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ABSTRACT
Upcoming million-star spectroscopic surveys have the potential to revolutionize our view of the formation and chemical evolution
of the Milky Way. Realizing this potential requires automated approaches to optimize estimates of stellar properties, such as
chemical element abundances, from the spectra. The sheer volume and quality of the observations strongly motivate that these
approaches should be driven by the data. With this in mind, we introduce SSSpaNG: a data-driven non-Gaussian Process model
of stellar spectra. We demonstrate the capabilities of SSSpaNG using a sample of APOGEE red clump stars, whose model
parameters we infer using Gibbs sampling. By pooling information between stars to infer their covariance, we permit clear
identification of the correlations between spectral pixels. Harnessing this correlation structure, we infer the true spectrum of
each red clump star, inpainting missing regions and denoising by a factor of at least two for stars with signal-to-noise ratios
of ∼20. As we marginalize over the covariance matrix of the spectra, the effective prior on these true spectra is non-Gaussian
and sparsifying, favouring typically small but occasionally large excursions from the mean. The high-fidelity inferred spectra
produced with our approach will enable improved chemical elemental abundance estimates for individual stars. Our model also
allows us to quantify the information gained by observing portions of a star’s spectrum, and thereby define the most mutually
informative spectral regions. Using 25 windows centred on elemental absorption lines, we demonstrate that the iron-peak and
alpha-process elements are particularly mutually informative for these spectra and that the majority of information about a
target window is contained in the 10-or-so most informative windows. Such mutual information estimates have the potential
to inform models of nucleosynthetic yields and the design of future observations. Our code is made publicly available at
https://github.com/sfeeney/ddspectra.
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1 IN T RO D U C T I O N

Surveys such as APOGEE (Majewski et al. 2017), GALAH (De Silva
et al. 2015), Gaia-ESO (Gilmore et al. 2012), LAMOST (Newberg
et al. 2012), SEGUE (Yanny et al. 2009), and RAVE (Steinmetz et al.
2006) have provided a vast data set of spectroscopic observations that
has revolutionized our view of the Milky Way, through corresponding
velocity, stellar parameter, individual abundance, and age measure-
ments (e.g. Nidever et al. 2014; Minchev et al. 2014b; Hayden et al.
2015; Kordopatis et al. 2015; Ho et al. 2017b; Frankel et al. 2018;
Bland-Hawthorn et al. 2019; Bovy et al. 2019; Mackereth et al. 2019).
In the coming years, large spectroscopic surveys such as Sloan V
(Kollmeier et al. 2017), WEAVE (Bonifacio et al. 2016), 4MOST
(de Jong et al. 2016), PFS (Tamura et al. 2016), Gaia RVS (Gaia
Collaboration et al. 2016), and MOONS (Cirasuolo et al. 2014) will
begin observations, expanding the spectral data we have collected for
our Galaxy by orders of magnitude. At present, the large (>105 star)
medium-resolution surveys, such as APOGEE (R = 22500), rely on

� E-mail: stephen.feeney@ucl.ac.uk

expensive observations, integrating to signal-to-noise ratios (SNRs)
of up to 100 per pixel (Zasowski et al. 2013, 2017).

High-SNR spectra have been often regarded as necessary in the
pursuit of precision abundances, required for chemical differentiation
across the Galaxy. These abundances trace the detailed chemical
evolution of the Milky Way, which is driven by an ensemble of
stellar explosion and mass-loss activity. In the Galactic disc, where
the majority of the stellar-mass resides, abundances provide (Rix
& Bovy 2013; Bland-Hawthorn & Gerhard 2016) the record of its
inside–out formation over time. The earliest epoch of the Galaxy’s
formation and its continued interaction with its environment is
documented in the chemical composition and characteristics of the
stellar halo (e.g. Hawkins et al. 2015; Helmi et al. 2018; Das,
Hawkins & Jofre 2019). Current data place strong constraints on the
chemical evolution models designed to explain Galactic formation
and evolution (e.g. Minchev, Chiappini & Martig 2013, 2014a;
Sanderson et al. 2018; Blancato et al. 2019; Clarke et al. 2019;
Weinberg et al. 2019). Upcoming data offer the opportunity to refine
these models considerably: for example, the disc is also believed
to comprise numerous individual birth sites where groups of stars
were born. Any prospect of assigning stars to their birth sites via
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their unique chemical signatures (e.g. Bland-Hawthorn, Krumholz
& Freeman 2010) requires large stellar numbers and high precision
abundance measurements (Mitschang et al. 2013; Ting, Conroy &
Goodman 2015; Hogg et al. 2016; Armillotta, Krumholz & Fujimoto
2018).

The large data volumes now in hand have led to the development of
new approaches for deriving abundance measurements from spectral
data, driven by the need for automatic, efficient means of extracting
the full information content of the data. These include data-driven
modelling approaches such as The Cannon (Ness et al. 2015),
full spectral fitting using physical models as implemented in The
Payne (Ting et al. 2018) and deep learning (Leung & Bovy 2019).
These approaches improve the precision of abundance measurements
significantly, permitting useful abundances to be estimated using 1/4
to 1/9th of the observing time compared to previous approaches.
Specifically, abundance precisions on the order of 0.05–0.1 dex can
be achieved at SNR ≈ 40 per pixel (Ho et al. 2017a; Ness 2018; Ting
et al. 2018; Leung & Bovy 2019). It has also been demonstrated that
an ensemble of individual abundances can be derived at medium (R
= 11000) and low (R = 1800) resolution by full spectral modelling
(e.g. Casey et al. 2016; Ting et al. 2017; Wheeler et al. 2020).
Physically, this is well justified: abundances can be measured from
their impact on the entire spectral range as legitimately as from
individual elemental lines (e.g. Ting et al. 2018). This methodological
advance in particular is relevant for the Gaia RVS data (R = 11000
spectra for 7 million objects) and, furthermore, the large ensemble of
low-resolution data being observed in future surveys. The dramatic
and rapid increase in available spectra and availability of increasingly
powerful computational resources means we find ourselves in an era
of tremendous opportunity for developing new avenues of stellar
spectral modelling.

Central to the success of The Cannon and The (Data-Driven)
Payne (Xiang et al. 2019) is pooling: sharing information between
members of a population to improve our knowledge of individual
stars. In The Cannon, pooling is performed in a data-driven fashion by
learning the relationship between stellar spectra and individual stellar
abundances; in The Payne (during the training step) by calibrating
physical models of stellar spectra using labels derived therefrom. In
this paper, we seek to generate a data-driven model of the stellar
spectra themselves, as opposed to the abundance measurements,
formalizing this concept of pooling within a Bayesian hierarchical
model (Gelman et al. 2013). By sharing information between stars,
we will generate more precise representations of individual spectra,
directly infer the correlation structure between spectral pixels and,
in the process, gain understanding of the information content of the
data. To date, there has been little work on the characterization and
interpretation of the correlations between (and the dimensionality of)
spectral data (see however Ting et al. 2012; Mitschang et al. 2014;
Casey et al. 2019; Price-Jones & Bovy 2019). Our methodology
will provide a direct measure of the information content of spectral
regions and, correspondingly, elemental abundances.

