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S U M M A R Y
Tsunamis generated by large earthquake-induced displacements of the ocean floor can lead
to tragic consequences for coastal communities. Measurements of co-seismic ionospheric
disturbances (CIDs) offer a unique solution to characterize an earthquake’s tsunami potential
in near-real-time (NRT) since CIDs can be detected within 15 min of a seismic event. However,
the detection of CIDs relies on human experts, which currently prevents the deployment of
ionospheric methods in NRT. To address this critical lack of automatic procedure, we designed a
machine-learning-based framework to (1) classify ionospheric waveforms into CIDs and noise,
(2) pick CID arrival times and (3) associate arrivals across a satellite network in NRT. Machine-
learning models (random forests) trained over an extensive ionospheric waveform data set show
excellent classification and arrival-time picking performances compared to existing detection
procedures, which paves the way for the NRT imaging of surface displacements from the
ionosphere.

Key words: Ionosphere/atmosphere interactions; Tsunami warning; Artificial intelligence.

1 I N T RO D U C T I O N

Large seafloor displacements due to earthquakes are known to
generate destructive tsunamis. Unfortunately, near-real-time (NRT)
mapping of the co-seismic surface displacements to characterize
the earthquake tsunami potential is still challenging for conven-
tional methods, especially for earthquakes with magnitudes Mw >

8 (Wright et al. 2012; Katsumata et al. 2013; LaBrecque et al.
2019). In our definition, NRT corresponds to times within 15–20
min after the earthquake onset which is crucial for early-warning
application as it gives several tens of minutes for populations to
evacuate before the tsunami reaches the coasts.

Recently, several research groups have demonstrated that iono-
spheric measurements can offer an alternative to seismo-geodetic
methods to estimate the tsunami potential of earthquakes. The iono-
sphere is an electrically charged atmospheric layer that is concen-
trated between 150 and 400 km of altitude. This layer is sensitive
to the vertically propagating acoustic energy excited by natural
(e.g. earthquakes, tsunamis and volcanic eruptions) and man-made
events (e.g. explosions, rocket launches and nuclear tests) (Heki
2006; Komjathy et al. 2016; Rolland et al. 2016; Shults et al. 2016;
Astafyeva 2019; Astafyeva & Shults 2019). In particular, the iono-
spheric signature of earthquakes, known as co-seismic ionospheric
disturbances (CIDs), can be detected 7–9 min after the earthquake.
CID waveform characteristics are correlated to the seismic source
properties which can help us constraining source parameters and
might inform us about the tsunamigenic potential of an earthquake.

For instance, the amplitude of the CID scales almost linearly with the
magnitude of an earthquake (Astafyeva et al. 2013b, 2014; Cahyadi
& Heki 2015; Occhipinti et al. 2018; Heki 2021), or—for submarine
earthquakes—with the tsunami wave height or volume of water that
was displaced due to an earthquake (Kamogawa et al. 2016; Rakoto
et al. 2018; Manta et al. 2020). Additionally, CID arrival times and
detection coordinates provide strong constraints on the position of
the seismic source, or the origin of tsunami (Afraimovich et al. 2006;
Heki et al. 2006; Astafyeva et al. 2009; Tsai et al. 2011; Lee et al.
2018; Bagiya et al. 2020; Inchin et al. 2021; Zedek et al. 2021).
Moreover, Astafyeva et al. (2011, 2013a) and Astafyeva (2019)
showed that the distribution of the first-detected CIDs matches the
position of the maximum displacement on the ground and Kaki-
nami et al. (2021) showed that the initial point of CID matches the
maximum vertical displacement of the tsunami source.

However, despite the high potential of seismo-ionospheric assess-
ment of natural hazards, the detection and analysis of ionospheric
disturbances still rely on human experts. This manual process is
problematic when processing large data volume. Only a few stud-
ies have focused on the automatization of detection procedures in
the ionosphere but only at low frequencies (Efendi & Arikan 2017;
Belehaki et al. 2020). Ravanelli et al. (2021) investigated the use
of both Global Navigation Satellite System (GNSS) ground and
ionospheric Total Electron Content (TEC) measurements for NRT
tsunami genesis estimation. However, Ravanelli et al. (2021) did
not present any detection procedure for CIDs, but only showed
TEC variations in NRT scenario. In addition, their TEC processing
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procedure included the use of 8th order polynomial fit in order to
highlight the co-seismic signature. The latter is not possible in our
definition of NRT mode, that is 15–20 min after the earthquake
onset time. The first NRT-compatible method detecting CID was
suggested by Maletckii & Astafyeva (2021). However, their study
only showed good results on 1 Hz data with CIDs showing high
temporal TEC derivative. Therefore, the community needs methods
allowing for rapid automatic detection and recognition of CIDs for
both future NRT developments and processing of large amount of
TEC data retrospectively.

The problem of earthquake waveform detection has been investi-
gated in the seismic community since the early days of modern com-
puters (e.g. Allen 1982). The automatization of waveform detection
procedures has historically been performed in the seismic commu-
nity using analytical methods such as the short-time average/long-
time average (STA/LTA) filter (Allen 1982). However, the high rate
of false positives generated by these analytical filters has moti-
vated the seismic community to implement machine-leaning (ML)
approaches that combine both low computational time and high ac-
curacy (Ross et al. 2018; Mousavi et al. 2020). Even when only
small labelled waveform data sets are available, ML methods pro-
vide excellent classification results (Provost et al. 2017; Wenner
et al. 2021). In particular, random forests (RFs; Breiman 2001)
show excellent generalization abilities and do not require an ex-
tensive hyperparameter tuning. RF is an ensemble technique that
builds predictions by aggregating predictions from a set of decision
trees. Aggregating results from individual decision trees built using
bootstrap aggregation, which consist of randomly selecting input
features to train each tree, makes RF particularly robust to new
data.

To address the lack of automatic detection method, we build
an RF-based architecture to classify TEC time-series, pick arrival
times and associate detected arrivals. RFs are trained over an exten-
sive CID waveform data set from 12 large-magnitude earthquakes
to classify TEC waveforms between CIDs and noise and pick ar-
rival times in NRT. Our method is, to the best of our knowledge,
the first reported ML classifier and arrival-time picker of CIDs. In
this paper, we first describe the generation of our waveform data
set, our detection procedure and our ML models. We show classi-
fication performance results over our testing data set and against
other analytical detection methods. We finally discuss the future
implementation of such method for NRT applications.

