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Abstract

The first measurements of the 21 cm brightness temperature power spectrum from the epoch of reionization will
very likely be achieved in the near future by radio interferometric array experiments such as the Hydrogen Epoch
of Reionization Array (HERA) and the Square Kilometre Array (SKA). Standard MCMC analyses use an explicit
likelihood approximation to infer the reionization parameters from the 21 cm power spectrum. In this paper, we
present a new Bayesian inference of the reionization parameters where the likelihood is implicitly defined through
forward simulations using density estimation likelihood-free inference (DELFI). Realistic effects, including
thermal noise and foreground avoidance, are also applied to the mock observations from the HERA and SKA. We
demonstrate that this method recovers accurate posterior distributions for the reionization parameters, and it
outperforms the standard MCMC analysis in terms of the location and size of credible parameter regions. With the
minute-level processing time once the network is trained, this technique is a promising approach for the scientific
interpretation of future 21 cm power spectrum observation data. Our code 21cmDELFI-PS is publicly available at
this link (https://github.com/Xiaosheng-Zhao/21cmDELFI).

Unified Astronomy Thesaurus concepts: H I line emission (690); Astrostatistics (1882); Bayesian statistics (1900);
Neural networks (1933); Reionization (1383)

1. Introduction

The cosmic 21 cm background from the epoch of reioniza-
tion (EoR; Furlanetto et al. 2006) can provide direct constraints
on the astrophysical processes regarding how H I gas in the
intergalactic medium (IGM) was heated and reionized by the
first luminous objects (see, e.g., Dayal & Ferrara 2018; Kannan
et al. 2022) that host ionizing sources. Observations of the
21 cm signal with radio interferometric array experiments,
including the Precision Array for Probing the Epoch of
Reionization (PAPER; Parsons et al. 2010), the Murchison
Wide field Array (MWA; Tingay et al. 2013), the LOw
Frequency Array (LOFAR; van Haarlem et al. 2013), and the
Giant Metrewave Radio Telescope (GMRT; Intema et al.
2017), have focused on the measurements of the power
spectrum of the 21 cm brightness temperature fluctuations
(hereafter “21 cm power spectrum”) with stringent upper limits
on it (Paciga et al. 2013; Pober et al. 2015; Mertens et al. 2020;
Trott et al. 2020; Abdurashidova et al. 2022). In the near future,
the first measurements of the 21 cm power spectrum from the
EoR will very likely be achieved by the Hydrogen Epoch of
Reionization Array (HERA; DeBoer et al. 2017) and the
Square Kilometre Array (SKA; Mellema et al. 2013) with high
signal-to-noise ratio.

The 21 cm power spectrum is a two-point statistic that is
sensitive to the parameters in the reionization models (hereafter
“reionization parameters”). To shed light on the astrophysical
processes during reionization, posterior inference of reionization
parameters from future 21 cm power spectrum measurements can

be performed with the Monte Carlo Markov Chain (MCMC)
sampling. In the standard MCMC analysis, a multivariate
Gaussian likelihood approximation is explicitly assumed, as in
the publicly available code 21CMMC (Greig & Mesinger 2015,
2017, 2018).5 Nevertheless, the predefined likelihood approx-
imation may be biased, thereby misestimating the posterior
distributions.
To solve this problem, simulation-based inference (SBI;

Papamakarios 2019; Cranmer et al. 2020), or so-called
“likelihood-free inference” (LFI), is proposed, whereby the
likelihood is implicitly defined through forward simulations.
This allows building a sophisticated data model without relying
on approximate likelihood assumptions. In the Approximate
Bayesian Computation (ABC; Cameron & Pettitt 2012; Schafer
& Freeman 2012; Hahn et al. 2017), the posterior distribution is
approximated by adequate sampling of those parameters that
are accepted if the “distance” between the sampling and the
observation data meets some criterion. However, the conv-
ergence speed of the ABC method is slow in order to get the
high-fidelity posterior distribution.
Recently, machine learning has been extensively applied to

21 cm cosmology (e.g., Kern et al. 2017; Shimabukuro &
Semelin 2017; Schmit & Pritchard 2018; Gillet et al. 2019;
Jennings et al. 2019; Hassan et al. 2020; Choudhury et al.
2022; Zhou & La Plante 2022; Prelogović et al. 2022; Sikder
et al. 2022 and references therein). Specifically, Shimabukuro
& Semelin (2017) and Doussot et al. (2019) applied neural
networks to the estimation of reionization parameters from the
21 cm power spectrum. It is worth noting that such machine-
learning applications to 21 cm cosmology are mostly point
estimate analyses, i.e., without posterior inference for
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recovered parameters. In Zhao et al. (2022) (hereafter referred
to as Z22), we introduced the density estimation likelihood-free
inference (DELFI; Alsing et al. 2018, 2019 and references
therein) to the 21 cm cosmology, with which the posterior
inference of the reionization parameters was performed for the
first time from the three-dimensional tomographic 21 cm light-
cone images. As a variant of LFI, DELFI contains various
neural density estimators (NDEs) to learn the likelihood as the
conditional density distribution of the target data given the
parameters, from a number of simulated parameter–data pairs.
It has been demonstrated to outperform the ABC method in
terms of the convergence speed to get the high-fidelity posterior
distribution (Alsing et al. 2018).

