
HAL Id: insu-03748221
https://insu.hal.science/insu-03748221

Submitted on 9 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Breaking beta: a comparison of mass modelling methods
for spherical systems

J. I. Read, G. A. Mamon, E. Vasiliev, L. L. Watkins, M. G. Walker, J.
Peñarrubia, M. Wilkinson, W. Dehnen, P. Das

To cite this version:
J. I. Read, G. A. Mamon, E. Vasiliev, L. L. Watkins, M. G. Walker, et al.. Breaking beta: a comparison
of mass modelling methods for spherical systems. Monthly Notices of the Royal Astronomical Society,
2021, 501, pp.978-993. �10.1093/mnras/staa3663�. �insu-03748221�

https://insu.hal.science/insu-03748221
https://hal.archives-ouvertes.fr


MNRAS 501, 978–993 (2021) doi:10.1093/mnras/staa3663
Advance Access publication 2020 November 25

Breaking beta: a comparison of mass modelling methods for spherical
systems

J. I. Read ,1‹ G. A. Mamon ,2 E. Vasiliev ,3,4,5 L. L. Watkins ,6,7,8 M. G. Walker,9 J. Peñarrubia,10
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ABSTRACT
We apply four different mass modelling methods to a suite of publicly available mock data for spherical stellar systems. We focus
on the recovery of the density and velocity anisotropy as a function of radius, either using line-of-sight velocity data only or
adding proper motion data. All methods perform well on isotropic and tangentially anisotropic mock data, recovering the density
and velocity anisotropy within their 95 per cent confidence intervals over the radial range 0.25 < R/R1/2 < 4, where R1/2 is the
half-light radius. However, radially anisotropic mocks are more challenging. For line-of-sight data alone, only methods that use
information about the shape of the velocity distribution function are able to break the degeneracy between the density profile and
the velocity anisotropy, β, to obtain an unbiased estimate of both. This shape information can be obtained through directly fitting
a global phase-space distribution function, by using higher order ‘virial shape parameters’ or by assuming a Gaussian velocity
distribution function locally, but projecting it self-consistently along the line of sight. Including proper motion data yields further
improvements, and in this case, all methods give a good recovery of both the radial density and velocity anisotropy profiles.

Key words: galaxies: dwarf – galaxies: general – galaxies: haloes – galaxies: kinematics and dynamics – cosmology: dark
matter.

1 IN T RO D U C T I O N

Many stellar systems are spherical or mildly triaxial, from globular
clusters (White & Shawl 1987) and tiny gas-poor dwarf spheroidal
galaxies (Sanders & Evans 2017) to giant elliptical galaxies (Hubble
1926) and even galaxy clusters (e.g. Limousin et al. 2013). Building
mass models of such systems has a wide range of astrophysical
applications, from hunting for intermediate-mass and supermassive
black holes (e.g. Verolme et al. 2002; Noyola, Gebhardt & Bergmann
2008; van der Marel & Anderson 2010; Vitral & Mamon 2020) to
probing the nature of dark matter (DM; e.g. Walker & Peñarrubia
2011; Read, Walker & Steger 2018, 2019), the stellar mass function
(e.g. Cappellari et al. 2012), or the orbital velocity anisotropy (e.g.
Mamon et al. 2019). The velocity anisotropy is an interesting quantity
to determine as it encodes information about the assembly history of
the system (e.g. Eggen, Lynden-Bell & Sandage 1962). For spherical
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systems, it is typically described by the ‘anisotropy parameter’

β(r) = 1 − σ 2
θ (r)

σ 2
r (r)

, (1)

where r is the spherically symmetric radial coordinate, σ θ (r) is the
tangential velocity dispersion, σ r(r) is the radial velocity dispersion,
and β(r) = 1 for radial orbits, 0 for isotropic orbits, and β(r) → −∞
for circular orbits.

In all of the above applications, we would like to understand
how model biases and systematic errors impact the results. Mock
data – a dynamically realistic representation of the real data for
which we know the true answer – provide an elegant way to
address these questions. Such mocks can be very simple, reproducing
all of the assumptions employed in the analysis of real data, or
highly sophisticated, simulating the effect of data selection and/or
departures from key model assumptions. For the latter, developing
the mock can be a substantial task in its own right, discouraging
broad and deep tests of our methodologies.
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The goal of this article is to compare how four different mass–
orbit modelling algorithms, applied to mock data for a spherical,
single-component, dwarf galaxy, recover the radial profiles of total
density and velocity anisotropy. We focus on specific physical radii,
R = [0.25, 0.5, 1, 2, 4] R1/2, where R1/2 is the projected half-light
radius of the tracer stars, and we consider both line-of-sight (LOS)
velocity data for 1000 and 10 000 tracer stars1 and proper motion data
for 1000 stars. The LOS data are similar to the state-of-the-art data
that are currently available for nearby dwarf galaxies (e.g. Walker,
Mateo & Olszewski 2009), globular clusters (e.g. Watkins et al.
2015a; Kamann et al. 2018), giant elliptical galaxies (e.g. Napolitano
et al. 2014), and clusters of galaxies [with large spectroscopic surveys
such as Sloan Digital Sky Survey (York et al. 2000) and Galaxy and
Mass Assembly survey (Robotham et al. 2010)]. The proper motion
data are similar to what is available for globular clusters (e.g. Bellini
et al. 2014; Watkins et al. 2015b; Zocchi, Gieles & Hénault-Brunet
2017) and what will hopefully become available for dwarf galaxies
from future planned missions (e.g. Strigari, Bullock & Kaplinghat
2007; Theia Collaboration 2017; Massari et al. 2018, 2020).

Our mock data suite is publicly available on the Gaia Challenge
wiki site2 and has already been used to test a number of methods in the
literature (Walker & Peñarrubia 2011; Richardson & Fairbairn 2014;
Bonnivard et al. 2015; Geringer-Sameth, Koushiappas & Walker
2015; Genina & Fairbairn 2016; Zhu et al. 2016; Chiappo et al. 2017;
Read & Steger 2017; Diakogiannis et al. 2019). These mock data
will continue to grow and improve in sophistication over time. Our
central philosophy is that it is much easier to produce a sophisticated
mock than to produce a sophisticated mass modelling tool. Using
such mocks may demonstrate that simple models – e.g. those that
assume spherical symmetry – work sufficiently well to test or rule
out interesting models, or estimate a given parameter of interest. In
this case, increasing the sophistication of the model is not required.
Mock data tests can also help us identify problems in the real data –
for example, if confidence intervals on the model are much smaller
than those expected from the mock.

In this paper, we assess the performance of four mass modelling
methods described in Section 3 through their recovery of the radial
density and velocity anisotropy profiles. Three of these methods,
namely GRAVSPHERE, MAMPOSST, and DISCRETEJAM, are based on
the Jeans (1922) equation of local dynamical equilibrium, while one,
AGAMA, is based on fitting a global distribution function (DF). For
stationary spherical systems without streaming motions, the Jeans
equation is given by (e.g. Binney & Tremaine 2008)

d
(
ν(r)σ 2

r (r)
)

dr
+ 2

β(r)

r
ν(r) σ 2

r (r) = −ν(r)
G M(r)

r2
, (2)

where ν(r) is the tracer density, M(r) is the total enclosed mass, β(r)
is the anisotropy parameter (1), and G is Newton’s gravitational con-
stant. Jeans methods have the advantage that they can be efficiently
implemented, allowing a wide range of models to be explored (e.g.
Read & Steger 2017). Furthermore, since they do not require any
assumption about the form of the DF, they can be constructed to be
formally unbiased (e.g. Read 2014; Read & Steger 2017). However,
disadvantages include the fact that the fits can, in principle, require a
formally negative (i.e. unphysical) DF (e.g. An & Evans 2006). By
contrast, methods like AGAMA have the advantage that they provide

1We define ‘tracer’ stars as massless particles orbiting in the combined
gravitational potential of all stars, gas, DM, etc. in a stellar system.
2http://astrowiki.ph.surrey.ac.uk/dokuwiki/ (under the ‘Spherical & Triaxial’
suite tab).

a full DF that is positive definite and that can be easily convolved
with errors, binary contamination (e.g. McConnachie & Côté 2010;
Spencer et al. 2018), and survey selection functions. However, if the
chosen parametrization of the DF does not contain the true solution,
such methods run the risk of becoming biased (e.g. Garbari, Read &
Lake 2011).

