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Abstract

We model the response of spherical, nonrotating Milky Way (MW) dark matter and stellar halos to the Large
Magellanic Cloud using the matrix method of linear response theory. Our computations reproduce the main
features of the dark halo response from simulations. We show that these features can be well separated by a
harmonic decomposition: the large-scale over/underdensity in the halo (associated with its reflex motion)
corresponds to the ℓ= 1 terms, and the local overdensity to the ℓ� 2 multipoles. Moreover, the dark halo response
is largely dominated by the first-order forcing term, with little influence from self-gravity. This makes it difficult to
constrain the underlying velocity distribution of the dark halo using the observed response of the stellar halo, but it
allows us to investigate the response of stellar halo models with various velocity anisotropies: a tangential
(respectively radial) halo produces a shallower (respectively stronger) response. We also show that only the local
wake is responsible for these variations, the reflex motion being solely dependent on the MW potential. Therefore,
we identify the structure (orientation and winding) of the in-plane quadrupolar (m= 2) response as a potentially
good probe of the stellar halo anisotropy. Finally, our method allows us to tentatively relate the wake strength and
shape to resonant effects: the strong radial response could be associated with the inner Lindblad resonance, and the
weak tangential one with corotation.

Unified Astronomy Thesaurus concepts: Milky Way dark matter halo (1049); Milky Way stellar halo (1060);
Milky Way dynamics (1051); Analytical mathematics (38); Perturbation methods (1215)

1. Introduction

The nature of dark matter (DM) is certainly one of the most
pressing questions of modern physics. While DM is generally
assumed to consist of a cold and collisionless component of
non-baryonic particles, direct evidence of its particle nature is
still lacking. While a direct detection might still take a very
long time, an achievable short-term goal would be to test
whether galaxies do indeed reside in DM halos that are made of
a self-gravitating sea of collisionless particles, interacting with
baryons and with each other through gravity. A distinctive
signature of such a self-gravitating sea of particles is that it
reacts to external perturbations in a predictable way: this
response would in principle itself leave a signature in the
dynamics of the stellar halos of galaxies, and possibly in their
disk dynamics too. Since current and forthcoming large surveys
of the Milky Way (MW) are mapping the kinematics of its
stellar halo with unprecedented accuracy, predicting and
searching for such signatures is timely. Once detected, they
could also provide additional information on the DM
distribution in the outskirts of the Galaxy, but also unique
information on the underlying phase-space distribution of DM,
which is difficult to get access to otherwise. Hence, studying
the response of the MW DM halo to external perturbations is in
principle a unique way to gain insight into both the existence
and nature of DM and into its phase-space distribution.

In recent years, an array of evidence has emerged to indicate
that the main first-order perturbation to the MW halo comes

from the infall of the Large Magellanic Cloud (LMC), whose
total mass might represent more than ∼10% of the MW mass.
Early analyses of its internal dynamics concluded that the mass
of the LMC (with a stellar mass of 2.7× 109 Me) had to be
larger than 1.5× 1010 Me, with its enclosed mass within
8–9 kpc (Schommer et al. 1992; van der Marel & Kallivaya-
lil 2014). It soon also became clear that the LMC was most
probably on its first infall toward the MW (Besla et al. 2007),
meaning that its DM halo would be essentially unstripped:
combined with the requirement that the LMC and Small
Magellanic Cloud (SMC) have been a long-lived binary, this
first infall scenario would imply a total mass of as much as
1.8× 1011 Me (Kallivayalil et al. 2013). This mass is also well
in line with expectations from abundance matching (e.g.,
Behroozi et al. 2013; Moster et al. 2013). This was later
confirmed by a timing constraint integrating backward the
orbits of galaxies currently sitting within 3Mpc in the Local
Volume as well as the relative motion between the MW and
Andromeda, with the LMC mass as a free parameter, returning
a very high mass of 2.5× 1011 Me (Peñarrubia et al. 2016).
The first study of the influence of such a massive LMC on

the dynamics of the Galaxy was conducted by Gómez et al.
(2015), who concluded that due to the displacement of the
center of the system, the inner regions of the MW were moving
with a bulk velocity w.r.t. its outskirts, a reflex motion that
would create a dipole in the stellar velocity field. Tentative
observational evidence for this reflex motion has been recently
provided by Petersen & Peñarrubia (2021) and Erkal et al.
(2021). This reflex motion is expected to be accompanied by a
local wake trailing behind the LMC (see, e.g., Garavito-
Camargo et al. 2019), a phenomenon also tentatively detected
by Conroy et al. 2021. But, as mentioned above, the actual
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global response of the DM halo (and subsequently, of the
stellar halo) is more subtle than that, and depends on the
underlying distribution of DM in phase space, as studied by,
e.g., Laporte et al. (2018), Garavito-Camargo et al. (2019),
Cunningham et al. (2020), Garavito-Camargo et al. (2021a),
and Tamfal et al. (2021). It has, for instance, been shown that
the LMC could induce an overdensity in the orbital poles of
particles moving through the halo (Garavito-Camargo et al.
2021b), although it has been subsequently shown that the effect
was only present for particles with low specific angular
momentum (Pawlowski et al. 2021).

Searching for all those signatures obviously requires one to
depart from the assumption that the Galaxy is in equilibrium,
but starting from equilibrium configurations is still useful as it
can serve as a basis for analytic linear perturbation theory,
which represents a powerful alternative to numerical simula-
tions. In the present paper, we apply such methods to the
specific case of the response of the MW halo to the infall of the
LMC. They allow us to efficiently compute the response of
several possible MW models, and importantly, to gain physical
insight into the various processes and resonances at play, which
are obviously more difficult to decipher in N-body simulations.

The paper is organized as follows. In Section 2, we develop
the essential steps of the response matrix formalism, while
some analytical details can be found in Appendices A and B,
some numerical details of the computation in Appendices D
and E, and a validation of the implementation in Appendix D.3.
Section 3 details our models for the LMC and the MW, and
shows our results for the response of the MW to the LMC in a
fiducial isotropic case. In Section 4, we show that the halo’s
self-gravity has a minor effect, which prevents us from
constraining the DM phase-space structure from the observa-
tion of the stellar halo, but allows us to focus on the forced
response of the stellar halo for various anisotropies. In
Section 5, we discuss the dependence of our results on the
details of the LMC’s orbit, and we take full advantage of our
method by (i) extracting meaningful information on the MW’s
reflex motion and local wake from separating different
multipolar components, and by (ii) identifying possible
resonant effects acting to build up the wake. We conclude
and summarize our results in Section 6.

2. Linear Response Theory and the Matrix Method

In order to analytically model the response of the MW to the
infall of the LMC, we resort to the linearization of the
collisionless Boltzmann equation (CBE)–Poisson system (or
Vlasov–Poisson), a framework known as linear response theory
(Binney & Tremaine 2008). We first describe here the guiding
principles of this analysis, as well as the particular method that
we use to tackle this problem, called the matrix method.

2.1. Linear Response Theory

The MW background potential is modeled as a spherical
potential ψ0(r). It basically represents its DM halo, which
dominates the potential at large radii, but note that it can also
include a baryonic component, and that the general method
described here is not restricted to spherical potentials. Such
potentials are, however, best suited as a first step for the
analysis we conduct hereafter.

In the absence of any perturber, the orbits of stars and DM
particles in this potential are regular, since their dynamics

derive from the spherically symmetric Hamiltonian

x vH
v
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2

. 10
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The orbits are then best described in action-angle phase-space
coordinates. The actions J= (Jr, L, Lz), where Jr is the radial
action, L the norm of the angular momentum, and Lz its
projection onto the z-axis, are then fully labeling regular orbits,
while the canonically conjugate angle coordinates indicate
where a given particle is located along its orbit.
According to Jeans’ theorem (Binney & Tremaine 2008), the

phase-space distribution function (DF) of a fully phase-mixed
system at equilibrium is only a function of the actions: F(J). Here,
we define the equilibrium phase-space DF such that F(x, v) dxdv
is the mass located in the phase-space volume dxdv around (x, v).
As a consequence, we have that ∫dxdv F=Mtot, the total mass of
the distribution of matter, the response of which we choose to
study. In other words, the DF F represents a distribution of orbits
(which could be either DM, stars, or both) in the potential ψ0, and
linear response theory aims at computing the self-gravitating,
collisionless response of this collection of orbits when they are
perturbed, in our case, by the LMC’s infall. We emphasize that
the DF F need not self-consistently generate the mean-field
potential ψ0, although we will consider that specific case in
Section 3.3.
The LMC is modeled as an external perturber with potential

ψe, with a small amplitude compared to the potential ψ0 of the
MW. The MW’s response is represented as a self-induced
potential perturbation ψs, and is also considered as a source of
perturbations on the mean-field orbits, so that the self-gravity of
the response is well taken into account. In addition to these
extra forces, we consider the reference frame to be accelerated,
resulting in a corresponding pseudo-force term in the
Hamiltonian. Our accelerated reference frame indeed follows
the motion of the MW center in the asymmetric potential
generated by the perturber and the response (the reflex motion,
see Section 1). This acceleration corresponds to that of a test
particle, initially at rest at the center of the MW, and
accelerated by the gravitational influence of the total perturba-
tion ψ1= ψe+ ψs. All these effects add up to a Hamiltonian
H0+ΔH with

x x x a xH t t t t, , , , 2e s
cy yD = + +( ) ( ) ( ) ( ) · ( )

where the acceleration of the MW center is given by4
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with x centered at the MW center, ρ1= ρe+ ρs the density of
the perturber and the response, G Newton’s constant of gravity,
and er= x/|x|.
In this reference frame, the CBE can be linearized, with the

total perturbed distribution function written as F+f with f=F,
giving us the linearized CBE
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4 Note that this acceleration is different from that used in Murali (1999).
Indeed, the acceleration considered there was that of the host’s barycenter. This
does not correspond to the acceleration of the host’s density center, which we
are following here because the perturber penetrates the host, creating a shift in
the motion of the host’s outer parts versus its inner parts.
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where θ= (θ1, θ2, θ3) are the angles canonically conjugated to
the mean-field actions J, and

J
H

, , 0 51 2
0W = W W =

¶
¶

( ) ( )

are the corresponding mean-field orbital frequencies.
Together with the Poisson equation, ∇2ψs= 4πGρs with

ρs= ∫dv f, this system of partial differential equations allows
for the full integration of our MW model’s response to
the LMC.