DELFI is a flexible framework to give the posterior inference
of model parameters from data summaries. While the 21 cm
power spectra have physical meaning as a summary statistic,
from the DELFI point of view, these power spectra are just data
summaries of the forward simulations. As such, in this paper,
we will apply DELFI in an amortized manner to the problem of
posterior inference of reionization parameters from the 21 cm
power spectrum. To mock the observations with the HERA and
SKA, we will also take into account realistic effects, including
thermal noise and foreground avoidance. We will compare the
results of DELFI with the standard MCMC analysis using
21CMMC. To avoid overconfidence in the SBI (Hermans et al.
2021), we will post-validate both marginal and joint posteriors
from the SBI (Gneiting et al. 2007; Harrison et al. 2015;
Mucesh et al. 2021; Zhao et al. 2021) with statistical tests. To
facilitate its application to future observation data, our code,
dubbed 21cmDELFI-PS, is made publicly available.6

The rest of this paper is organized as follows. We summarize
DELFI in Section 2, and describe the data preparation in
Section 3, including the simulation of the 21 cm signal and the
application of realistic effects. We present the posterior
inference results and their validations in Section 4, and make
concluding remarks in Section 5. We leave the mathematical
definitions of validation statistics to Appendix A, and the effect
of the sample size to Appendix B.

2. DELFI Methodology

We summarize DELFI in this section, and refer interested
readers to Alsing et al. (2018, 2019) and Z22 for details.
DELFI is based on forward simulations that generate data d

given parameters θ. If data vectors are of large dimensions, it is
necessary to compress the data d into data summaries t that are
of small dimension. DELFI contains various NDEs to learn the
conditional density p(t|θ) from a large number of simulated
data pairs {θ, t}. NDEs that have been demonstrated to work
include mixture density networks (MDN; Bishop 1994) and
masked autoregressive flows (MAF; Papamakarios et al. 2017).
With the conditional density, the likelihood p(t0|θ) can be
evaluated at any data summary t0 from observed data. Then
the posterior can be inferred using Bayes’ Theorem,
p(θ|t0)∝ p(t0|θ) p(θ), where p(θ) is the prior. The workflow
of 21cmDELFI-PS is illustrated in Figure 1.
There are two choices in the application of DELFI:

amortized inference and active-learning inference (aka multi-
round inference). While it usually needs a large number of
preprepared simulations for training the NDEs, amortized
inference trains the global NDEs only once and the inference
from an observation is quick, so post-validations with many
mock observations cost only a reasonable amount of computing
time. On the other hand, active-learning inference focuses on
the most probable region during inference and only trains the
NDEs optimized in this local region, so it can effectively save
the cost for simulations for inference with data from only one
observation. However, this “training during inference” process
should be repeated for inference with a new set of observational
data, so it is computationally expensive to implement post-
validations with many mock observations, each using active-
learning inference. While the active-learning inference is a
valid option in our code package 21cmDELFI-PS, we choose
to use the amortized inference in this paper for the purpose of
posterior post-validations.
Our code 21cmDELFI-PS employs the PYDELFI7 pack-

age for the DELFI implementation. We choose the MAFs
(see Z22 for a detailed description) as the NDEs with fixed
architectures that we find are flexible enough to handle all
levels of data sets in 21cmDELFI-PS. For all MAF
architectures, we set two neural layers of a single transform,
50 neurons per layer, and five transformations in the MAFs.
Ensembles of the MAFs are employed (Alsing et al. 2019;
Hermans et al. 2021), and the output posterior is obtained by
stacking the posteriors from individual MAFs with weights
according to their training errors.
With the trained NDEs, it takes only about 5 minutes with a

single core of an Intel Xeon Gold 6248 CPU (base clock speed

Figure 1. The workflow of 21cmDELFI-PS. Here, the “simulator” refers to 21cmFAST, which generates the 21 cm light-cone data cube (“data”) with the
reionization parameters (“parameters”). The “compressor” refers to the the procedure of generating the 21 cm power spectra (“summaries”) from the data. The NDEs
take the parameter–summary pairs (θ, t) as the input and are trained to learn the conditional density p(t|θ). The posterior distribution is inferred from the data
likelihood evaluated at observation t0 and parameter prior, using Bayes’ Theorem. Figure adapted from Figure 1 of Z22.

6 https://github.com/Xiaosheng-Zhao/21cmDELFI 7 https://github.com/justinalsing/pydelfi
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2.50 GHz) to process a mock observation and generate the
posterior distribution. We plot the posterior contours with the
emcee module, and run 100 walkers for 1600 steps, with the
first 600 steps dropped as “burn-in.”

3. Data Preparation

3.1. Cosmic 21 cm Signal

The 21 cm brightness temperature at position x relative to the
CMB temperature can be written (Furlanetto et al. 2006) as

( ) ˜ ( ) ( )[ ( )] ( )⎜ ⎟
⎛
⎝

⎞
⎠

d= + -x x xT z T z x
T

T
, 1 1 , 1

S
21 21 H I

CMB

where ˜ ( ) [( ) ]( ) ( )= + W WT z z h h27 1 10 0.15 0.02321 m
2

b
2

in units of mK. Here, xH I(x) is the neutral fraction, and δ(x)
is the matter overdensity, at position x. We assume the baryon
perturbation traces the cold dark matter on large scales, so
d d=rH

. In this paper, we focus on the limit where spin
temperature TS? TCMB, likely valid soon after reionization,
though this assumption is strongly model-dependent. As such,
we can neglect the dependence on spin temperature. Also, as a
demonstration of concept, we ignore the effect of peculiar
velocity; such an effect can be readily incorporated in forward
simulations by the algorithm introduced by Mao et al. (2012).

In this paper, we use the publicly available code
21cmFAST8 (Mesinger & Furlanetto 2007; Mesinger et al.
2011), which can be used to perform semi-numerical simula-
tions of reionization, as the simulator to generate the data sets.
Our simulations were performed on a cubic box of 100
comoving Mpc on each side, with 663 grid cells. Following the
interpolation approach in Z22, the snapshots at nine different
redshifts of the same simulation box (i.e., with the same initial
condition) are interpolated to construct a light-cone 21 cm data
cube within the comoving distance of a simulation box along
the line of sight (LOS). We concatenate 10 such light-cone
boxes, each simulated with different initial conditions in
density fields but with the same reionization parameters,
together to form a full light-cone datacube of the size
100× 100× 1000 comoving Mpc3 (or 66× 66× 660 grid
cells) in the redshift range 7.51� z� 11.67. To mimic the
observations from radio interferometers, we subtract from the
light-cone field the mean of the 2D slice for each 2D slice
perpendicular to the LOS, because radio interferometers cannot
measure the mode with k⊥= 0.