2 DATA C O L L E C T I O N

The GNSS is widely used to sound the ionosphere. GNSS sig-
nals transmitted by satellites and captured by ground-based dual-
frequency GNSS receivers enable the estimation of the differential
slant TEC (sTEC), which is equal to the number of electrons along
a line-of-sight (LOS) between a satellite and a receiver. The sTEC is
calculated from phase and code measurements (Afraimovich et al.
2006; Hofmann-Wellenhof et al. 2008; Shults et al. 2016). The
phase measurements provide precise information about the iono-
spheric variations and disturbances, but they are biased by an un-
known phase ambiguity constant. The code measurements are noisy
and less precise, but are not ambiguous, which enables to estimate
the bias by averaging the code values along the arc of measurements.
The sTEC is then estimated by removing the bias from the phase
measurements. However, in near-real-time scenario, since the CID
and other disturbances are clearly seen in phase measurements, we
suggest to calculate the sTEC using solely phase measurements that

(a)

(b)

(e) (f ) (g)

(d)(c)

Figure 1. CID waveform data set. (a) Map showing the event included in
the training data set. Details about each event can be found in Table A1.
(b–g) vTEC waveforms against time that include a CID arrival (panels b–e,
green) and that only contain noise (panels f and g, red). The CID arrival
time is shown as a grey vertical line in panels (b)–(e).

can be rapidly retrieved in real-time via the Networked Transport
of RTCM via Internet Protocol (NTRIP):

sTECph = 1

A
∗ f 2

1 ∗ f 2
2

f 2
1 − f 2

2

∗ (L1 ∗ λ1 − L2 ∗ λ2), (1)

where A = 40.308 m3 s−2, L1 and L2 are phase measurements, λ1

and λ2 are wavelengths at the two Global Positioning System (GPS)
frequencies: f1 = 1227, 60 and f2 = 1575, 42 MHz. Once the sTEC
is calculated, the first data value is subtracted from all data series to
remove an unknown bias. Finally, because the sTEC is affected by
the elevation angle of the LOS, we convert sTEC to vertical TEC
(vTEC) by using the standard ‘mapping function’:

vTEC = sTEC ∗ cos

(
arcsin

(
Re cos θ

Re + Hion

))
, (2)

where Re is the Earth radius, θ is the LOS elevation angle and
Hion is the altitude of ionospheric detection. The Hion cannot be
known because the sTEC is an integral parameter. Based on the
physical principles, the Hion is presumed to be around the ionization
maximum, that is around 250–350 km. Here we take Hion = 250 km
for all events. This choice is reasonable from the point of view of
the ionospheric physics, while determining the real altitude of CID
detection is out of the scope of this work. Moreover, once the system
is trained, it can detect CID in TEC data series for any Hion value.
The total electron content is measured in TEC units (TECU), with
1 TECU=1016 electrons m−2.

To construct our database, we collected GNSS–TEC data with
CID signatures for 12 earthquakes that occurred between 2003 and
2016 (see Fig. 1 and Table A1), including the M6.6 Chuetsu earth-
quake which is the smallest earthquake ever recorded by ionospheric
GNSS data (Cahyadi & Heki 2015). The typical CID waveform are
N-shaped and hump signatures (Fig. 1b). However, CID waveforms
also depend both on the magnetic field configuration in the epicen-
tral region and on the geometry of the GNSS sounding (Heki &
Ping 2005; Astafyeva & Heki 2009; Rolland et al. 2013; Bagiya
et al. 2019). Therefore, in order to correctly represent the large di-
versity of CID waveforms in our model, we included a variety of
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NRT detection of CIDs using machine learning 2119

different TEC signatures that could be recorded after an earthquake
(examples shown in Figs 1b–e).

The GNSS data used in this study were of 1, 15 and 30 s cadences
(see Table A1). Following the NRT-compatible scenario, we did not
apply bandpass filter to extract or amplify CID signatures, but only
worked with raw relative vTEC.

3 AU T O M AT I C D E T E C T I O N A N D
A S S O C I AT I O N M O D E L S

We propose a multistep RF-based procedure to automatically detect
CIDs in TEC data series (see Fig. 2): (1) selection of a time win-
dow; (2) data pre-processing; (3) waveform features extraction, (4)
RF-based classification of inputs features between noise and CID
classes; (5) if detection probability >50 per cent at step 4, RF-based
arrival time picking; (6) if three successive time windows classified
as CID, confirmation of the presence of an arrival and aggregation
of arrival times; and (7) if a detection is confirmed at step 6, we
then associate this arrival to previously detected CIDs. Finally, we
shift the time window and repeat the procedure.

3.1 Pre-processing and feature extraction

To extract consistent waveform features in TEC data with differ-
ent sampling times, we first downsample all waveforms down to
30 s (see Supporting Information Section S6). Consistency in sam-
pling rate is critical as the higher-frequency spectral content can
lead to substantial variations in input features. For example, energy
peaks at higher frequencies, that would normally be smoothed out
at lower frequencies, can drastically alter the envelope kurtosis and
skewness. Additionally, TEC data may contain long-term trends
(signals with periods typically greater than 30 min) due to GNSS
satellite motion and other long-period TEC changes which can be
considered as noise for the problem of CID detection. Therefore, we
remove long-term trends by first taking the time derivative of vTEC
waveforms to remove long-wavelength trends and then performing
a linear de-trending. Derivatives are computed using second-order
central differences in the interior points and second-order one-side
(forward or backward) differences at the boundaries. Once the TEC
waveforms have been pre-processed, we extract 46 features cal-
culated from the vTEC time-series, spectra and spectrograms (see
Supporting Information Section S1). These features are commonly
used for signal classification tasks (e.g. Hammer et al. 2013; Hibert
et al. 2014; Provost et al. 2017; Wenner et al. 2021).