2.2. The Matrix Method

To proceed, we follow Kalnajs (1977), who undertook a
projection of all perturbed quantities on a bi-orthogonal basis of
the potentials and densities. This practice has gained renewed
interest in recent years (see, e.g., Sanders et al. 2020; Garavito-
Camargo et al. 2021a; Petersen et al. 2022) for its ability to
solve the Poisson equation by construction, allowing for more
natural reconstructions of the gravitational potential in simula-
tions. In the context of linear response theory, this technique
can also be used to solve the Poisson equation, while the CBE
is transformed into an integral equation in a linear space.

In short, and as we detail in Appendix A, we start from a bi-
orthogonal basis of potential-density pairs (ψ( p), ρ( p)), where
(p) typically stands for a triplet of indices ℓ

p, mp, np with
ℓ
p� 0, |mp|� ℓ

p, and np� 0, with the bi-orthogonality
condition

x x xd , 6p q
p
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and we define the projections of the perturbing potentials
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where the vectors a(t) and b(t), respectively, correspond to the
response and external perturbation at time t, projected on the
bi-orthogonal basis.

Then, using the bi-orthogonality condition of Equation (6),
we can write

x v x v xa t f td d , , , 8p
pò ò y= -( ) ( ) ( ) ( )( )*

and we can replace f (x, v, t) with the solution of the linearized
CBE (Equation (4)), assuming that the system is unperturbed at
the initial time. Making use of the fact that the integration
variables can be canonically changed from dxdv to dJdθ, we
then get (see Appendix A)

a M a bt td , 9
t

0ò t t t t= - +( ) ( )[ ( ) ( )] ( )

where the response matrixM(t−τ) contains the full information
on the gravitational dynamics in the mean-field equilibrium as a
function of time delay t−τ. This matrix is given by
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Some elements of this expression derive from the Fourier
transform of spatial functions w.r.t. the angles (see
Equation (A1a)), with the resonance vector of integers
n= (n1, n2, n3) labeling the corresponding Fourier coefficients.
In more detail, n

py( ) results from the transformation of the
potential basis function with index (p), and n

qf( ) emerges from
the transformation of the (q) component of the non-inertial
fictitious potential, given by

x x
x

x
x e

G d
. 11q q

r2òf r=( ) ·
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The details of the demonstration of Equations (9) and (10)
are given in Appendix A, while the particular choice of the bi-
orthogonal basis for the present study (Clutton-Brock 1973) is
detailed in Appendix B.
Equation (9) highlights how this method incorporates the

response’s self-gravity. Indeed, not only does the response a(t)
derive from the influence of the perturber at all time steps b, via
the dynamics encoded in the response matrix, but the response
at the current time also derives from the influence of the
response itself at all previous time steps, as represented by the
term a(τ) on the right-hand side (rhs). If self-gravity could be
neglected, one would only need to replace a(τ) by 0 to compute
the system’s response to the perturber (see Section 4.1).
While the matrix method was mostly used in its frequency

version (after a Laplace transform of all time-varying
quantities) to detect linear instabilities in various types of
self-gravitating systems (see, e.g., Zang 1976; Polyachenko &
Shukhman 1981; Weinberg 1991; Vauterin & Dejonghe 1996;
De Rijcke et al. 2019; Rozier et al. 2019; Breen et al. 2021), the
present time version has scarcely been used, despite its ability
to solve for the self-gravitating response of perturbed stellar
systems (but see Seguin & Dupraz 1994; Weinberg 1998;
Murali 1999, and Pichon & Aubert 2006 for noticeable, if not
unique, exceptions). We therefore hope that the present study
will help in reviving the interest of the community in this
approach.

2.3. From Time Integration to Matrix Inversion

In the form of Equation (9), the problem is not yet explicitly
linear, in the sense that there remains a step to directly relate the
perturber b and the response a through a linear relation. Indeed,
it appears that the response at the current time, a(t), explicitly
depends on the self-induced perturbation at all previous times,
as given by the a(τ) term in the integrand on the rhs. To do so,
we will approximate the time integral by its Riemann sum,
therefore exhibiting the intrinsic linearity of the problem.
Let us assume that we aim at computing the linear response

for a full period of time [0, T]. Let us next divide this time
interval in K+1 steps 0= t0< ...< tK= T. At each step i� 1,
Equation (9) can be approximated as

a M a bt t t t t t , 12i
j

i

i j j j
0

1

å= D - +
=

-

( ) ( )[ ( ) ( )] ( )

using the rectangular rule at the lower bound of each step, with
Δt= T/K. Let us now define a (resp. b) as the vector built by
stacking all vectors a(t0),...,a(tK) (resp. b(t0),...,b(tK)) on top of
each other. Furthermore, the matrix M is defined by blocks, so
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that the block in the line i and column j is given by

⎧
⎨⎩

Mt t t j i

j i0
M

for ,

for .
13ij

i j=
D - <( )

( )


Here, the vectors a and b contain the information on the
external and induced perturbations over the full time interval
[0, T], and the matrix M contains the information on the
system’s linear dynamics over all possible time delays. With
these definitions, Equation (12) can be rewritten as a matrix
product as

a M a b . 14= +( ) ( )

According to Equation (13), the matrix I −M can always be
inverted, where I is the identity matrix of suitable size, and the
system’s response over the full time interval can be computed
by a simple product of matrices through

a I M M b I M I b. 151 1= - = - -- -[ ] ([ ] ) ( )

In this form, the problem is evidently linear, and its resolution
can be summarized in the following steps: (i) take a model for
the external perturber’s density at each time step, and project it
on the bi-orthogonal basis to get the full perturbing vector b;
(ii) compute the full response matrix M following
Equations (10) and (13); (iii) perform the matrix inversion
and multiplication according to Equation (15) to compute the
host system’s response a at each time step. These are the steps
we take hereafter to compute the MW’s response to the LMC,
as detailed in the next section.

One asset of response theory is to provide an explicit linear
relationship via Equation (15) between the response of the MW
halo, a parametric representation of the underlying property of
the unperturbed equilibrium, and the properties of the
perturbation. While observing the former and the latter, one
can constrain the corresponding parameter, hence, e.g., probe
the internal kinematics of the MW halo.

2.4. Two-component System

In order to describe an MW model made of stars and DM, let
us introduce the linear response of a system made of two
subcomponents. For that purpose, we follow the work of
Weinberg (1998) in this section.

Let us consider the MW halo to be made of a dominant DM
component of massMDM, and a light stellar component of mass
M*, so that MMW=MDM+M* and M*/MMW= ò= 1. Note
that we neglect here the stellar disk, which we effectively
absorb within the DM component, so that M* only represents
the stellar halo, with ò∼ 10−3. Let us assume that both
components follow the identical density profile, which adds up
to the total potential ψ0, and that they are described by the DFs
FDM and F*. We can therefore associate the response matrices
MDM and M* (constructed from Equations (10) and (13)) to
each of those components, computed using the same basis
elements. In Weinberg (1998), we learn that the generalization
of our Equation (14) is given by

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

0
0

a_
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M_ M_
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M_
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b_

, 16

DM DM DM DM

DM
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+

* * * *

*

( ) ( )·
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where aDM and a* are the responses in each subcomponent, and
the same perturber b is applied. The respective responses of the
two subcomponents therefore verify the system of coupled
equations

a M a a b , 17aDM DM DM= + +( ) ( )*
a M a a b . 17bDM= + +( ) ( )* * *

Since we assumed ò= 1, then the response of the stellar halo is
generically negligible in mass w.r.t. that of the DM, i.e.,
a aDM* , and the system of equations becomes

a I M I b, 18aDM DM
1= - --([ ] ) ( )

a M I M b. 18bDM
1= - -[ ] ( )* *

This last equation reveals how the kinematics of the DM halo
can impact the response of the stellar halo. Indeed, if
I MDM

1- -[ ] is significantly different from the identity matrix,
then the stellar response depends on the kinematic state of the
DM via its response matrix MDM. As we will discuss in
Section 4.1, I MDM

1- -[ ] describes how much the DM’s self-
gravity impacts the structure of the response: the larger the
impact of self-gravity, the further from identity I MDM

1- -[ ] is.

3. MW’s Response to the LMC

In this section, we describe our model for the MW and the
LMC, we apply the matrix formalism to that interaction, and
analyze our results.

3.1. Models for the MW and the LMC

In order to qualitatively compare our results to those of N-
body simulations from the literature, we chose to represent the
MW and the LMC with models that resemble those of the
fiducial simulation of Garavito-Camargo et al. (2021a). In the
present case, the MW is fully described as a self-consistent
spherical halo, incorporating both DM and stellar halo
components. It is modeled as a Hernquist sphere with a DF
from Baes & van Hese (2007) (see Appendix C for details),
which self-consistently generates its total potential. The total
MW mass is taken to be MMW= 1.57× 1012Me, and the scale
radius of the Hernquist profile is aMW= 40.8 kpc. The halo is
isotropic, i.e., it has a constant β parameter set to 0, and it does
not rotate. These characteristics define the mean-field potential
(ψ0) and phase-space DF, F(E), which are used in the
computation of the response matrix (Equation (10)). Note that
this setup straightforwardly enters the two-component descrip-
tion of Section 2.4 by considering that the DFs of the DM and
the stars are proportional, with F* = ò F and FDM= (1− ò) F.
In that case, the response matrices and the responses are also
proportional, with the same factor ò between the DM and stellar
quantities.
The LMC is also modeled as a Hernquist sphere, with a total

mass of MLMC= 1.8× 1011Me, and a Hernquist scale radius of
aLMC= 20 kpc. Note that only the LMC density matters here,
not its internal dynamics, as it is merely considered as a
gravitational perturber to the MW. This density is used to
construct the vector b.
In order to represent the LMC’s infall onto the MW, we

simply integrated the orbit of a particle in the aforementioned
MW potential, starting from estimates of the position and
velocity of the LMC at its pericenter (∼ 50Myr ago):
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rp,LMC= 48 kpc, vp,LMC= 340 km. s−1 (Salem et al. 2015). We
integrated this orbit using a leap-frog algorithm with 100 time
steps per gigayear, and selected the portion of the orbit that has
covered the infall of the LMC since 2 Gyr ago. The distance of
the LMC to the MW center is represented as a function of time
in Figure 1. It may seem that this trajectory is very close to that
of the LMC in the simulations from Garavito-Camargo et al.
(2019); however, in our case, there is no shift between the MW
center of mass (COM) and its cusp in the construction of the
orbit, while they represent the distance to the MW COM.
Additional differences in the shape of the MW potential also
result in differences in the shape of the LMC’s orbit in its
plane. We keep this simple orbit as our fiducial setup, and
discuss the possible influence of the MW’s motion later in
Section 5.1. In that later discussion, we build the orbit
represented in green in Figure 1. From our fiducial trajectory,
we extracted K+1= 21 equally spaced time steps to represent
the LMC’s orbit, i.e., Δt= 100 Myr. We finally have a
succession of mass density profiles for the LMC in the frame
centered on the MW center, ρLMC(x, ti) for 0� i� K.