We divide the full light-cone 21 cm datacube into 10 light-
cone boxes, each with the size of (100 cMpc)3 (or 663 grid
cells), and calculate the light-cone 21 cm power spectrum,
defined by ( ) ( ) ( ) ( ) ( )p dá ¢ ñ = + ¢

~ ~
k k k kT z T z P k z, , 2 ,21 21

3
21 .

We also use the dimensionless 21 cm power spectrum,
( ) ( ) pD ºk z k P k z, , 221

2 3
21

2. For each box, we choose to
group the modes in Fourier space into 13 k-bins—the upper
bound of each k-bin is 1.35 times that of the previous bin. We
then combine 10 such power spectra at different central
redshifts into a single vector with the size of 130.

We parameterize our reionization model as follows, and refer
interested readers to Z22 for a detailed explanation of their
physical meanings.

(1) ζ, the ionizing efficiency, which is a combination of
several parameters related to ionizing photons. In our paper, we
vary ζ as 10� ζ� 250.
(2) Tvir, the minimum virial temperature of halos that host

ionizing sources. In our paper, we vary this parameter
as  ( )T4 log K 610 vir .
Cosmological parameters are fixed in this paper as (ΩΛ, Ωm,

Ωb, ns, σ8, h)= (0.692, 0.308, 0.0484, 0.968, 0.815, 0.678)
(Planck Collaboration et al. 2016).

3.2. Thermal Noise

For the thermal noise estimation in this paper, we follow the
treatment of the 21CMMC code, for the purpose of comparison
on the same ground. The 21CMMC code employs the
21cmsense module9 (Pober et al. 2013, 2014) to simulate
the expected thermal noise power spectrum. We summarize the
main assumptions here, and refer interested readers to Pober
et al. (2013, 2014) and Greig & Mesinger (2015, 2017) for
details.
The thermal noise power spectrum of any one mode of uv

pixels can be estimated as

( ) ( )
p

D »
W¢

k X Y
k

t
T

2 2
, 2N

2 2
3

2 sys
2

where X2Y is a conversion factor converting observed
bandwidths and solid angles to comoving volume in units of
( )-h Mpc1 3,W¢ is a beam-dependent factor (Parsons et al. 2014;
Pober et al. 2014), and t is the total integration time of all
baselines on that particular k-mode. The system temperature
Tsys= Trec+ Tsky , where Trec is the receiver temperature and
Tsky is the sky temperature, which can be modeled (Thompson
et al. 2001) as ( )n= -T 60 300 MHz Ksky

2.55 .
The total noise power spectrum for a given k-mode combines

the sample variance of the 21 cm power spectrum and the
thermal noise using an inverse-weighted summation over all
the individual measured modes (Pober et al. 2013; Greig &
Mesinger 2017),

( )
( ( ) ( ))

( )⎜ ⎟
⎛

⎝

⎞

⎠
ådD =

D + D
+

-

k
k k

1
, 3

i i
T S
2

N,
2

21
2 2

1 2

where ( )dD + kT S
2 is the total uncertainty from thermal noise and

sample variance in a given k-mode, ( )D kiN,
2 is the per-mode

thermal noise calculated with Equation (2) at each independent
k-mode measured by the array as labeled by the index i, and

( )D k21
2 is the cosmological 21 cm power spectrum (which

contributes as the sample variance error here).
In this paper, for 21cmDELFI-PS, we draw a random noise

that follows the normal distribution ( ( ( )) )dD +N k0, T S
2 2 , i.e.,

with zero mean and the variance of ( ( ))dD + kT S
2 2, at each

wavenumber k for each sample, and add this noise to the
cosmological 21 cm power spectrum in order to generate the
mock 21 cm observed power spectrum. As an example, we
illustrate the cosmological 21 cm power spectrum, thermal
noise, and the mock observation in Figure 2.
In this paper, we consider the mock observations with

HERA and SKA, and follow Greig & Mesinger (2015, 2017)
for array specifications—except for the minor changes in the

8 https://github.com/andreimesinger/21cmFAST 9 https://github.com/steven-murray/21cmSense
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SKA design as specified below. For both telescopes, we
assume the drift-scanning mode with a total of 1080 hr
observation time (Greig & Mesinger 2015). We list the key
telescope parameters to model the thermal noise in Table 1.

(1) HERA: we use the core design with 331 dishes forming a
hexagonal configuration, with a diameter of 14 m for each dish
(Beardsley et al. 2015).

(2) SKA10: we only focus on the core area with 224 antenna
stations randomly distributed within a core radius of about
500 m. The sensitivity improvements due to the arms of the
SKA array distribution are negligible.

3.3. Foreground Cut

To remove the bright radio foreground, we adopt the
“moderate” foreground avoidance strategy in the 21cmSense
module. This strategy (Pober et al. 2014) avoids the foreground
“wedge” in the cylindrical (k⊥, k∥) space, where the “wedge” is
defined to extend 0.1 hMpc−1 beyond the horizon limit (with
the slope of about 3.45 at z= 8). This also incorporates the
coherent addition of all baselines for a given k-mode.

3.4. Database

We use the Latin Hypercube Sampling to scan the
reionization parameter space. For the mock observations with
only a cosmological 21 cm power spectrum, we generate
18,000 samples with different reionization parameters used for
training the NDEs, and 300 additional samples for testing or
validating the DELFI. For the mock observations with noise
and foreground cut, we generate 9000 samples with different
reionization parameters, and make 10 realizations of total noise
and foreground cut for each such sample—because the noise is
random—so a total of 90,000 samples are used for training
the NDEs, and 300 additional samples are used for testing the
DELFI. We discuss the effect of the sample size on the

inference performance in Appendix B. The initial conditions
for all samples (with different reionization parameters) were
independently generated by sampling spatially correlated
Gaussian random fields with the matter power spectrum given
by linear theory.