We focus here on a suite of spherical, idealized, mocks with
minimal measurement uncertainties as a starting point. As we shall
see, already this presents a challenge for some methods, primarily
due to the mass–anisotropy degeneracy (e.g. Binney & Mamon 1982;
Read & Steger 2017). More sophisticated mocks that break spherical
symmetry and include the impact of unbound tidally stripped stars,
lower numbers of tracer stars, and multiple independent tracer
populations are also available through the Gaia Challenge wiki
site. These have already been presented in the literature for the
GRAVSPHERE method (Read & Steger 2017; Read et al. 2018; Gregory
et al. 2019), with the result that – at least for 1000 tracers with
small velocity uncertainties – these additional complications do
not dominate the error budget. Other groups have reached similar
conclusions with their own mock data tests, including cosmologically
realistic mocks (e.g. Sanchis, Łokas & Mamon 2004; Wojtak et al.
2009; Kowalczyk et al. 2013; Mamon, Biviano & Boué 2013; Genina
et al. 2020; Hayashi, Chiba & Ishiyama 2020). We will consider such
more sophisticated tests on the methods presented here in future
work.

This paper is organized as follows: In Section 2, we describe the
mock data suite and how it was set up. In Section 3, we describe the
different mass modelling techniques we apply to these mock data.
In Section 4, we apply several modelling methods to the spherical
mocks to examine the accuracy of their inferred density ρ(r) and
velocity anisotropy β(r) profiles. Finally, in Section 5, we discuss
our results and present our conclusions.

2 MO C K DATA

In this section, we describe our mock data; the full ‘default spherical’
suite is summarized in Table 1 and is publicly available at the Gaia
Challenge wiki site.2 All of the mock data have a single population
of massless tracer stars orbiting within a host DM halo. They are
available either without errors or with normally distributed errors
with a standard deviation of 2 km s−1 on the LOS velocities for each
star (larger errors can easily be added to explore their effect, but in this
paper we will focus on the case where the measurement uncertainties
do not dominate over the sampling error). We also include proper
motion data, assuming similarly small measurement errors.

As discussed in Section 1, the Gaia Challenge suite also includes
a host of more realistic triaxial, tidally stripped, and split-population
mocks. We will consider more realistic mocks with individual star-
by-star velocity errors, binary star contamination, contamination
from Milky Way stars, unbound tidally stripped stars, and a realistic
survey selection function in future work. We note, however, that – at
least for mock galaxies similar to the Milky Way ‘classical’ dwarfs –
previous works have found these additional effects to be small (e.g.
Walker & Peñarrubia 2011; Laporte et al. 2013; Read et al. 2018;
Genina et al. 2020).

We label the mocks using the following naming convention:

〈light profile〉〈DM cusp/core〉〈anisotropy〉,
where the 〈light profile〉 can be Plummer-like (Plummer 1911; Plum)
or cusped (NonPlum); the DM halo can be cusped (Cusp) or cored
(Core); and the 〈anisotropy〉 can be isotropic (Iso), of generalized
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980 J. I. Read et al.

Table 1. Parameters of the spherical mock data that we use in this paper. The columns, from left to right, give the
mock data label, the tracer density parameters (see equation 3), the DM halo density parameters (see equation 3),
the velocity anisotropy profile, and the projected half-stellar mass radius. The length units are given in kpc,
while ρ0 has units of 107 M� kpc−3. The mock labelling convention is 〈light profile〉 〈cusp/core〉 〈anisotropy〉,
where the 〈light profile〉 can be Plummer-like (Plum; γ ∗ = 0.1) or cusped (NonPlum; γ ∗ = 1); the DM halo
can be cusped (Cusp; γ D = 1) or cored (Core; γ D = 0); and the 〈anisotropy〉 can be isotropic (Iso; β =
0), of generalized Osipkov–Merritt form (OM; Osipkov 1979; Merritt 1985; see equation 4), or tangentially
anisotropic (Tan; β = −0.5).

Label [r∗, α∗, β∗, γ ∗] [ρ0, rD, αD, βD, γ D] β0, β∞, n, ra R1/2

PlumCuspIso [0.25, 2, 5, 0.1] [6.4, 1, 1, 3, 1] [0, 0, 1, 0] 0.25
PlumCoreIso [1, 2, 5, 0.1] [40, 1, 1, 3, 0] [0, 0, 1, 0] 1.0
NonPlumCuspIso [0.25, 2, 5, 1] [6.4, 1, 1, 3, 1] [0, 0, 1, 0] 0.20
NonPlumCoreIso [1, 2, 5, 0.1] [40, 1, 1, 3, 0] [0, 0, 1, 0] 0.79
PlumCuspOM [0.1, 2, 5, 0.1] [6.4, 1, 1, 3, 1] [0, 1, 2, 0.10] 0.1
PlumCoreOM [0.25, 2, 5, 0.1] [40, 1, 1, 3, 0] [0, 1, 2, 0.25] 0.25
NonPlumCuspOM [0.1, 2, 5, 1] [6.4, 1, 1, 3, 1] [0, 1, 2, 0.10] 0.079
NonPlumCoreOM [0.25, 2, 5, 1] [40, 1, 1, 3, 0] [0, 1, 2, 0.25] 0.20
PlumCuspTan [0.5, 0.5, 5, 0.1] [2.39, 2, 1, 4, 1] [−0.5, −0.5, 2, 0] 0.86
PlumCoreTan [1.75, 0.5, 5, 0.1] [3.0, 4.0, 1, 4, 0] [−0.5, −0.5, 2, 0] 3.0
NonPlumCuspTan [0.5, 0.5, 5, 1.0] [2.39, 2, 1, 4, 1] [−0.5, −0.5, 2, 0] 0.41
NonPlumCoreTan [1.75, 0.5, 5, 1.0] [3.0, 4.0, 1, 4, 0] [−0.5, −0.5, 2, 0] 1.43

Osipkov–Merritt form (OM; see the next section), or tangentially
anisotropic (Tan).

The isotropic and radially anisotropic spherical mocks are a
subset of the mocks presented in Walker & Peñarrubia (2011) (see
Section 2.1); the tangentially anisotropic mocks were generated using
the method outlined in Dehnen (2009) (see Section 2.2). In all cases,
we assume a double-power-law profile (Zhao 1996) for both the
tracer distribution and the host DM halo:

ρX(r) = ρ0

(
r

rX

)−γX
[

1 +
(

r

rX

)αX
](γX−βX )/αX

, (3)

where ρ0 is a normalization parameter, rX sets the scale length, γ X

is the inner asymptotic logarithmic slope, βX is the outer asymptotic
logarithmic slope, and αX controls the sharpness of the transition at
rX. For the tracers, we use the following notation: ν = ρ∗(r; ν0, r∗,
α∗, β∗, γ ∗); for the DM, we write similarly: ρD = ρD(r; ρ0, rD, αD,
βD, γ D).