3.2 Building a single-station CID arrival detector

We selected an RF model (Breiman 2001) to discriminate vTEC
signals between earthquakes and noise classes. Our RF model takes
the features extracted from a given waveform at the previous step
as inputs and outputs the probability of this waveform to be signal
or noise. An input waveform is classified as CID if the detection
probability predicted by the RF is over 50 per cent. RF predictions
are constructed from average predictions from an ensemble of in-
dividual decision trees. Individual decision trees are built through
bootstrap aggregation that consist of randomly selecting input fea-
tures to train each tree. RFs have excellent generalization abilities
and do not require an extensive hyperparameter tuning. We used
the ‘ExtraTrees’ scikit implementation of the RF (Pedregosa et al.
2011) which introduces an additional layer of randomness when
building decision trees which allow for better generalization of the

training data set (Geurts et al. 2006). The training procedure re-
lies on bootstrap samples to build each tree along with out-of-bag
samples to estimate the generalization score. Bootstrap aggregation
is an iterative procedure where a subset of the training set is ran-
domly selected to train the RF, called in-the-bag set, at each training
step. Samples left out at each training step, that is out-of-bag sam-
ples, are used to estimate the generalization score. Bootstrapping
makes decision trees less sensitive to the choice of training data set
which reduces the probability of overfitting. Additionally, the error
computed from out-of-bag samples provides an excellent metric for
RF’s classification performances.

We need to first build a data set of features to train our RF
classifier. This data set building process is summarized in Fig. 3.
For each station, CID wave trains are described by an arrival time
and a duration. Arrival times are selected manually as the time
of sudden increase in vTEC amplitudes. Wave train durations are
considered uniform across satellites and stations for a given event
(see Table A1). Wave train durations are used to automatically la-
bel waveforms as CIDs, that is to build our training data set. We
consider that a time window contains a CID if it overlaps the true
wave train, that is CID confirmed by human analyst, by at least
70 per cent which makes the RF more flexible to detect partial CID
waveforms. Values picked for the wave train duration correspond
to estimates of the minimum duration of the CID across the net-
work of satellites and stations. This choice ensures that at least the
arrival time and/or the time at vTEC maximum are contained in the
waveforms. Similar to Ross et al. (2018), we augment our train-
ing data set by selecting four time-windows over each CID arrival
by randomly shifting the beginning of the time window while still
fulfilling the 70 per cent overlap condition. Noise waveforms are
selected randomly over each time-series in the data set with the con-
dition that the beginning and end time of the noise window should
be at least 30 min away from any CID wave train. Before extract-
ing features, we add artificial Gaussian noise to the waveforms in
the training data set to reduce overfitting similar to Mousavi et al.
(2020). We add Gaussian noise to each waveform s (for both ar-
rival and noise classes) so that the perturbed waveform s shows a

specific signal-to-noise ratio (SNR) s = s +
√

σ 2

SNR n, where s is the

original waveform, σ 2 is the variance of the original waveform, n is
the added noise sampled from a normal distribution and the SNR is
picked within the range SNR ∈ (1, 5). Binary classification over an
imbalanced training, that is different number of inputs between the
two classes, may result in a classifier that is biased towards the ma-
jority class, that is the more frequent class (Brodersen et al. 2010).
We therefore choose an equal number of CID and noise waveforms
in the data set to ensure the balance between true positive and true
negative rates. The final data set consists of 2867 CIDs and 2867
randomly picked noise waveforms.

3.3 Building an arrival-time picker

After the classification step, our detection algorithm needs to ac-
curately select the arrival time in each window with a detection
probability >50 per cent. This time picking procedure remains chal-
lenging using threshold-based conditions such as STA/LTA filters
(Allen 1982). False positives will degrade the arrival time estimate
when using threshold-based methods since SNR, signal duration
and dispersion characteristics vary significantly between events. To
overcome this problem, we build an automatic arrival-time picking
procedure by using an ‘ExtraTrees’ RF regressor. Our RF takes a
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2120 Q. Brissaud and E. Astafyeva

Figure 2. Detection and association procedures described in Section 3: (1) selection of a time window; (2) pre-processing of the waveform; (3) extraction of
waveform features from (i) time-series, (ii) spectrum and (iii) spectrogram; (4) RF classification of input waveform; (5) RF arrival time picking; (6) confirmation
of an arrival if RF has classified three consecutive time windows (at times tn − 2, tn − 1, tn) as arrival; and (7) association of arrivals across different satellites
and stations.

b) Preprocessing

Window 
selection

Noise 
windows

CID
windows

Feature extraction

RF picker training dataset

Fe

Noise 
+ CID

RF

only
CID

RF classifier training dataset

Normalization

vTEC waveform 
dataset

85% training

15% validation

85% training

15% validation

Figure 3. Building data sets to train our CID classifier and arrival-time picker. Each waveform in our vTEC data set contains information about the CID arrival
time and wave train duration. First, four CID windows and four noise windows are extracted from each vTEC waveform. CID windows must overlap the CID
wave train by at least 70 per cent while noise windows must start or end at least 1000 s, respectively, after or before the CID wave train. Each window is then
pre-processed (derivative and linear detrending) to remove long-term trend. Features are extracted from the pre-processed CID and noise waveforms to build a
training data set for our RF classifier with 85 per cent assigned to the training data set and 15 per cent to the validation data set. To build our arrival-time picker
RF model, pre-proccessed CID waveforms are normalized with 85 per cent assigned to the training data set and 15 per cent to the validation data set.
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NRT detection of CIDs using machine learning 2121

normalized pre-processed waveform as input (see Fig. 2) and out-
puts offset in seconds from the window central time, that is a float
number between −360 and 360. We trigger this arrival time picker
only over windows where an arrival has been confirmed.

Similar to the RF classifier, we must build a waveform data set
to train our RF arrival-time picker (see Fig. 3). We select arrival
window for waveforms that overlaps the true wave train by at least
30 per cent. This overlap is significantly lower than for the detector.
This choice aims at training the RF to pick arrival times over the
first detection window which generally contains incomplete CID
waveforms. Similar to the training of the RF classifier in Section 3.2,
we augment our training data set by selecting four time-windows
over each CID arrival by randomly perturbing the beginning of the
time window while still fulfilling the 30 per cent overlap condition
which captures the uncertainty in arrival-time picking. The final
data set to train the arrival-time picker consists of 2867 CIDs.

3.4 Confirming a detection on a single station

Because of the natural variability of the ionosphere, false detections
can still be present after the RF classification step. These false de-
tections generally correspond to short-time spikes in RF detection
probabilities while true detections show an increase in RF detection
probabilities over longer time periods. To further remove false pos-
itives, we confirm a detection if three consecutive time windows are
classified as CIDs. Variations of this value between 2 and 5 have a
relatively small (<1 per cent) influence on both recall and precision
(see Supporting Information Section S3). Short-time decrease in
detection probabilities can occur within long CID wave trains (gen-
erally caused by large earthquakes) compared to the processing time
window. To reduce the number of false negatives, we determine the
end time of an CID wave train when 4 consecutive time windows
show a detection probability below 50 per cent.