3.5. The 21CMMC Setup

For the purpose of comparison, we also run the 21CMMC
code. We summarize the main setup of 21CMMC here, and refer
interested readers to Z22 for the details. We generate the mock
power spectra at 10 different redshifts, each estimated from a
coeval box of 100 comoving Mpc on each side. Strictly
speaking, power spectra from the light-cone boxes should be
employed in both mock observation and MCMC sampling for
21CMMC, because the 21cmDELFI-PS is based on the light-
cone datacube. However, the 21CMMC analysis from the coeval
boxes does not significantly change the inference results, since
the light-cone effect is only non-negligible at large scales.
Since the 21CMMC analysis is not the focus of our paper and
only serves for comparison, we choose to use coeval boxes in
both mock observation and MCMC sampling for 21CMMC
herein, for self-consistency, to save computational time. This at
least avoids the bias caused by using the light-cone box for the
mock observation and the coeval box in the MCMC sampling
(Greig & Mesinger 2018).

Figure 2. An example of the 21 cm power spectrum in the wavenumber range 0.15 � k � 1.0 Mpc−1 at z = 7.67 (left) and z = 11.47 (right). Shown are the
cosmological light-cone 21 cm power spectrum from the 21cmFAST simulation (red lines) with the reionization parameters defined in Table 2, with the shaded orange
regions around it representing the total noise power spectrum (including the contributions from thermal noise and sample variance errors), assuming the measurements
with HERA. We also show the thermal noise (black lines), which dominates over the sample variance error, and the mock observed power spectrum (blue dots) with
error bars representing the total noise.

Table 1
Specifications for Radio Interferometric Arrays

Parameter HERA SKA

Telescope antennas 331 224
Dish diameter (m) 14 35
Collecting area (m2) 50953 215513
Trec(K) 100 0.1Tsky + 40
Bandwidth (MHz) 8 8
Integration time (h) 1080 1080

10 See the SKA1-low configurations in the latest technical document
at this link.
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In the case with the thermal noise and foreground cut, the
total noise power spectrum in Equation (3) is used as the
variance of the likelihood function, to include the noise for
21CMMC. In the hypothetical case where there is no thermal
noise or foreground in the mock observations, the likelihood
function only includes the sample variance from the mock
observation, ( ) ( )=P P k N ksv 21 , where N(k) is the number of
modes in the spherical shell of k-bin. We turn off the modeling
uncertainty parameter in 21CMMC that parameterizes the
systematics in the semi-numerical simulations.

We perform the Bayesian inference with 200 walkers for the
case of only cosmological 21 cm signal. For each walker, we
choose the “burn-in chain” number to be 250, and the main
chain number to be 3000. (See the tests in Z22.) For the case
with the realistic effects, we employ only 100 walkers with the
other settings being the same, because of the convergence of
the 21CMMC results.

4. Results

4.1. Posterior Inference for Mock Observations

In this section, we test the Bayesian inference by
21cmDELFI-PS and compare its results with 21CMMC. As
a demonstration of concept, we consider two representative
mock observations, the “Faint Galaxies Model” and the “Bright
Galaxies Model,” whose definitions are listed in the “True
value” columns in Tables 2 and 3, respectively, following
Greig & Mesinger (2017). These models are chosen as two
examples with extreme parameter values. Their global
reionization histories are similar, but reionization in the “Faint
Galaxies Model” is powered by more abundant low-mass
galaxies yet with smaller ionization efficiency (due to the
smaller escape fraction of ionizing photons) than in the “Bright
Galaxies Model,” so the H II bubbles in the former are smaller
and more fractal than in the latter. In Tables 2 and 3, we list the
median and 1σ errors of posterior inference for both mock
observations, respectively.

In the hypothetical case where there is no thermal noise or
foreground in the mock observations of the cosmological 21 cm
power spectrum, we show the results of posterior inference for

both mock observations in Figure 3. Both 21cmDELFI-PS
and 21CMMC can recover posterior distributions for the
reionization parameters in the sense that the medians are
within the estimated 1σ confidence region. However,
21cmDELFI-PS outperforms 21CMMC in terms of the
location and size of credible parameter regions. Quantitatively,
for the “Faint Galaxies Model,” the systematic shift (i.e.,
relative errors of the predicted medians with respect to the true
values) and the 1σ statistical errors are 0%± 0.23%
(−0.55%+0.70%

−0.53%) for ( )Tlog10 vir with 21cmDELFI-PS
(21CMMC), respectively, and 0.27%± 0.74% (−2.2%+1.8%

−1.6%)
for zlog10 with 21cmDELFI-PS (21CMMC), respectively. Not
only are the predicted medians of 21cmDELFI-PS much
closer to the true values than 21CMMC, but also the estimated
statistical errors in the former are 2− 3 times smaller than in
the latter. These results hold generically for the “Bright
Galaxies Model,” as well. In 21CMMC, an explicit likelihood
assumption is made, namely that the likelihood is a multivariate
Gaussian, with independent measurements at each redshift and
at each k-mode. Our results question the validity of this explicit
likelihood assumption in the hypothetical case where there is
no thermal noise or foreground in the mock 21 cm data. Indeed,
Mondal et al. (2016), Shaw et al. (2019), and Shaw et al. (2020)
show that the non-Gaussianity in the covariance of the 21 cm
power spectrum is non-negligible.
Now we apply the realistic effects, including the total noise

power spectrum (with thermal noise and sample variance
errors), in addition to using a foreground cut to avoid the
foreground. In Figures 4 and 5, we show the results of posterior
inference for mock observations with HERA and SKA,
respectively. We find that both 21cmDELFI-PS and 21CMMC
can recover posterior distributions for the reionization para-
meters in this case. Also, the performances with HERA and
SKA are comparable, which was also found in Greig &
Mesinger (2015, 2017). For mock observations with both
HERA and SKA, the statistical (fractional) errors are ∼2%–3%
for ( )Tlog10 vir and ∼5%–7% for zlog10 , or equivalently ∼23%–