2.1 Radially anisotropic mocks

The velocity anisotropy coefficient (1) is assumed to depend on radius
as follows:

β(r) = β∞rn + β0r
n
a

rn + rn
a

, (4)

where β0 is the asymptotic anisotropy at small radii, β∞ is the
asymptotic anisotropy at large radii, ra is the transition radius, and n
controls the sharpness of the transition. A familiar special case is the
OM anisotropy profile (Osipkov 1979; Merritt 1985), used already
above for the mock data, in which β0 = 0, β∞ = 1, and n = 2.

For the radially anisotropic mocks, the tracers are set up in
equilibrium inside their host DM halo assuming an OM DF, as in
Walker & Peñarrubia (2011).

2.2 Tangentially anisotropic mocks

The tangentially anisotropic mocks are set up using the ‘made to
measure’ code from Dehnen (2009) that is an evolution of the method
described in Syer & Tremaine (1996). In such methods, an N-body
system is evolved for some time under its own self-gravity, adjusting

the masses of each particle so as to move towards a target phase-
space distribution. The tangentially anisotropic mocks also assume
the form given in equation (3) for the tracer and DM density profiles.

Tangential anisotropy is not expected theoretically, unless signifi-
cant angular momentum is imparted to the system through mergers,
or the system is orbiting within a strong tidal field3 (e.g. Read et al.
2006b). Given the lack of any strong theoretical motivation for a
particular form of tangential anisotropy, we assume a constant β =
−0.5 at all radii to explore whether tangential mocks can or cannot
be successfully recovered.

3 ME T H O D S

In this section, we briefly describe each of the four mass–orbit
modelling methods that will be applied to the mock data.

3.1 GRAVSPHERE

GRAVSPHERE4 is described and tested in detail in Read & Steger
(2017), Read et al. (2018), and Genina et al. (2020). It fits the LOS
velocity variance, which can be written by combining the Jeans
equation (2) with an equation projecting the velocities along the
LOS, yielding (Binney & Mamon 1982)


(R) σ 2
LOS(R)

2
=

∫ ∞

R

(
1−β

R2

r2

)
νσ 2

r

r dr√
r2−R2

, (5)

where 
(R) denotes the tracer surface mass density at projected
radius R.

The radial velocity variance is given by (van der Marel 1994, in
this form by Mamon & Łokas 2005)

σ 2
r (r) = 1

ν(r)g(r)

∫ ∞

r

GM(r̃)ν(r̃)

r̃2
g(r̃)dr̃ , (6)

3Note that in the case of strong tides, such tangential anisotropy would
indicate a departure from the steady-state pseudo-equilibrium assumed by all
of the methods explored here.
4A public version of the code PYGRAVSPHERE can be downloaded from https:
//github.com/AnnaGenina/pyGravSphere.
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where

g(r) = exp

(
2

∫ r

0

β(r̃)

r̃
dr̃

)
(7)

and M(r) is the cumulative mass of the stellar system (due to all stars,
gas, DM, etc.).

GRAVSPHERE uses a free-form, i.e. non-parametric, model for
M(r) that comprises a contribution from all visible matter and a
contribution from ‘DM’ that is described by a sequence of power
laws defined on a set of radial bins. By default, these bins are defined
at R = [0.25, 0.5, 1, 2, 4] R1/2, where R1/2 is the projected half-light
radius of the tracer stars. (This can be changed if the data quality
warrant it, but in this paper we will use only this default choice.)
The tracer light profile is also non-parametric, using a series sum
of Plummer spheres, as in Rojas-Niño et al. (2016). This has the
advantage that the mapping between the spherically averaged tracer
density, ν(r), and the projected light profile, 
∗, is analytic (Read
& Steger 2017). Finally, the velocity anisotropy, β(r), is assumed
to have a form (4) that ensures broad generality while making
the function g(r) (equation 7) analytic. For assigning priors on the
parameters in equation (4), we transform β(r) to a symmetrized
velocity anisotropy, as in Read et al. (2006a) and Read & Steger
(2017):

β̃ = σ 2
r − σ 2

t

σ 2
r + σ 2

t

= β

2 − β
. (8)

This is bounded on −1 < β̃ < 1 (β̃ = −1 corresponds to full
tangential anisotropy, β̃ = 1 to full radial anisotropy, and β̃ = 0
to isotropy), unlike β that tends to −∞ for full tangential anisotropy.

GRAVSPHERE can also use split population or proper motion data,
where available. By default, it also fits the two higher order ‘virial
shape parameters’ (VSPs; Merrifield & Kent 1990; Richardson &
Fairbairn 2014)

vs1 = 2

5

∫ ∞

0
GM (5 − 2β) νσ 2

r r dr (9)

=
∫ ∞

0

〈v4

LOS〉 R dR (10)

and

vs2 = 4

35

∫ ∞

0
GM (7 − 6β) νσ 2

r r3 dr (11)

=
∫ ∞

0

〈v4

LOS〉 R3 dR. (12)

The key advantage of these VSPs is that they involve fourth-order
moments of the LOS velocities 〈v4

LOS〉, but depend only on β(r)
and not on its fourth-order counterparts (Merrifield & Kent 1990;
Richardson & Fairbairn 2014; Read & Steger 2017). Thus, vs1 and
vs2 allow us to obtain additional constraints on β(r) via the LOS
velocities, alleviating the mass–anisotropy degeneracy between the
spherically averaged density profile ρ(r) and the velocity anisotropy
β(r).

The errors on σ LOS, 〈v4
LOS〉, vs1, and vs2 are estimated as in Read

et al. (2018), using a Monte Carlo method that incorporates the
individual measurement errors on each star.

Finally, if proper motion data are available, GRAVSPHERE can also
fit for the radial and tangential plane-of-sky velocity dispersions,
σ POSr and σ POSt, satisfying (e.g. Strigari et al. 2007; van der Marel
& Anderson 2010; Read & Steger 2017)


(R) σ 2
POSr(R)

2
=

∫ ∞

R

(
1 − β + β

R2

r2

)
ν(r) σ 2

r r dr√
r2 − R2

, (13)


(R) σ 2
POSt(R)

2
=

∫ ∞

R

(1 − β)
ν(r) σ 2

r r dr√
r2 − R2

. (14)

This provides an alternative route to breaking the mass–anisotropy
degeneracy since equations (5), (13), and (14) each has differ-
ent dependences on β (see Read & Steger 2017, for further
details).

GRAVSPHERE fits the above model to the surface density profile of
tracer stars, 
∗(R), their LOS projected velocity-dispersion profile
σ LOS(R), and their VSPs using the EMCEE affine invariant Markov
chain Monte Carlo (MCMC) sampler from Foreman-Mackey et al.
(2013). We assume uncorrelated Gaussian errors such that the
Likelihood function is given by L = exp(−χ2/2). We use as default
1000 walkers, each generating 5000 models and we throw out the
first half of these as a conservative ‘burn in’ criterion. Please see
Read & Steger (2017) for further details of our likelihood function,
methodology, and priors.

3.2 DISCRETEJAM

The DISCRETEJAM method uses an alternative approach to solve the
Jeans equations, which were laid out in Section 3.1. There are three
key features of this method: (1) Both the tracer number density profile
ν(r) and the underlying mass density profile ρ(r) are parametrized in
the form of multi-Gaussian expansions (MGEs; Emsellem, Monnet
& Bacon 1994); (2) we fit to the discrete position measurements
for each star, not to a binned tracer-density profile; and (3) we fit
to the discrete velocity measurements for each star, not to a binned
velocity-dispersion profile.

