expanded by a factor of 1.2 × 1010.

Figure 7. Computational time of the NbodyGradient code without
(blue), with fast kicks for planet pairs (green), and with transit-time com-
putation (magenta) versus REBOUND IAS15 (red), with (solid) and without
(dashed) computation of the gradient. We also compare with the REBOUND
WHFast algorithm (magenta), both with gradients (solid) and without
(dashed).

model systems with close encounters and an arbitrary architecture.13

Fig. 7 compares the REBOUND IAS15 integrator computational speed
with our code. We spaced planets by a ratio of semimajor axis of
1.8, and with initial orbital angles separated by 1.4 radians. For the
AHL21 integration, we use a step size that is 1/20 of the orbital

13https://github.com/hannorein/rebound

period of the inner planet and we integrate for 800 orbits of the
inner planet. We ran both codes with a range of planets from one to
ten, and we turned off the transit finding to make a fair comparison.
We tried two different versions of the AHL21 integrator: with fast
kicks for pairs of planets, and with fast kicks turned off. When the
fast kicks are used for planet pairs, we find that the AHL21 code
compares well to REBOUND IAS15 algorithm when no gradients are
computed, either slightly faster or comparable in wall clock time for
1–10 planets (red and blue dashed lines in Fig. 7). However, when
the gradient is computed, our code takes a computational time that
is ≈4 − 5 times faster than REBOUND IAS15 for a large number of
planets when fast kicks are turned off. If the fast-kicks are used for
planet pairs, then NbodyGradient is an order of magnitude faster
than the IAS15 integrator in REBOUND. Note that both REBOUND
gradients and NbodyGradient assume the Newtonian equations
of motion when computing gradients.

We also compare with the WHFast algorithm in REBOUND. This
algorithm is also symplectic, but requires a central dominant mass.
The WHFast algorithm is by far the speediest of the three: both with
and without gradients it is about an order of magnitude faster than
either AHL21 or IAS15. However, as it is a second-order algorithm,
it may require the use of a corrector, and/or shorter step-sizes, to
obtain similar precision as the AHL21 algorithm which is fourth
order; this may come with extra computational cost, depending
on the particular application. From a theoretical standpoint, if the
Kepler solver function calls dominate the compute time, WHFast
should only be twice as fast as AHL21 with kicks between planets
in NbodyGradient (green-dashed curve). Since we have not
achieved this, it may indicate we have not yet properly optimized
our code. JULIA, NbodyGradient’s language, is believed to be
able to achieve speeds comparable to C++, WHFast’s language.
We plan to continue to optimize NbodyGradient.

Our primary goal in developing this N-body code is for modelling
observational data for which the uncertainties are typically domi-
nated by measurement errors rather than model accuracy. Hence, we

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

https://github.com/hannorein/rebound

1598 E. Agol, D. M. Hernandez, and Z. Langford

are willing to exchange some accuracy for computational speed by
using a symplectic integrator with a large time-step. Thus, AHL21
may provide a useful compromise between IAS15 and WHFast. Note
that the integrator is still precise, but the symplectic Hamiltonian only
approximates the real Hamiltonian, and we have not been able to de-
rive a corrector to transform between symplectic and real coordinates;
see the discussion in Deck et al. (2014) and references therein.

In sum, the AHL21 algorithm in NbodyGradient may gain
some computation time for general N-body problems with the trade-
off of interpreting the initial conditions as symplectic coordinates,
not real coordinates. In addition, currently REBOUND (either IAS15
or WHFast) does not yet implement the gradients of the transit times
with respect to the initial conditions, which NbodyGradient was
designed to compute from the start.

7 SU M M A RY A N D C O N C L U S I O N S

The original goal of our development of this paper and code was
to make possible the analytic computation of the derivatives of the
times of transit with respect to the initial conditions; this is the first
time this has been done in an N-body code to our knowledge. We
have accomplished this with a fast and robust code written in the
JULIA language. JULIA has the advantage of matching compiled C
speeds if it is written in an optimum manner, which our benchmarks
indicate we have achieved. Yet it allows for interactive usage and
high-level coding that makes building and debugging the code
more straightforward. In addition, JULIA easily allows changing
of the variable types, so that higher precision computations are
available simply by calling the N-body functions with coordinates
and masses initialized with high-precision variables; the functions
will be automatically recompiled at the first time being called with
different numeric types.

We have also developed this code with generality in mind; in
particular, we would like to eventually apply it to hierarchical systems
such as circumbinary planets or planets hosting moons, which is
why we have based the symplectic splitting on the DH17 algorithm
that does not assume a dominant body (or bodies). In addition, the
popular WH method assumes the perturbed approximation holds,
which implies the method breaks down during close encounters.
The explanation, using error analysis, is that WH has two-body
error terms. However, when DH17 is used without kicks, it only has
three-body terms which blow up during strong three-body encounters
(Dehnen & Hernandez 2017). So our code can better handle close
two-body encounters, as was shown by Dehnen & Hernandez (2017),
who used it to simulate a stellar cluster.

However, a drawback of the DH17 algorithm we found was the
lack of precision caused by cancellations between the backward drifts
and forward Kepler steps. We have fixed this problem by carrying
out analytic cancellation of these expressions with modified versions
of Gauss’s f and g functions. This fix creates an algorithm that is
both numerically stable and precise: energy and angular momentum
are conserved well for long integrations. The algorithm is accurate to
fourth order in time-step, but even for large time-steps it will integrate
the non-Keplerian perturbations between the bodies with sufficient
accuracy for observational data (and the time-step can be decreased
until the desired precision is reached; this happens rapidly thanks to
the fourth-order scaling of the algorithm with time-step). This accu-
racy is higher order than the WH symplectic integrator or its versions
with symplectic correctors, which have error terms scaling as h2. As
with any symplectic integrator, the integration coordinates are offset
slightly from the real coordinates (Wisdom, Holman & Touma 1996),
which causes a long-term phase shift. However, this shift is small,
even for large time-steps, and should not affect the interpretation of

the state of multibody dynamical systems. In practice it results in a
slight offset of the initial coordinates which is caused by introducing
high-frequency terms in the physical Hamiltonian.