33% for Tvir and∼17%–39% for ζ.
Comparing 21cmDELFI-PS and 21CMMC, their recovered

medians are in good agreement, but the 1σ credible regions

Table 2
Bayesian Inference with 21cmDELFI-PS and 21CMMC for the “Faint Galaxies Model”

Pure signal HERA SKA

Parameter True value 21cmDELFI-PS 21CMMC 21cmDELFI-PS 21CMMC 21cmDELFI-PS 21CMMC

( )Tlog K10 vir 4.699 -
+4.699 0.011

0.011
-
+4.673 0.025

0.033
-
+4.791 0.114

0.136
-
+4.779 0.109

0.128
-
+4.753 0.095

0.103
-
+4.758 0.105

0.117

( )zlog10 1.477 -
+1.481 0.011

0.011
-
+1.444 0.023

0.026
-
+1.560 0.076

0.098
-
+1.533 0.074

0.099
-
+1.540 0.065

0.074
-
+1.521 0.073

0.086

Notes. Here, “Pure signal” refers to the mock observations of cosmological 21 cm power spectrum (i.e., without thermal noise or foreground avoidance); “HERA”
(“SKA”) refers to the mock observations of the 21 cm power spectrum from HERA (SKA), which include the total noise (with the contributions from thermal noise
and sample variance errors) and foreground avoidance. Note that the fractional error of an observable A is related to the error of its common logarithm
by ( )D » DA A A2.3 log10 .

Table 3
Same as Table 2, but for the “Bright Galaxies Model”

Pure signal HERA SKA

Parameter True value 21cmDELFI-PS 21CMMC 21cmDELFI-PS 21CMMC 21cmDELFI-PS 21CMMC

( )Tlog K10 vir 5.477 -
+5.480 0.016

0.015
-
+5.435 0.052

0.050
-
+5.364 0.117

0.097
-
+5.375 0.144

0.104
-
+5.391 0.113

0.089
-
+5.379 0.131

0.102

( )zlog10 2.301 -
+2.306 0.023

0.023
-
+2.226 0.072

0.077
-
+2.186 0.145

0.126
-
+2.159 0.168

0.133
-
+2.211 0.141

0.115
-
+2.161 0.159

0.136
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estimated by 21cmDELFI-PS are in general slightly smaller
than those by 21CMMC. This agreement suggests that the
explicit Gaussian likelihood assumption is approximately valid
when thermal noise and foreground cut are incorporated in the
mock 21 cm data. This is reasonable because thermal noise
dominates over the cosmic variance in HERA and SKA, and
thus the non-Gaussian covariance due to the cosmic variance is
subdominant. Also, we find that the directions of degeneracies
in the parameter space are almost the same for these two codes,
which reflects the fact that both codes use the same simulator,
21cmFAST, so the dependency of the 21 cm power spectrum
on the reionization parameters is the same.

It is worthwhile to note that the mock observed power
spectrum used as the input of 21CMMC is the cosmological
21 cm signal from the 21cmFAST simulation (i.e., the red line
in Figure 2), which is the default setting of 21CMMC. If we
apply noise to the mock observed power spectrum (i.e., the
blue dots in Figure 2) used as the input of 21CMMC, the
inference performance of 21CMMC can be degraded signifi-
cantly. However, this is technically solvable by generating
multiple noise realizations in the MCMC sampling, albeit with
considerably larger computational cost. In comparison, the
input of 21cmDELFI-PS is the mock with noise, in which
case the Bayesian inference works well. This is because

Figure 3. The posteriors estimated from the cosmological 21 cm power spectrum (i.e., without thermal noise or foreground avoidance) by two different approaches,
21cmDELFI-PS (green) and 21CMMC (red), for two mock observations: the “Faint Galaxies Model” (left) and the “Bright Galaxies Model” (right). We show the
median (cross) as well as the 1σ (dark) and 2σ (light) confidence regions. The dashed lines indicate the true parameter values.

Figure 4. Same as Figure 3, but the estimations are made from mock observations of the 21 cm power spectrum from HERA, which include the total noise (with the
contributions from thermal noise and sample variance errors) and foreground avoidance.

6

The Astrophysical Journal, 933:236 (12pp), 2022 July 10 Zhao, Mao, & Wandelt



21cmDELFI-PS learns the effect of variations due to noise by
including 10 noise realizations for each reionization model in
the training samples, with reasonable computational time for
training.

4.2. Validation of the Posterior

In this subsection, we perform the validation11 of posteriors,
which tests statistically the accuracies of inferred posterior
distributions. We employ 300 samples for mock observations
with only cosmological 21 cm power spectrum and with realistic
effects with HERA and with SKA, respectively. These samples
are randomly chosen from the allowed region in the parameter
space in which the neutral fraction satisfies 0.08� xH I� 0.81 at
z = 7.1, corresponding to the 2σ confidence region from the IGM
damping wing of ULASJ1120+ 0641 (Greig et al. 2017). The
mathematical definitions of validation statistics are left to
Appendix A.

(1) Validation of marginal posteriors. We first focus on the
validation of posteriors for each single parameter marginalized
over other parameters. In Figure 6, we perform two statistics—(i)
quantile of the probability integral transform (PIT), and (ii)
ˆ ( ) ˜ ( )q q-F GI I , where ˆ ( )qFI is the predictive cumulative
distribution function (CDF) and ˜ ( )qGI is the empirical CDF, for

( )q = Tlog10 vir and zlog10 . In the quantile–quantile (QQ) plot, we
find that the curves for all cases of mock observations are close to
the diagonal line (Qdata=Qtheory). In the marginal calibration, we
find that the values of ˆ ( ) ˜ ( )q q-F GI I for all cases of mock
observations are small (less than 0.1). These findings meet the
expectations with which the marginal posterior distributions are
probabilistically calibrated.