We model the dwarf galaxies using the Jeans Anisotropic MGE
(JAM) models (Cappellari 2008; Watkins et al. 2013; Cappellari
2015). For the spherical mocks that are the focus of this paper, we
use the spherical JAM models, which assume spherical symmetry
and allow for anisotropy (defined in spherical coordinates) but do
not include rotation.

An MGE is characterized by a set of Gaussian components, each
with a width and a weight. If the tracer distribution is made up of Nt

components where each component j has a weight ν j and a width sj,
then the tracer-density profile of the MGE is

ν (r) =
Nt∑

j=1

νj exp

(
− r2

2sj

)
. (15)

Similarly, the mass density ρ(r) can be parametrized by a set of
Nm Gaussians with each component k having weight ρk and width
sk. The density profiles can be fitted analytically (where we fit
MGEs to assumed functional forms and fit for the parameters of
the functional forms) or non-parametrically (where we fit the MGE
properties directly). Here, we choose an analytical approach, but see
Hénault-Brunet et al. (2019) for a non-parametric methodology.

We assume that both the tracer density and DM density are
described by equation (3). The models are insensitive to the nor-
malization of the tracer density ν0, so this leaves us with four free
parameters relating to the tracer distribution (r�, α�, β�, and γ �)
and five relating to the DM distribution (ρ0, rD, αD, βD, and γ D).
We assume that the anisotropy profile is of the generalized OM
form (equation 4) with fixed n = 2. As in the GRAVSPHERE method,
we symmetrize β0 and β∞ using equation (8) to avoid the high
antisymmetry and infinite lower bound for β. This leaves three free
components for the anisotropy: (ra, β̃0, and β̃∞).

We sample scale density ρ0 and scale radii r�, rD, and ra in log
space as negative values would be unphysical; these parameters have
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Table 2. Assumptions and parameters of different methods.

Method GRAVSPHERE DISCRETEJAM MAMPOSST AGAMA

Basis Binned vLOS + VSPs Gaussian vLOS Gaussian v3D f(E, L) f(Jr, L)
Radial binning Yes No No No
ρD(r) Five-piece power law MGE fit to equation (3) Equation (3), α = 1 Equation (3)
ν∗(r) Sum of Plummer models MGE fit to equation (3) Equation (3), α = 2, β = 5 Equation (3) Fitted by DF
β∗(r) Equation (4) Equation (4), n = 2 Equation (4), n = 2 Equation (4), n = 2, β∞ = 1 Fitted by DF
# of free parameters 17 12 9 11 11
Ranges of free parameters:
log10(M200c/M�) Unbounded Unbounded True ± 1 Unbounded
rD/kpc – 0.25 r� ↔ 50 r� True ± 0.5 dex 0.1↔100
αD – 0.5↔2.5 1 0.5↔2.5
βD – 2↔5 2↔6 2.2↔6
γ D – −0.5↔βD −0.1↔2 −0.5↔1.9
log10(r�/kpc) – −2↔1 True ± 0.3 −2↔1 –
α� – 0.5↔2.5 2 0.5↔3 –
β� – 2↔7 5 3.5↔6 –
γ � – −0.5↔β� −0.05↔1.5 0↔1.9 –
˜β0 −1↔1 −0.95↔1 −0.9↔1 −0.5↔1 –
˜β∞ −1↔1 −0.95↔1 −0.9↔1 1 –
log10(ra/kpc) −2↔0 log10(r�) ± 0.3 True ± 0.3 −2↔5 –
n 1↔10 2 2 2 –
� – – – – 0↔2.8
B – – – – 3.2↔12
Minimization EMCEE EMCEE COSMOMC EMCEE

# of chains 1000 100 6 32
Length of chains 5000 20 000 90 000 few × 103

CPU minutes (103 tracers) 360 O(104)a 6 × 15 (the 6 in �) O(103)

Note. aThe run time speeds up if fewer Gaussians are used; a non-parametric approach would use many fewer Gaussians and could be significantly faster.

the potential to explore many orders of magnitude in size when
model fitting, and a dimensionless parameter space is generally more
efficient to search. The other parameters are already dimensionless
by definition.

We use an unbounded flat prior on log ρ0. We restrict the range of
the tracer scale radii to −2 ≤ log10(r�/kpc) ≤ 1 and the DM scale radii
to 0.25 ≤ rD/r� ≤ 50, but otherwise assume flat priors within these
ranges. For transition parameters α� and αD, we use a flat prior in
0.5 ≤ (α�, αD) ≤ 2.5; this eliminates models that change too sharply
or too slowly.

For the outer density slopes, we use flat priors in 2 ≤ β� ≤ 7 and
2 ≤ βD ≤ 5, where the upper limits restrict the steepness based on
observed values. Models with (β�, βD) ≤ 3 are unphysical as they
are not finite; however, some mocks have outer slopes of 3, meaning
that the correct answer is at the edge of the parameter space. To allow
the fits to fully explore the parameter space, we use lower limits of 2
for the outer slopes.

For the inner density slopes, we use flat priors in −0.5 ≤ γ � ≤ β�

and −0.5 ≤ γ D ≤ βD, where the upper limits ensure that the inner
slope is shallower than the outer slope. Formally, for a lower limit
of 0 on the inner slopes we would be appropriate here; otherwise,
we have a negative density component in the MGE fit. However, as
above, some mocks have inner slopes of 0, thus at the edge of the
parameter space. So to allow the models to fully explore the region of
parameter space around the true value, we use lower limits of −0.5
on the inner slopes.

We assume a flat prior on the anisotropy scale radii in 0.5 ≤ ra/r�

≤ 2; both the isotropic and tangential mocks have flat anisotropy
profiles in which case the notion of an anisotropy transition radius
becomes somewhat meaningless, with this choice of prior we give
the models some flexibility, but avoid fitting a potentially undefined
parameter. In theory, −1 ≤ β̃ ≤ 1. In practice, we set a lower
bound of β = −40, which corresponds to β̃ ∼ −0.95 as extremely

tangential models with β̃ ∼ −1 are computationally challenging (and
physically unlikely). We use a flat prior on β̃ within these limits.

For a given set of density parameters, we calculate ν(r)/ν0 or ρ(r)
using equation (3). To this, we fit an MGE using MGEFIT (Cappellari
2002), which we then deproject to obtain the projected surface mass
and tracer-density profiles as needed for the JAM models.5 To each
component j of the tracer MGE, we assign an anisotropy β j by
calculating the value of the generalized OM profile at the radius of
each Gaussian component sj.

Our observables are the spatial distribution of the tracer particles
and the velocity measurements of the tracer particles. We fit to both
discretely; that is we do not bin the tracers but consider each star
individually. We follow the approach laid out in Watkins et al. (2013),
modified as described below. This method is flexible and can be used
to fit only LOS velocity information, only proper motions, or full
3D velocity information. The original method was designed to fit
a binned surface brightness profile, whereas here we fit the tracer
density discretely as well.