In order to compute the derivatives of the transit times with respect
to the initial conditions, we have propagated the Jacobian of the N-
body positions and velocities with respect to the initial conditions
and masses throughout each time-step of the N-body integration.
We have alleviated numerical cancellations in this expansion, and
used series expansions for special functions when cancellation of the
leading orders occurs. This has given an algorithm that yields precise
derivatives and that appears to adhere to Brouwer’s law for up to 107

time-steps for the problem we tested. We also find that it compares
favourably in run time to the variational equations integrated by
IAS15 (Rein & Tamayo 2016), with a factor of 4-10 speed-up for
long time-steps in the comparison we tested.

We have found that the derivatives make possible the optimization
of the masses of planets in the TRAPPIST-1 planetary system, and the
results compare well with an analysis with the GENGA code (Grimm &
Stadel 2014), as reported in Agol et al. (2021). In particular, we were
able to use the derivatives to efficiently find the maximum likelihood
and to compute the Hessian at the maximum likelihood. We have
also used it to find the likelihood profile as a function of the masses
of the planets and orbital parameters, as well as to run a Hamiltonian
Markov Chain Monte Carlo computation in 35 dimensions to derive
the posterior distribution for the system parameters, which agree
well with a complementary analysis based on the code described
in Grimm et al. (2018). Finally, the derivatives enabled an efficient
search for an eighth planet, which required optimization over 40 free
parameters; no strong evidence for an eighth planet turned up in this
search (Agol et al. 2021).

These analyses depend on initial conditions which were specified
in terms of orbital elements, which we plan to describe in subsequent
work. We are also continuing to develop the output options, API, and
documentation, and we welcome community contributions to the
code repository.14

There are some limitations to our work. Due to its symplectic
nature, our code does not allow for non-conservative effects to be
included, such as tidal forces, drag, or general relativity. However,
these could be added in future work through the machinery described
by Tamayo et al. (2020). We assume that the masses of the bodies are
constant. We do not compute second- or third-order derivatives, as
has been implemented by Rein & Tamayo (2016). Even so, we expect
this code to find application in a wide range of dynamical problems
related to observation of exoplanetary systems and beyond.

AC K N OW L E D G E M E N T S

EA acknowledges support from the Guggenheim Foundation, from
NSF grant AST-1615315, and from the NASA Astrobiology Insti-
tute’s Virtual Planetary Laboratory Lead Team, funded through the
NASA Astrobiology Institute under solicitation NNH12ZDA002C
and Cooperative Agreement Number NNA13AA93A. ZL acknowl-
edges support from the Washington NASA Space Grant Consortium
Summer Undergraduate Research Program. We thank Mosé Gior-
dano for advice on optimizing JULIA code, and we thank Hanno
Rein, Dan Tamayo, and the anonymous referee for comments on the
submitted version that greatly improved the paper.

14http://github.com/ericagol/NbodyGradient.jl

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

http://github.com/ericagol/NbodyGradient.jl

Derivatives of TTVs 1599

DATA AVAILABILITY

No new data were generated or analysed in support of this research.
Simulated data that were used for making the figures will be made
available in a github repository.

REFERENCES

Agol E., Deck K., 2016, ApJ, 818, 177
Agol E., Fabrycky D. C., 2017, in Deeg H. J., Belmonte J. A., eds, Handbook

of Exoplanets. Springer International Publishing, Cham, p. 1
Agol E., Steffen J., Sari R., Clarkson W., 2005, MNRAS, 359, 567
Agol E. et al., 2021, Planet. Sci. J., 2, 1
Bezanson J., Edelman A., Karpinski S., Shah V. B., 2017, SIAM Rev., 59,

65
Blackford L. S. et al., 2002, ACM Trans. Math. Softw., 28, 135
Borsato L., Marzari F., Nascimbeni V., Piotto G., Granata V., Bedin L. R.,

Malavolta L., 2014, A&A, 571, A38
Borsato L. et al., 2019, MNRAS, 484, 3233
Brouwer D., 1937, AJ, 46, 149
Carter J. A. et al., 2011, Science, 331, 562
Channell P., Scovel J., 1991, Phys. D, 50, 80
Deck K. M., Agol E., 2015, ApJ, 802, 116
Deck K. M., Agol E., 2016, ApJ, 821, 96
Deck K. M., Agol E., Holman M. J., Nesvorný D., 2014, ApJ, 787, 132
Dehnen W., Hernandez D. M., 2017, MNRAS, 465, 1201
Doyle L. R. et al., 2011, Science, 333, 1602
Fabrycky D. C., 2010, in Seager S., ed., Exoplanets. University of Arizona

Press, Tucson, AZ, p. 217
Freudenthal J. et al., 2018, A&A, 618, A41
Girolami M., Calderhead B., 2011, J. R. Stat. Soc. B, 73, 123
Gonçalves Ferrari G., Boekholt T., Portegies Zwart S. F., 2014, MNRAS,

440, 719
Grimm S. L., Stadel J. G., 2014, ApJ, 796, 23
Grimm S. L. et al., 2018, A&A, 613, A68
Hadden S., Lithwick Y., 2016, ApJ, 828, 44
Hadden S., Lithwick Y., 2017, AJ, 154, 5
Hairer E., Lubich C., Wanner G., 2006, Geometric numerical integration:

structure-preserving algorithms for ordinary differential equations in
Springer Series in Computational Mathematics, Vol. 31. Springer Sci-
ence & Business Media, Berlin

Hairer E., McLachlan R. I., Razakarivony A., 2008, BIT Numer. Math., 48,
231

Hamers A. S., Portegies Zwart S. F., 2016, MNRAS, 459, 2827
Hernandez D. M., 2016, MNRAS, 458, 4285
Hernandez D. M., Bertschinger E., 2015, MNRAS, 452, 1934
Hernandez D. M., Bertschinger E., 2018, MNRAS, 475, 5570
Hernandez D. M., Dehnen W., 2017, MNRAS, 468, 2614
Holman M. J., Murray N. W., 2005, Science, 307, 1288
Holman M. J. et al., 2010, Science, 330, 51
Jontof-Hutter D., 2019, Annu. Rev. Earth Planet. Sci., 47, 141
Jontof-Hutter D. et al., 2016, ApJ, 820, 39
Kahan W., 1965, Commun. ACM, 8, 40
Laughlin G., Chambers J. E., 2001, ApJ, 551, L109
Linial I., Gilbaum S., Sari R., 2018, ApJ, 860, 16
Lithwick Y., Xie J., Wu Y., 2012, ApJ, 761, 122
Malhotra R., Black D., Eck A., Jackson A., 1992, Nature, 356, 583
Meschiari S., Laughlin G. P., 2010, ApJ, 718, 543
Mikkola S., Innanen K., 1999, Celest. Mech. Dyn. Astron., 74, 59
Nesvorný D., Beaugé C., 2010, ApJ, 709, L44
Nesvorný D., Vokrouhlický D., 2014, ApJ, 790, 58
Nesvorný D., Vokrouhlický D., 2016, ApJ, 823, 72
Pál A., 2010, MNRAS, 409, 975
Peale S. J., 1993, AJ, 105, 1562
Rasio F. A., Nicholson P. D., Shapiro S. L., Teukolsky S. A., 1992, Nature,