Once a detection is confirmed, we must determine a single arrival
time for the whole wave train. However, predictions in successive
windows classified as CIDs and belonging to the same wave train
might not have the same predicted time. Therefore, we determine
the detected wave train’s arrival time by computing the eighth decile
of the predicted arrival times over up to 10 successive CID windows.
This choice of decile removes the influence of outliers in predicted
arrival times made in early detection windows. We do not include
predicted arrival times beyond 10 time steps, i.e. 300 s, since these
arrivals might correspond to time windows that do not include the
true arrival time.

3.5 Associating confirmed detections

Once arrival times are picked across multiple LOS, their spatial
distribution informs us about the nature of the detected disturbance.
Because large-scale disturbances (e.g. geomagnetic storms, internal
gravity waves) or false positives can still pollute the detection data
set after the confirmation procedure at step 5, it is critical to dis-
criminate between CIDs and other sources. If the detected signals
belong to a CID, arrival times should follow the geometry of the CID
wave front, whose geometry is controlled by local sound velocities
(Inchin et al. 2021). Therefore, the difference in CID arrival times
between two detection points cannot be lower than the time it takes
an acoustic wave front to propagate between these two detections
at the local acoustic velocity. Furthermore, the spatial extent of the
CID wave front in the ionosphere is constrained by the dimensions
of the activated faults at the ground (Inchin et al. 2021) which is

generally below 1000 km. Arrivals detected at two LOS located at
large distances from one another (i.e. >1000 km) are not likely to
belong to the same CID wave front. By ignoring combinations of
detections that show un-realistic travel times, we further improve
the quality of our detection data set.

The association procedure is performed on a set of confirmed
arrivals and consists of three steps: (1) for new detections dcurrent,
give dcurrent an unused association number scurrent, (2) for each de-
tection dcurrent find other confirmed detections daccept among LOS
within an acceptable time range from the current detection dcurrent.
By acceptable time range, we consider all arrivals with a time offset
from the current detection toffset < rmax/cmin, where rmax = 500 km
is the maximum association range between two detection points,
and cmin = 0.65 km/s is the minimum horizontal acoustic velocity.
rmax is chosen as the maximum possible radius of a CID wave front,
and cmin corresponds to the minimum acoustic velocity in the lower
ionosphere. Finally, (3) for each detection in an acceptable time
range daccept, if detection has an association number saccept, change
scurrent to saccept.

4 R E S U LT S

To optimize our ML models for detection and arrival-time pick-
ing, we split both data sets between 85 per cent training data and
15 per cent validation data (see Fig. 3). The classifier’s validation
data set is to calculate confusion matrices and measure the rate of
false and true positives which is not accessible when bootstrapping
samples. The performance of the classification procedure is sensi-
tive to the window size used for training. In Fig. 4(a), we show both
recall and precision metrics for both classes versus the choice of
window size. Precision indicates the proportion of true detections
relative to all detections (true positives plus false positives). Recall
corresponds to the ratio of correct detections over all detections that
should have been made (true positives plus false negatives). Because
performances are also affected by the choice of overlap threshold
used to build the training data set, recall and precision are averaged
over four overlaps between 30 and 90 per cent. We observe that there
is a clear improvement in both noise precision and arrival recall (up
to ∼94 per cent) with an increase in window size over the testing
data set up to 720 s. This owes to the higher number of incomplete
CID wave train for smaller windows than larger ones. For larger
time windows >720 s, precision and recall values plateau as the
predictive power of some input features computed over large time
windows diminishes. We selected a time window of 720 s which
gives excellent classification results while facilitating the arrival
time picking procedure by decreasing the range of possible values
compared to larger time windows.

The RF model can provide an estimate of the relative feature
importance through the calculation of the Gini’s impurity during
training. The three best features (see Fig. 4b) include two time-series
features (ratio of the envelope mean over the envelope maximum
and the kurtosis of the time-series) as well as a spectral feature
(energy up to the Nyquist frequency, i.e. 0.0165 Hz), which differs
from other signal classification studies (e.g. Wenner et al. 2021).
However, the calculation of feature importance can be biased when
considering continuous or high-cardinality categorical variables or
when inputs features are co-linear. Co-linearity is present in our
input data set between spectral and time-series features (see Sup-
porting Information Section S2) which indicates a potential bias in
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(a)

(c)

(e)

(d)

(b)

Figure 4. Sensitivity and accuracy of the RF classification step. (a) Precision (prec.) and recall for noise and arrival classes and various window sizes averaged
over multiple overlap thresholds: 30, 50, 70 and 90 per cent. The following formulae are used to compute recall and precision for arrival and noise: recall arrival
= TP/(TP + FN), recall noise = TN/(TN + FP), precision arrival = TP/(TP + FP) and precision noise = TN/(TN + FN). TP, TN, FP and FN correspond
to true positive, true negative, false positive and false negative. The correct detection of a CID corresponds to a TP. (b) Distribution of the three best features
against each other. In the diagonal, we show univariate histograms for each feature. Best features are determined during training by calculating the Gini’s
impurity. W0 corresponds to the ratio of the envelope mean over the envelope maximum, W2 is the kurtosis of the time-series, and S14 is the energy up to the
Nyquist frequency, that is 0.0165 Hz. (c) Confusion matrix for the detection model with window size w = 720 s and an overlap of 70 per cent. The confusion
matrix is normalized over each row. (d) Arrival-class ROC curve using the detection model with window size w = 720 s. The Area Under Curve (AUC) value
is shown above the panel. (e) examples of pre-processed waveforms corresponding to FP (red) and FN (green).

variable importance results. The significant overlap between distri-
butions supports the choice of a large number of features to prop-
erly discriminate between each class. Note that this overlap between
clusters is also present when using other clustering methods such
as such as Principal Component Analysis and t-distributed Stochas-
tic Neighbor Embedding (see Supporting Information Section S2),
which further highlights the complexity of this classification prob-
lem.