Consider a tracer particle i at a projected distance Ri from the
centre of the dwarf with velocity vX,i ± δX,i, where X can be the
right ascension PM (α), the declination PM (δ), or the LOS (z), and
the uncertainties δX,i are assumed to be Gaussian. To fit the spatial
distribution of the tracers, we use the projected tracer density MGE
to calculate the normalized probability Pi = P(Ri) of observing a star
at projected radius Ri. Then, the likelihood of all N tracer particles
is

L� =
N∏

i=1

Pi. (16)

5A PYTHON package MGETOOLS for manipulating MGEs is available at http:
//www.github.com/lauralwatkins/mgetools.
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Mass modelling methods for spherical systems 983

Figure 1. Recovery of the density (top) and symmetrized velocity anisotropy (bottom; see equation 8) for the PlumCoreIso mocks, with LOS velocities for
1000 (left) and 10 000 (right) tracer stars. The data points show the recovery at R = [0.25, 0.5, 1, 2, 4] R1/2, where R1/2 is the projected half-light radius (vertical
dashed line). The thick/thin error bars mark the 68 per cent/95 per cent confidence intervals, respectively. The different colours show results for GRAVSPHERE

(purple), DISCRETEJAM (green), MAMPOSST (blue), AGAMA f ( J) (red), and f(E, L) (orange), as marked in the legend. Each of the methods is slightly offset
left–right from one another to aid clarity (where points are offset, we show the density profile recovery at exactly this offset point). The true mock density and
velocity anisotropy profiles are shown by the black lines.

To fit the velocity measurements, we assume that the LOS velocity
distribution (LOSVD) at a given radius is Gaussian with a mean
velocity of 0 (due to the assumptions of spherical symmetry and no
rotation) and velocity dispersion σ X,i, which we calculate from the
JAM model. Then, the likelihood of all N measurements is

Lkin,X =
N∏

i=1

1√
2π

(
δ2
X,i + σ 2

X,i

) exp

(
−v2

X,i

2
(
δ2
X,i + σ 2

X,i

))
, (17)

which accounts for the fact that the observed dispersion is a convo-
lution of the true dispersion σ X,i and the measurement uncertainties
δX,i. When using only LOS velocity information, the total likelihood
L for the spatial and kinematic distributions combined is then

L = L�Lkin,z. (18)

When using PM and LOS kinematic information, the total likelihood
L becomes

L = L�Lkin,αLkin,δLkin,z, (19)

assuming that the measurements and uncertainties are not correlated.
The posterior probability of the model given the data is then

obtained by multiplying together the likelihood and parameter priors.
By maximizing the posterior, we can locate the family of models
that best fit the data. To efficiently explore our parameter space and
locate the high-posterior region, we use EMCEE (Foreman-Mackey
et al. 2013) with 100 walkers and for 20 000 steps.

3.3 MAMPOSST

MAMPOSST (Mamon et al. 2013) is similar to DISCRETEJAM, as it
fits the full distribution of the individual tracers in projected phase
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984 J. I. Read et al.

Figure 2. As Fig. 1, but for the PlumCuspIso mock.

space. However, while DISCRETEJAM assumes that the LOS velocities
are Gaussian distributed, MAMPOSST avoids this assumption, since
anisotropy affects the shape of the LOSVD (Merritt 1987), and
assumes instead that the local three-dimensional velocity distribu-
tion is Gaussian distributed. More precisely, MAMPOSST assumes
parametric forms for the mass, tracer density, and anisotropy profiles.
In situations where only LOS velocities are available, the density of
tracers in projected phase space (projected radius R and the LOS
velocity vLOS) is the integral of the local velocity distributions along
the LOS:

g(R, vLOS) = 2
∫ ∞

R

h (vLOS|R, r) ν(r)
r dr√
r2−R2

. (20)

MAMPOSST assumes that the local velocity DF h is a Gaussian of zero
mean:

h(vLOS | R, r) = G
(
vLOS, 0, σ 2

LOS

)
, (21)

where σ 2
LOS(R, r) = [1 − β(r)R2/r2] σ 2

r as in the integrand of equa-
tion (5). The likelihood is given by

− lnL = −
∑

i

ln q(Ri, vi | θ ), (22)

where i are the indices of the individual tracers, vi is the LOS
velocity for tracer particle i, θ is the vector of parameters, and q
is the probability density:

q(R, v) = 2π R g(R, v)

Np (Rmax) − Np (Rmin)
, (23)

where Np(R) = ∫ R

0 2πR′ 
(R′) dR′ is the predicted number of
tracers expected within the projected radius R.

MAMPOSST has recently been generalized to include handling of
proper motion data (MAMPOSST-PM; Mamon & Vitral, in prepara-
tion). The full local velocity DF is assumed to be the product of three
Gaussians:

h (v|R, r) = G
(
vLOS, 0, σ 2

LOS(R, r)
)

×G
(
vPOSr, 0, σ 2

POSr(R, r)
)

×G
(
vPOSt, 0, σ 2

POSt(R, r)
)
, (24)

where the plane-of-sky velocity variances are σ 2
POSr(R, r) =

[1 − β(r) + β(r)R2/r2] σ 2
r (r) and σ 2

POSt(R, r) = [1 − β(r)] σ 2
r (r) as

given in the integrands of equations (13) and (14), respectively, where

MNRAS 501, 978–993 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/1/978/6006274 by C
N

R
S - ISTO

 user on 09 August 2022



Mass modelling methods for spherical systems 985

σ 2
r is the solution of the Jeans equation taken from equations (6) and

(7).
The likelihood is now given by

− lnL = −
∑

i

ln q(Ri, vi | θ ), (25)

where i are the indices of the individual tracers, vi is the velocity
vector for tracer particle i, and θ is the vector of parameters, while
the probability density q is now

q(R, v) = 2π R g(R, v)

Np (Rmax) − Np (Rmin)
. (26)

For both MAMPOSST and MAMPOSST-PM, measurement uncertain-
ties are added in quadrature to the predicted LOS and plane-of-sky
velocity dispersions in the local velocity DF h.

The mass profile is assumed to follow equation (3), for which the
enclosed total mass (here assuming only DM contributes) is

M(r) = 4π

3 − γ
ρ0 r3

( rD

r

)γ

× 2F1

[
3−γ

α
,
β−γ

α
,

3−γ

α
+ 1, −

(
r

rD

)α]
, (27)

where α = αD, β = βD, γ = γ D, and 2F1 is the ordinary
hypergeometric function. The MAMPOSST analyses assume αD =
1 and free inner and outer slopes. The tracer-density profile is also
described by equation (3), with β∗ = 5, α∗ = 2, and a free inner
slope γ ∗. Finally, the velocity anisotropy profile has the form of
equation (4) with n = 2 and free β0, β∞, and ra.

The nine free parameters are thus the mass normalization, the
mass scale radius r2, the DM inner and outer slopes γ D and βD, the
stellar scale radius r∗ and inner density slope γ ∗, the inner and outer
anisotropies β0 and β∞, and the anisotropy radius ra.

The minimization is performed with the COSMOMC (Lewis &
Bridle 2002) MCMC sampler, using 6 chains with 90 000 elements,
discarding the first 15 000 elements of each chain for the analysis.
We adopted Rmin = 0 and Rmax = 1.9 kpc for our allowed range of
projected radii. Flat priors were used on the log masses, log scales,
and on the indices and symmetrized anisotropies, with ranges listed
in Table 2.