355, 325
Rein H., Tamayo D., 2015, MNRAS, 452, 376
Rein H., Tamayo D., 2016, MNRAS, 459, 2275

Tamayo D., Rein H., Shi P., Hernandez D. M., 2020, MNRAS, 491, 2885
Wisdom J., Hernandez D. M., 2015, MNRAS, 453, 3015
Wisdom J., Holman M., 1991, AJ, 102, 1528
Wisdom J., Holman M., Touma J., 1996, Fields Inst. Commun., 10, 217
Wolfram Research Inc., Champaign, IL, 2019, Mathematica, Version 12.0
Wolszczan A., 1994, Science, 264, 538
Wolszczan A., Frail D. A., 1992, Nature, 355, 145
Yoffe G., Ofir A., Aharonson O., 2021, ApJ, 908, 114

APPENDI X A : D ERI VATI ON O F AHL21 KEPLER
+ DRIFT STEP

Here, we give more detail for the derivation of the combined Kepler
and Drift steps that were described in Section 3.3. As a reminder, we
start with two bodies i and j with relative coordinates xij = xi − xj

and vij = vi − vj . In this section we drop the subscript ij. At the start
of the time-step, the coordinates are x0 and v0, while at the end of the
time-step the coordinates are x and v. We propagate these forward
with either a negative drift followed by a Kepler step, yielding a
change in position and velocity of �xDK and �vDK, or a Kepler
step followed by a negative drift, yielding �xKD and �vKD. In the
process we need to solve Kepler’s equation (13). The two pathways
are shown in Fig. 1.

A1 Drift then Kepler

As discussed in Section 3, the negative drift is taken first, yielding
an intermediate position x̂0 = x0 − hv0. The resulting change in
position and velocity over the time-step is given by equation (15),

�xDK = x̂ − x0 = (f̂ − 1)x0 + (ĝ − hf̂)v0, �

�vDK = v̂ − v0 = ˙̂f x0 + (˙̂g − h ˙̂f − 1)v0, � (A1)

where, again, f̂ , ĝ, ˙̂f , and ˙̂g are all computed in terms of
(x̂0, v0, k, h). This means that the scalar functions these depend on
also need to be computed in terms of x̂0, i.e. r̂0 = |x̂0|,β̂ = 2k/r̂0 −
v2

0,η̂0 = x̂0 · v0, and Ĝi = Gi(β̂, γ̂), where γ̂ can be computed with
Newton’s method from equation (13) evaluated using r̂0, η̂0, and Ĝi ,
and r̂ can be computed from (12) in the same manner.

The Gauss function terms in equation (15) are given as

f̂ − 1 = − k

r̂0
Ĝ2, �

ĝ − hf̂ = k

(
h

r̂0
Ĝ2 − Ĝ3

)
, �

˙̂f = − k

r̂ r̂0
Ĝ1, �

˙̂g − h ˙̂f − 1 = k

r̂

(
h

r̂0
Ĝ1 − Ĝ2

)
, � (A2)

where the 1’s have been cancelled analytically for more accurate
expressions at small time-steps.

A2 Kepler then drift

In the case of a Kepler step followed by a negative drift, the Kepler
step is computed in terms of the initial coordinates, x0 and v0,
yielding intermediate coordinates (x̌, v̌), and then the negative drift
is applied resulting in x = x̌ − hv̌ (Fig. 1). This yields the change
in position and velocity of

�xKD = x̌ − hv̌ − x0 = (f − hḟ − 1)x0 + (g − hġ)v0, �

�vKD = v̌ − v0 = ḟ x0 + (ġ − 1)v0, � (A3)

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

http://dx.doi.org/10.3847/0004-637X/818/2/177
http://dx.doi.org/10.1111/j.1365-2966.2005.08922.x
http://dx.doi.org/10.3847/PSJ/abd022
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1145/567806.567807
http://dx.doi.org/10.1051/0004-6361/201424080
http://dx.doi.org/10.1093/mnras/stz181
http://dx.doi.org/10.1086/105423
http://dx.doi.org/10.1126/science.1201274
http://dx.doi.org/10.1016/0167-2789(91)90081-J
http://dx.doi.org/10.1088/0004-637X/802/2/116
http://dx.doi.org/10.3847/0004-637X/821/2/96
http://dx.doi.org/10.1088/0004-637X/787/2/132
http://dx.doi.org/10.1093/mnras/stw2758
http://dx.doi.org/10.1126/science.1210923
http://dx.doi.org/10.1051/0004-6361/201833436
http://dx.doi.org/10.1111/j.1467-9868.2010.00765.x
http://dx.doi.org/10.1093/mnras/stu282
http://dx.doi.org/10.1088/0004-637X/796/1/23
http://dx.doi.org/10.1051/0004-6361/201732233
http://dx.doi.org/10.3847/0004-637X/828/1/44
http://dx.doi.org/10.3847/1538-3881/aa71ef
http://dx.doi.org/10.1007/s10543-008-0170-3
http://dx.doi.org/10.1093/mnras/stw784
http://dx.doi.org/10.1093/mnras/stw569
http://dx.doi.org/10.1093/mnras/stv1439
http://dx.doi.org/10.1093/mnras/sty184
http://dx.doi.org/10.1093/mnras/stx547
http://dx.doi.org/10.1126/science.1107822
http://dx.doi.org/10.1126/science.1195778
http://dx.doi.org/10.1146/annurev-earth-053018-060352
http://dx.doi.org/10.3847/0004-637X/820/1/39
http://dx.doi.org/10.1086/319847
http://dx.doi.org/10.3847/1538-4357/aac21b
http://dx.doi.org/10.1088/0004-637X/761/2/122
http://dx.doi.org/10.1038/356583a0
http://dx.doi.org/10.1088/0004-637X/718/1/543
http://dx.doi.org/10.1023/A:1008312912468
http://dx.doi.org/10.1088/2041-8205/709/1/L44
http://dx.doi.org/10.1088/0004-637X/790/1/58
http://dx.doi.org/10.3847/0004-637X/823/2/72
http://dx.doi.org/10.1111/j.1365-2966.2010.17103.x
http://dx.doi.org/10.1086/116536
http://dx.doi.org/10.1038/355325a0
http://dx.doi.org/10.1093/mnras/stv1257
http://dx.doi.org/10.1093/mnras/stw644
http://dx.doi.org/10.1093/mnras/stz2870
http://dx.doi.org/10.1093/mnras/stv1862
http://dx.doi.org/10.1086/115978
http://dx.doi.org/10.1126/science.264.5158.538
http://dx.doi.org/10.1038/355145a0
http://dx.doi.org/10.3847/1538-4357/abc87a
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L872-L875
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L876-L878
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L853
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L855
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L850
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L867
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L872-L875
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L876-L878