The recall for our detection model, shown in Fig. 4(c), is high
for a wide range of probability thresholds indicating that the RF
rarely labels true arrivals as noise. We observe in Fig. 4(d) that
this value decreases rapidly for probability thresholds >50 per cent
corresponding to a stricter classification. A threshold at 50 per cent
is a good trade-off to balance true and false positive rates. True and
false positives show strong similarities in terms of amplitude and
frequency content (see Fig. 4e). However, with larger thresholds,
the fall-out, that is the number of false alerts will also decrease.
Changes in number of false alerts with variations in probability
thresholds highlights that the threshold can be adapted to specific

applications depending on the objective. For early warning applica-
tions, the number of missed alert should be low and lower thresholds
could therefore be used. In contrast, when building arrival-time cat-
alogue to invert for source parameters, precision is key and false
alerts should be avoided, which necessitates larger thresholds. Ad-
ditionally, results indicate that RF outperforms the other analytical
methods, including STA/LTA filters, in terms of both true and false
positive rates (see Appendix B).

Detection results for a waveform recorded during the 2011 San-
riku earthquake (Fig. 5a) show that both predicted (vertical grey
line) and true (reported by human analyst, vertical red line in top
panel) arrival times overlap, as the absolute error is low (<3 s). Note
that the time used to plot detection probabilities corresponds to the
end of the time window used for each classification. We observe that
the duration of this wave train (∼450 s) is much larger than the true
wave train (∼200 s), owing to the large time windows employed in
our detection model. Outside of the detected wave train, detection
probabilities generally remain low (<20 per cent) in accordance to
the high true negative rate shown in Fig. 4(c).
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(a)

(b) (c)

(d) (e) (f )

Figure 5. Performance assessment of arrival-time picking and association steps. (a) 4-h vTEC waveform for the Sanriku event, satellite G07, station 0048
along with RF detection probabilities. The time used to plot probabilities over each window is the window end time. The true arrival is shown as a red vertical
line and the RF-predicted arrival time as a dark grey vertical line. The wave train detected by the RF and heuristic models is highlighted with a grey background.
(b) box plot of arrival-time picking errors (in s) versus event after 3 min since the first detection window. (c) Evolution of arrival-time picking error versus
time delay since first detected window. The red curve shows the average error across all events. Red shaded background shows the 1st to 3rd quartile region
computed across the events. (d–f) Tohoku’s ionospheric maps with (d) hand-picked arrival times for satellites G05 and G26 along with the epicentre location
(yellow star), and surface projection of the fault slip (in m) as green to yellow patches, (e) RF-based arrival-time predictions for each confirmed detection
for satellites G05, G26 and G27 with an inset plot showing a newly detected CID arrival (red vertical line) for satellite G27 and station 0167 which was not
reported by human analyst and (f) association classes determined from confirmed detections, along with an inset plot showing the vTEC data for satellite G26,
station 0155. The vertical lines correspond to the arrival times of the two detections at the station (first is a false detection; second is a true arrival). CID
coordinates were calculated at the intersection point between the LOS and the ionospheric layer using Hion = 200 km for lower elevations, and 250 km for
higher elevations. These maps are generated 15 min after the event.
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In addition to the classification of individual waveform snippets,
accurate arrival times are crucial for NRT applications. We assess
our model’s arrival-time picking accuracy by computing the error
between predicted and true arrival times. Arrival-time errors for
each event in our CID data set in Fig. 5(b) indicate that most arrivals
(∼95 per cent) are captured with an absolute error <60s, that is less
than two time steps, and a large proportion of arrivals (∼80 per cent)
are accurately reproduced with an absolute error <30 s, which is
below the sampling time in each CID waveform. Some outliers
are present for both Illapel and Kaikoura events. Errors for the
Kaikoura earthquake owe primarily to the high noise level in the
waveforms (i.e. random fluctuations of TEC background) which
leads to large variations in vTEC time derivatives. For Illapel, false
positives are lumped together with the true detection windows and
degrade the arrival-time picking performance over 4 time steps.
However, the average arrival-time picking error across the whole
data set decreases significantly as the number of time steps increases,
that is time since first detection (see Fig. 5c).

Confirmed detections for multiple LOS can be used to plot iono-
spheric maps for each event. The location of the earliest CID arrivals
reported by human analysts, that is first CID arrivals (around 7 min
for example after the Tohoku earthquake in Fig. 5d), should be the
closest to the distribution of maximum co-seismic slip at the surface
(Astafyeva et al. 2013a). In Fig. 5(d), we observe a slight shift of
these first arrivals after the Tohoku earthquake to the south east of
the region of maximum surface slip owing primarily to our choice
of altitude of detection Hion (Kakinami et al. 2021). In Fig. 5(d), we
note that the first CID arrivals are distributed linearly from location
(36◦N, 144◦E) to (39◦N, 145◦E) matching the trend of maximum
co-seismic slip distribution at the surface. Comparing Tohoku’s
ionospheric images from human analyst picks in Fig. 5(d) and from
our detection algorithm before association in Fig. 5(e), we observe
that the spatial distribution of CID arrival times is accurately re-
produced by our ML model. Some spurious arrivals are present in
Fig. 5(e), west of the fault with early arrival times, and southeast of
the fault with late arrival times. These false detections correspond to
rapid changes in vTEC occurring more than 20 min before or after
the true arrival and classified as earthquake signals by our model.

Our association procedure enables the discrimination between
detections belonging to the same wave front and spurious arrivals.
The distribution of association classes for the confirmed detections
is shown in Fig. 5(f). Owing to the large time difference between
spurious arrivals and the true arrivals, false detections are correctly
classified in different association classes (see first vertical dark pur-
ple line in the inset plot in Fig. 5f). Note that the location of the
ionospheric detection points varies from the first to the second de-
tection at satellite G05 (inset plot in Fig. 5f) since the satellite
moves with time. The time evolution of the distribution of con-
firmed arrivals (see Supporting Information Section S5) indicates
that the entirety of the true arrivals were detected within 15 min af-
ter the event. Note that the position of ionospheric detection points
is dependent on the altitude of detection Hion, which could impact
the association classes. However, while changing Hion from 180 to
250 km for Tohoku affects the location of the ionospheric points,
true CID arrivals are still correctly associated within the same class
(see Supporting Information Section S7).

New detections, that is arrivals not picked by human analysts,
have also been reported by our model west of the epicentre (Figs 5d
and e) for the largest class corresponding the true CID (inset plot
in Fig. 5e and light purple class in Fig. 5f). A low SNR pulse
is visible after the predicted arrival time (red vertical line in the
inset plot of Fig. 5e) at t = 9.9 min after the earthquake, which is

consistent with acoustic travel time from the source highlighted by
other studies (e.g. Astafyeva et al. 2013a). Using our model also
ensures consistency in the choice of arrival times, in contrast to
human analysts who introduce a subjective uncertainty range when
determining the true onset.