3.4 DF fitting with the AGAMA library

The AGAMA library (Vasiliev 2019) is a C++ library for constructing
galaxy models using DFs. A DF, f (w), fully describes the distribution
of a population of stars with phase-space coordinates, w ≡ {x, v}. In
a steady state, f only depends on the integrals of motion, I(w),
supported by the potential. The log likelihood of a model M
characterized by the potential �(r) and the DF f (I) is given by
the sum of log probabilities of each star being drawn from this DF (if
we assume that all stars could be observed; i.e. the selection function
is unity):

lnL =
Nstars∑
i=1

ln f
[

I(wi ; �)
]
. (28)

In the case of incomplete data, we need to marginalize over the
probability of each star by integrating over missing phase-space
coordinates. In the case of errors, we need to convolve with the
distribution of errors. For instance, if we have only the projected
radius R and the LOS velocity vz that carries a Gaussian error δvz,

the above expression is modified to

lnL =
Nstars∑
i=1

ln

{ ∫ ∞

−∞
dz

∫ ∞

−∞
dvx

∫ ∞

−∞
dvy

∫ 1

0
dξ

× f
[

I(R, z, vx, vy, vz +
√

2 δvz erf−1(2ξ − 1); �)
]}

,

(29)

where ξ ∼ U(0, 1) marginalizes over velocity error.
We evaluate these multidimensional integrals by using the

Monte Carlo approach. For each star with index i, we construct
an array of Nsamp � 103 ‘sample points’ with missing phase-
space coordinates wi,k assigned from a suitable prior distribution
Pi(w). The marginalized value of DF for the i-th star is fi =∑Nsamp

k=1 f
[

I(wi,k ; �)
]
/Pi(wi,k). Some of these samples would have

a zero probability (e.g. if the energy is positive), but as long as there
remain samples in a valid region of phase space, the total probability
is positive, and hence the log likelihood is finite.

To eliminate the impact of Poisson noise on the relative odds of
different models, we use the same set of sample points for all models
(e.g. McMillan & Binney 2013), and to further improve the accuracy,
we design the priors according to the importance sampling approach;
i.e. we place samples more densely in regions that are expected to
have a higher value of f, thereby approximately equalizing their
contribution to the total sum. Namely, to sample the missing z

coordinate, we determine a smooth non-parametric estimate of the
surface density profile of tracers, deproject it to obtain an estimate of
the 3D density ρ(r), and sample z from ρ(

√
R2

i + z2) at the position
of each star Ri. For the missing velocity components, we estimate
the velocity dispersion of the entire system from the measured values
vz,i, and sample vx,y from a heavy-tailed bell-like distribution with
the same dispersion. The non-uniform sampling is accounted for
when computing the contribution Pi of each sample point to the
marginalization integral; the estimates of the density profile and
velocity dispersion are only used during the initial resampling step,
but not in subsequent fitting.

In a spherical system, the integrals of motion are the energy E
and angular momentum L per unit mass. Alternatively, one may use
actions as the integrals of motion; in this case, E is replaced with the
radial action Jr, defined as

Jr ≡ 1

π

∫ rmax

rmin

vr dr

= 1

π

∫ rmax

rmin

dr

√
2
[
E − �(r)

] − L2/r2, (30)

where rmin and rmax are the roots of the expression under the radical.
For each choice of potential, we pre-compute a high-accuracy 2D
interpolating spline for efficient evaluation of Jr(E, L); thus, using
the action variables adds a minor overhead compared to the use of just
the classical integrals E and L. The advantages of action variables
are not apparent in the context of spherical models, but are more
important in non-spherical cases.

For the density profile of the DM, responsible for the gravitational
potential, we adopt the same five-parameter model in equation (3)
that was used to produce the mocks. On the other hand, we use two
different families of DF: One is expressed in terms of E and L and
the other in terms of radial action Jr and the sum of two other actions
L ≡ Jz + |Jφ |; both have six free parameters.

The first DF family is constructed from a given tracer-density
profile, using the Cuddeford–Osipkov–Merritt inversion formula
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986 J. I. Read et al.

Figure 3. As Fig. 1, but for the PlumCoreOM mock.

(Cuddeford 1991). In this case, we use equation (3) for the tracer-
density profile, which has four free parameters: α∗, β∗, γ ∗, and r∗
(the fifth one, ν0, is fixed by the normalization constraint). Two other
parameters β0 and ra define the anisotropy profile (equation 4 with n
= 2 and β∞ = 1). This DF family includes the true DF of all variants
of models, so we expect to be able to recover the true parameters,
given enough data.

The second family is a generalization of the action-based DF
presented in Posti et al. (2015):

f (Jr , L) = A

(
1 + [

J0/{pJr + (1 − p)L}]η
)�/η

(
1 + [{qJr + (1 − q)L}/J0

]η
)(B−�)/η . (31)

Here, the power-law indices � and B control the steepness of
the density profile at small and large radii, correspondingly; J0

determines the transition between the two asymptotic regimes, η

controls the sharpness of this transition, the mixing parameters p and
q are responsible for the velocity anisotropy at small and large radii,
and finally A is the overall normalization constant, which ensures that
the integral of f over the entire phase space is unity (it is computed
numerically for each choice of six DF parameters and is not a free

parameter by itself). In this case, there are no separate parameters
for the density profile, because it is determined from the DF and the

potential: ν(r) =
•

d3v f
[

I(x, v; �)
]
. However, we do not need

the density per se, since we fit the joint DF of position and velocity.
Since the true DF used to generate the mock data does not belong to
this family of models, we may expect that best-fitting parameters of
the potential could be biased by the constrained form of the adopted
DF.

To explore the parameter space, we use the EMCEE code with 32
walkers evolved for several thousand steps. The evaluation of model
likelihoods is performed using AGAMA.6

3.5 Summary of methods and assumptions

Table 2 summarizes the different assumptions and parametrizations
of the different methods.

6The AGAMA library, together with the complete PYTHON program performing
the DF fitting for this study, is available at http://agama.software.
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Mass modelling methods for spherical systems 987

Figure 4. As Fig. 1, but for the PlumCuspOM mock.

4 R ESULTS

In this section, we present results for each method described in
Section 3 for the recovery of the total density and stellar velocity
anisotropy at R = [0.25, 0.5, 1, 2, 4] R1/2, where R1/2 is the
projected half-light radius, using only LOS velocity data for 1000
and 10 000 tracers. For brevity, we focus on the ‘Plum’ mocks that
are representative of the results from the full suite; for completeness,
we present results for the ‘NonPlum’ mocks in Appendix A. For
all mocks, we applied 2 km s−1 velocity errors to be consistent with
current spectroscopic accuracy for dwarf galaxy data (see Section 1).

4.1 Isotropic mocks

Figs 1 and 2 show the recovery of the density (top) and symmetrized
velocity anisotropy (bottom; see equation 8) for the isotropic mocks
for 1000 (left) and 10 000 (right) tracers. For these isotropic
mocks, all four methods perform similarly well, with the results
improving with increased sampling. The density profile is already
well recovered with 1000 tracers, with all methods recovering the
input solution within their 95 per cent confidence intervals over the
radial range 0.25 < R/R1/2 < 4.

However, the uncertainty on β̃ remains substantial for 1000 tracers.
Increasing their number to 10 000, AGAMA and GRAVSPHERE obtain
the tightest constraints on β̃, with AGAMA – which uses the full shape
information in the DF – having the smallest uncertainties.

4.2 Radially anisotropic mocks

Moving to radially anisotropic mocks (Figs 3 and 4), we now see
a larger difference between the different methods. Each method
recovers some parts of the solution better than others, highlighting
the value of modelling the data with multiple techniques. Overall, the
accuracy of recovery of the potential is tightly linked to the ability of
the method to recover the anisotropy profile of the tracers (cf. Read
& Steger 2017).

For 1000 tracers, MAMPOSST and AGAMA f(E, L) recover β̃(r)
and ρ(r) over the radial range 0.25 < R/R1/2 < 4 within their
95 per cent confidence intervals, for both the PlumCoreOM and
PlumCuspOM mocks. This may reflect the fact that in these methods,
the assumed functional forms for the mass, light, and β̃ profiles
encompass the true solution [in particular, β∞ = 1 in the AGAMA

f(E, L) models]. By contrast, the AGAMA f ( J) models do not fully
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988 J. I. Read et al.