1600 E. Agol, D. M. Hernandez, and Z. Langford

where f, g, ḟ , and ġ are all computed in terms of (x0, v0, k, h), and
the ‘KD’ indicates that the Kepler step precedes the negative drift,
Kepler - drift.

These functions can also be expressed in terms of the Gauss
functions as

f − hḟ − 1 = k

r

(
G2 − k

r0

(
G2

2 − G1G3

))
,

g − hġ = k

r

(
r0 (G1G2 − G0G3) + η0

(
G2

2 − G1G3

))
,

ḟ = − k

rr0
G1, �

ġ − 1 = −k

r
G2, � (A4)

where we have used equations (13) and (12) to transform these
equations. Note that in this case each of these functions depends on
(x0, v0, k, h) as the Kepler step is applied before the drift.

Unfortunately, these equations can lead to numerical instability for
small values of γ = √|β|s.15 The offending terms involve difference
of products of Gi functions: G1G2 − G0G3 and G2

2 − G1G3. These
terms have a Taylor series expansion in which the leading order terms
in s cancel; this is also true for the function G3.

So, we define two new functions,

H1 = G2
2 − G1G3,

H2 = G1G2 − G0G3, (A5)

given in Table 1. In terms of these functions we have

f − hḟ −1 = k

r

(
G2 − k

r0
H1

)
, �

g − hġ = k

r
(r0H2 + η0H1) . � (A6)

For large values of γ we evaluate these with the special function
definitions, summarized in Table 1, while for small values of γ , we
evaluate G3, H1 and H2 in terms of the following Taylor series:

H1(γ, β) = 2γ 4

β2

∞∑
n=0

(εγ 2)n(n + 1)

(2n + 4)!
, � (A7)

H2(γ, β) = 2γ 3

|β|3/2

∞∑
n=0

(εγ 2)n(n + 1)

(2n + 3)!
, � (A8)

G3(γ, β) = γ 3

|β|3/2

∞∑
n=0

(εγ 2)n

(2n + 3)!
. � (A9)

where ε = −1 for β > 0 (elliptic) and ε = 1 for β < 0 (hyperbolic)
cases. Note that in evaluating these series expansions we compute
each term recursively, and terminate the series expansion when the
function matches one of the two prior partial sums (indicating that
the series is converged to machine precision).

The fact that these functions have leading terms ∝ γ 3 and ∝ γ 4

is due to cancellation of lower order terms in the trigonometric
representation. This cancellation can lead to round-off errors for
small values of γ , which are commonly encountered when there are
a wide range of orbital time-scales in a system. We find that higher
precision is obtained by evaluating the series expressions for γ <

1/2 out to ≈6 terms in double precision, while for γ > 1/2, higher
precision is obtained from the full trigonometric expression.

15Note that in the elliptic Kepler’s equation, γ is equal to the change in
eccentric anomaly over the time-step.

The other Gi functions (G0, G1 and G2) we evaluate with the
stable trigonometric and hyperbolic function transforms discussed
in Wisdom & Hernandez (2015), also given in Table 1. With the
combination of the drift and Kepler steps, it turns out that we no
longer need the drift of the centre-of-mass coordinates in each Kepler
step as these cancel exactly.

APPENDI X B: D ERI VATI ON O F D ERI VATIVES
O F K E P L E R + DRIFT STEPS

In this appendix, we give more detail on the derivation of the
derivatives of the combined Kepler and drift steps, as well as formulae
for the derivatives of the scalar quantities in equations (18), (19), (20),
and (21).

B1 Differential of intermediate quantities

The differentials of r0, β, η0 are given by

δr0 = x0 · δx0

r0
, (B1)

δβ = δk

r0
− kδx0 · x0

r3
0

− 2v0 · δv0, (B2)

δη0 = v0 · δx0 + x0 · δv0. (B3)

Note that these quantities are constant over a time-step, and so there
is no dependence upon δh.

Taking the differential of the Universal Kepler equation 13, we
find

|β|−1/2rδγ = δh + δk

[
D

r0
− G3

]

− δx0 ·
[(

kD + G1r
2
0

) x0

r3
0

+ G2v0

]
− δv0 · [Dv0 + G2x0] , (B4)

D = β−1 [h + η0G2 + 2kG3] . � (B5)

Note that the δv0 · x0 and δx0 · v0 have the same derivative terms;
this is due to both of these terms deriving from δη0.

Taking the differential of the radial equation, (12), we find

δr = δγ

|β|1/2
(η0G0 + ζG1) + δk

βr0
(r0 − r − kG2)

+ δx0 ·
[(

kr + k2G2 − ζ r0G0

) x0

βr3
0

+ G1v0

]

+ δv0 ·
[

(η0G1 + 2kG2)
v0

β
+ G1x0

]
, (B6)

where we define

ζ = k − r0β. � (B7)

The functions Gi(β, γ) have derivatives in terms of β and γ , which we
can combine with the foregoing differentials for these quantities to
obtain the derivatives with respect to the basis (x0, v0, k, h). These
intermediate derivatives of Gi (in both the elliptic and hyperbolic
cases) are given by

∂Gi+1

∂γ
= Gi

|β|1/2
(i ≥ 0), (B8)

∂G0

∂γ
= − βG1

|β|1/2
, (B9)

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L850
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L870
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L860
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L862
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/utils.jl#L180-L209
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/utils.jl#L225-L254
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/utils.jl#L137-L165
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L909
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L780

Derivatives of TTVs 1601

and

∂Gn

∂β
= − n

2β
Gn. (B10)

With these intermediate derivatives in hand, we can compute
the full differentials of the Gauss functions in the combined drift
and Kepler terms. Since these formulae differ in the two cases, we
consider each separately in turn in the following two subsections.