In order to further assess the ability of our model to detect ar-
rivals on new unseen data, we processed waveforms recorded after
the 2014 Iquique earthquake (see Table A1). In Fig. 6(a), we show
the slip distribution of the Iquique earthquake along with the RF
predicted arrivals times and association classes in Figs 6(b) and
(c). Predicted arrival times are coherent with the region of maxi-
mum slip at the surface despite a few false detections south of the
fault. This confirms the excellent detection, arrival-time picking and
classification results on new data.

5 D I S C U S S I O N

Monitoring procedures NRT-compatible require both high accuracy
and low computational time. To provide an estimate of our algo-
rithm’s computational time, we show in Fig. 7 the cost associated
with detection, arrival-time picking, and association steps after the
2011 Tohoku event at station 0908 and satellite G05 (Fig. 7a) on
a single CPU (Dell T5610 Intel Xeon E5-2630 v2 2.6Ghz 6 CPUs
64GB RAM on CentOS 7). The computational time for feature
extraction, classification, validation and time picking for a single
satellite/station pair is always below 1 s and is dominated by RF
steps (Fig. 7b). This result suggests that a similar detection method-
ology, trained with higher sampling-rate data, could be implemented
for NRT applications up to 1 Hz. Note that the time picking step
is only present when a detection occurs which explains the jump in
computational cost around 7 min after the earthquake.

We observe a significant increase in computational cost across
the network 9 min after the earthquake in Fig. 7(c). This jump
in association cost corresponds to the earthquake-induced acoustic
wave reaching the ionosphere which leads to a large number of de-
tections at each combination of satellite/station (see Fig. 7d). This
association procedure is computationally expensive since it must
scan through all possible neighbors of each new detection to update
association classes, which scales linearly with the number of new
detections. Yet, the maximum cost for one time step over the whole
network is less than 6 s. It takes around 1 s to process 10 new detec-
tions, at a given time, over a network of about 100 satellites/stations.
The number of associated detections reaches a plateau about 13 min
after the earthquake (see Fig. 7e) which corresponds to the end of
the association of all first CID arrivals.

The practical implementation of our detection/association proce-
dure will require an efficient internet between the relevant GNSS
stations to collect and extract time-series for classification in NRT.
However, because the overall computational cost of one time iter-
ation using our method is below 6 s on a single CPU using non-
compiled Python codes, at least 24 s are available for data acquisition
and processing with waveforms sampled at 30 s. The association
step is currently the most costly (∼90 per cent of the total cost) but
can be run in parallel to the other detection steps. Note that we also
explored the feasibility of using our model to detect CIDs at a higher
sampling rate by extracting input features without downsampling
input data (see Supporting Information Section S6). Our RF detec-
tion model always shows detection probabilities >50 per cent using
a 1 s sampling time but still predict a strong increase in detection
probability around the CID arrival. This suggests that increasing
the detection threshold to higher values (e.g. from 50 per cent to
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(a) (b) (c)

Figure 6. Ionospheric maps for the 2014 Iquique earthquake. (a) Map showing the epicentre location (yellow star) and surface projection of the fault slip (in m)
as green to yellow patches. (b) CID detections using our RF-based classifier and time picker, and (c) association classes determined from confirmed detections.
CID coordinates were calculated at the intersection point between the LOS and the ionospheric layer using Hion = 250 km. These maps can be generated 15
min after the event.

umber

Number

(a)

(b)

(c)

(d)

(e)

Figure 7. Computational cost associated with detection, arrival-time picking, and association steps after the 2011 Tohoku earthquake. (a) vTEC time-series
for satellite G07 and station 0048. (b) Stack plot of computational time (s) for pre-processing and feature extraction (green), RF classification (orange), RF
arrival-time picking (blue) and confirmation (pink) steps. (c) Computational cost (s) at each time iteration of the association procedure. (d) Number of new
detections per time iteration. (e) Number of associated detections up to current time iteration.

70 per cent) would enable implementation of our detection method
at higher sampling-rates at the cost of a higher false positive likeli-
hood.

Our model seems to be also able to detect vTEC variations asso-
ciated with other traveling ionospheric disturbances (TIDs) such as
volcanic explosions, Rayleigh waves, and tornadoes (see Support-
ing Information Section S8). This suggests that a data set of TID

waveforms should be built to train an efficient discriminator be-
tween background noise, earthquake, and other TID phases. How-
ever, the discrimination between TEC signals from seismic origin
and TIDs can easily be done by comparing the predicted arrival
times at the ionospheric points to the distribution of seismic events
in seismic catalogues which are available in NRT (e.g. Thompson
et al. 2019).
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6 C O N C LU S I O N S

We introduced an automatic procedure for detection, arrival-time
picking, and association of CIDs. Detection and arrival time pick-
ing steps are performed using random forests trained over a CID
data set built from 12 earthquake events. These methods show ex-
cellent classification results with 96 per cent true positive rate and
96 per cent true negative rate, and arrival-time accuracy with an
average error <20 s using a 120 s time delay since the first detec-
tion window. Our model also outperforms threshold-based detection
methods in terms of both recall and precision. Our analytical classi-
fication procedure accurately associates all arrivals corresponding
to the same wave front. Classification results also indicate that low
SNR arrival that were not picked by human analysts could also
captured by our RF detection model.

The performance of our automated procedure is promising for
future NRT applications, including the use of CID arrival times for
construction of ionospheric images of seismic sources. The first
demonstration of seismo-ionospheric imagery was based on retro-
spective analysis of CID generated by the 2011 Tohoku earthquake
(Astafyeva et al. 2011, 2013a). Here we show that our newly de-
veloped method can generate such images in NRT. Note that the
position of ionospheric detection points is dependent on the altitude
of detection Hion. The latter parameter is not known precisely, but it
is presumed to be around the height of ionospheric ionization maxi-
mum, that is around 250–350 km, depending on solar, geomagnetic,
seasonal and diurnal conditions. Future studies should focus on de-
velopment of real-time compatible methods of determining the true
Hion in order to obtain accurate source locations in NRT.