Figure 5. As Fig. 1, but for mocks PlumCoreTan (left) and PlumCuspTan (right) with 1000 tracer stars.

recover the β̃ profile, being more radially anisotropic at small r
and less radially anisotropic at large r. This negatively impacts the
accuracy of potential recovery in the PlumCuspOM case, although
not in the PlumCoreOM case. GRAVSPHERE recovers the anisotropy
profile within its 95 per cent confidence intervals in the PlumCoreOM
case, but performs more poorly in the PlumCuspOM case. Both
DISCRETEJAM and GRAVSPHERE are biased to low ρ(r) beyond R1/2,
while DISCRETEJAM is also biased to high ρ(r) inside R1/2 for
the PlumCoreOM mock. This owes to a bias towards tangential
anisotropy for the DISCRETEJAM method in both PlumCoreOM and
PlumCuspOM mocks that does not diminish even for 10 000 tracer
stars. This behaviour is also seen in the GRAVSPHERE code if the VSPs
are not used in the fit. Read & Steger (2017) show that this bias owes
to the mass–anisotropy degeneracy, combined with the true solution
for this mock lying on the edge of the hypervolume of acceptable
models. Indeed, they show that the correct model is recovered within
the full MCMC chains, but is rare as compared to the large number
of tangentially anisotropic models that fit the data similarly well.

Finally, moving to 10 000 tracers, bias starts to creep in or becomes
more statistically significant in most of the methods. The AGAMA

f(E, L) models still produce good fits within their 95 per cent
confidence intervals, while the f ( J) models retain the biases in
the anisotropy profile in both cases, and in ρ(r) in the PlumCuspOM

case, reflecting the fact that the assumed DF differs from the one used
to set up the mocks (cf. the earlier discussion on this in Section 1).
MAMPOSST also starts to show similarly biased behaviour, with the
inner density underestimated at small radii for the PlumCuspOM
and PlumCoreOM mocks, and bias now present in the recovery of
β̃(r). This likely owes to the assumed Gaussian form of the local
DF being a good, but not perfect, approximation to its true shape.
The DISCRETEJAM method – which is not able to break the mass–
anisotropy degeneracy with LOS data alone – retains the bias seen in
its recovery of the 1000 star mocks, but with smaller error bars. The
GRAVSPHERE method – which is designed to make as few assumptions
as possible about the form of the gravitational potential and the DF
– approaches the true solution more closely, although some bias
towards lower ρ(r) remains at large radii for the PlumCuspOM mock.
This bias is, however, significantly reduced as compared to the 1000
star solution.

Finally, we note that some of the differences in performance
between the different methods owe also to their different priors (see
Table 2). GRAVSPHERE has the loosest priors of all methods presented
here and, correspondingly, the greatest challenge in recovering the
mocks. By contrast, MAMPOSST assumes tighter priors that are
symmetrized around the true solution, DISCRETEJAM uses priors for
the anisotropy and DM scale radii that are tightly linked to the stellar
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Figure 6. As Fig. 1, but for mocks PlumCoreOM (left) and PlumCuspOM (right) including also proper motion data (see the text for details).

density scale radius (which is itself very well recovered), and AGAMA

f(E, L) assumes β∞ = 1, as in the mocks. Moreover, DISCRETEJAM,
MAMPOSST, and AGAMA each assumes the same functional form for
the mass profile as in the mock data (with MAMPOSST fixing the value
of αD), whereas GRAVSPHERE does not. As such, we cannot really
speak of any one method being ‘superior’ to the others; rather, each
has its strengths and weaknesses.

4.3 Tangentially anisotropic mocks

In Fig. 5, we show our results for the tangentially anisotropic mocks,
PlumCoreTan and PlumCuspTan, assuming 1000 tracer stars. Notice
that, similarly to the isotropic mocks, all methods recover ρ(r) within
their 95 per cent confidence intervals over the range 0.25 < R/R1/2

< 4 (top panels), though for the PlumCoreTan mock, DISCRETEJAM

is biased (at 68 per cent confidence) towards cuspy, tangentially
anisotropic mocks and MAMPOSST marginally so. This is similar,
though less severe, to the bias seen for the PlumCoreOm mock and
owes to the mass–anisotropy degeneracy (see discussion above).

All methods successfully detect the tangential anisotropy, though
for 1000 tracers, this is only statistically significant near the half-

light radius (vertical dashed line). Interestingly, both the AGAMA f(E,
L) and AGAMA f ( J) methods become biased at greater than their
95 per cent confidence intervals. AGAMA f ( J) is overly isotropic
in the inner regions and, for PlumCuspTan, overly tangential in its
outer regions, while AGAMA f(E, L) is overly isotropic at all radii.
These biases reflect the assumed parametrization of the DF and the
choice of priors. As discussed above and in Section 1, this will
lead to bias if the phase-space DF of the mock data is inconsistent
with these assumptions, as is the case here. Indeed, the tangentially
anisotropic mocks present a particular challenge for the AGAMA f(E,
L) models, since the true value of β = −0.5 lies at the boundary of
the allowed range (for technical reasons, anisotropic DFs computed
by the Cuddeford–Osipkov–Merritt method are restricted to have
β̃0 ≥ −0.5).

4.4 Adding proper motion data

In Fig. 6, we show the performance of all methods when adding
proper motion data. For this, we consider 1000 tracers for the
PlumCuspOM and PlumCoreOM mocks assuming 2 km s−1 errors
on all three components of the velocity (the other mock data produced
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Figure 7. Illustration of non-Gaussianity of LOSVD in a radially anisotropic model (PlumCoreOM). Left-hand panel: radial profile of the LOS kurtosis
κ ≡ v4/σ 4

full, where σ 2
full ≡ v2 is the LOS velocity dispersion (full second moment of the velocity distribution). For a Gaussian LOSVD, κ = 3; a higher value

indicates a fat-tailed distribution. Solid yellow line is the true κ in the given model; red points with error bars are the binned measured values in the 104-star
mock data set; dotted cyan line with a shaded region is the mean and the 68 per cent interval of values in the AGAMA f(E, L) models; and dash–double-dotted
purple line is the MAMPOSST model prediction (neglecting velocity errors). It is clear that the LOSVD is significantly non-Gaussian with fat tails across the
entire range of radii. The DF-based models are able to capture this behaviour, while the MAMPOSST method reproduces the trend qualitatively but not in detail,
underlining the limitations of using the Gaussian assumption even for the local (not projected) velocity distribution. Grey-shaded region indicates the range of
radii used for the LOSVD in the rightmost panel. Centre panel: radial profile of the full LOS velocity dispersion σ full (dashed blue line) and the width of the
best-fitting Gaussian σGauss (dot–dashed green line). The difference between the two curves indicates the non-Gaussian shape of the LOSVD: The width of the
best-fitting Gaussian is comparable to the width of the main peak of the LOSVD, but is significantly smaller than the true second moment of the LOSVD, which
is heavily influenced by its tails. Red points with error bars are the binned measured values of the Gaussian approximation to the LOSVD in the 104-star mock
data set. Right-hand panel: LOSVD in the penultimate bin (the range of radii indicated by the shaded grey region in the other panels). Solid magenta curve is
the true LOSVD; dashed blue curve is a Gaussian profile with the width given by the full second moment of the LOSVD σ full (the quantity that enters the Jeans
equations); dot–dashed green curve is the best-fitting Gaussian with width σGauss. Neither is a good approximation to the actual LOSVD, which has prominent
fat tails.

comparable results). All three Jeans models constrain the LOS and
radial and tangential dispersion profiles as in Read & Steger (2017),
while the AGAMA DF method uses the 5D phase-space data. As
can be seen in Fig. 6, most methods now recover both ρ(r) and
β(r) within their quoted 95 per cent confidence intervals, although
some biases still remain. GRAVSPHERE underestimates ρ(r) at large
radii, while DISCRETEJAM overestimates ρ(r) at small radii for the
PlumCoreOM mock. AGAMA f ( J) and GRAVSPHERE produce less
radially anisotropic β̃ profiles at large radii for the PlumCuspOM
mock, and AGAMA f ( J) models are slightly radially biased in
the centre. MAMPOSST obtains a good recovery of ρ(r) and the
correct shape for β̃(r), but has β̃(r) biased low at small radii in
PlumCuspOM. None the less, with data of this quality all methods
are able to distinguish the cusped and cored mocks at high confidence.