We use stars observed by the APOGEE survey to build an ex-
tremely general and flexible empirical model of a large set of spectral
data. Specifically, we implement a Gaussian Process (Rasmussen &
Williams 2006) mixture model representation of the APOGEE red
clump stars. Unlike typical Gaussian Process analyses, we infer each
element of our covariance matrices directly, without assuming a
kernel function, and marginalize over the covariances when quoting
our inferred true spectra. As a result, and contrary to analyses in
which the covariance is fit once and fixed, the prior distributions
of our true spectra are highly non-Gaussian, with a sparsifying
prior whose negative logarithm is non-convex. Our method is a

significant new technical advance in the modelling of stellar spectra
and is distinct from, but builds upon, existing progress in data-driven
spectral modelling in the regime of large data sets. We use no physical
knowledge in constructing our model or selecting priors, and our
inference is therefore entirely driven by common trends in the high-
dimensional APOGEE data. In successfully pooling information
about stars, we achieve the following for the APOGEE spectra:

(i) Prediction of masked (unmeasured or contaminated) regions of
the spectra to enable, e.g. abundance estimates that would otherwise
be impossible (see Sections 4.1 and 4.2). This is particularly valuable
in APOGEE for neutron-capture elements such as Nd and Ce, for
which only a handful of weak features exist from which to estimate
abundances. Some of these elemental features may fall near one of
three chip gaps and therefore be absent in some (but, critically, not
all) spectra due to stellar velocities. Our modelling of the data can
predict these regions when they are absent.

(ii) Denoising of all spectra, enabling higher precision inference
at lower SNR (see Section 4.2). The utility of this feature depends
on the size of the effects we wish to discover. Our expectation is that
this is particularly useful for weak features on the limits of detection,
similar to previous demonstrations using generative modelling (e.g.
The Cannon and The Payne).

(iii) Detailed examination of the empirical correlations in the spec-
tra, quantitative measurements of these correlations and identification
of which elemental absorption lines are positively and negatively
correlated (see Section 4.2).

(iv) Quantification of the information content of the data and deter-
mination of the most informative regions of spectra (see Section 4.3).
This has consequences for both theory and experimental design.
Along with the correlation structure we infer, the information content
that we measure should place strong constraints on physical models
of nucleosynthesis and chemical evolution. From an experimental
design perspective, quantifying the informativeness of regions of
spectra can drive the selection of wavelength ranges optimized for
specific scientific purposes, answering questions such as whether
we can retain sensitivity to abundances by observing a reduced
spectral range, or conversely whether we gain significant information
on a range of elemental features by observing a particular set of
wavelengths.

In the following, we describe the APOGEE data we use in Section 2
and our model and its inference in Section 3. We present our results
in Section 4 and discuss their consequences, current limitations and
plans for their resolution in Section 5.

2 DATA

For our modelling, we use the APOGEE red clump spectra from
DR14 (Bovy et al. 2014; Majewski et al. 2017). These spectra
comprise 29502 stars with a mean SNR of 210 and range of SNR
of 21–1775. The contamination of red giant branch stars within this
sample is of the order of 5–10 per cent (Bovy et al. 2014). While our
approach is applicable to any stellar population, we select a largely
homogeneous population for this proof of concept, restricting to the
narrow temperature and gravity range of the red clump stars. Doing so
should reduce the number of components required for our Gaussian
Process mixture model, simplifying its inference.

The data have been downloaded from the APOGEE data base
having already been shifted in radial velocity back to the rest
frame and continuum normalized (see Nidever et al. 2015), with
a slight SNR dependence on the continuum normalization that
we discover with our Gaussian Process modelling. The spectra
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Table 1. The list of the 25 elements that we select for our
spectral modelling and their corresponding central wavelength
(in a vacuum) corresponding to Fig. 4.

Element Window centre / Å Elemental family

Al 16723.500 Light odd-Z (green)
C 15582.101 Light (blue)
Ca 16155.176 Alpha (red)
Ce 15789.063 s-process (brown)
Co 16158.700 Iron peak (orange)
Cr 15684.264 Iron peak (orange)
Cu 16010.023 Iron peak (orange)
Fe 15495.100 Iron peak (orange)
Ge 16764.238 s-process (brown)
K 15167.081 Light odd-Z (green)
Mg 15745.000 Alpha (red)
Mn 15221.867 Iron peak (orange)
N 15321.871 Light (blue)
Na 16378.276 Light odd-Z (green)
Nd 15372.342 r-process (purple)
Ni 15559.517 Iron peak (orange)
O 15760.300 Alpha (red)
P 15715.930 Light odd-Z (green)
Rb 15293.534 s-process (brown)
S 15482.319 Alpha (red)
Si 15964.600 Alpha (red)
Ti 15339.241 Alpha (red)
V 15929.052 Iron peak (orange)
Y 15624.142 s-process (brown)
Yb 16502.973 r-process (purple)

cover the range of 15100.80–16999.81 Å, and comprise nb =
8575 spectral bins. Repeated inversion of the nb × nb covariance
matrices required for inference would be prohibitively slow, and we
thus restrict our analysis to a set of 25 spectral windows centred
on lines confidently assigned to 25 different individual elements.
These element windows have been chosen from the set of windows
used to drive the APOGEE abundances in consultation with Jon
Holtzman and Matthew Shetrone (Holtzman et al. 2015; Shetrone
et al. 2015). Specifically, we process all spectral bins within ±1.5
Å of the line centres specified in Table 1, reducing the number of
spectral bins to nb = 343 and hence inversion time by a factor of
∼15000. The elements responsible for these absorption lines can
be grouped into the following nucleosynthetic families: iron-peak,
alpha-process, r-process, s-process, light and light with odd atomic
number. We expect that common production mechanisms should
correlate elemental abundances and hence these spectral windows. To
examine correlations between and within the nucleosynthetic family
members, we colour the elements by their families in relevant figures
throughout the paper, setting out these colours in Table 1.

In selecting the windows to examine, we were confronted with a
series of choices, each of which ultimately impacted the emphasis of
our downstream analysis. Given the potential computational expense
of this modelling approach, for our proof-of-concept analysis we
adopted only a single-line region for every element, but for as many
elements as possible, thereby prioritizing breadth across elements in
our correlation and inpainting investigations. The requirements for a
line to be selected were that it be identified as one of the windows
used by APOGEE in their processing pipeline ASPCAP (Garcı́a
Pérez et al. 2015), as well as being both strong and, where possible,
unblended. In some cases, multiple lines fitted these criteria for a
single element.