B2 Differential of drift-then-Kepler step

The differential of the scalar quantities δ(f̂ − 1), δ(ĝ − hf̂),δ(˙̂f),

and δ(˙̂g − h ˙̂f − 1) should also be scalars, and can be expressed in
terms similar to the δγ and δr terms given above. Note, however,
that as the Kepler step takes place after the negative drift, all of these
functions are to be computed in terms of x̂0 substituted for x0, and so
we need to add an extra step in the derivation to find the differentials
in terms of x0 in lieu of x̂0.

The differential of these functions in terms of intermediate scalar
quantities is given by

δ(f̂ − 1)

f̂ − 1
= δk

k
− δr̂0

r̂0
+ Ĝ1

Ĝ2

δγ̂

|β̂|1/2
− δβ̂

β̂
, (B11)

δ(ĝ − hf̂) = δk

k
(ĝ − hf̂) + k

[(
δh

r̂0
− hδr̂0

r̂2
0

)
Ĝ2

+ δγ̂

|β̂| 1
2

(
h

r̂0
Ĝ1 − Ĝ2

)
− δβ̂

β̂

(
h

r̂0
− 3

2 Ĝ3

)]
, (B12)

δ ˙̂f
˙̂f

= δk

k
− δr̂0

r̂0
− δr̂

r̂
+ Ĝ0

Ĝ1

δγ̂

|β̂|1/2
− 1

2

δβ̂

β̂
, (B13)

δ(˙̂g − h ˙̂f − 1) =
[

δk

r̂0r̂
− kδr̂0

r̂2
0 r̂

− kδr̂

r̂0r̂2

] (
hĜ1 − r̂0Ĝ2

)

+ k

r̂0r̂

[
δhĜ1 − δr̂0Ĝ2 − 1

2

δβ̂

β̂

(
hĜ1 − 2r̂0Ĝ2

)

+ (
hĜ0 − r0Ĝ1

) δγ̂

|β̂|1/2

]
. (B14)

In this equation we have used the ‘ˆ’ symbol to indicate that each of
these quantities is a function of x̂0 rather than x0 (with the exception
of h and k). Into these differentials we can substitute our expressions
for δβ̂, δr̂ , δr̂0, δη̂0, and δγ̂ given above, keeping in mind that these
need to be computed in terms of δ x̂0 and x̂0 substituted for δx0 and x0.
Then, we need to replace the differential δ x̂0 by δx0 − hδv0 − v0δh.
The v0δh term leads to dot products of v0 · x̂0 = η̂0 and v0 · v0 =
2k
r̂0

− β̂. The algebraic computation of these operations was aided
by Mathematica (Wolfram Research 2019), yielding the following
results:

δ ln (f̂ − 1) = δkAk + δhAh + δx0 · x0Axx

+ δ(x0 · v0)Axv + δv0 · v0Avv, �

Ak = 1

k
− 2

βr0
+ c1G1

rr0G2
, �

Ah = G1

r

(
2k

r0
− β + 1

G2

)
− c24η0, �

Axx = c24, �

Axv = −
[
c24h + G1

r

]
, �

Avv = 1

r

[
kH6

βG2
− r0G2 + h (2G1 + hrc24)

]
, � (B15)

δ(ĝ − hf̂) = δkBk + δhBh + δx0 · x0Bxx

+ δ(x0 · v0)Bxv + δv0 · v0Bvv, �

Bk = − c9k

βr2
0

+ c1c13k

rr2
0

+ G2h − G3r0

r0
, �

Bh = kG2

r0
+ kc13

rr0
+ kG2c13

rr0

(
2k

r0
− β

)
− η0c10, �

Bxx = c10, �

Bxv = −
[
c10h + c13G2k

rr0

]
, �

Bvv = 2hkG2c13

rr0
+ h2c10

+ k

βrr0

[
r2

0 H8 − βhr0G
2
2 + (hk + η0r0)H6

]
, � (B16)

δ ln ˙̂f = δkCk + δhCh + δx0 · x0Cxx

+ δ(x0 · v0)Cxv + δv0 · v0Cvv, �

Ck = 1

k
− 1

βr0
− c17

βrr0
− c1(G1c2 − G0r)

r2r0G1
, �

Ch = c22

(
2k

r0
− β

)
− c2

r2
+ c21η0 + G0

G1r
, �

Cxx = c21, �

Cxv = c22 − c21h, �

Cvv = c34 − 2hc22 + h2c21, � (B17)

δ(˙̂g − h ˙̂f − 1) = δkDk + δhDh + δx0 · x0Dxx

+ δ(x0 · v0)Dxv + δv0 · v0Dvv, �

Dk = 1

rr0

[
− k(c13 − G2r0)

βr0
+ c13

− kc13c17

βrr0
+ kc1c12

rr0
− kc1c2c13

r2r0

]
, �

Dh = kG1

rr0
+ kc12

r2r0
− kc13c2

r3r0

− c26

(
2k

r0
− β

)
− c25η0, �

Dxx = c25, �

Dxv = c26 − c25h, �

Dvv = c33 + c25h
2 − 2c26h, � (B18)

with auxiliary quantities defined as

c1 = D − r0G3, �

c2 = η0G0 + G1ζ, �

c3 = Dk + G1r
2
0 , �

c4 = η0G1 + 2G0r0, �

c5 = r0 − kG2

rG1
, �

c6 = r0G0 − kG2

β
, �

c7 = G2

(
1

G1
+ c2

r

)
, �

c8 = r−3
0 (kc6 + rr0 + c3c5) , �

c9 = 2hG2 − 3r0G3, �

c10 = k

r4
0

[
−G2r0h + kc9

β
− c3c13

r

]
, �

c12 = G0h − G1r0, �

c13 = G1h − G2r0, �

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L943-L948
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L925
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L924
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L920
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L921
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L923
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L943-L948
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L937
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L936
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L929
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L930
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L934-L935
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L989-L994
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L972
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L974
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L966
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L967
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L971
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L989-L994
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L981
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L984
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L975
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L976
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L980
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L910
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L911
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L912
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L913
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L953
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L954
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L955
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L956
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L915
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L916
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L957
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L914