This time interval may seem large for N-body simulations;
however, it is appropriate for linear theory. Indeed, in the case of N-
body simulations, the inertial motion of a particle between two time
steps is a straight line of constant velocity, as if the particle were
isolated. This implies large discrepancies in the particles’ orbits
when the time resolution is not high enough. For the response
matrix method, three key features still occur between two time
steps: (i) the system’s response still follows the orbits in the mean-
field potential, (ii) the system still responds to the perturber, as if it
had not moved from the previous time step, and (iii) the system still
responds to the response itself (the response is self-gravitating), as if
it had not moved since the previous time step. These features imply
that there is a much lower number of time steps required to
compute the system’s response with reasonable accuracy. Typi-
cally, the matrix method requires a rough representation of the
positions that the perturber takes in its motion, while N-body
simulations require a fine integration of the orbits into the host.

3.2. Projection of the LMC onto the Basis

In order to apply the matrix formalism to the MW–LMC
interaction, we need to project the perturber (the LMC) on the

bi-orthogonal basis, to compute the perturbing vector b. To do
so, we simply apply Equation (A9) with the density of the
LMC (considering the LMC’s orbital plane as the z= 0 plane)
and the basis defined by Equation (A5a) and Appendix B. This
gives

x x xb t td , . 19p i i
p

LMCò r y= -( ) ( ) ( ) ( )( )*

Recall that the index (p) actually stands for the three integers
mp, ℓ p, and np. In our basis, mp and ℓ

p identify the azimuthal
and polar harmonic order of the basis element, while np

identifies its radial order. Applying the projection of
Equation (19) to a series of (p) yields the sub-vector b(ti),
which is then computed at all times t0<L< tK to give the
stacked vector b.
In theory, the potential-density basis has an infinite number of

elementary functions, so that an infinite number of projection
coefficients is required to reconstruct the perturber with arbitrary
precision. In practice, the basis should be truncated in both its
angular and radial orders. These orders of truncation are
parameters that should be tested for convergence to ensure the
robustness of our results. In the angular direction, our fiducial
choice is ℓ 6max = , while the definition of the spherical harmonics
always imposes that−ℓ�m� ℓ. This choice is motivated by two
facts: first, Garavito-Camargo et al. (2021a) show that most of the
information on the MW’s response is contained within low
harmonics ℓ� 4. Second, as is shown in Appendix D.1, in a
spherical, nonrotating system, there is no coupling in the system’s
response between different angular harmonics. Therefore, recon-
structing the MW’s response up to ℓ= 6 only requires us to
project the LMC up to the same harmonic order. For each of these
harmonics, we restrict m to values such that 0�m� ℓ and that
ℓ−m is even because we are dealing with real fields that are
symmetric w.r.t. the equatorial plane. In terms of radial truncation,
we found that using a fiducial maximal order of n 200max =
represented a good balance between the accuracy of the
reconstruction and the computational time. We therefore have a
total of 3216 basis functions.
Figure 2 shows how the LMC’s density in its orbital plane is

reconstructed once it has been projected on this truncated basis.
Strikingly, the quality of the spatial reconstruction of the LMC is
not constant through time. In particular, the LMC appears as a
shallow angular ripple at the beginning of its infall, when it is the
farthest from the MW center. This can be mainly explained by the
low value of ℓmax. Indeed, the angular resolution of the basis is
approximately given by ℓmaxp , so that when the LMC is far from
the MW center, it is too small to be well resolved. We checked,
however, that the LMC’s total mass is well recovered, even in the
first time steps.5 By the end of the interaction, the LMC is much
closer to the MW and its angular structure can be better
resolved by our basis. In terms of radial reconstruction, it seems
that the position and structure of the LMC are well
reconstructed after the projection. This is expected, as we have
used a relatively large number of radial elements.

3.3. Results: Response of the MW

Once the perturbing vector b is computed, the response is
recovered by applying Equation (15). The details of the

Figure 1. Evolution of the distance from the MW center to the LMC center, as
given (dashed line) by Garavito-Camargo et al. (2019), (full, black line) from a
leap-frog integration in a static Hernquist MW potential, and (green) from a
more realistic setup described in Section 5.1. Our fiducial orbit represented in
black is relatively close to that of Garavito-Camargo et al. (2019) in terms of
the evolution of the LMC’s distance to the MW, which does not exclude
differences in the azimuthal path of the LMC.

5 Indeed, the information on the LMC mass is only borne by the ℓ = 0
harmonics, so that the quality of the mass reconstruction only depends on the
radial truncation.
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computation of the response matrix for a spherical nonrotating
system are given in Appendix D, and we used tailor-made
matrix inversion and multiplication algorithms as described in
Appendix E. In particular, the response matrix is given by
Equations (D13–(D15)) as an integral over the two actions
J J L,r= ( ), and as a sum over the corresponding in-plane
resonance vectors n n n,1 2= ( ). We checked for the conv-
ergence of the following results w.r.t. our many computational
parameters; in particular, we observed little variation when we
doubled or halved the basis scale radius Rb= 11 aMW, or when
we increased the maximum radial Fourier number n 21 max = .
Convergence w.r.t. the number of radial basis elements is also
comfortably reached.

Once Equation (15) has been applied, the response density
can be reconstructed as

x xt a t, , 20
p

p
ps år r=( ) ( ) ( ) ( )( )

where the density basis elements ρ( p) are defined in
Appendices A and B. Figure 3 shows the response of the
MW along the LMC’s infall, in terms of the relative
overdensity w.r.t. the MW background density,
ρs/ρMW (= ρs/ρ0), in the LMC’s orbital plane. This figure,
and particularly its last panel, is consistent with the corresp-
onding figure in Garavito-Camargo et al. (2021a). This
consistency indicates that linear response theory is able to
realistically reproduce the self-gravitating response of the DM
and stellar halos to the LMC’s infall.

In Figure 3, we can identify and follow two particular
features in these density maps: on the one hand, there is an
overdensity that trails behind the LMC’s trajectory. This

feature emerges as a spatially large overdensity in the
first∼ 1.6 Gyr of the interaction, when the LMC is slow and
can attract some of the MW in its vicinity. Later, the LMC
starts falling faster toward the MW center, and the overdensity
starts moving behind the LMC’s motion, and decays because
the LMC does not stay long enough to attract more material in
a single place. Since this overdensity quickly disappears as the
LMC moves away, it is identified as the transient response of
the MW (see, e.g., Garavito-Camargo et al. 2021a), also called
the LMC’s wake. On the other hand, we can identify a large-
scale dipolar over/underdensity oriented in the direction of the
LMC (with the overdensity opposing the LMC), which grows
in amplitude all along the LMC’s infall. This feature can be
associated with the shift in the dynamics of the MW center
w.r.t. that of its outer parts, i.e., the MW’s reflex motion. Since
our reference frame follows the MW cusp, parts of the MW that
are farther away than the LMC get shifted w.r.t. the current
reference frame at each time step. This explains (i) that the
dipolar feature grows in amplitude all along the interaction, as
the LMC roughly stays on the same side of the MW, and (ii)
that the dipolar over/underdensity populates more central
regions of the MW as the LMC gets closer to the center. We
will discuss these features in more detail in Section 5.

4. Anisotropic Stellar Halo

Now that we have shown that the matrix method is able to
quantitatively compute the MW halo response to the LMC, we
can take advantage of its numerical efficiency to repeat the
experiment on different halo models with varying velocity
anisotropy. In strongly anisotropic spheres, it has been shown
(see, e.g., Henon 1973; Palmer et al. 1989; Rozier et al. 2019)
that linear instabilities can occur, which makes these structures

Figure 2. Reconstruction of the LMC density after a projection on the bi-orthogonal basis. t = 0 Gyr corresponds to the initial conditions, 2 Gyr ago. The full circle
represents the MW scale radius aMW, while the dotted circle is the LMC scale radius, aLMC. Although it has a limited angular resolution, the basis reconstruction marks
well the position of the LMC at all time steps. The reconstruction is more accurate at late times, when the LMC is close to the MW. The mass of the LMC is
reconstructed by the ℓ = 0 component; therefore, it is unaffected by the limited angular resolution.
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unrealistic. However, we will first show that in our fiducial
model there is little impact of the MW’s self-gravity on the
response, in agreement with the results of Seguin & Dupraz
(1994) in a similar setup. This implies that we can treat the
response of the stellar halo separately, since the absence of self-
gravity means that the stellar halo is essentially insensitive to
the response of the DM halo. We will therefore show the forced
response of models of the stellar halo with various velocity
anisotropies.