3 ME T H O D S

Gaussian processes are a conceptually simple yet extremely powerful
tool for regression and classification (Rasmussen & Williams 2006).
Put briefly, a Gaussian process is a set of random variables whose
joint distribution is multivariate normal, and is therefore fully
specified by a mean function and covariance function. By their (Gaus-
sian) nature, Gaussian processes permit simple, often analytically
tractable, inference of their mean and covariance functions given
(potentially noisy) observations, yielding flexible non-parametric
fits to underlying trends in data and probabilistic predictions for
new observations. As a result, Gaussian processes have found use
throughout astronomy, from cosmology (Bond & Efstathiou 1987)
and cosmography (Shafieloo, Kim & Linder 2012) to models of
instrumental systematics (Gibson et al. 2012), exoplanet popula-
tions (Foreman-Mackey, Hogg & Morton 2014) and stellar spectra
(Czekala et al. 2017).

In this work, we model the underlying ‘true’ spectrum (si), of the
ith APOGEE red clump star as a draw from a Gaussian process with
a mean spectrum (m) and covariance (S) to be inferred from the
data. In typical Gaussian Process models, the covariance function
is taken to be one of a number of standard kernels (Rasmussen &
Williams 2006), chosen to reflect known or assumed properties of
the observation and/or physical process (e.g. stationarity, isotropy, or
periodicity). In the following, we do not assume an analytic form for
our covariance function as is traditional in Gaussian Process models.
Rather, we infer the correlations between the observed spectral bins,
i.e. the individual elements of the covariance matrix. By doing so,
we remove any potential for bias induced by a sub-optimal kernel
choice incorrectly enforcing stationarity, a single correlation length,
or a particular line shape, for example. As a result, we cannot make
predictions for the spectra between the observed bins, though this
would in principle be possible given stellar spectra observed on
shifted or irregularly sampled grids.

We assume the spectral data (d̂ i) have been observed with Gaussian
noise that is uncorrelated between spectral bins, yielding a diagonal
noise covariance matrix (Ni) for each star. Masked pixels are assigned
unit flux and (effectively) infinite noise uncertainties. To account for
the fact that the red clump might consist of multiple distinct sub-
populations (or one population whose distribution of true spectra
is non-Gaussian), we allow for multiple classes to exist in our
model, each described by its own Gaussian process. We assume
non-informative priors on the variables defining these Gaussian
processes, adopting an infinite uniform prior on each mean and an
inverse-Wishart prior on each class’s covariance matrix (Gelman
et al. 2013, p. 73). We define the inverse-Wishart prior to have nb

+ 1 degrees of freedom, thereby placing a uniform prior on inter-
pixel correlations, and a diagonal scale matrix (ε I, with ε = 10−6),
minimizing the impact of the prior relative to the data. We infer the
class membership of each star (κ i), assuming they are sampled from
categorical distributions with class probabilities ( p) drawn, in turn,
from a symmetric Dirichlet prior with concentration parameter α =
1.1 These priors state our beliefs that, a priori: no location is preferred
for the mean spectra; no scale is preferred for the covariance between
two spectral bins; and the stars are as likely to be spread evenly
between classes as they are to be concentrated in a single class. Our
priors make no assumptions about (nor place any constraints on) the

1The nth-order Dirichlet distribution is the set of n-dimensional lists with
elements in the range 0 to 1 that sum to unity. It describes all ways to partition
a data set into n classes, allowing for particular combinations to be preferred
over others if desired.
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Figure 1. Network diagram for our hierarchical Bayesian model which is
a graphical representation of our implemented modelling of the data. See
Table 1 for the parameter descriptions.

physics of the data set, reflecting our desire for a purely data-driven
inference. Should robust physical priors exist in another setting, it is
simple to add them to the analysis.

The data, model parameters, priors and likelihood fully specify our
probabilistic model of the APOGEE red clump data set. This model is
naturally hierarchical, with some parameters describing populations
and others individual stars. This hierarchical nature is made clear
in Fig. 1, in which we plot the model as a network diagram. In
this diagram, random variables are shown as single black circles,
observables as double black circles and fixed parameters as solid
black dots. Links between parameters are indicated by arrows, with
the probabilistic relationships defining the links contained within
orange boxes. The direction of these arrows indicates the order in
which parameters must be drawn in order to forward-model the data.
Finally, populations of objects are contained within red rectangles
or plates, with the indices denoting membership of the population
defined in the bottom left of the plate.

For clarity, we set out our model’s parameters, data and constants
in Table 2 and the probability distributions defining each link in the
top section of Table 3. The particular set of probability distribu-
tions chosen allow for the conditional distributions of each model
parameter to be written analytically: these conditional distributions
are specified in the bottom section of Table 3. We are therefore able
to use Gibbs sampling (Geman & Geman 1984) to estimate the joint

Table 2. Model parameters, data and constants.

quantity Description

ns Number of stars (29502)
nc Number of classes (default: 1)
nb Number of spectral bins (default: 343)
mk Mean spectrum of kth class
Sk Intrinsic spectral covariance of kth class
pk kth class probability: fraction of stars in kth

class
α Concentration parameter of Dirichlet prior on

class fractions
si True spectrum of ith star
κ i Class assignment of ith star
d̂i Observed spectrum of ith star
Ni Noise covariance matrix of ith star

posterior. Gibbs sampling is a special case of Metropolis–Hastings
Monte Carlo (Hastings 1970) in which a single iteration consists
of redrawing each parameter in turn from its conditional distribution
based on the current state of the sampler. For example, in our case, we
first update the class probabilities, then the class memberships, the
true spectra, and finally each class’s mean spectrum and covariance
matrix. Drawing proposed updates from the conditional distributions
means the acceptance probability is, by definition, unity, yielding
a highly efficient sampler even in high-dimensional settings. By
default, we initialize the sampler using the data, generating random
class memberships before setting each class’s mean spectrum and
covariance matrix to the sample mean and covariance of the class
members’ data, and the true spectrum of each object to its observed
data.2 The resulting sampler is written in PYTHON and made publicly
available on Github.3

Our Gaussian Process model goes beyond standard approaches. As
we sample the individual elements of the signal covariance matrix,
the prior for the true spectra is very non-Gaussian. Were we to fit
the covariance once and hold it fixed, as is common in the field, the
true spectra would be Gaussian-distributed. By marginalizing over
the covariance, however, we render these distributions very heavy-
tailed, promoting sparse (i.e. typically small but occasionally large)
excursions from the mean. As a result, we name the code SSSpaNG:
Stellar Spectra as Sparse, data-driven, Non-Gaussian processes.