(2) Joint posteriors validation. Next, we focus on the validation
of posteriors in the joint parameter space. In Figure 7, we consider
three statistics: (i) quantile of the copula probability integral
transformation (copPIT); (ii) ˆ ( ) ˜ ( ) -w J wH II

, where ˆ ( ) wHI
is

the average Kendall distribution function and ˜ ( )J wI is the empirical
CDF of the joint CDFs, and where w is a variable between zero
and unity; and (iii) the highest probability density (HPD). In both
QQ plots for the copPIT and for the HPD, we find that the curves
for all cases of mock observations are close to the diagonal line
(Qdata=Qtheory). In the Kendall calibration, we find that the values
of ˆ ( ) ˜ ( ) -w J wH II

for all cases of mock observations are small
(less than 0.1). These findings meet the expectations with which
the joint posterior distributions are probabilistically copula
calibrated and probabilistically HPD calibrated.
(3) Hypothesis tests. The aforementioned validations of

marginal and joint posteriors provide qualitative measures of
the validation of the inferred posteriors. The quantitative
metrics for the uniformity of distribution of these statistics
(PIT, copPIT, and HPD) are in the hypothesis tests. For both
marginal posteriors and joint posteriors, we perform the
Kolmogorov–Smirnov (KS) test and the Cramér–von Mises
(CvM) test. The p-value of the KS (CvM) test is the probability
to obtain a sample data distribution with D (D

*

) larger than the
measured Dobs ( *Dobs). The difference between these two metrics
is that the KS measure D is sensitive to the median, but the
CvM measure D

*

incorporates the information of the tails of a
distribution. In Table 4, we list the p-values for the PIT of two
individual reionization parameters (for the validation of
marginal posteriors), and those for the copPIT and the HPD
(for the joint posteriors validation). In all cases of mock
observations, we find that the p-value for the PIT and for the
copPIT is larger than 0.05, and that for the HPD is larger than
0.01. This means that, at the significance level of 5%/5%/1%,
the null hypothesis that the PIT/copPIT/HPD distribution is
uniform is accepted. In other words, the posteriors are
probabilistically calibrated, probabilistically copula calibrated,
and probabilistically HPD calibrated.
In sum, the posteriors obtained with 21cmDELFI-PS are

valid under all statistical tests of marginal and joint
posteriors.

Figure 5. Same as Figure 4, but with mock observations of the 21 cm power spectrum from SKA.

11 In the convention of statistics, these tools are called “calibration.” In our
context of testing the posteriors, however, the term “validation” is more
appropriate.
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5. Summary

In this paper, we present a new Bayesian inference of the
reionization parameters from the 21 cm power spectrum.
Unlike the standard MCMC analysis that uses an explicit

likelihood approximation, in our approach, the likelihood is
implicitly defined through forward simulations using DELFI.
In DELFI, once the neural density estimators are trained to
learn the likelihood, the inference speed for a test observation
of power spectrum is very fast—about 5 minutes with a single
core of an Intel CPU (base clock speed 2.50 GHz).
We show that this method (dubbed 21cmDELFI-PS)

recovers accurate posterior distributions for the reionization
parameters, using mock observations with and without realistic
effects of thermal noises and foreground cut with HERA and
SKA. For the purpose of comparison, we perform MCMC
analyses of the 21 cm power spectrum using a Gaussian
likelihood approximation. We demonstrate that this new
method (21cmDELFI-PS) outperforms the standard MCMC
analysis (using 21CMMC) in terms of the location and size of

Figure 6. Validation of marginal posteriors. (a) Quantile–quantile plot, i.e., quantile of the PIT distribution from the test sample data vs. that from a theoretical uniform
PIT distribution. The diagonal dashed line represents the ideal case (Qdata = Qtheory). (b) Marginal calibration, i.e., ˆ ( ) ˜ ( )q q-F GI I . The diagonal dashed line represents
the ideal case (identically zero). We show the results for ( )q = Tlog10 vir (left panels) and zlog10 (right panels), respectively, and for mock observations with only
cosmological 21 cm signal (“Pure signal”; red), HERA (green), and SKA (blue), respectively.

Figure 7. Joint posteriors validation. (a) Quantile–quantile plot, i.e., quantile of the copPIT distribution from the test sample data vs. that from a theoretical uniform
copPIT distribution. (b) Kendall calibration, i.e., ˆ ( ) ˜ ( ) -w J wH II , where w is a variable between zero and unity. The diagonal dashed line represents the ideal case
(identically zero). (c) Quantile–quantile plot, but for the quantile of the HPD distribution. We show the results for mock observations with only cosmological 21 cm
signal (“Pure signal”; red), HERA (green), and SKA (blue), respectively. In panels (a) and (c), the diagonal dashed line represents the ideal case (Qdata = Qtheory).

Table 4
The p-values for the Null Hypotheses That These Statistics Are of a Uniform

Distribution

Pure signal HERA SKA

Statistics KS CvM KS CvM KS CvM

PIT ( ( )Tlog10 vir ) 0.37 0.13 0.16 0.09 0.11 0.10

PIT ( zlog10 ) 0.14 0.05 0.30 0.20 0.36 0.36

copPIT 0.54 0.39 0.13 0.17 0.22 0.29
HPD 0.04 0.01 0.03 0.02 0.73 0.67
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credible parameter regions, in all cases of mock observations.
We also perform the validation of both marginal and joint
posteriors with sophisticated statistical tests, and demonstrate
that the posteriors obtained with 21cmDELFI-PS are
statistically self-consistent.