1602 E. Agol, D. M. Hernandez, and Z. Langford

c17 = r0 − r − kG2, �

c18 = η0G1 + 2kG2, �

c20 = k(kG2 + r) − G0r0ζ, �

c21 = (kG2 − r0)(βc3 − kG1r)

βr2r3
0 G1

+ η0G1

rr2
0

− 2

r2
0

, �

c22 = 1

r

[
−G1 − G0G2

G1
+ G2c2

r

]
, �

c24 = 1

r3
0

[
r0

(
2k

βr0
− 1

)
− G1c3

rG2

]
, �

c25 = k

rr2
0

[
− G2 + k(c13 − G2r0)

βr2
0

− c13

r0
− c12c3

rr2
0

+ c13c2c3

r2r2
0

− c13(k(kG2 + r) − G0r0ζ)

βrr2
0

]
, �

c26 = k

r2r0

[
−G2c12 − G1c13 + G2c13c2

r

]
, �

c33 = Dk2

r3r0
(hG2 − r0G3)

+ k

βr2r0

[
− η0kG1G

2
2 − G1G2G3k

2

− r0η0βG1G
2
2 − r0kG1H2 − βG2

2G0r
2
0

]
, �

c34 = 1

βr2

[
− β(η0G2 + r0G1)2 − η0kH8 − H6k

2

+ (G2
2 − 3G1G3)βkr0

]
+ η0G

2
2

rG1
+ kH8

βrG1
, � (B19)

where we have dropped the ˆ superscript on the right-hand side
of equations (B15)–(B19) for legibility, but note that all scalar
quantities in these equations which are a function of x0 must be
evaluated as a function of x̂0 in lieu of x0. In these equations, we
have taken care to analytically cancel terms to leading order in γ by
defining the following functions

H3 = G1G2 − 3G3, �

H4 = −βH1, �

H5 = G1G2 − (2 + G0)G3, �

H6 = 2G2
2 − 3G1G3, �

H7 = G1G2 − 2G0G1G2 + 3G2
0G3 = βG1G

2
2 − G0H8, �

H8 = G1G2 − 3G0G3 = −2H3 + 3H5. � (B20)

These functions are tabulated in Table 1. As with G3, H1, and H2, for
small values of γ we evaluate these with a series expansion:

H3(γ, β) = − 4γ 5

β|β|1/2

∞∑
n=0

(εγ 2)n(4n+1 − 1)

(2n + 5)!
, � (B21)

H5(γ, β) = − 2γ 5

β|β|1/2

∞∑
n=0

(εγ 2)n(n + 1)

(2n + 5)!
, � (B22)

H6(γ, β) = 2γ 6

β2

∞∑
n=0

(εγ 2)n
(
4n+2 − 3n − 7

)
(2n + 6)!

, � (B23)

where ε = −1 for β > 0 (elliptic) and ε = 1 for β < 0 (hyperbolic)
cases. The coefficients of these series are computed recursively for
efficiency. Note that we found expressions for H4, H7, and H8 in
terms of the other G and H functions.

B3 Differential of Kepler then drift step

The Kepler step followed by a negative drift is slightly simpler as the
Gauss functions can be expressed in terms of x0 rather than x̂0. The
differential of the scalar functions are given by

δ(f − hḟ −1) = δkEk + δhEh + δx0 · x0Exx

+ δ(x0 · v0)Exv + δv0 · v0Evv, �

Ek = k

rr0

[
− c14c17

βrr0
− 2G2

β
+ 4H1k

βr0

− c1c14c2

r2r0
+ c1(G1r0 − H2k)

rr0
+ c14

k
− H1

]
, �

Eh = k

r2

[
− c14c2

rr0
+ G1 − H2k

r0

]
, �

Exx = k

βr3r4
0

[
βc3(c14c2 + c23r) + H1kr2r0

(
β − 2k

r0

)

+ c14r
(
G0r0ζ + k(r − G2k)

)]
, �

Exv = k

r2r0

[c14c2G2

r
+ k(G1H1 + G2H2) − 2G1G2r0

]
, �

Evv = k

βr2r0

[
2η0k(G2G3 − G1H1)

+ (3G3H2 − 4H1G2)k2 + βG2r0(3H1k − G2r0)

+ c14

r

(
− β(G2η + G1r0)2 + η0k(2G0G3 − H2)

+ kβr0(H1 − 2G1G3) − H6k
2
)]

, � (B24)

δ(g − hġ) = δkFk + δhFh + δx0 · x0Fxx

+ δ(x0 · v0)Fxv + δv0 · v0Fvv, �

Fk = k

r

[
c15

k
− c15c17

βrr0
− c19

βr0
− c1c15c2

r2r0
+ c1c16

rr0

]
, �

Fh = k

r3
[c16r − c15c2] , �

Fxx = k

rr0

[
− c15(k(G2k + r) − G0r0ζ)

βrr2
0

+ c19k

βr2
0

+ c15c2c3

r2r2
0

− c16c3

rr2
0

+ H2

]
, �

Fxv = k

r2

[
c15c2G2

r
− c15G1 − c16G2 + H1r

]
, �

Fvv = k

βr2

[
2η2

0(G1H1 − G2G3) + η0k(4G2H1 − 3H2G3)

+ r0η0(4G0H1 − 2G1G3)

+ 3r0k
(
(G1 + βG3)H1 − G3G2

)
+ (

G0H8 − βG1(G2
2 + G1G3)

)
r2

0

− c15

r

(
βG2

2η
2
0 + η0kH8 + H6k

2 + βG2
1r

2
0

+ (
2η0G1G2 − k(G2

2 − 3G1G3)
)
βr0

)]
, � (B25)