To demonstrate the effectively non-Gaussian nature of the prior
on each star’s true spectrum we can explicitly marginalize over the
true signal covariance S. Limiting ourselves to a single mixture
component for clarity, we see that

P (si |m) =
∫

P (si |m, S) P (S) dS

∝
∫

|S|− (2nb+3)
2 e− 1

2 Tr([(si−m)⊗(si−m)+εI]S−1)dS

∝ |(si − m) ⊗ (si − m) + εI|− (nb+2)
2 , (1)

where the integral can be performed by identifying the integrand as
an un-normalized inverse-Wishart distribution over S. The result can
be rewritten in the following suggestive form

P (si |m) ∝ e− nb+2
2 ln |(si−m)⊗(si−m)+ε I|, (2)

2We obtain completely consistent results if we initialize the mean and true
spectra to unity and the covariance matrix to the identity matrix.
3https://github.com/sfeeney/ddspectra
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Table 3. Priors, likelihoods, and conditional distributions for Gibbs sampling. In our simplified notation, U, D, N, and W−1 denote
uniform, Dirichlet, normal and inverse-Wishart distributions, respectively.

distribution Form Process

P (mk) U(− ∞, ∞) Prior on kth class’s mean spectrum
P (Sk) W−1 (nb + 1, ε I) Prior on kth class’s spectrum covariance
P ( p|α) D(α) Prior on class probabilities
P (si |m, S, κi ) N

(
mk=κi

, Sk=κi

)
ith object’s spectrum as Gaussian Process

P (κi = k| p) pk ith object’s class membership

P
(

d̂i |si , Ni

)
N (si , Ni ) Noisy, masked spectral measurements

P (mk |Sk, s, κ) N
(

1
nk

∑
κi=k si ,

1
nk

Sk

)
Conditional of kth class’s mean spectrum

P (Sk |mk, s, κ) W−1 (nk + nb + 1, �k + ε I), Conditional of kth class’s spectrum covariance
where �k = ∑

κi=k (si − mk) ⊗ (si − mk)
P (pk |κ, α) D (a), where ak = α + nk Conditional of class probabilities

P
(

si |mk=κi
, Sk=κi

, d̂i , Ni

)
N
(
wi , Wi

)
, Conditional of ith object’s spectrum

where Wi =
(

S−1
k=κi

+ N−1
i

)−1

and wi = Wi

(
S−1

k=κi
mk=κi

+ N−1
i d̂i

)

P (κi = k|m, S, p)
exp

(
− 1

2

[
χ2

i,k
+ln|Sk |

]
+ln pk

)

∑
k′ exp

(
− 1

2

[
χ2

i,k′ +ln|Sk′ |
]
+ln pk′

) , Conditional of ith object’s class membership

where χ2
i,k = (si − mk)T S−1

k (si − mk)

from which it becomes clear that this is a highly sparsifying prior
whose negative logarithm is non-convex. Conceptually, it strongly
prefers spectra close to the class mean, but if a spectrum differs
greatly from the mean it is only penalized logarithmically. Note
that the covariance prior’s scale matrix, ε I, acts to soften the prior,
providing a small but non-zero floor to the determinant that reduces
the preference for spectra exactly matching the mean. This reasoning
explains why Gaussian-process modelling can outperform sparse
image-reconstruction techniques (Sutter et al. 2014).

4 R ESULTS

4.1 Validation of methodology: predicting unmeasured spectral
regions

To avoid the complications of comparing data gathered by different
spectrographs, we validate our model and code by artificially mask-
ing a portion of one of our APOGEE spectra, namely the 15789
Å cerium (Ce II) window of our lowest-SNR star (2M18335753–
1302240), with an SNR measurement of SNR = 21, as listed in
the APOGEE allStar file. We chose this feature, in particular, as
it is a high-value detection in the APOGEE spectral region, being
an s-process element. This feature was initially reported in Cunha
et al. (2017), who have provided measurements for a handful of the
APOGEE stars. Measurements of this element for the full APOGEE
survey would build on its chemodynamical reach. This would enable
the mapping of the neutron capture family, in addition to the alpha,
light and iron-peak elements, across the disc and into the halo and
Local Group (e.g. Nidever et al. 2014; Hayden et al. 2015; Majewski
et al. 2017; Weinberg et al. 2019). Nine windows were identified in
Cunha et al. (2017): we select one (unblended) Ce II window here
(the line centred on 15784.75 Å in air, converted to the vacuum scale
of the APOGEE spectra) for validation of our methodology.

The measured data for this star in the artificially masked region are
plotted in Fig. 2 as a solid black line. The 68 per cent credible interval
for the posterior probability on the star’s true spectrum is plotted
as dark grey, with the corresponding prediction for the observed

Figure 2. This figure demonstrates the validation of our model and method
via the recovery of an artificially masked portion of one star’s spectrum: a 3
Å region of spectrum centred on the cerium line at 15789 Å (see Table 1).
We select a star with an SNR of 21 for this demonstration to highlight the
performance of the model for what would traditionally be considered very
low SNR data. The measured spectrum in this region is shown as a solid black
line; once masked (dashed line) the flux is set to one, with infinite uncertainty.
After fitting our model with the APOGEE data set (including the remainder
of this star’s measured spectrum), we find that the true spectrum for this star
should most likely fall in the dark grey region, and the measured spectrum
(i.e. including instrumental noise) should fall in the light grey region. This is
in excellent agreement with the data.

spectrum [which also takes into account the (known) uncertainty
on the observations] plotted in light grey. This prediction (strictly
speaking, the posterior predictive distribution of the measured data)
is in excellent agreement with the measured data, indicating that our
model is capable of inpainting masked regions without bias. Note, in
addition, that the uncertainty on the true spectrum is much smaller
than the measurement noise, demonstrating our method’s ability to
denoise observed spectra by sharing information between stars [a
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Spectra as sparse non-Gaussian processes 3263

Figure 3. Left: The mean-posterior covariance matrix (S) of the 343 spectral pixels that we model, with the corresponding colour bar giving the magnitude of
this covariance (in units of flux2). The divergent colour map shows the most positive and negative covariances in red and blue, respectively, and zero covariance
as white. This matrix demonstrates that the spectral pixels are highly correlated. Centre: A reduced-rank approximation of the mean-posterior covariance matrix,
constructed using only those eigenvectors with eigenvalues within 10−2 of the largest. This represents a factor of 57 reduction in the number of eigenvectors
used to construct the mean-posterior covariance matrix. Right: The residual between the mean-posterior covariance matrix and its reduced-rank approximation,
boosted by a factor of 50. This nearly diagonal residual shows that most of the variation between the denoised spectra is strongly correlated between spectra
bins.

phenomenon known as shrinkage (see e.g. Busemeyer et al. 2015,
Chapter 13)].