Acquiring labeled vTEC data from additional events which will
significantly improve the generalization abilities of our RF models.
Additionally, the choice of features made in this paper could be fur-
ther refined to obtain better accuracy (Han & Kim 2019). Building
a more accurate RF classifications could alleviate the need for a val-
idation step presented in Section 3.4. However, RF memory costs
increase exponentially with tree depth, and consequently data set
size, ∼2D, with D the tree depth (Louppe 2014; Solé et al. 2014).
The RF classification model is only about 70 mb but will grow
considerably larger with new data. With a larger data set, image
segmentation ML techniques such as standard convolutional neural
networks (Ross et al. 2018, 2019), transformers (Mousavi et al.
2020) or residual networks (Mousavi et al. 2019) applied on non-
engineered inputs such as spectrograms could lead to substantial
improvements in accuracy and memory costs for both classification
and arrival time picking steps. Finally, both detection performances
and computational cost could be improved by training our ML
model using higher sampling-rate ionospheric data such as 1 Hz
data available for some GNSS receivers. Higher-frequencies input
data might enable both the detection of smaller-magnitude events
such as the Chuetsu earthquake (Cahyadi & Heki 2015).

The proposed association algorithm does not incorporate any
information about the source nor the atmospheric dynamics. This
procedure could be improved by assessing the consistency of arrival
time differences across a network of satellites and stations using a
range of possible sources, similarly to the methods used for the
automated production of seismic bulletins (Draelos et al. 2015). In
contrast to seismic media, atmospheric velocities, that is winds, are
time-dependent which introduces further complexity when com-
puting theoretical source–receiver arrival times. Fast simulations of
acoustic wave propagation up to the ionosphere with realistic at-
mospheric specifications would greatly improve the classification
between true and false arrivals and enable the localization of the

largest surface displacements (Bagiya et al. 2019; Inchin et al. 2021;
Zedek et al. 2021). Finally, to confirm the detection of an earthquake
across a given network and trigger an alert for human analysts, an
additional heuristic could be implemented based, for example, on
the number of detections per association class.

A C K N OW L E D G M E N T S

This work was supported by the French Space Agency (CNES,
Project ‘RealDetect’).

DATA AVA I L A B I L I T Y

GNSS data are available from the following web-services: Japan
GNSS Earth Observation System, GEONET (http://datahouse1.gsi
.go.jp/terras/terras english.html), GEONET Geological Hazard In-
formation for New Zealand (https://www.geonet.org.nz), Scripps
Orbit and Permanent Array Center (SOPAC, http://sopac-old.ucsd
.edu/dataBrowser.shtml), National Seismological Centre, Univer-
sity of Chile (http://gps.csn.uchile.cl). Finite-fault data were down-
loaded from the US Geological Survey website (https://earthquake
.usgs.gov/earthquakes). RF evaluation, validation, and associations
codes are available at https://github.com/QuentinBrissaud/AIDE.
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Figure S1. Probability density of each input feature over our training
and testing data sets. The short name of the feature for each plot is
shown above the plot. The description of each feature is given in
Table S1.
Figure S2. Spearman’s correlation coefficients between each fea-
ture used for training. A description of each feature is given in Table
S1.
Figure S3. First versus second component of (a and c) a principal
component analysis (PCA) and (b and d) a T-distributed stochastic
neighbour embedding (TNSE; Van der Maaten & Hinton 2008).
Points are colour-coded with (a and b) the detection class and (c and
d) the event name for the arrival class.
Figure S4. True positive rate (TPR), true negative rate (TNR), false
positive rate (FPR) and false negative rate (FNR) with the choice of
number of time steps for validation in the heuristic model presented
in Section 3.4
Figure S5. Performance of RF arrival time picker. (a) Root mean
square error (RMSE) versus minimum true-wave train overlap (de-
viation) and window size (s). The minimum true wave train overlap
corresponds to the minimum fraction of the wave train that has to
be included in a window to be considered for training. (b) R2 error
versus minimum true wave train overlap (deviation) and window
size (s). Bottom distribution of arrival-time picking errors (s) ver-
sus true time-shift from central time (s) over (c) the testing data set
and (d) the training data set.
Figure S6. Ionospheric maps after the 2011 Tohoku earthquake
generated at various times since the event. (a–c) Distribution of de-
tected arrival times after (a) 7, (b) 11 and (c) 15 min since the event.
CID coordinates were calculated at the intersection point between
the LOS and the ionospheric layer using Hion = 250 km. The colour
code corresponds to the predicted arrival time at each ionospheric
point. Grey dots correspond to the location of ionospheric points
where there is no detection yet but with detections after 20 mn.
Figure S7. Tohoku’s ionospheric arrival-time maps computed 14
min after the event for (d) hand-picked arrival times along with the
epicentre location (yellow star), and surface projection of the fault
slip (in m) as green to yellow patches, (e) RF-based arrival-time
predictions and (f) association classes determined from predicted

arrival times. CID coordinates were calculated at the intersection
point between the LOS and the ionospheric layer using Hion =
180 km.
Figure S8. Performance assessment of RF detection and arrival-
time picking at a higher sampling rate of 1 s. 2-h vTEC waveform for
the Sanriku event, satellite G07, station 0048 along with detection
probabilities predicted by our RF detection model (bottom). The
true arrival is shown as a red vertical line.
Figure S9. vTEC waveform for the Calbuco eruption, satellite G03,
station antc along with detection probabilities predicted by our de-
tection procedure (see Section 3) using a window size w = 720 s.
Volcano-associated ionospheric perturbations are present between
21.3 and 22.5UT. The RF-predicted arrival time as a dark grey ver-
tical line. The detected wave train using the RF is highlighted with
a grey background.
Figure S10. vTEC waveform from seismic Rayleigh waves recorded
after the 1994 earthquake in Kuril Islands (Astafyeva et al. 2009),
satellite G06, station tskb along with detection probabilities pre-
dicted by our detection procedure using a window size w = 720 s.
Rayleigh-wave-associated ionospheric perturbations are present be-
tween 13.6UT and 13.8UT. The RF-predicted arrival time as a dark
grey vertical line. The detected wave train using the RF is high-
lighted with a grey background.
Figure S11. vTEC waveforms high-passed over 1.5e−4 Hz extracted
(a) on 2013 May 19, the day before the 2013 Moore EF5 tornado,
and (b) on 2013 May 20, the day of the tornado, from stations hces
and lesv in the United States and satellites G28, G08, and R11
ordered by distance between the ionospheric detection points and
the city of Moore, Oklahoma, U.S. (numbers shown on the right of
the plot). Background colours behind the waveforms represent the
detection probability computed by the ML detection model.
Table S1. List of attributes. Nyf = 0.0165 Hz is the Nyquist fre-
quency. These attributes are commonly used in signal-classification
studies. We refer the reader to the following references for more
details: Bessason et al. (2007), Curilem et al. (2009), Hammer et
al. (2012), Hibert et al. (2014), Provost et al. (2017) and Wenner et
al. (2021).