4.1. Influence of Self-gravity

As we previously highlighted in Section 2.2, the matrix
method straightforwardly allows for the measurement of the
response’s self-gravity. In practice, we can compare the self-
gravitating response as, as obtained from Equation (15), to the
bare response ab, defined by

a M b. 21b = ( )

The difference between these two responses resides in the
inclusion or not of the response a on the rhs of Equation (9).
Formally, they satisfy the relation

a a M b. 22
i

i
s b

2
å= +
=

¥

( )

The bare response only includes the response to the perturber at
the first gravitational order (i.e., a single application of the
response matrix). The self-gravitating one further includes the
response induced in the system by this first-order response (i.e.,
M M b( )), and recursively at all other orders (i.e., all M bi with

i� 3). Alternatively (see Equation (15)), as and ab are also
related through

a I M a . 23s
1

b= - -[ ] ( )

It shows that the influence of self-gravity is represented by how
much I M 1- -[ ] deviates from the identity matrix.
Computing the bare response follows similar steps as the

self-gravitating one, as described in Appendix E. Figure 4
shows the bare response ρb (reconstructed from ab following
Equation (20)) of the MW to our LMC model at the last time
step, as well as the residuals when it is subtracted to the self-
gravitating one. Although it is interesting to see that the region
where self-gravity seems most active is within the small-scale
wake, it is striking that the bare response is the dominant
component in the full self-gravitating response, while further
recursive applications of the response matrix (as in
Equation (22)) have smaller contributions.
This has very important consequences for the way this

problem can be analyzed with linear theory, as well as in the
hope of constraining the phase-space structure of the MW’s
DM halo. If we want to constrain the DM halo’s response, we
would need this response to influence an observable population
of stars, such as the stars in the stellar halo. Coming back to our
model of the MW as a two-component system (Section 2.4),
with a stellar and a DM halo, what we have shown is that the
total response verifies I M I1- -[ ] . If we exclude the
possibility that the DM and stellar components conspire into
such a result, it means that the influence of the DM’s self-
gravity is low. Complementary results additionally show that
this conclusion is still true if the DM halo is anisotropic.
Following Equation (18b), this implies that the DM kinematic

Figure 3. Reconstruction of the response of our fiducial isotropic MW DM + stellar halo in terms of relative overdensity in the LMCs orbital plane.
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state has little influence on the stellar halo response. The latter
therefore mainly corresponds to the forced impact of the
perturber ( a M b* * ). As a consequence, there is little hope
for strongly constraining the kinematics of the DM halo from
the response of the stellar halo to the LMC.

Let us emphasize that the minor influence of self-gravity
should not be regarded as a property of the MW, but as a
consequence of the merger’s young age. Indeed, while the
ability to amplify perturbations through self-gravity is a
property of the initial equilibrium, the self-gravitating wakes
still take time to build up, even in a highly responsive system.
Formally, the response matrix bears the information of the
halo’s dynamics, but only for the finite time during which we
are modeling it. When the integration time T is small, the
matrix I M 1- -[ ] cannot get very far from the identity,
whatever the MW’s kinematic state, and only when T grows
can the matrix significantly deviate from identity, and this
deviation should depend on the halo’s kinematics. In this work,
the LMC is on its first infall, so that the interaction is too short
for such self-gravitating wakes to develop, even when the MW
halo is assumed to be anisotropic. In a different setup where a
satellite is on a periodic orbit around the Galaxy for a long time

(an infinite amount of time, really), Weinberg (1989) shows
that self-gravity has a significant influence on the Galaxy’s
response, even in an isotropic case.
The fact that it is possible to neglect the effect of self-gravity

on the MW’s response also has positive consequences for our
analysis. Indeed, it means that the response of the MW stellar
halo to the LMC is essentially independent of the phase-space
distribution of the MW DM halo. We can therefore modify our
approach, and focus on the bare response of the stellar halo
only, considering the DM halo as an inert gravitational
component. We perform this study for stellar halos with
different orbital anisotropies in Section 4.2 below, to evaluate
how the strength of the response of the stellar halo depends on
its underlying phase-space distribution.

4.2. Response of Stellar Halos with Different Anisotropies

Starting here, and until the end of Section 5 (except briefly in
Section 5.1), we shift from studying the full self-gravitating
response of the MW DM and stellar halos altogether to
studying the bare response of the stellar halo only. Formally,
we are assuming that the response of the stellar halo is not
influenced by the DM halo’s self-gravity, i.e., we are replacing
I MDM

1- -[ ] by I in Equation (18b). For that purpose, we take
the DM halo as a background, inert potential, and we consider
the stellar halo as a low mass component responding to the
potential of the MW’s DM halo, but with its own density and
kinematic structure. More precisely, the background potential
is still the same Hernquist sphere, but now the phase-space DF
F*(E, L) only represents the stellar halo, normalized with a
total mass Mtot=M* = òMMW (with ò= 1). We consider that
the stellar halo is distributed according to a Hernquist density,
denoted ρ*, with a DF also given by Equation (C1), but
rescaled by the factor ò. Note that the total mass of the stellar
halo need not be specified, since (i) we consider the bare
response of the stellar halo, which has a linear dependence on
its mass, and (ii) all quantities we consider are relative to the
initial stellar density ρ*, so the linear dependence w.r.t. M* is
dropped.
Now, we let the stellar halo have a different kinematic

structure by changing the value of β: due to their different
formation scenarios, we can expect the stars to present different
kinematics from the DM. Indeed, on the one hand, the stars in
the halo either come from the tidal stripping of accreted
satellites, or from star formation along gas filaments connected
to the halo. In both cases, their kinematics should be imprinted
by the kinematics of the gas from which they were formed,
which shocks and forms stars with well-ordered motions, near
the bottom of the large-scale structure’s potential wells. On the
other hand, the DM shell crosses but never shocks, so that
particle motions are less ordered, whether the DM halo comes
from the first galactic gravitational collapse, the accretion of
satellites, or slower accretion from DM filaments (Pichon et al.
2011; Stewart et al. 2011; Danovich et al. 2015). We therefore
test two additional values of the stellar halo’s anisotropy: one
tangentially anisotropic (β=−0.8), and one radially aniso-
tropic (β= 0.49), which lies near the maximum central
anisotropy allowed for a Hernquist sphere (see An &
Evans 2006) and is closer to the stellar halo anisotropy
measured by Bird et al. (2019). Again, the anisotropy
parameter is independent of the distance to the center, and no
net angular momentum is introduced. In both cases, such an
anisotropic distribution may also describe a subpopulation of

Figure 4. Bare MW response (top panel) and residuals when compared with
the self-gravitating one (bottom panel). The scale of the residuals is about 10
times smaller than the bare response. Self-gravity is therefore responsible for
less than 10% of the total response.
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the stellar halo, e.g., stars accreted from a single merger event
(Belokurov et al. 2018), or from a collection of satellites (Riley
et al. 2019).

Figure 5 presents the results of this experiment: it shows the
relative overdensity br

*
(the bare response) of the stellar halo at

the present time in the orbital plane of the LMC for both values
of the stellar halo’s anisotropy. These panels clearly show that
the response is much stronger when the stellar halo is radially
anisotropic than when it is tangentially anisotropic. In more
detail, it appears that the large dipole is essentially unaffected
by anisotropy, whereas the small-scale wake is strongly
amplified in the radially anisotropic sphere, and strongly
depleted in the tangentially anisotropic system. Finally, in the
radially anisotropic system, a small-scale overdensity appears
in the region of space preceding the LMC in its orbit, while this
region of space presents a small-scale underdensity in the
tangentially anisotropic stellar halo.

5. Discussion

The results of Section 3 showed that the matrix method is
able to reproduce N-body experiments, and those of Section 4
clearly show that the stellar halo response depends on its initial
anisotropy. Let us now discuss how these results depend on the
specific orbit considered for the LMC, and how they provide
physical insight into the MW’s response, as well as quantitative
constraints on the stellar halo’s anisotropy.

5.1. Influence of the LMC’s Orbit

We now explore the influence of the specific LMC orbit we
chose for our previous computations. Indeed, the orbit was
computed by integrating backward a point mass in the MW
static Hernquist potential, which makes it unrealistic in several
ways. First, the LMC is not a point mass, and its orbit is
influenced by the fact that the LMC and the MW are two inter-
penetrating extended objects. More importantly, the MW is not
static, and its intricate reflex motion strongly affects the LMC’s
dynamics in the frame centered on the MW’s cusp.
In order to build a more realistic orbit, we integrated the

motion of the LMC-MW system using a leap-frog integrator
with the following prescriptions:

1. The motion of the MW is represented by that of its cusp:
at each time step, the MW’s acceleration is that of a point
mass in the LMC’s potential, so that

a x . 24MW LMC MWy= - ( ) ( )

In this expression, ψLMC represents the current LMC
potential, and in particular, it depends on its current
position.

2. The motion of the LMC is computed within the Hernquist
MW potential, but centered on its cusp as determined by
the previous step. The acceleration is then

a x x
M

x
1

d . 25LMC
LMC

3
MW LMCò y r= - ( ) ( ) ( )

Note that these rules differ from those of Gómez et al. 2015,
who also consider the LMC to be a point mass in the MW
potential to compute aLMC. The present prescriptions were
chosen because they more closely match the physical processes
at play, as well as the framework of the matrix method. Indeed,
choosing the MW cusp as the reference for computing forces is
relevant for two reasons. On the one hand, since the satellite is
at its first infall, it is always sensitive to more and more central
parts of the MW—the region of the cusp—while the MW’s
outskirts act as a spherically symmetric shell with no resultant
gravitational influence. In the central region, the potential is
still that of a Hernquist sphere, centered on the cusp; hence, we
take that potential as that responsible for the acceleration of the
LMC. On the other hand, the matrix method computes the
response of the MW in the reference frame of its cusp, so this
refined prescription for the LMC’s orbit is more adapted to it.
Note that this prescription does not conserve momentum, as

the reciprocal forces applied by one object on the other are not
equal. However, it appears that it still produces quasi-periodic
trajectories. Using the same values of the LMC pericentric
radius and velocity as in Section 3.1, we obtain the orbit shown
in Figure 1. This new orbit is consistent with the new

Figure 5. Response of the MW stellar halo when different anisotropies of the
halo are considered: tangential anisotropy (β = −0.8, top panel) and radial
anisotropy (β = 0.49, bottom panel). Only the bare response of the stellar
component is computed ( br

*
), and is represented relative to the initial stellar

density (ρ*). The response of the MW stellar halo is much stronger when it is
radially anisotropic.
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prescriptions we applied to the problem: since the MW is now
moving in the LMC’s potential, the LMC should come from
farther away in order to produce the same pericentric distance.