This denoising property is relevant in the regime of extracting
information from both weak lines and lower signal-to-noise data
than typically required. In addition to the neutron capture element,
Ce, the APOGEE spectral region has been shown to contain a
number of r-process neodymium (Nd II) lines, which Hasselquist
et al. (2016) estimates are detectable in ≈18 per cent of APOGEE
spectra using equivalent width fitting techniques. Our expectation is
that this fraction will greatly improve, given our Gaussian process
modelling of the spectral lines, which can fit the true spectra of stars
with lower uncertainty than the measurement noise.

We note that for this illustration we have inpainted one narrow
window of a single star’s spectrum, but this is generalizable to inpaint
any spectral window, for any star. The predictive power to generate
the spectra from the ensemble of all other stars and given prior
measured spectral regions is detailed further in Sections 4.2 and 4.3.

4.2 APOGEE inference: feature correlations across the
abundance windows

Our inference produces samples of the probability, mean spectrum,
and covariance matrix for each class considered, and the true
spectrum and class membership of each object. Focusing initially
on the single-class case, we plot our covariance and mean inference
in Figs 3 and 4, respectively. We plot the mean-posterior covariance
matrix in Fig. 3 (left-hand panel). The covariance has strong off-
diagonal structure, indicating that certain spectral features are highly
correlated and anticorrelated. Its eigenspectrum also decays rapidly:
only 239 of 343 eigenmodes have eigenvalues larger than 10−4 of the
maximum, and only six larger than 10−2 of the maximum. A low-rank
approximation to the mean covariance retaining only the six largest
eigenmodes is plotted in the centre panel of Fig. 3, and the resulting
residuals (multiplied by a factor of 50 to render visible) in the right-
hand panel. Exploiting this decaying eigenspectrum by assuming the
covariance is rank deficient would greatly reduce computation time
(by a factor of roughly 187000 if six modes were retained!) but is
left for future investigation.

The posterior mean of the mean spectrum is plotted in black
in Fig. 4. The mean spectrum is extremely well constrained: its
68 per cent credible interval is narrower than the width of the line. To
illustrate the covariance structure captured by our model, we overlay
50 realizations drawn from our Gaussian process model conditioned
on the APOGEE data, colour-coded by the value they take in the
first spectral bin. These samples can be interpreted as examples of
potential noiseless true spectra that could have led to the data. They
illustrate the variability permitted by the model and highlight certain
clear trends, most notably highly correlated differences in line depths.

We demonstrate our inference of the true spectra of individual
stars in Fig. 5, selecting six illustrative examples. From top to
bottom, we pick out two spectra whose 15789 Å cerium windows
are completely masked; two spectra whose 15372 Å neodymium
windows are fully masked; and the two lowest signal-to-noise spec-
tra. The APOGEE IDs for these stars are 2M00014650+7009328,
2M00031631+0042234, 2M04480027+3337594, 2M06053121–
0631412, 2M18335753–1302240, and 2M18295507–0340512, with
signal-to-noise ratios of SNR = 49, 63, 75, 41, 21, and 23,
respectively. Each panel of Fig. 5 contains two shaded regions. The
pink shaded area indicates the 1σ deviations from the measured
spectra due to noise (these are infinitely wide when the spectrum is
masked); the grey, the 68 per cent posterior credible intervals on the
true spectra.4

Fig. 5 clearly demonstrates our ability to inpaint masked regions
of spectra and denoise low signal-to-noise spectra. The inpainting
results for the cerium window are particularly encouraging. We are
able to make precise (and very different) estimates of these two stars’
spectra in the region of the cerium line, permitting, in principle,
inference of their cerium abundances where none was previously
possible. The same is true for, for example, the aluminium lines of the
third, fourth, and fifth stars, along with the oxygen and germanium
lines of the second, fifth, and sixth stars. While we are also able
to successfully inpaint the neodymium windows for the third and

4Recall that we are inferring the true spectra at the measured spectral bins
only. In this sense, the smooth grey curves are perhaps misleading, as the
posterior uncertainty is strictly infinite between data points.
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3264 S. M. Feeney, B. D. Wandelt and M. K. Ness

Figure 4. The mean-posterior mean spectrum (m) of our Gaussian process model fit using the APOGEE data (black), along with 50 random realizations of
potential true spectra (s). These draws are coloured from purple to yellow according to their flux in the first spectral bin, and serve to demonstrate the correlations
between pixels. Entirely uncorrelated data would show no structure in the colour gradient beyond the first bin; however, we see a clear stratification of yellow
to purple as a function of the flux magnitude for most of the pixels.

fourth stars, our model infers very weak line profiles in both cases,
making an abundance inference challenging. Our ability to denoise
the spectra is obvious for all stars considered: the uncertainties on the
true spectra are in all cases smaller than the measurement uncertainty,
permitting higher precision abundance determination than previously
possible. The sodium line of the last two stars is a particularly good
example of the potential for our method to denoise spectra.

The results presented up to this point assume that the APOGEE
red clump stars belong to a single class (and their true spectra
are therefore realizations of a single Gaussian process). We have
experimented with allowing multiple classes, initializing the sampler
with random class memberships; however, we find little impact on our
final results. The sampler finds slight differences between the classes’
mean spectra (mk) and covariances (Sk), but these are driven by the
initial randomized class memberships: very few stars leave one class
for another during the sampling process, and those that do typically
do so only once, in the sampler’s first iteration. This is because the
probability distribution used for drawing a star’s class membership
(Table 3, last row) drops exponentially with the squared distance
between the star’s true spectrum and each class’s mean spectrum.5 In
very high dimensions, for almost all stars the distance to a new class
is typically much larger than the distance to the current class, and
the probability of transitioning to a new class is essentially zero. As
such, we believe the class assignments are strongly dependent on the
choice of initial state of the Markov chain and hence not meaningful.
Exploring these high-dimensional clustering issues is left to future
work.

4.3 The measured information content in the spectra

We now turn to quantifying the information contained in each
elemental window. Our aim is to determine the regions of spectra
that are most informative about particular elements of interest.
We must note, however, that our elemental windows can contain
spectral features in addition to the central absorption line, and thus
strong correlations between two windows are not necessarily due

5Specifically, the Mahalanobis distance, or number of ‘sigma’ the star’s
spectrum is from the class’s mean.

solely to the central elements themselves. We start with the mean-
posterior covariance within each window, S̄XX , as this describes
the fundamental uncertainty with which we can predict the true
spectrum of a new red clump star having observed our APOGEE
sample. The subscript X here denotes the spectral bins defining the
elemental window of interest. We summarize this covariance matrix
for six elemental windows (X = {C, Na, Mg, Fe, Yb, Ce}: one
from each elemental family) by plotting the root-mean-square (rms)
uncertainty,

σX =
√

diag
[
S̄XX

]
, (3)

in black in Fig. 6. For context, we overlay the typical measurement
uncertainty6 as a grey dashed line. This immediately demonstrates
that our model of the APOGEE spectra allows us to make sub-noise
predictions for some portions of a new star’s spectrum without taking
further data. The results for the ytterbium window are especially
interesting, as the average instrumental noise seems particularly large
in this region.