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L958
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L959
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L960
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L961
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L962
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L917
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L963-L964
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L965
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L979
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L969-L970
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/utils.jl#L256-L269
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L926
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/utils.jl#L305-L318
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/utils.jl#L351-L362
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1065
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L933
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/utils.jl#L271-L303
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/utils.jl#L320-L349
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/utils.jl#L364-L396
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1073-L1080
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1051-L1052
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1050
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1044
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1045
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1047-L1049
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1073-L1080
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1064
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1070
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1057
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1058
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1060-L1063

Derivatives of TTVs 1603

δ ln ḟ = δkGk + δhGh + δx0 · x0Gxx

+ δ(x0 · v0)Gxv + δv0 · v0Gvv, �

Gk = 1

k
+ c1(r0 − kG2)

r0r2G1
− r + c17

βrr0
, �

Gh = r0 − kG2

r2G1
, �

Gxx = 1

r2
0

[
− k(G2k − r0)

βrr0
+ c2c3

r2r0
− c3G0

G1rr0
+ η0G1

r
− 2

]
, �

Gxv = −1

r

(
G0G2

G1
+ r0G1 + η0G2

r

)
, �

Gvv = 1

βr2

[
(η0G

2
2β + kH8)(r0G0 + kG2)

G1
− H6k

2

+βr0 (k(H1 − 2G1G3) − 2η0G1G2) − βG2
1r

2
0

]
, � (B26)

δ(ġ − 1) = δkHk + δhHh + δx0 · x0Hxx

+ δ(x0 · v0)Hxv + δv0 · v0Hvv, �

Hk = 1

rr0

[
G2k(−G2k + r + r0)

βr
+ c1c2G2k

r2

− c1G1k

r
− G2r0

]
, �

Hh = k

r3
[c2G2 − G1r] , �

Hxx = k

r2r3
0

[
G2(k(G2k − r) − G0r0ζ)

β

+ c3(η0G2 + G1r0)

r

]
, �

Hxv = G2k

r3
[rG1 + r0G1 + η0G2] , �

Hvv = k

βr3

[
η2

0βG3
2 − η0kG2H3 + 3r0η0βG1G

2
2

+ r0k(3βG1G2G3 − G0H6)

+ βG2

(
G0G2 + G2

1

)
r2

0

]
, � (B27)

with additional auxiliary definitions,

c14 = r0G2 − kH1, �

c15 = η0H1 + H2r0, �

c16 = η0H2 + G1γ r0|β|−1/2, �

c17 = r0 − r − kG2, �

c19 = 4η0H1 + 3H2r0, �

c23 = kH2 − r0G1. � (B28)

Note that in this case, as the Kepler step takes place first, all of the
scalar quantities in this equation are defined in terms of x0.

APPENDIX C : K EPLER + DRIFT MASS
DERI VATI VE EXPRESSI ONS

Here are the functions J1 − J4 used in computing the mass derivatives
in equations (24) and (25):

J1 = r̂0Ĥ4 + kĤ6, �

J2 = Ĥ6Ĝ3k
2 + η̂0r̂0

(
Ĥ6 + Ĝ2Ĥ4

) + r̂2
0 Ĝ0Ĥ5 + kη̂0Ĝ2Ĥ6

+ (
Ĝ1Ĥ6 + Ĝ3Ĥ4

)
kr̂0, �

J3 = − (
Ĝ2k − r̂0

) (
β̂r̂0

(
Ĝ3 − Ĝ1Ĝ2

) − β̂η̂0Ĝ
2
2 + kĤ3

)
, �

J4 = k
(

− β̂η̂2
0Ĝ

4
2 + η̂0Ĝ2

(
Ĝ1Ĝ

2
2 + Ĝ2

1Ĝ3 − 5Ĝ2Ĝ3

)
k

+ Ĝ2Ĝ3Ĥ3k
2 + 2η̂0r̂0β̂Ĝ2

2

(
Ĝ3 − Ĝ1Ĝ2

)
+ (

4Ĝ3 − Ĝ0Ĝ3 − Ĝ1Ĝ2

) (
Ĝ3 − Ĝ1Ĝ2

)
r̂0k

− β̂
(
Ĝ3 − Ĝ1Ĝ2

)2
r̂2

0

)
, � (C1)

and the functions J5 − J8 used in computing the mass derivatives in

equations (26) and (27):

J5 = r
(

2η0k(G1H1 − G3G2) + (4G2H1 − 3G3H2)k2

− η0r0βG1H1 + (G3H2 − 4G2H1)βkr0 + G2H1β
2r2

0

)
− c14

(
−η2

0βG2
2 − kη0H8 − η0r0β(G1G2 + G0G3)

+ 2(H1 − G1G3)βkr0 − k2H6 − (G2 − βG1G3)βr2
0

)
, �

J6 = r0r
(

2η2
0(G3G2 − G1H1) + η0k(3G3H2 − 4G2H1)

+ r0η0

(
βG3(G1G2 + G0G3) − 2G0H6

)
+ (−H6(G1 + βG3) + G2(2G3 − H2)

)
r0k

+ (
H7 − β2G1G

2
3

)
r2

0

)
− r0c15

(
−βη2

0G
2
2 + η0k(−H2 + 2G0G3) − H6k

2

− r0η0β
(
H2 + 2G0G3

) + 2β
(
2H1 − G2

2

)
r0k

+β
(
βG1G3 − G2

)
r2

0

)
, �

J7 = (r0 − kG2)(−η0βG2
2 + H3k + (G3 − G1G2)βr0), �

J8 = βG1(G3 − G1G2)r2
0 − βη2

0G
3
2 + η0kG2H3

+ η0r0βG2(G3 − 2G1G2) + (H6 − βG3
2)r0k. � (C2)

A P P E N D I X D : TA B L E O F N OTAT I O N

Table D1 lists the mathematical symbols used throughout this paper.

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1108-L1115
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1094
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1096
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1089
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1090
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1092-L1093
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1111-L1115
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1102
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1105
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1097
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1098
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1100-L1101
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1032
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1033
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1034
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1035
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1037
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1038
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L928
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L938
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L973
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L982-L983
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1054-L1056
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1066-L1069
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1095
https://github.com/ericagol/NbodyGradient.jl/blob/bc4e3ebf00f680f81bc3baacc0277850154e0b26/src/integrator/ahl21/ahl21.jl#L1103-L1104

1604 E. Agol, D. M. Hernandez, and Z. Langford

Table D1. Symbols used in this paper.