It is interesting to note that, in the scenario of only
cosmological 21 cm signal without thermal noises and fore-
ground contamination, the 21 cm power spectrum analysis with
21cmDELFI-PS even outperforms our previous analysis from
3D tomographic 21 cm light-cone images with DELFI-3D
CNN (Z22), where 3D CNN was applied to compress the light-
cone images into low-dimensional summaries. Since the power
spectrum only contains a subset of information in images, this
implies that 3D CNN is not the optimal imaging compressor.
We leave it to a follow-up of Z22 to search for a new imaging
compressor with better performance results than 3D CNN and
21cmDELFI-PS.

The development of this new Bayesian inference method is
timely because the first measurements of the 21 cm power
spectrum from the EoR will very likely be achieved in the near
future by HERA and SKA. The DELFI framework is flexible
with regard to incorporating more realistic effects through
forward simulations, so this technique will be a promising
approach for the scientific interpretation of future 21 cm power
spectrum observation data. To facilitate its application, we have
made 21cmDELFI-PS publicly available.

As a demonstration of concept, this paper only considers the
limit where spin temperature TS? TCMB, and therefore
neglects the dependence on spin temperature. We leave it to
future work to extend the parameter space to the cosmic dawn
parameters that affect the IGM heating and Lyα-pumping.
Also, Bayesian inference of the reionization parameters from
other summary statistics, e.g., 21 cm bispectrum (Watkinson
et al. 2022), can be developed in a manner similar to that of
21cmDELFI-PS, because these statistics are just data
summaries from the DELFI point of view. We leave it to
future work to make such developments.

This work is supported by National SKA Program of China
(grant No. 2020SKA0110401), NSFC (grant No. 11821303),
and National Key R&D Program of China (grant
No. 2018YFA0404502). B.D.W. acknowledges support from
the Simons Foundation. We thank Paulo Montero-Camacho,
Jianrong Tan, Steven Murray, Nicholas Kern and Biprateep
Dey for useful discussions and help, and the anonymous referee
for constructive comments. We acknowledge the Tsinghua
Astrophysics High-Performance Computing platform at Tsin-
ghua University for providing computational and data storage
resources that have contributed to the research results reported
within this paper.

Software: 21CMMC (Greig & Mesinger 2015, 2017, 2018),
21cmFAST (Mesinger & Furlanetto 2007; Mesinger et al.
2011), pydelfi (Alsing et al. 2019), TensorFlow (Abadi et al.
2016), GetDist (Lewis 2019), NumPy (Harris et al. 2020),
Matplotlib (Hunter 2007), SciPy (Virtanen et al. 2020), scikit-
learn (Pedregosa et al. 2011), Python2 (Van Rossum &
Drake 1995), Python3 (Van Rossum & Drake 2009), galpro
(Mucesh et al. 2021), seaborn (Waskom 2021), Astropy
(Astropy Collaboration et al. 2013, 2018).

Appendix A
Statistical Tools for Validations

In this section, we introduce some statistical tools for
validation of the marginal or joint posterior distributions
inferred from data, following Gneiting et al. (2007), Ziegel &
Gneiting (2014), Harrison et al. (2015), and Mucesh et al.
(2021).

A.1. Validation of Marginal Posteriors

The tools in this subsection focus on the validation of
posteriors for each single parameter marginalized over other
parameters.

A.1.1. Probabilistic Calibration

Consider an inferred marginal distribution f (θ), where θ is a
marginalized parameter. For example, ( )q = Tlog10 vir or zlog10
in this paper, and f (θ) is the probability distribution function
that is generated in the MCMC chain given the observed data.
We define the probability integral transform (PIT) as the
cumulative distribution function (CDF) of this marginal
distribution (Gneiting et al. 2007; Mucesh et al. 2021),

( ˜) ( ) ( )
˜

òq q qº
q

-¥
fPIT d , A1

where q̃ is the true value given the data. The marginal
distributions are probabilistically calibrated if true values are
randomly drawn from the real distributions. This is equivalent
to the statement that the distribution of PIT is uniform. In the
so-called quantile–quantile (QQ) plot, wherein the quantile of
the PIT distribution from the data is compared with that from a
uniform distribution of PIT, this QQ plot falls on the diagonal
line if the PIT distribution is exactly uniform.

A.1.2. Marginal Calibration

The uniformity of PIT distribution is only a necessary
condition for real marginal posteriors (Hamill 2001; Gneiting
et al. 2007; Mucesh et al. 2021; Zhao et al. 2021). As a
complementary test, the marginal calibration (Gneiting et al.
2007; Mucesh et al. 2021) compares the average predictive
CDF and the empirical CDF of the parameter. The average
predictive CDF is defined as

ˆ ( ) ( ) ( )åq qº
=

F
N

F
1

, A2I
i

N

i
1

where N is the number of test samples and Fi(θ) is the CDF of
the posterior distribution of the parameter given the data of the
ith sample. The empirical CDF is defined as

 ˜ ( ) {˜ } ( )åq q qº
=

G
N

1
, A3I

i

N

i
1

where the indicator function { }A returns a value of unity if the
condition A is true, and zero otherwise.
If the posteriors are marginally calibrated, ˆ ( )qFI and ˜ ( )qGI

should agree with each other for any parameter θ, so their
difference should be small.
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A.1.3. Hypothesis Tests

To provide a quantitative measure of the similarity between
the distribution of PIT and a uniform distribution, we adopt two
metrics: the Kolmogorov–Smirnov (KS; Kolmogorov 1992)
test and Cramér–von Mises (CvM; Anderson 1962) test. The
classical KS test is based on the distance measure D defined by

∣ ( ) ( )∣ ( )º -D F x F xmax , A4
x

N

where FN(x) is the empirical CDF of data set x1, x2,KxN, and xi
is the PIT value at q̃i of the ith sample. F(x) is the CDF of the
theoretical uniform distribution. The null hypothesis of the KS
test is that the variable xi observes a uniform distribution. The
p-value of the KS test is the probability to obtain a sample data
distribution with D larger than the measured Dobs. We
implement the KS test with the SciPy package under the
“exact” mode (Simard & L’Ecuyer 2011). It is difficult to write
down the exact formula of the p-value in the KS test. To give
some intuition, it can be approximated by Ivezić et al. (2014)