To determine which windows are the most informative, imagine
observing one window of this new star’s spectrum (corresponding
to, say, element Y) without measurement error. The long-range
correlations present in the inferred covariance matrix (i.e. the fact that
elemental abundances are determined by a finite number of physical
processes) imply that by doing so we should better constrain the
elemental window of interest. To quantify the information gained
about element X by (perfectly) observing element Y, we calculate
the conditional covariance matrix

CXX|Y = S̄XX − S̄XY S̄−1
YY S̄YX. (4)

The conditional covariance contains our full prediction for the
uncertainty on window X having observed window Y, but we must
compress it in order to construct a useful metric for quantifying
information gain. We therefore define our information gain metric to

6The square root of the average noise variance in each spectral bin, where the
average is taken over stars in whose spectra the bin is not masked.
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Spectra as sparse non-Gaussian processes 3265

Figure 5. The measured and inferred spectra of six stars, all with low SNR (top to bottom: 49, 63, 75, 41, 21, and 23), selected to demonstrate our ability to
both inpaint and denoise the data. The spectral regions shown are 3 Å windows centred on the 25 elemental lines from Table 1. The 68 per cent uncertainties on
the observed spectra and inferred ‘true’ spectra are shown as the pink and grey shaded regions, respectively (note the masked regions in the APOGEE spectra
where the measurement uncertainties flare out to infinity). There is excellent agreement between the model and data. The first two spectra have completely
masked cerium lines (15789 Å), but our data-driven model makes a high-precision prediction of the cerium abundances for these stars. The middle two stars’
neodymium (15372 Å) lines are completely masked. Though the model again inpaints these regions successfully, the weakness of this line means recovery of
significant neodymium abundances for these stars remains challenging. All other lines inferred by the model are denoised compared to the raw data, permitting
higher precision estimation of the abundances.
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3266 S. M. Feeney, B. D. Wandelt and M. K. Ness

Figure 6. Root-mean-square uncertainties on the spectra within our illustrative set of elemental windows, centred on features due to C, Na, Mg, Fe, Yb, and Ce,
respectively. The black line shows the uncertainty on the predicted spectrum of a new APOGEE star having not observed any portion of its spectrum; the grey
dashed line indicates the typical uncertainties due to APOGEE noise. The remaining lines show how the uncertainty decreases after having perfectly observed
the 1 ≤ n ≤ 24 most informative elemental windows of the new star’s spectrum, coloured from purple (most informative) to yellow (least informative). The
order in which elements are added is plotted in Fig. 7. Note that the impact of adding observations decreases as the information gain curves of Fig. 7 become
less steep.

be

I = 1

2
log

|SXX|∣∣CXX|Y
∣∣ ≥ 0. (5)

This can be interpreted in two ways. From an information theory
perspective, the differential entropy of an n-dimensional multivari-
ate normal distribution with covariance SXX is n

2

[
1 + log 2π

] +
1
2 log |SXX| (see e.g. Cover & Thomas 2006, Chapter 9). Changing
the covariance matrix to CXX|Y as we do by observing additional

windows therefore changes the differential entropy of the system
(i.e. adds information to it) by precisely I nats. From a geometric
perspective, note that the determinant of a matrix is the hypervolume
of the ellipsoid whose major axes are the eigenvectors of the matrix
and have length of the eigenvalues. The square root of the determinant
of a covariance matrix is therefore the volume of the error ellipsoid
on the quantities of interest, up to a constant prefactor. Our metric
I can therefore also be interpreted as the logarithmic factor of
improvement in predicting window X’s true spectrum obtained by
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observing window Y. Regardless of the interpretation, observing a
new window can only add information, contracting the covariance
matrix (or, in the worst-case scenario, leaving it unchanged), and
thus I cannot be less than zero.

With this metric in hand, we can take each elemental window
in turn and determine the information gained by observing each
other window. The window Y1 with the most negative I is the most
informative about our target window X; indeed, as our metric I is
symmetric, these two elements are the most informative about each
other. We then repeat this process, conditioning on Y1 and each other
window in order to find the second most informative window, Y2,
continuing to add windows until we find the optimal order in which
to build up information on the element of interest. We denote the
list of the n most informative elements Y n = {Y 1, Y 2, . . . , Y n}; the
covariance in window X conditioned on these elements is CXX|Yn .

We plot the results of this process for the six illustrative elements
in Figs 6 and 7. In Fig. 6, we demonstrate how the rms uncertainty
within each elemental window shrinks as we condition on more and
more information, now taking the rms uncertainty to be

σX =
√

diag
[
CXX|Yn

]
. (6)

We plot the rms uncertainties after conditioning on the 1 ≤ n ≤ nb

− 1 most informative windows as a series of solid curves, coloured
from purple to yellow. Observing the most informative window, Y1,
significantly improves the uncertainty on the spectral window of
interest, and conditioning on additional windows continues to add
information, albeit with diminishing returns. After observing all other
windows, the rms uncertainty at the centre of the window of interest
(i.e. directly over the elemental absorption line) has been reduced by
a factor of roughly 2–5.

In Fig. 7, we plot the most informative windows for our six
elements of interest first, along with the information gained by
observing each additional window moving to the right on the x-
axis. The windows’ labels are coloured by their elemental family,
with members of the target element’s family picked out in bold.
Recall that our information gain metric can be interpreted as the
logarithm of the fractional reduction in volume of the error ellipses
on the true spectrum. These plots cover the rough range 1.4 ≤ I ≤
5.3, corresponding to reducing the error volume by factors of 4 to
200. Reflecting the qualitative results of Fig. 6, each of the curves
in Fig. 7 flattens as more elements are observed, indicating that
the single greatest information gain is provided by observing the
most informative elemental window and the bulk of the information
is provided by the first 10 or so elements. None of the curves
plateau, however, and thus all elements provide information on the
window of interest. It is perhaps interesting to note that the most
informative element is not, in general, from the same family as the
element of interest (though this is true for magnesium). We caution
over-interpretation of this point, however, for two reasons: (1) this
conclusion applies only to this specific set of spectral windows and
(2) these windows are broader than the elemental features they are
designed to capture, and can therefore contain information about a
number of elements.