We then computed the response of the fiducial MW (β= 0)
to this new orbit for the LMC. Let us emphasize that this does
not require us to recompute the response matrix, but only to
apply Equation (15) to the new perturbing vector. In order to
compare the present case with the response in Section 3, we
consider here the full self-gravitating response of the DM +
stellar halo to the LMC on its new trajectory. The results are
shown in Figure 6. Comparing this map with the last panel of
Figure 3, it appears that the MW’s response is weakly sensitive
to the details of the LMC’s orbit. Only at large radii, in the tail
of the local wake (around (x, y )= (300 kpc, − 100 kpc)) and
the orientation of the dipolar component can one notice small
deviations in the response’s shape. This result hinders the
possibility of setting strong constraints on the LMC’s orbit far
in the past from the sole study of its present influence on
the MW.

5.2. The Reflex Motion is Pure Potential

Let us now decompose the MW stellar halo’s response to the
LMC, and disentangle the physical processes responsible for its
characteristic shape. In Appendix D.1, we show that the linear
response of a spherical, nonrotating system involves no
couplings between different m and ℓ orders in the multipolar
expansion of the perturber. This is particularly highlighted by
the m

m
ℓ
ℓ

p
q

p
q

d d term in Equation (D13). The response can therefore
be decomposed into a sum of separate harmonic terms. Here,
we focus on the dipolar over/underdense pattern, while the
local wake is studied in Section 5.3.

Figure 7 shows the bare response of the MW halo to the
ℓ= 1 components of the LMC. It appears that this harmonic
fully accounts for the effect of the reflex motion of the MW: it
presents the same dipolar feature, with similar amplitude and
orientation. As will be shown further in Figure 9, the other
harmonics do not contribute to that component in the response,
but to the overdense wake trailing behind the LMC’s trajectory.

Now, let us evaluate the bare response of stellar halos with
strong anisotropy to the dipolar components of the LMC. The
results for the radially and tangentially anisotropic halos are
shown in Figure 8. One can clearly see the similarity between
the present maps and Figure 7: both the amplitude of the
dipolar response and its shape do not seem to depend on the
velocity anisotropy of the MW stellar halo. This implies that
the MW reflex motion is independent of its internal kinematics,
and only depends on its potential and the characteristics of the
LMC’s orbit.
Note that our ability to study this dipolar term using the

matrix method was provided by a simple yet critical
improvement, i.e., by considering the motion in the reference
frame of the density maximum instead of the COM. Indeed,
previous studies (see related discussions in Seguin &
Dupraz 1994; Murali 1999) considered the COM as the
reference frame for matrix computations, so that the density
maximum gets displaced from the center of the reference
frame. This has two unfortunate consequences on the ability of
the matrix method to accurately reconstruct dipolar effects. On
the one hand, the central displacement appeared as a rather
large amplitude dipolar pattern located close to the center. This
made it difficult to reconstruct it using bi-orthogonal basis
functions, and all the more given that there is a large contrast
between the central density and its close vicinity (e.g., in a
cuspy system). This central displacement could also dominate
over the more subtle effects related to the host’s reflex motion,
which we study in more detail here. On the other hand, the
matrix method makes the assumption that the potential center is
at the reference frame center, any deviation being considered as
a small perturbation. When the density maximum is displaced,
the linear hypothesis may be violated, and all the more so for a
cuspy system. Overall, working in a reference frame that
follows the density maximum at each time addresses some
significant problems. The problem of the density maximum
being off-centered is also a concern with N-body codes using
basis function expansions (e.g., the so-called self-consistent
field codes). This problem is usually dealt with by recentering
the origin of the expansion at the density maximum of the

Figure 6. Density response, in the orbital plane, at the final time step
(t20 = 2 Gyr) of the fiducial MW (β = 0) to the LMC following the orbit
described by Equations (24) and (25). The MW’s response is only weakly
impacted by the details of the LMC’s orbit at the early stages of its infall.

Figure 7. Linear response of the MW stellar halo to the dipolar terms in the
perturber. This response includes both the ℓ = 1, m = ± 1 terms. These terms
clearly account for the large-scale over/underdense pattern related to the reflex
motion of the MW halo.
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particles (see, e.g., Choi et al. 2007; Meiron et al. 2014;
Petersen et al. 2022), but these codes may also benefit from the
method we developed here to follow more closely the density
maximum and correct the force calculations accordingly.

5.3. Local Wake as a Probe of the Halo Anisotropy

Let us now focus on the ℓ� 2 part of the response. The
middle panel of Figure 9 shows the response of the isotropic
MW to the ℓ� 2 components of the LMC. Clearly, this part of
the response encompasses the local overdensity trailing behind
the LMC. One can also see traces of a slight overdensity on the
other side of the MW, as well as underdense regions between
these two overdensities. However, these last two features are
much less significant in these regions than the dipolar pattern
induced by the reflex motion. In addition to these spatial
shapes, and in contrast to the behavior of the ℓ= 1 response,
the ℓ� 2 response is transient, in the sense that it reaches a
maximum amplitude while the LMC is around its apocenter,
and starts decaying while the LMC falls toward the MW. We,

therefore, suggest that the wake should be identified with the
ℓ� 2 part of the response. This provides a more uniform
definition than the visual characterization previously used in
the literature. We note that this definition relies on the fact that
different ℓ harmonics are gravitationally decoupled; therefore, it
may be ineffective for nonspherical or rotating models.
If we consider Figure 9 altogether, we can evaluate the

influence of the stellar halo anisotropy on the aspect of the local
wake. Clearly, its amplitude is increased in the radially
anisotropic halo, and depleted in the tangentially anisotropic
one. The wake’s structure is also different: in the tangential
halo, the wake very closely follows the LMC in its orbit, while
there is an underdensity ahead of the satellite. In the radial case,
however, the part of the wake trailing behind the LMC does so
from a distance, and is accompanied by an important
overdensity directly ahead of the satellite in its orbit.
As a consequence, it appears that the anisotropy of the stellar

halo can be probed by measuring the structure and amplitude of
the wake in the stellar density of the halo. Let us be more
specific, and focus on a possibly measurable feature: the
quadrupolar (m=±2) component of the stellar distribution in
the orbital plane of the LMC. Indeed, this quantity could be
recovered as a Fourier transform of the stellar halo density
along the angular direction in that plane. Notice that, in our
response, these terms involve all even ℓ� 2 harmonics with
m=±2. Figure 10 shows the quadrupolar response of stellar
halos with different anisotropies. Not only does the amplitude
of this term vary with anisotropy, but more importantly, it is
more wound in the tangential halo than in the radial one, which
entails different orientations in the central parts. Within
∼50 kpc, the positive part of the m=±2 response is nearly
aligned with the position of the LMC in the case of a tangential
halo, while it is largely misaligned from that position if the halo
is radial. Farther away, the orientation of this harmonic evolves
at a greater pace in the tangential case, so that in all cases, its
orientation at large distances coincides with the initial location
of the LMC.
The exact angles between this quadrupolar response and the

LMC are likely to also depend on the MW potential and the
details of the LMC’s orbit. However, there is little doubt that
this dependence of the orientation on anisotropy will remain in
other models of the MW–LMC interaction. Furthermore, we
also expect that other kinematic features of the stellar halo (e.g.,
rotation or different distributions of the anisotropy) would
imprint its quadrupolar response.

5.4. Frequencies in the Response

A possible advantage of the matrix method, compared to N-
body simulations, is to interpret the MW’s response as the
combined action of orbital frequencies. Indeed, since the bare
response of the stellar halo merely involves the application of
the response matrix to the external perturber (see
Equation (21)), it can be straightforwardly decomposed into
the sum of the influence of different combinations of orbital
frequencies, corresponding to each value of the Fourier
numbers n (also called resonance vector) in Equation (10)6.
As we will see, comparing their influence yields very distinct

Figure 8. Response of the MW stellar halo to the ℓ = 1 components of the
LMC, when different anisotropies of the halo are considered: tangential
anisotropy (β = −0.8, top panel) and radial anisotropy (β = 0.49, bottom
panel). The dipolar response of the MW stellar halo is essentially insensitive to
the anisotropy.

6 This analysis is coined the restricted matrix method in Breen et al. (2021).
In the present case, the absence of self-gravity makes the interpretations easier
because the resonant terms are directly additive.
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pictures in the radially and tangentially anisotropic models of
the MW.

The influence of each n component of the matrix on the
perturber b can be interpreted as follows. Let us decompose the
perturber spatially in each of its azimuthal harmonics m, then
further decompose one of these spatial harmonic components
through a time Fourier transform with a spectral continuum of
frequencies ωp. The resulting pattern appears as an m-armed
feature in the z= 0 plane, with pattern speed Ωp= ωp/m (see,
e.g., Tremaine & Weinberg 1984). A single of these
components therefore follows

b bt e . 26m m
m t

0
i p= - W( ) ( )

When a single n component of the response matrix is applied to
this periodic perturber, it yields the bare response (see
Equations (9) and (10))

a J N J bt d d e e , 27n n
nm

t
t m

m
0

i i
0pò òt= tW W- - W( ) ( ) ( )· ( · )

where the matrix Nn(J) is defined in terms of its components by

N J n
J

J J J
F

i 2 . 28n n n npq
p q q

,
3p y y f= -

¶
¶

+( ) ( ) · ( )( ( ) ( )) ( )( ) ( ) ( )*

Now, the integral over τ in Equation (27) can be straightfor-
wardly performed, giving

a J

N J b

t t td e sinc

. 29

n

n

m
t m

m

i
2

0

n m p
2

pò=

´

W- - WW+ W ( )( )

( ) ( )