( ) ([ ] ) ( )> = + +D D N N DPr 0.12 0.11 . A5obs KS obs

Here, the survival function QKS is defined as

) ( ( ) ( ) ⎜ ⎟
⎛
⎝

⎞
⎠

å= - -
=

¥ -

u m u2 1 exp 2 . A6
m

m

KS
1

1
2 2

The CvM test is based on the distance measure D
*

, defined as

( ( ) ( )) ( ) ( )* òº -
-¥

¥
D N F x F x dF x . A7N

2

The p-value of the CvM test is the probability to obtainf a
sample data distribution with D

*

larger than the measured *Dobs,
which is given (Csörgo & Faraway 1996) in the SciPy
package.

The KS test and the CvM test focus on different aspects of a
distribution: while the KS test is sensitive to the median, the
CvM test can capture the tails of a distribution. If the p-value is
greater than some criterion, typically 0.01 or 0.05 (Ivezić et al.
2014), then the null hypothesis that the distribution is a uniform
distribution can be accepted.

A.2. Joint Posteriors Validation

Since parameters are degenerate, validation of the marginal
posterior can be biased. The tools in this subsection focus on
the validation of posteriors in the joint parameter space.

A.2.1. Probabilistic Copula Calibration

The probabilistic copula calibration (Ziegel & Gneiting 2014;
Mucesh et al. 2021) is an extension of the probabilistic
calibration. Consider a joint parameter distribution f (θ), where
θ is a vector of parameters. For example,

{ ( ) }q z= Tlog , log10 vir 10 in this paper, and f (θ) is the multi-
dimensional probability distribution function that is generated
in the MCMC chain given the observed data.

We define the Kendall distribution function

( ) { ( ) } [ ] ( ) qº Îw H w wPr for 0, 1 , A8H

where H(θ) is the CDF of the distribution f (θ), and “Pr” means
the probability. Thus, the Kendall distribution function can be
interpreted as the CDF of the CDF.

We define the copula probability integral transformation
(copPIT) as the Kendall distribution function evaluated at the
CDF of the true value ( ˜ )qH , i.e.,

( ( ˜ )) { ( ) ( ˜ )} ( ) q q qº =H H HcopPIT Pr . A9H

The joint posteriors are probabilistically copula calibrated if
the copPIT is uniformly distributed. In the QQ plot, wherein
the quantile of the copPIT distribution from the data is
compared with that from a uniform distribution of copPIT, this
QQ plot falls on the diagonal line if the copPIT distribution is
exactly uniform.

A.2.2. Kendall Calibration

As an extension of the marginal calibration, the Kendall
calibration (Ziegel & Gneiting 2014; Mucesh et al. 2021)
compares the average Kendall distribution function with the
empirical CDF. The average Kendall distribution function is
defined as

ˆ ( ) ( ) ( ) åº
=

w
N

w
1

, A10H
i

N

H
1

I i

where ( ) wHi is the Kendall distribution function of the CDF
Hi(θ) for the ith sample. The empirical CDF of the joint CDFs
evaluated at the true values q̃ is defined as

 ˜ ( ) { ( ˜ ) } ( )å qº
=

J w
N

H w
1

. A11I
i

N

i i
1

Kendall calibration tests whether ˆ ( ) ˜ ( ) -w J wH II
is small

for any value 0�w� 1. In other words, Kendall calibration
probes how well the inferred distribution agrees with the real
distribution on average.

A.2.3. Probabilistic HPD Calibration

The highest probability density (HPD) is defined as
(Harrison et al. 2015)


( ˜ ) ( ) ( )

( ) ( ˜ )òq q qº
q q

fHPD d , A12
f f

n

where dnθ is a volume element in the multidimensional
parameter space.
The HPD describes the plausibility of q̃ under the

distribution f (θ). A small value indicates high plausibility.
The joint posteriors are probabilistically HPD calibrated, if the
HPD is uniformly distributed.
Note that, for the PIT, copPIT, and HPD, the uniformity of

their distributions is a necessary, but not sufficient, condition
for accurate posteriors (Gneiting et al. 2007; Ziegel &
Gneiting 2014; Harrison et al. 2015; Zhao et al. 2021).

A.2.4. Hypothesis Tests

The data x, or the PIT value, in Equations (A4) and (A7) can
be replaced by the copPIT value and the HPD value, in the KS
test and CvM test, respectively.

Appendix B
Effect of the Sample Size

In mock observations with thermal noise and foreground cut,
9000 samples were employed for training in this paper.
However, the size of this database might be larger than
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necessary. In this section, we investigate the effect of the
training sample size on the posterior inference.

The p-value of the null hypothesis that a statistic is of a
uniform distribution is a good indicator for validating the
inferred posteriors. We adopt the criterion that the significance
level is above 0.01 for accepting the null hypothesis. The p-
value is typically affected by the sample size, as well as the
complexity of the individual NDE and the ensembles of
multiple NDEs. With the chosen NDE architecture and an
ensemble of five such NDEs, we use the bisection method and
decrease the sample size for training the NDEs to find out the
minimum size of training samples that meets the criterion of
accepting the null hypothesis.

In Figure 8, we plot the p-values for the null hypotheses of
the statistics as a function of the training sample size. For the
mock HERA (SKA) observations, the p-values for all statistics
are above 0.01 when the sample size is larger than about 1500
(1000). This test indicates that the minimum sample size for
training can be about 1500, in general. However, since the
hypothesis tests are only necessary, not sufficient, conditions
for accurate posteriors, a training data set of only 1500 samples
may not be optimal. Also, our estimate of the minimum sample
size is only based on a two-parameter space of reionization
model. The scaling law in a higher-dimensional parameter
space is beyond the scope of this paper.
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