5 D I S C U S S I O N A N D C O N C L U S I O N S

We have shown that all four mass modelling methods considered in
this paper, using just LOS velocity data, are able to recover both the
density and velocity anisotropy as a function of radius within their
95 per cent confidence intervals over the radial range 0.25 < R/R1/2

< 4, for spherically symmetric mock stellar systems, provided that
the mocks are isotropic or tangentially anisotropic. However, strong
radial anisotropy at large radii presents a more challenging test. Only
methods that utilize some information about the shape of the DF are
able to recover the density and velocity anisotropy profiles of these
mocks. GRAVSPHERE achieves this by using the two fourth-order
‘VSPs’ (Merrifield & Kent 1990); AGAMA achieves it by directly
fitting a DF; and MAMPOSST achieves it by projecting an assumed
local Gaussian velocity DF along the LOS. To illustrate this, in Fig. 7

we show the radial profiles of LOS velocity dispersion and kurtosis
κ , as well as the LOSVD in the outer parts, for the PlumCoreOM
model. Notice that the profiles are substantially non-Gaussian (fat-
tailed) across the entire range of radii, indicated by an elevated value
of κ . The DF-based AGAMA models are able to capture this behaviour,
while the projected Jeans equations used in the DISCRETEJAM method,
which uses only the second moment of the DF, assuming a Gaussian
LOSVD, become biased. Also, MAMPOSST predicts too low and high
values of kurtosis at small and large radii, respectively, explaining
its respective underestimate and overestimate of β at small and large
radii (right-hand panels of Fig. 3).

Adding internal proper motion data for 1000 tracer stars, most
methods recovered both ρ(r) and β(r) within their 95 per cent
confidence intervals over the radial range 0.25 < R/R1/2 < 4,
albeit with some small biases at the largest and smallest radii.
(GRAVSPHERE, in particular, underestimated the density for R > 2R1/2

on these tests.) These findings are in good agreement with previous
work (e.g. Strigari et al. 2007; Read & Steger 2017), demonstrating
the value of obtaining proper motion data for significant numbers
of individual stars in nearby dwarf galaxies. This is just beginning
to become possible now with the advent of combined Hubble Space
Telescope and Gaia proper motions (Massari et al. 2018, 2020; Vitral
& Mamon 2020), but really large data sets will have to wait for the
upcoming Nancy Grace Roman Space Telescope (Sanderson et al.
2017) and proposed space astrometry missions like Theia (Theia
Collaboration 2017).

We conclude that breaking the mass–anisotropy degeneracy is
crucial for obtaining an unbiased measurement of the density profile
and velocity anisotropy of spherical stellar systems. Previous work
has focused on achieving this using multiple tracer populations
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with different scale lengths (e.g. Battaglia et al. 2008; Walker &
Peñarrubia 2011; Amorisco & Evans 2012; Read & Steger 2017).
While this has been shown to work well, it can only be applied to
systems that have distinct populations. In this paper, we have focused
instead on modelling single tracer population data. In this case, with
only LOS velocity data, we have shown that the degeneracy can be
broken by using higher order ‘VSPs’, by directly fitting a global
DF or by self-consistently projecting an assumed local velocity
DF along the LOS. We have also uncovered interesting differences
even between rather similar-looking methodologies, highlighting the
utility of performing detailed tests on mock data and exploring
different mass modelling approaches, as we have done here.

Finally, we note that all of the tests in this paper assumed perfect
data with small (2 km s−1) velocity errors. Already this was chal-
lenging for some methods. Real stellar systems will have additional
uncertainties from binary star and foreground contamination (e.g.
Walker & Peñarrubia 2011; Read et al. 2018), disequilibrium due to
tides (e.g. Kowalczyk et al. 2013; Ural et al. 2015; Read et al. 2018;
Genina et al. 2020), rotation (e.g. Watkins et al. 2013; Zhu et al.
2016), departures from spherical symmetry (e.g. Kowalczyk et al.
2013; Laporte et al. 2013; Mamon et al. 2013; Read & Steger 2017;
Genina et al. 2020; Hayashi et al. 2020), and inconsistency between
the tracer density and kinematic measurements (e.g. Read 2014).
Some of these problems can be ameliorated with better data, for
example, repeat measurements of individual stars to explore binary
contamination (e.g. Koposov et al. 2011; Spencer et al. 2018), metal-
licity measurements to improve foreground separation, and having a
sufficient number of unbiased stars with kinematics that the photo-
metric and kinematic samples are identical. However, some problems
like tides will remain, even with exquisite data (e.g. Kowalczyk et al.
2013; Ural et al. 2015). We will explore these issues further in future
work.
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APPENDI X A : R ESULTS FOR THE REMAINDER
O F T H E SP H E R I C A L M O C K S

For completeness, in this appendix we show the spherically averaged
density profile for the remainder of the spherical mocks with 1000
tracer stars, the ‘NonPlum’ models (Fig. A1).

As can be seen, the results are broadly consistent with those
for the similar ‘Plum’ mocks, with DISCRETEJAM showing a bias
towards cuspy, tangentially anisotropic models, particularly for
NonPlumCoreOm, while MAMPOSST shows an even stronger cuspy
bias for NonPlumCoreIso. As discussed in Sections 4 and 5, this
owes to the mass–anisotropy degeneracy.

Similarly to the PlumCuspOm mock, GRAVSPHERE and DISCRETE-
JAM fall off too steeply at large radii for NonPlumCuspOm; however,
MAMPOSST and AGAMA models also show a similar, albeit less severe,
bias.

Interestingly, all of the models except DISCRETEJAM show a
slight bias towards cores in the innermost region (0.25R1/2) for the
NonPlumCuspIso mock. DISCRETEJAM does not show this bias, but
this is because it shows a bias instead towards tangentially anisotropic
models. (Tangentially anisotropic models require a steeper density
profile to match the data that, in this case, drives a better match with
the input model.) MAMPOSST (and DISCRETEJAM to a lesser extent)
finds instead an even steeper inner density profile than the NFW
model used to build this mock. By contrast, for the NonPlumCuspIso
mock, both GRAVSPHERE and AGAMA are consistent with the input
isotropic DF within their 95 per cent confidence intervals, while
MAMPOSST produces tangential orbits at all radii (not shown for
brevity). As such, the bias towards cores in the NonPlumCuspIso
mock does not owe to the mass–anisotropy degeneracy. We speculate
that it owes instead to the cuspy light profile in this mock yielding a
poorer radial sampling of the stellar kinematics. (For a fixed number
of tracers, cuspier light profiles will have relatively fewer sample
points at large radii.) This warrants further investigation in future
work. However, we note that it is unlikely to impact most real stellar
systems, since these typically have a much shallower inner tracer-
density profile than the rather extreme ‘NonPlum’ mocks explored
here (see e.g. Read et al. 2019, for nearby dwarf galaxies).
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Figure A1. As Fig. 1 but for the ‘NonPlum’ spherical mocks, as marked on the panels.
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