··

This expression helps us identify the orbits, which will have a
large impact on the response in terms of their orbital
frequencies. Indeed, when the phase space is scanned by the
integral over J, the sinc function acts as a window that selects
the orbits for which n ·Ω−mΩp; 0, and all the more that time
gets large. This implies that the component we selected in the
perturber (with spacetime structure given by m and ωp) has a
larger impact on regions of phase space where n ·Ω−mΩp; 0
for one of the Fourier sets n. This motivates calling the Fourier
numbers n a resonance vector, and considering the resonance

condition

n m 30pW = W· ( )

in the following discussion. Additionally, this model gives us
insight into how the duration of the merger impacts the
response. At early times, the frequency spectrum of the
perturber is rather broad, and the width of the sinc window is
too, so that many different regions of the host’s frequency
distribution can interact with the perturber. At later times, the
perturber’s frequency spectrum narrows down to perhaps a
single or a set of frequencies (because it follows a quasi-
periodic orbit). Besides, the width of the sinc window gets
narrower too. Therefore, we can expect resonances to play a
more prominent role on longer timescales.
In order to quantify the importance of resonant effects in the

development of the wake, we follow Garavito-Camargo et al.
(2021a) and compare the gravitational potential energy of its
different resonant components. We first separate the harmonic
terms by values of ℓ and m, and consider the bare response of
the stellar halo when only a selection of resonant vectors is
considered in the sum of Equation (10). Formally, we are
computing

a M b , 31n n
ℓm ℓm ℓm= ( )

where the subscript ℓm means that only a single harmonic is
considered in the perturber and the matrix, and the superscript
n that only a single resonant term is considered in the matrix.
For ease of presentation, we will always implicitly
consider±m terms altogether (they are overdetermined
because the densities and potentials are real functions), as well
as± n terms (they belong to the same family of resonances).
Once the different response vectors have been computed, we
consider the gravitational potential energy of the resulting mass
distribution (Binney & Tremaine 2008),

x x xW t t t
1

2
d , , . 32n n n

ℓm ℓm ℓmò r y=( ) ( ) ( ) ( )

By developing the response density and potential on a bi-
orthogonal basis, we can easily show that this energy is equal

Figure 9. Linear response of the different MW models (tangentially anisotropic, isotropic, and radially anisotropic, respectively, in the left, middle, and right panels) to
the ℓ � 2 terms in the perturber. These terms clearly account for the overdense wake trailing behind the LMC.

12

The Astrophysical Journal, 933:113 (20pp), 2022 July 1 Rozier et al.



to

W t a t
1

2
, 33n n

ℓm
k

ℓmk
2å= -( ) ∣ ( )∣ ( )

where k identifies the radial basis element.
In the tangential case, it appears that several combinations of

frequencies add up to produce the final wake, the most
important of which being the corotation frequency. The top
panel of Figure 11 shows minus the gravitational potential
energy at the final time step, W tn

ℓm 20- ( ), of the 8 resonances
with the largest energies among the 183 possible resonances
with ℓ� 2, assuming that the stellar halo has a mass of
M* = 10−3MMW. It appears that several resonances with ℓ= 2
play an important role, among which the (ℓ, m)= (2, 2), (n1,
n2)= (0, 2) resonance dominates7. Beyond the ℓ= 2 terms, the
largest energy is reached by the (ℓ, m)= (3, 3), (n1, n2)= (0, 3)
resonance. We associate those (n1, n2)= (0, m) combinations
with corotating orbits, corresponding to stars that rotate
together with the perturber, at the same orbital rate Ω2=Ωp

(see Equation (30)). In the bottom panel of Figure 11, we show
the final wake of the MW when only the (n1, n2)= (0, m) terms
are kept in the response, for all m� 2. It appears that the
contribution of this frequency accounts for the bulk of the
wake, with the same shape, the same position but a lower
amplitude. On top of it, a number of smaller contributions from
other frequencies add up to form the full wake of Figure 9. It
should be noted that the corotation frequency has a relatively
high value, which could be related to the fact that (i) the wake
is able to move fast and to follow the perturber closely, and it is
therefore more wound around the MW, (ii) the response
dissipates efficiently once the LMC enters the fastest portion of
its orbit, which produces a rather shallow wake at the last
time step.

In the radial halo, the wake is clearly dominated by the
contribution of the inner Lindblad resonance. In the top panel
of Figure 12, we show the counterpart of the top panel of
Figure 11 for the radial halo. This diagram shows that the
(ℓ, m)= (2, 2), (n1, n2) = (−1, 2) resonance has the largest
potential energy, and dominates the other terms more clearly
than in the tangential halo. This resonant vector is characteristic

of the inner Lindblad frequency, ΩILR=Ω2−Ω1/2, because it
corresponds to ΩILR=Ωp in Equation (30). Interestingly
enough, another member of this family is present among the

Figure 10. Linear response of the different MW models (tangentially anisotropic, isotropic, and radially anisotropic, respectively, in the left, middle, and right panels)
to the m = 2 terms in the perturber. The orientation of this quadrupolar response can represent a crucial probe of the stellar halo’s anisotropy.

Figure 11. Resonant contributions to the wake in the bare response of the
tangentially anisotropic stellar halo. The top panel represents minus the
gravitational potential energy, W n

ℓm- , of the main resonant terms, assuming that
the stellar halo has a mass of M* = 10−3MMW. Among the 183 resonances
considered in Section 5.3, these resonant terms are the eight ones with the largest
energy. The (ℓ, m)= (2, 2) corotation (i.e., with (n1, n2)= (0, 2)) is dominant.
Among all terms with ℓ � 3, the (ℓ, m) = (3, 3) corotation (with (n1, n2) = (0, 3))
is also dominant. In the bottom panel, we represent the response when only the
corotation terms are included, i.e., n= (0, m). The response’s shape is similar to
the full wake, but its amplitude is much lower: other combinations of frequencies
also make an important contribution to the response.

7 We remind the reader that this implicitly includes all terms with m = ± 2
and (n1, n2) = ± (0, 2).
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eight most energetic resonant terms, for (ℓ, m)= (4, 4), (n1,
n2)= (−2, 4). In the bottom panel of Figure 12, we show the
final wake of the MW when only (n1, n2)= (−m/2, m) terms
are kept in the response, for m= 2, 4. This fraction of the
response accounts for most of the amplitude of the full wake
shown in Figure 9. The fact that this specific combination of
frequencies dominates tends to indicate that instead of
attracting particles that can move with it, the LMC rather
attracts orbits that can precess with it. This ΩILR frequency has
a smaller value than the orbital frequency Ω2, which could
explain the fact that (i) the wake is relatively slow and trails
behind the LMC from a distance, which implies that it is less
wound, and (ii) the overdensity that appears at early times,
when the LMC is slow and able to attract a lot of material,
never dissipates, so that the final wake has a large contribution
from this epoch.

The influence of resonant frequencies should, however, be
interpreted with care, for several reasons. First, the building
blocks of the matrix method are orbits and frequencies, which
may overemphasize the role of resonances in every linear
problem. For example, dominant resonant effects can also be
identified when the same analysis is applied to the reflex
motion discussed in Section 5.2, although it does not appear as
a resonant process. Second, the resonant interpretation is based

on the assumption that the frequency spectrum of the perturber
is narrow, which is obviously not the case because the LMC is
integrated for just a fraction of its orbit. Finally, the MW’s
response is only integrated for 2 Gyr, which is quite short
compared to the orbital times in the stellar halo, whereas the
effect of resonances could only truly dominate the MWs
response over secular timescales. On shorter timescales, their
impact is broadened by a width given the timescale of the
interactions (see Equation (29)).
To summarize these arguments, we propose the following

interpretation, also consistent with the results of Seguin &
Dupraz (1994) and Weinberg (1989). In the very early stages of
the interaction (t1 Gyr), the stars in the MW halo behave
like pure particles and are attracted by the gravitational field of
the slowly moving LMC. In an idealized future, the LMC will
have made several rotations around the MW in its orbit, and the
commensurabilities between the orbits of stars in the MW and
the LMC’s orbit could be the main driver of the MW stellar
halo’s response. In the meantime, the situation is mixed: the
initial impulsive effects are still important, but the stars also
started to be influenced by the frequency structure of the
LMC’s motion.

6. Conclusion

Recent photometric and spectroscopic surveys focusing on
the MW’s stellar halo have shown that it is dynamically
perturbed by the influence of the LMC. These observations
require detailed modeling of this infall, in order to extract
constraints on its characteristics: density and kinematics of the
MW’s DM and stellar halos, mass, and orbit of the LMC.
While this problem is mostly studied by means of N-body
simulations, here we took a complementary approach relying
on the matrix method from linear response theory, which yields
an explicit estimator of the impact of the LMC on the structure
of the stellar and DM halos. We first showed that this analytical
tool is able to quantitatively reproduce the results of N-body
simulations, opening the possibility of framing the match to the
observed response of the stellar halo as an inverse problem for
its internal kinematics. In addition, the matrix method provides
interesting insights into the physical processes at play, which
informs us on the effect of minor mergers on galaxies in
general. Our main results are the following:

(i) At that stage of the interaction, the response’s self-gravity
has little influence. As a consequence, the stellar halo can
be considered as a massless component, and its response
is weakly sensitive to the DM halo kinematics.

(ii) The response of the MW stellar halo is strongly
dependent on its internal kinematics. Here, we focused
on its anisotropy, but it is expected that global angular
momentum would also impact its response.

(iii) The MW’s response is weakly dependent on the details of
the LMC’s orbit. We compared the response when the
LMC’s orbit is integrated in a static MW potential, with
that when the MW center is also allowed to move in the
LMC’s potential, yielding very similar results in the
density response of the MW halo.

(iv) The reflex motion of the MW corresponds to the dipolar
ℓ= 1 part of the response. Its structure is very weakly
sensitive to the internal kinematics of the MW halo, and
mainly depends on its potential.