Symbol Definition Reference

ai Instantaneous acceleration of body i. (38)
aij Difference in acceleration between bodies i and j. Section 4.8
A Set of pairs of bodies interacting via fast kicks. Section 4.7, Alg. 2
AC Set of pairs of bodies interacting drift + Keplerian (complement of A). Section 4.7, Alg. 2
Ak,Ah,Axx , ...,Hxv,Hvv Terms used in derivatives. (B15)-(B27)
au Astronomical unit. Section 4.2
bsky, ijk The impact parameter at the kth time of transit of body i in front of body j. Section 4.11
c1 − c34 Quantities defined for computing derivatives of drift + Kepler. (B19),(B28)
C Constant in correction term. Section 4.8
d Distance to observer. Section 4.3
e Orbital eccentricity. Section 5.1
D Constant used in computing derivatives. (B4)
�E, E0 Energy error and initial total energy. Section 5.2
f , g, ḟ , ġ Gauss’s Kepler propagation functions. Section 3.2

f̂ , ĝ, ˙̂f , ˙̂g Gauss’s functions for drift-then-kepler. Section 3.3.1
gsky, ij Sky plane velocity dotted w/ position between bodies i and j. (48)
G Newton’s constant. (4)
Gi Functions used in universal Kepler solver. Table 1
Ĝi Functions used in universal Kepler solver after initial drift. Section A1
h Symplectic integrator time-step (days). Section 2
H Hamiltonian. (1)
HA, HB Integrable Hamiltonians in symplectic splitting. (2)
H1 − H8 Combinations of Gi functions used in combined Kepler-drift step and derivatives. Table 1, (A5), (B20)
i, j Label for bodies i and j. (1)
J1 − J8 Intermediate variables used in mass derivatives. (C1),(C2)
Jkep Jacobian of Kepler/drift step between two bodies (7 × 7 matrix). Section 4.4
J substep, �J substep Jacobian of any substep is J substep = I + �J substep. (44)
Jcurrent, Jprior Jacobians of the current and prior steps. (44)
�JD Jacobian of drift step is I + �JD. Section 4.6
JAHL21 Jacobian of single symplectic step. Section 4.9
Jn Jacobian after nth step. Section 4.12
�J4th Jacobian of fourth-order correction I + �J4th. Section 4.8
�JDK,ij, �JKD,ij Jacobian of Kepler + drift substep for bodies i and j. Section 4.5
k Central force constant (=G(mi + mj)). Also used as an index for the transit number. (4)
Kij Keplerian for pair of bodies i and j. (1)
mi Mass of ith body. Section 4.1
mij Sum of masses of bodies i and j. Section 3.2
m Vector of masses. Section 4.1
M� Solar mass. Section 4.2
n Number of time-steps elapsed. Section 4.11
N Number of bodies in system. Section 4.1
NS Number of time-steps. Section 5.2,Section 5.5
Ntt Number of transit times. Section 5.1
qi (t) Coordinates of the ith body at time t (17)
q(t) Position, velocity, mass vector of all bodies (system state at time t). Section 4.3
qn q(t) at nth time-step. Section 4.11
qcurrent, qprior, �q System state at current and prior substep, and the difference: �q = qcurrent − qprior Section 4.10
r0, r, rij Initial/final separation between bodies i and j for Kepler solver. Section 3.2
r̂0, r̂ Initial/final separation between bodies i and j for drift + Kepler solver. Section A1
s Independent variable in universal Kepler step. Section 3.2
t Current simulation time. Section 2, Alg. 1,2
�tinit, �t Initial and final fraction of a time-step to transit time. Section 4.11
t0 Initial time of integration (days). Section 2, Alg. 1,2
tn Time after nth step: tn = t0 + nh. Section 4.11
tijk The kth time of transit of body i in front of body j. Section 4.11
tmax Duration of simulation (days). Section 2, Alg. 1,2
T ij Correction tensor. (37)
T Total kinetic energy. (1)
Tij Kinetic energy of bodies i and j. (1)
�vi Pairwise velocity kick or correction of ith body (instead of Kepler step). (32), (36), (42)
v0, v Initial/final relative speed in Kepler problem. Section 3.2
vsky, ijk The sky velocity at the kth time of transit of body i in front of body j. Section 4.11
vi = (ẋi , ẏi , żi) Cartesian velocities of ith body (3),Section 4.3

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

Derivatives of TTVs 1605

Table D1 – continued

Symbol Definition Reference

V Total potential energy. (1)
Vij Potential energy of bodies i and j. (1)
wij Intermediate quantity for kick derivative. (33)
xi = (xi , yi , zi) Cartesian coordinates of ith body (3), Section 4.3
xij , vij Relative position and velocity of bodies i and j (x, v in Section 3.2). (4)
x0, v0 Relative position and velocity of bodies i and j at start of universal Kepler step Section 3.2
x̂0 Intermediate position in DK step. (14)
x̂, v̂ Final position and velocity in DK step. Section 3.3.1
�xDK, �vDK Change in position and velocity for DK step between bodies i and j. (15),(A2)
x̌, v̌ Intermediate position and velocity in KD step. Section 3.3.2
�xKD, �vKD Change in position and velocity for KD step between bodies i and j. (16),(A3)
�xi,KD,�vi,KD Change in position and velocity for KD step for body i. (22)
�xi,DK, �vi,DK Change in position and velocity for DK step for body i. (22)
xobs Observer position. Section 4.3
α Factor from DH17 algorithm(set to zero). Section 2, Section 4.8
β Dimensionless energy for Kepler step. (7)
β̂ Dimensionless energy for drift + Kepler step. (A1)
γ Variable used in defining Gi functions. =|β|1/2s Table 1
γ̂ Value of γ computed after an initial drift. Section A1
η0 Quantity used in Kepler solver. Section 3.2
η̂0 Dot product of velocity and position after an initial drift. Section A1
ε Small parameter in Hamiltonian splitting for general symplectic integrator. (2)
εerr Numerical error. Section 5.2
εdiff Fractional change in parameters for finite difference. (63)
ε Sign of β. (A7–A9),(B21–B23)
ζ Intermediate variable. (B7)
� Longitude of periastron. Section 5.1

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 507, 1582–1605 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1582/6324024 by C
N

R
S - ISTO

 user on 09 August 2022