Having discussed our detailed findings for the six illustrative
elemental windows, we now summarize the results for all of the
elemental windows. In Fig. 8, we plot the information gains for
every pair of windows; that is, for each elemental window we plot
the information we would gain by observing each other window
perfectly. As we have demonstrated in Figs 6 and 7, there is much
information to be gained by adding further observations, but given
there are 24! ways of ordering them we will have to make do with the

first. In doing so, we at least discover the most informative elemental
pairs. We present the complete set of information gains in two ways.
In the left-hand panel of Fig. 8, we group the elements by their
families, sorting within each family by increasing atomic number.
The most informative elemental pairs (the brightest yellow pixels)
are Ni-Mn (both iron-peak), Mg-Si (both alpha) and Fe-Ti (iron-
peak and alpha), and this trend is generically true of the families as
a whole: the iron-peak and alpha elements predict both themselves
and each other well. Indeed, these elements also predict the other
families well.

There is considerable structure in this matrix, with patterns of
predictivity common to multiple elements: for example, the majority
of alpha-element and iron-peak rows look very similar. We make a
first pass at sorting using this structure in the right-hand panel of
Fig. 8. We quantify the similarity between the ith and jth rows in the
plotted matrix of information gains using the distance

d(i ↔ j ) =
∑

k

|Iik − Ijk|, (7)

where Iik is the information gain for the ith element from observing
the kth.7 To sort the elements by similar predictivity, we use a simple
greedy algorithm, approximating the global optimum through a series
of locally optimal choices. To start, we pick an initial value of i, then
find the most similar element by determining the row j that minimizes
d(i↔j). We then take element j as the comparator, calculating
distances (d(j↔k)) to find the most similar of the remaining elements,
and repeat until no elements remain. This approach is not guaranteed
to find the global optimum, and indeed depends on the first element
chosen. We therefore repeat the process with each element as the
starting point and select the sorted matrix whose total distance
between rows is minimal.

The resulting sorted matrix, plotted in the right-hand panel of
Fig. 8, has much clearer structure than when sorted by elemental
family. On the whole, the iron-peak elements are most similar as
well as most predictive, closely followed by the alpha elements;
copper, vanadium, and oxygen are, however, notable exceptions to
these patterns. There is also a fairly clean break around rubidium and
nitrogen, beyond which the information gains drop noticeably. Note,
however, that aluminium and copper are moderately informative
about titanium, silicon, magnesium, and cobalt. Our ordering placed
them beyond the Rb-N break; this may well be due to the sub-
optimality of the greedy algorithm.

As cautioned above, all of the conclusions reached thus far are
conditional on the precise definitions of the elemental windows
set out in Table 1. To gain an impression of how generic these
conclusions are, we repeat the above analysis using broader, 5 Å
windows, presenting a version of Fig. 8 for these windows in Fig. 9.
There are numerous notes to make on this figure. First, the scale
extends to larger information gains: these windows are broader,
contain more features and are therefore more predictive. The choice
of first element that minimizes the total distance between rows in the
plot is now neodymium, not nickel, but the structure is still similar:
the most informative elements are from the iron-peak and alpha
group, and these elements’ similar predictivities mean they cluster
in the plot. There is, again, something of a drop in information gains
at nitrogen; however, the iron-peak and alpha elements now predict
the other families better than before. Somewhat surprisingly, for
these windows Y-Ni is the most informative pair. This is, however,

7Note that we use an absolute distance metric here: using a Euclidean distance
metric instead yields similar results.
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Figure 7. Information gains for our illustrative elemental windows obtained by observing the other 24 windows. The x-axis of each panel lists, from left to right,
the window that would provide the most information on the element of interest assuming all previous windows have been observed. To take the top left-hand
panel as an example: one would learn the most about the C window by observing Ni, then adding Ce, Ti, Cr, etc. The y-axis quantifies the resulting information
gain, and can be interpreted as a change in entropy of the system or the factor of reduction in the total uncertainty on the target window’s predicted spectrum
provided by observing the other windows. Note the different y-axis ranges for the six different elements (the most extreme being Yb and Mg): the larger the
overall information gain, the better the elemental window is predicted by the rest of the spectrum. Note also that while the gain from observing successive
elements decreases it does not entirely flatten: each individual element adds information on the target element. Finally, the finite range of these plots indicates
that, though elements are highly correlated, no one perfectly predicts another.

due to an iron line (at around 15626 Å) that appears in the yttrium
window when it is extended to 5 Å. Finally, note that increasing
the bandwidth to 5 Å causes our cobalt and calcium windows to
merge. These two last points serve to highlight again the fact that our

conclusions derive from and apply to the full spectrum within each
window, not necessarily solely to the element whose line defines
the window centre. Careful consideration should be made of how to
define and label windows in future work.
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Spectra as sparse non-Gaussian processes 3269

Figure 8. Information gains for pairs of elemental windows, colour coded from purple to yellow in order of increasing information gain. In the left-hand panel,
the elemental windows are grouped according to their nucleosynthetic family, as indicated by the colour of their label. The iron-peak family of elements (and
Ni, Mn, Fe, and Cr in particular) are the most predictive, followed by the alpha elements (Ti, Si, and Mg in particular). In the right-hand panel, the windows
are sorted to minimize the difference between adjacent rows, thereby clustering elemental windows with similar information content. Note that this does not
discretely separate elements into their nucleosynthetic families, particularly beyond the iron-peak and alpha elements.

Figure 9. Information gains for pairs of elemental windows, as in the right-
hand panel of Fig. 8 (with elements grouped by similar information content),
now using 5 Å windows in place of our standard 3 Å windows. This figure
demonstrates the impact of the precise window definitions on the information
gain: the magnitude of the gains has increased and the ordering of the windows
has changed, though the iron-peak and alpha elements remain most predictive
and grouped as before.

5 D I S C U S S I O N A N D C O N C L U S I O N S

In this work, we have demonstrated how to pool information from
ensembles of stellar spectra in order to denoise and inpaint individual
observations, introducing a method we call SSSpaNG. This has
been done with the goal of optimizing the quality and quantity of
measurements that can be made from stellar spectra, including chem-
ical abundances and ages, from upcoming million-star spectroscopic
surveys. We do so by modelling the distribution of 29502 APOGEE
red clump stars’ spectra as a high-dimensional Gaussian Process
whose covariance matrix describes the variations in spectra within
the population. Inferring the elements of this covariance matrix

directly, we have shown that this completely data-driven model
is capable of capturing the correlations between spectral pixels.
These correlations can be harnessed to yield improved estimates
of individual spectra, along with precise and accurate predictions for
unobserved spectral pixels. By marginalizing over the covariance, we
effectively place a non-Gaussian, highly sparsifying prior on these
inferred spectra, strongly preferring spectra close to the population
mean, but penalizing large deviations only logarithmically. We
produce complete spectra with decreased uncertainties for each
member of the population (reducing flux errors by a factor of 2–
3 for stars with SNR ≈ 20). This denoising will enable improved
abundance inference precision, for all elements, for every star. In
particular, this provides significant opportunity for far higher fidelity
abundance determinations for low SNR spectra. Our method there-
fore significantly enhances the precision of abundance estimation
from data in hand. Equivalently, it suggests that precision abundance
estimates can be achieved with less telescope time per spectrum.