Figure 12. Resonant contributions to the wake in the bare response of the
radially anisotropic stellar halo. The top panel is the counterpart of that in
Figure 11. The (ℓ, m) = (2, 2) inner Lindblad resonance (i.e., with (n1,
n2) = (− 1, 2)) is dominant. The (ℓ, m) = (4, 4) inner Lindblad resonance (i.e.,
with (n1, n2) = (− 2, 4)) is also present among the eight resonant terms with the
highest energy. In the bottom panel, we represent the response when only those
terms are included, i.e., n = ( − m/2, m). The response’s shape is similar to the
full wake, and its amplitude is about 50% of the wake: the contribution of other
frequencies is less important than in the tangential case.
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(v) The local wake, as visually identified in simulations,
corresponds well with the l� 2 part of the response. We
suggest that in a spherical, nonrotating model, the local
wake should be formally defined based on these l� 2
terms. We found that its structure is strongly dependent
on the stellar halo’s anisotropy, both in amplitude and in
spatial distribution. Typically, a tangentially anisotropic
halo produces a shallow wake and an underdensity ahead
of the LMC in its orbit, while a radially anisotropic halo
produces a strong wake and an overdensity ahead of
the LMC.

(vi) The winding and orientation of the quadrupolar in-plane
response (m= 2) of the halo represent a novel probe of its
anisotropy. Typically, a tangentially anisotropic halo
produces a tightly wound m= 2 response where the
overdensity is nearly aligned with the LMC within 50 kpc
of the MW, while it is more loosely wound and rather
misaligned with the LMC in the radial halo.

(vii) Resonances seem to matter, in particular in the radially
anisotropic case with radial orbits at the inner Lindblad
resonance with the LMC.

These first results call for further work relying on the linear
response formalism. On the one hand, the structure and
kinematics of the MW could be modified, in order to account
for the details of the DM halo density profile (e.g., different
central and outer slopes, triaxiality, or clumpiness of the halo),
and of the complexity of the stellar halo kinematics (e.g., global
angular momentum, spatial distribution of the anisotropy). In
particular, it is possible that even a mild level of rotation could
significantly impact the MW halo’s response. On the other
hand, the tidal evolution of the LMC could be included in the
model, in order to evaluate how the evolution of its mass
influences the MW’s response. Surely, such studies will help
refine our models of the LMC infall.

The method developed here should also be adapted to disk-
halo configurations, in order to allow for the detailed analytical
study of the response of the MW disk-halo system to the
accretion of the Sagittarius dwarf galaxy. In this merger, the
effect of the self-gravity of the DM halo could potentially play
a much more important role because of the multiple wraps that
the Sagittarius dwarf has already made around the MW halo.
More generally, it would be important to investigate how and
when self-gravity becomes important, depending on the
kinematic structure of the host galaxy.
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Appendix A
Derivation of the Matrix Method

Starting from the linearized CBE (Equation (4)), let us
follow a path similar to that of Murali (1999) and Pichon &
Aubert (2006) to derive the response matrix formalism in its
temporal version.

A.1. Angular Fourier Transform

First, let us expand all perturbed quantities of Equation (4) in
a Fourier series of the angles. Since each quantity should be 2π
periodic in the angles, these series can be written as

J Jf t f t, , , e , A1a
n

n
niåq = q( ) ( ) ( )·

J Jf t f t,
d

2
, , e , A1bn

n
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q q
p

= q-( )
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and similarly for the perturbing Hamiltonian

J JH t H t, , , e . A2
n

n
niåqD = D q( ) ( ) ( )·

Here, n 3Î  is the triplet labeling each Fourier coefficient.
Multiplying Equation (4) by e−i n·θ and integrating over the
angles, each Fourier component separately satisfies
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Now, Equation (A3) takes the form of an integro-differential
equation on fn. Assuming that the system is unperturbed at the
initial time, i.e., fn(t= 0)= 0, the solution satisfies the integral
equation

J n
J

Jf t
F

H, i d , e , A4n n
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where ΔHn itself depends on fn through the Poisson equation.

A.2. Basis Function Expansion

To make this dependence explicit, we project the perturbing
quantities on a bi-orthogonal basis of potentials and densities.
We can assume that this basis takes the form

x r Y U r, , , , A5ap
ℓmn ℓ

m
n
ℓy y q f q f= =( ) ( ) ( ) ( ) ( )( )

x r Y D r, , , , A5bp
ℓmn ℓ

m
n
ℓr r q f q f= =( ) ( ) ( ) ( ) ( )( )

where a given basis element is characterized by three indices,
ℓ� 0, |m|� ℓ, and n� 0, and Yℓ

m is a spherical harmonic
following the normalization convention

Yd d sin , 1. A6ℓ
m 2ò q f q q f =( ) ∣ ( )∣ ( )

In Equation (A5a), we also introduced the radial parts of the
respective bases, Un

ℓ and Dn
ℓ, which are normalized so that (see

also Equation (6))

x x xd . A7p q
p
qò y r d= -( ) ( ) ( )( ) ( )*

Several choices for these radial functions are given in the
literature, e.g., by Clutton-Brock (1973), Fridman et al. (1984),
Hernquist & Ostriker (1992), Bertin et al. (1994), Zhao (1996),
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Rahmati & Jalali (2009), and Lilley et al. (2018). Unlike that
required to fully reconstruct the perturber and the host (see,
e.g., Weinberg 1999), the matrix method only demands an
accurate reconstruction of the perturber, so that there is no need
in the present study for a basis with cuspy elements. In
Appendix B, we briefly describe our choice of basis, which is
that of Clutton-Brock (1973) and has a Plummer profile
(Plummer 1911) as the first element.

We define the projections of the perturbing potentials ap and
bp so that (see also Equation (7))

x xt a t, , A8a
p

p
ps åy y=( ) ( ) ( ) ( )( )

x xt b t, . A8b
p

p
pe åy y=( ) ( ) ( ) ( )( )

Using such an expansion, it becomes clear that the purpose of
the matrix method will be to compute the coefficients ap(t) (the
system’s response), given a certain set of coefficients bp(t) (the
external perturber). We can now derive the response equation
that relates these quantities.

A.3. The Response Matrix

Using the bi-orthogonality condition, we can invert
Equation (A8a) to get

x x xa t td , . A9p
psò r y= -( ) ( ) ( ) ( )( )*

Since the DF perturbation is related to the density response in
the system through

x v x vt f t, d , , , A10s òr =( ) ( ) ( )

Equation (A9) can be developed as Equation (8).
Now, the DF perturbation, f, can itself be developed in

angular Fourier elements as in Equation (A1a), and the
integration variables can be canonically changed from dxdv
to dJdθ, with a Jacobian equal to 1 owing to phase-space
volume conservation. We then have
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where the last expression was obtained thanks to
Equation (A1a).

While for now, we only used the definition of the projection
coefficient and some field equations, let us include the
dynamics through the CBE, and in particular Equation (A4),
to get
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To proceed further, we develop the perturbation to the
Hamiltonian in more detail. Starting from Equation (2), let us
first expand all potentials (ψe and ψs) and densities (ρ1 in

Equation (3)) in the potential-density basis elements. This gives

⎡
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where the time dependence is fully borne by the projection
coefficients aq and bq. Defining the new set of functions of
Equation (11), the angular Fourier transform of the perturbing
Hamiltonian is given by
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Using Equations (A12) and (A13), we get
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where the response matrix is defined as in Equation (10).
Equation (A14) is also another version of Equation (9).

Appendix B
The Clutton-Brock Bi-orthogonal Basis

In this appendix, we detail our choice of basis functions,
which was first constructed by Clutton-Brock (1973). The
potential and density elements of this basis are given by
Equation (A5a) with
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where Rb is the basis scale radius, Cn
a( ) are the Gegenbauer

polynomials, and the renormalized radius is given by
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In Equation (B1a), we defined the normalization constants
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ℓ is defined as
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The radial basis is therefore defined for n n0 max  .

Appendix C
The Baes–van Hese Equilibrium Distribution Function

For the choice of anisotropic phase-space DFs with
Hernquist density, we relied on the work of Baes & van
Hese 2007 (their Equations (92) and (93)). More specifically,
we focused on the particular case of spheres with a constant
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anisotropy parameter β, so that the DF is given by
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where a stands for the scale radius of the MW, aMW, and M for
the total mass of the MW, MMW. In order to produce a non-
negative DF, the anisotropy parameter is restricted to β� 0.5
(see An & Evans 2006). Note that, in the case where the DF
only represents the stellar halo (Sections 4 and 5), this DF
should merely be rescaled by the factor Mtot/MMW, without
rescaling the energy or the angular momentum (but see
Section 4.2).

An extra step is required to consider this DF as a function of
the actions, so that it can be input in Equation (10). Indeed,
once the spherically symmetric potential is specified, a bijective
relation exists between the sets of conserved quantities, which
are (E, L) and (Jr, L). In practice, all quantities that are entered
into Equation (10) are actually computed on a third set of
conserved quantities, the peri- and apocenters (rp, ra), which
make the coordinate transforms more straightforward. Some of
the technical details of these coordinate transforms are given in
Appendix D.

Appendix D
Computation of the Response Matrix

For a spherical, nonrotating mean-field DF, the formula
giving the matrix method can be simplified. We perform these
simplifications in the following section. Later, we describe in
some detail the numerical techniques we developed for the
computation of the matrix, and validate the implementation by
recovering unstable modes from the literature.