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

A P P E N D I X A : L I S T O F E V E N T S

The list of events compiled in our CID data set is described in
Table A1.

A P P E N D I X B : C O M PA R I S O N O F
R F - B A S E D M E T H O D T O A NA LY T I C A L
D E T E C T O R S

To further assess the RF classification performance, we compare
the results to two analytical detection methods: (1) an STA/LTA
detection method and (2) a derivative-based threshold method. The
STA/LTA method requires to set four parameters: the STA and LTA
time windows and two thresholds to activate and deactivate the
detection trigger. The STA window represents the average duration
of expected earthquake signals while the LTA window captures the
average TEC noise amplitude. The STA/LTA method employed here
uses a 60 s STA window and a 400 s LTA window. A detection is
triggered if the STA/LTA threshold reaches 2.5 while the end of
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Table A1. List of events included in the data set. Events are sorted by magnitude.

Event Date Time Min. signal
Reference Mag. Lat.; Lon. (DD/MM/YY) (UTC) duration (s) Sat. Samp

Tohoku 9.1 38.3; 142.37 11/03/2011 05:46:23 800 G26 1s, 30s
Astafyeva et al. (2011, 2013a) G05

Sumatra 1 8.6 2.35; 92.8 11/04/2012 08:38:37 300 G32 15s
Astafyeva et al. (2014)

Tokachi 8.3 41.78; 143.90 25/09/2003 19:50:06 440 G13 30s
Heki & Ping (2005) G24

Illapel 8.3 -31.57; -71.61 16/09/2015 22:54:32 600 G25,G12 15s, 30s
bagiya2019mapping G24

Sumatra 2 8.2 0.90; 92.31 11/04/2012 10:43:09 300 G32 15s
Astafyeva et al. (2014)

Iquique 8.2 -19.61; -70.77 01/04/2014 23:46:47 700 G01,G20 15s, 30s
Bagiya et al. (2019) G23

Macquarie 8.1 -49.91; 161.25 23/12/2004 14:59:03 550 G05 30s
Astafyeva et al. (2014)

Fiordland 7.8 -45.75; 166.58 15/07/2009 09:22:29 300 G20 30s
Astafyeva et al. (2013b)

Kaikoura 7.8 42.757; 173.077 13/11/2016 11:02:56 550 G20 1s, 30s
Bagiya et al. (2018) G29

Sanriku 7.3 38.44; 142.84 09/03/2011 02:45:20 200 G07, G10 1s, 30s
Thomas et al. (2018); Astafyeva & Shults (2019) G08

Kii 7.2 33.1; 136.6 05/09/2004 10:07:07 425 G15 30s
Heki & Ping (2005)

Chuetsu 6.6 37.54; 138.45 16/07/2007 01:12:22 300 G26 30s
Cahyadi & Heki (2015)

a wave train is chosen where the threshold goes below 0.5. This
trigger value of 2.5, lower than employed at seismic stations, is
used to make sure we capture each arrival, that is to increase the
true positive rate. Parameters are chosen empirically and could be
improved with a thorough investigation of the STA/LTA accuracy
over the whole data set. However, fine tuning the hyperparameters
increases the likelihood of overfitting a specific data set. This shows
the advantage of using an ML-based approach that relies on an
efficient optimization procedure enabling us to reach high accuracy
without strong overfitting.

The analytical method used for comparison, referred to as ‘AN’, is
based on the analysis of TEC rate-of-change. Maletckii & Astafyeva
(2021) noted that, in a majority of cases, the CIDs are characterized
by a rapid and high increase of TEC. To capture the CID arrival,
we therefore suggest to analyse the rate of TEC change between the
two consecutive epochs, between every two and every three epochs:

∂vTEC1 = |vTECi − vTECi+1|, (B1)

∂vTEC2 = |vTECi − vTECi+2|, (B2)

∂vTEC3 = |vTECi − vTECi+3|, (B3)

∂vTEC4 = |vTECi − vTECi+4|, (B4)

where the subscript i corresponds to the time step ti. The vTEC
at epoch i is considered as the CID arrival if each slope ∂vTEC1,

∂vTEC2 and ∂vTEC3 (and ∂vTEC4 for 1s data) are greater than the
thresholds shown in Table B1. These threshold values were deter-
mined analytically over multiple events. Detections are confirmed if
12 consecutive time steps fulfil the threshold conditions described
in Table B1.

To assess the performance of each method, we determine the false
and true negative and positive rates over the waveforms included in
the testing data set. To provide meaningful results, we scan entire
waveforms (from 1-hr to 2-hr duration) instead of a few windows as
done for RF training. Including entire waveforms means that more
noise windows will be included than CID windows, which is an
excellent test to assess the performance of each method in more
realistic conditions (where CIDs are rare). We consider that a wave
train, that is a time window characterized by an arrival time and
a duration, classified as CID by any method is a true positive if it
overlaps the true arrival by at least 70 per cent.

Our RF-based detection method outperforms AN and STA in
terms of true positive and negative rates (see Fig. A1). We observe
a lower true negative rate than determined during the RF validation
step (see Fig. 4c). This owes to the presence of much larger number
of noise windows in the data set. The STA/LTA filter also performs
well to detect true arrivals. However, this high true positive rate
comes at the cost of a low false positive rate, that is a large number of
false alerts. The analytical method using only local time derivatives
shows a large number of false negatives owing to presence of noise
in the data.
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Table B1. Slope parameters for different sampling rates used by the analytical detector AN.

Sampling (s) s1 (TECU/epoch) s2 (TECU/epoch) s3 (TECU/epoch) s4 (TECU/epoch)

1 0.017 0.027 0.045 0.05
15 0.08 0.125 0.12 -
30 0.11 0.18 - -

(a) (b) (c)

Figure A1. Confusion matrices calculated over the RF testing data set consisting of 1–2-hr long waveforms for (a) the RF classification model, (b) the analytical
time-derivative based model and (c) the STA/LTA filter. Confusion matrices show from top to bottom and left to right, the TPR, FPR, FNR and TNR, such that:
TPR = TP/(TP + FN), TNR = TN/(TN + FP), FPR = TP/(TP + FP) and FNR = TN/(TN + FN).
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