We have demonstrated our method’s potential using the recently
discovered 15789 Å cerium line, a high-value APOGEE target due
to its s-process provenance (Cunha et al. 2017). Our model makes
accurate and precise predictions for this line in low-SNR stars in
which the line is completely masked, permitting confident estimates
of cerium abundances where they would previously have not been
possible.

Modelling the red clump stars’ spectra as a Gaussian Process
also allows us to quantify the information gained by observing
portions of a star’s spectrum, and thereby define the most mutually
informative regions of spectra. We have done so for windows centred
on 25 elemental absorption lines in the APOGEE wavelength range,
demonstrating that the iron-peak and alpha-process elements are
particularly mutually informative. Harnessing this information, we
are able to predict the spectrum in all but one of our example
windows with uncertainty less than the APOGEE noise given high-
precision observations of the single most-informative window. While
we are unable to perfectly predict the flux in any single elemental
window by observing a combination of other windows, we find
that the majority of information about a target window is typically
contained in the 10-or-so most informative windows. This is a
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clear demonstration of the power of using the data themselves
to drive our understanding of the diversity of (and relationships
between) different nucleosynthetic channels. Indeed, the correlation
structure and information content that we can measure directly
should place strong constraints on the physical processes that control
chemical evolution. These relationships could inspire new, data-
driven approaches to chemical evolution modelling (also see Casey
et al. 2019), replacing current theoretical approaches that fail to
reproduce observed elemental yields in detail (e.g. Rybizki, Just &
Rix 2017; Blancato et al. 2019). Our information gain results also
have important repercussions for the design of future observations,
motivating the targeting of carefully selected, restricted spectral
windows that yield strong predictions on a range of unobserved
elements.

It is important at this point to address the current limitations of this
method. The computational cost of the method is dominated by the
matrix inversions required, which scale as the number of spectral pix-
els cubed. For each iteration of the Gibbs sampler, we must perform
one inversion per star and one inversion per class: too many for us to
process the complete APOGEE data set given available resources. In
this work, we have restricted ourselves to narrow windows around
our target elements; however, our results (most notably Figs 7 and 9)
clearly show that there is significant value in including more of the
spectra if possible. There are two obvious ways to achieve this:
by throwing greater computational resources at the problem, or by
exploiting the decaying eigenspectrum of the covariance matrices we
find to infer a low-rank approximation to the covariance.

In the first approach, we can exploit the manifest parallelism in our
algorithm. With access to the same number of CPUs as stars in the
sample one could reduce the number of inversions per CPU per Gibbs
sample to two at most.8 Walltimes for our current 343-pixel runs are
roughly 7 h on 48 Intel Xeon CPUs; with 29502 CPUs the full data set
could therefore be processed in 7.5 d, though RAM-usage considera-
tions might also affect this calculation. While clearly computationally
heavy, this is feasible on existing large computing facilities.

In the second approach, the simplest way to reduce the rank of
the inferred signal covariance matrix is to project the data on to the
largest m < nb principal components of the sample covariance matrix
prior to inference. Unfortunately, as the sample covariance contains
both noise and signal its principal components are suboptimal for
this task, severely degrading the inference. A natural solution would
be to amend our model to explore only covariance matrices with a
restricted structure (e.g. diagonal plus low-rank, along the lines of
Zhang, Sarkar & Mallick 2013). We leave such extensions to future
work.9

In the meantime, we are restricted to carrying out the analysis
in windows as in this work. As the results depend entirely on the
windows selected, the set of windows should be carefully optimized
for the task at hand. In this proof-of-concept paper, we simply

8We must invert each class’s covariance matrix in order to sample the class
memberships and true stellar spectra. We must also invert the sum of each
star’s inverse class covariance matrix and inverse noise covariance matrix in
order to update its true spectrum. While we can parallelize the loops over
classes and stars, the loops must be carried out sequentially, and thus some
CPUs will always perform two inversions. If multiple CPUs were available
for each star, these inversions could also be parallelized, further reducing
walltime.
9The structure of the covariance matrix also implies that certain kernels
could potentially serve as useful covariance functions. Exploration of the
utility of, for example, rational quadratic, Gibbs or mixtures of covariance
functions (Rasmussen & Williams 2006) is also left to future work.

selected the strongest well-defined lines for a range of interesting
elements, using a fixed bandwidth for all windows. For targeted
applications, our information gain metric provides a well-motivated
tool with which to optimize both the positions and widths of the
elemental windows used. We have demonstrated in this work that
restricting to a subset of windows still permits significant denoising
and inpainting. This performance can be adapted to particular goals
through careful definition of the windows; however, cutting the
spectra clearly penalizes our ability to make serendipitous discoveries
of new lines. We have shown here the method’s ability to discover
weak lines in noisy and masked spectra, but this is only possible
because some stars have observed the relevant wavelengths. The loss
of discovery space is a cost that must be weighed against improved
performance in future applications of this work.

The final current limitation of this method is the poor sampling
performance we observe when inferring the properties of multiple
populations in our very high-dimensional APOGEE data. For the
moment, we have chosen to model the red clump with a single class,
asserting that the stars’ binned spectra are distributed as a multi-
variate normal. As such, our handling of contaminants (or outliers)
is suboptimal. Contaminants will manifest as non-Gaussianity or
multimodality in the bulk population, and will therefore increase
the variance of the inferred true spectra and covariance matrix if
incorrectly modelled as a single Gaussian population. We do not
expect contaminants to impact our results strongly, as they are
estimated to make up only 5–10 per cent of our red clump sample
(Bovy et al. 2014), but the same cannot be said for more diverse
data sets. We know that different stellar populations have different
spectral correlation structures: globular clusters, for example, have
known abundance anticorrelations that are not seen in the disc and
field halo stars (e.g. Kraft et al. 1997; Gratton et al. 2015; Pancino
et al. 2017; Carretta 2019). Demonstrating that our sampler can
efficiently and accurately fit multiple classes will allow us to not
only model data sets containing different, potentially non-Gaussian
populations completely, but also discover new populations. This
is particularly interesting as it ties into, for example, a method of
understanding chemodynamical classes in the Galactic halo, which
is expected to consist of discrete chemical sub-systems with different
elemental correlations. As with the other limitations, investigating
modifications to the sampler (simulated annealing, for example) to
address this issue, is left to future work.
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