D.1. Matrix of a Spherical, Nonrotating Equilibrium

Here, we consider the special case where Ω3= 0 and
∂F/∂Lz= 0, i.e., that of a spherical, nonrotating system. Let us
first use the derivation from Tremaine & Weinberg (1984) for
the Fourier-transformed basis functions,
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where n= (n1, n2, n3) is the resonance vector associated with
each Fourier coefficient, β is the inclination angle of the orbit
associated with J, defined so that L Lcos zb =( ) , and
J J L,r= ( ), n n n,1 2= ( ). Additionally, the rotation matrix
Rnm

ℓ b( ) is defined as
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where the sum over t is restricted to the values such that the
arguments of the factorials are positive, i.e., t t tmin max  ,
with t n mMax 0,min = -[ ] and t ℓ m ℓ nMin ,max = - +[ ]. In
Equation (D1), the Fourier-transformed in-plane radial

coefficients  JW n
ℓn( ) are defined as
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which are real for real radial basis functions. In this integral, the
radial dependence of the angles θ1 and (θ2−ξ) is given by
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where ξ is the angle between the ascending node and the
current position, measured in the orbit plane along the orbital
motion, E, L are the energy and angular momentum of the
orbit, and  is the integration contour going from the pericenter
rp up to the current position r= r(θ1) along the radial
oscillation.
In order to simplify Equation (10), we also need to

decompose the inertial term Jn
pf ( )( ) . Using Equation (11), we

have
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Let us first focus on the integral on the left-hand side of the dot
product, which we will rewrite as xn(J), as it is the angular
Fourier transform of the position vector. We can rewrite x as a
Cartesian vector in terms of spherical coordinates (r, θ, f) as
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In each of the Cartesian directions, we therefore have to
perform an angular Fourier transform of a function that is
separable in terms of a linear combination of spherical
harmonics Y, times a function that depends on the radius only
(in the present case, r itself). This is precisely the context in
which Equation (D1) can be applied. As a result, we have
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where we defined new in-plane radial coefficients as

 JX r n n
1

d cos . D8n
1 1 1 1 2 2òp
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Similarly, we can express the integral on the rhs of the dot in
Equation (D5) as a Cartesian vector in terms of spherical
harmonics. Given the harmonic dependence of the basis
functions (see Equation (A5a)), as well as the orthogonality
of the spherical harmonics, most of the basis functions will
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yield a vanishing integral. The only nonzero terms give
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where we defined the radial integral of the basis functions over
the whole radial range as

d r D rd . D10n n
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If we now perform the scalar product of Equations (D7)
and (D9), which are both written in Cartesian coordinates, we
have
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The fact that this term accounts for the translation of the
reference frame is recovered, since it is only present in dipolar
harmonics ℓ p= 1.

We can now use Equations (D1) and (D11) to simplify
Equation (10). In Equation (D11), the dependence on the third
action, Lz, is only borne by the rotation matrices R(β). We can
therefore make use of their orthogonality relation,
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Once this simplification is performed, we end up with the final
form of the response matrix for spherical, nonrotating systems,
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One can notice the similarity of this equation to Equation (23)
in Murali (1999), the main difference being our definition of dn

q

(their pj
lm), which stems from considering the reference frame

of the cusp instead of that of the COM. Interestingly enough,
the response matrix element Mpq is proportional to m

m
ℓ
ℓ

p
q

p
q

d d .
This means that there is no coupling between different angular
harmonics in the system’s response: each angular harmonic
effect in the response is only induced by the corresponding
harmonic cause in the perturber, mediated by the corresponding
harmonic term in the matrix. As shown by Rozier et al. (2019),
this characteristic is specific to nonrotating spheres. Let us now
detail the numerical methods that we used to compute the
response matrix.

D.2. Numerical Methods

To compute the action space integral of Equation (D15), we
carefully analyzed the different terms of the integrand. A
critical feature appears when this integrand is rewritten as
 Jg e Jhi( ) ( ). In this form, the integrand is written as a slowly

varying function of the actions, g, times a fast trigonometric
oscillation. The argument of this oscillating term itself, h, is
also a slowly varying function of the actions. We therefore
choose to divide the action space into small surfaces, in which
both functions g and h are well approximated by their first-
order expansion.
In order to reach a better sampling of action space, we relied

on the same change of variables as in Rozier et al. (2019): the
integration variables are changed to (u, v), which are written as
functions of the orbits’ peri- and apocenters. This change of
variables allows for a logarithmic sampling of the orbits that
are either close to the host’s center or close to circular, while
the other orbits are sampled linearly in terms of peri- and
apocenter. This usually leads to better sampling of the regions
where the integrand of Equation (D15) reaches a significant
amplitude. The function g can be redefined to include the
transformation’s Jacobian, and the resulting functions g(u, v)
and h(u, v) are still slowly varying functions of their arguments,
as compared to the fast trigonometric oscillation.
In the end, we compute Equation (D15) as the sum over a

grid on the (u, v) surface of the integral g h, , , , ,g
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where g, h, and their derivatives are evaluated at the center (u0,
v0) of each square of side Δu. This integral can be
renormalized as
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Finally, we found an analytical expression for this last integral
as
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where x x xsinc sin=( ) ( ) .
Let us now explain in more detail how we evaluate the

functions g and h, and their partial derivatives. In general, most
of the functions involved in g and h can be expressed as
functions of (rp, ra), the orbit’s peri- and apocenter. Such
functions can later be considered as functions of (u, v), owing
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to the analytical relations rp(u) and ra(u, v) (see Rozier et al.
2019). In particular, the energy (required in the phase-space DF
F(E, L)) and angular momentum are given by
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and the orbital frequencies are given by
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Owing to these relations, the functions g and h can be
computed, as well as their partial derivatives through explicit
analytical expressions. In the case of both g and its partial
derivatives, special treatment should be mentioned in the
computation of W, X, and their partial derivatives (see
Equations D3 and D8). Indeed, these functions a priori involve
nested integrals of the form

r S r r rd , , , D221 2ò q q x-[ ( ) ( )( )] ( )

where θ1(r) and r2q x-( )( ) themselves are integrals (see
Equation (D4a)). Besides, the integrands involved are unbound
at the edges of the integration region, which could be the
source of issues when performing derivatives. To cure these
two problems, we first regularize the integrals at their edges by
applying the same effective anomalies as in Henon 1971 (see
also Rozier et al. 2019). Then, following Rozier et al. (2019),
instead of directly computing the nested integrals, we transform
the problem into the single integration of a multicomponent
vector. These tricks allow us to compute W, X, as well as their
partial derivatives, as simple well-posed integrals using an RK4
integration scheme.

D.3. Validation of the Implementation

In order to validate our implementation of the response
matrix, here, we present the response of a radially anisotropic
isochrone sphere. In Saha (1991), it is shown that such a sphere
undergoes a radial orbit instability. We therefore compute the
response matrix for a spherical system with an isochrone
potential (Binney & Tremaine 2008), and an Osipkov–Merritt
DF (Osipkov 1979; Merritt 1985) with a transition radius from
the isotropic center to the radially anisotropic outskirts taken at
Ra= 1.0 b, where b is the scale radius of the isochrone
potential. Since the instability is expected to emerge as a
quadrupolar (ℓ= 2) mode, we focus on this component of the
response matrix and we perturb the system with a potential
presenting the corresponding level of symmetry. The computa-
tion uses 100 basis functions as defined in Appendix B, with a
scale radius Rb= 20 b, and a maximum radial resonance
number of n 51 max = . In this section, all quantities are rescaled
so that G=Mtot= b= 1, where Mtot is the total mass of the
sphere.

By definition, the unstable mode is a property of the
background sphere; as a consequence, it is independent of the
perturber we apply. We therefore arbitrarily choose an
axisymmetric perturber (m= 0), and instead of choosing a
potential for the perturber that would later be projected onto the
functional basis to get the vector b, we directly fix the value of
the vector as well as its time evolution. For simplicity, we
choose to give equal values to all vector coefficients, with a
rapid cutoff in time of the form e t 402- . The time evolution of
these coefficients is shown in Figure D1.
Figure D1 also shows the time evolution of the coefficients

of the response vector a, when the response matrix formalism is
applied according to Equation (15) and evolved up to t= 300.
Although the perturber is steeply cutoff after t∼ 10, it has
clearly excited an instability that later grows at an exponential
rate: indeed, above t∼ 25, all coefficients of a grow at the same
exponential pace. When we compute the common slope of
these curves, we can estimate the growth rate of the identified
instability to be η= 0.0245, which favorably compares to the
computation from Saha (1991) at η= 0.025. In addition to the

Figure D1. Time evolution of the norm of the coefficients of the perturber |bn|
(dashed lines) and the response |an| (solid lines). Different colors indicate
different values of n. Note that the different |bn| values were artificially shifted
in order to avoid overlapping. Despite the early disappearance of the external
perturber, the system spontaneously develops an exponentially growing mode
at the rate η = 0.0245.

Figure D2. Radial profile of the instability’s potential, as computed by Saha
(1991) (dashed line) and by our method (solid line). The vertical scale of each
curve is arbitrary because the instability grows exponentially in time, starting
from a seed that is specific to the particular realization of the initial conditions.
Therefore, we decided to match the maximum values of both curves. The
shapes are very similar, which further validates our implementation.
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norm of these coefficients, we measured their phase angle, and
did not detect any variation of it. This indicates that the mode is
not oscillating, which is also the conclusion of Saha (1991).

Focusing on the spatial shape of the instability, Figure D2
compares the radial profile of the mode’s potential from our
computation at t= 300 to the same measurement from Saha
(1991) (both using an arbitrary normalization of the potential’s
amplitude). The two profiles look very much alike, despite the use
of different computation parameters as well as different detection
methods (time space in our case versus frequency space in theirs).

Overall, this comparison suggests that our algorithm is valid
for our purposes.

Appendix E
Optimized Operations with the Response Matrix

Equation (15) involves the inversion of a large matrix, as
well as its product with a large vector. In order to perform these
operations, we developed fast algorithms that take into account
their specificities.

As defined by Equation (13), the matrix M is a block-
triangular-Toeplitz matrix. Such a matrix is defined by the
following particular shape:

ðE1Þ

where the diagonal blocks are denoted as Mi. One can easily
show that the inverse of such a matrix is also a block-
triangular-Toeplitz matrix. This inverse can be computed by the
following recurrence. Let us first coin Ai the blocks of the
inverse matrix. The first block is straightforwardly given by
A M0 0

1= - , where this inversion is computed using a standard
matrix inversion scheme. Then, for 1� i� K, the matrix Ai is
computed thanks to the relation

A M M A . E2i
k

i

k i k0
1

0

1

1 1å= - -

=

-

+ - - ( )

One can easily show that such an algorithm indeed yields the
inverse of the original matrix. Note that, when inverting
I_ − M , the inversion of the first term is straightforward, since
it is equal to the identity itself.

A similar algorithm can be developed for the product of such
a block-triangular-Toeplitz matrix with a vector. When the
matrix (E1) is multiplied with a vector defined by the stacked
sub-vectors b0, L ,bK, then the stacked sub-vectors of the
product, which we denote as c0, L ,cK can be computed via

c M b . E3i
k

i

k i k
0

å=
=

- ( )
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