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1.  Introduction
Many natural phenomena can generate seismic waves, such as CO2 fumaroles (e.g., Estrella et al., 2016; Umlauft 
& Korn, 2019), landslides (e.g., Brodsky et al., 2003), rivers (e.g., Roth et al., 2014; Tsai et al., 2012), and ocean 
waves (e.g., Hasselmann, 1963; Longuet-Higgins, 1950). Surface waves usually dominate the seismic record-
ings on the Earth’s surface. We refer to these seismic recordings as ambient seismic recordings and the seismic 
sources as ambient seismic sources. In the ambient seismic recordings, there are commonly no clear body-wave 
arrivals as in earthquake recordings. Ambient seismic recordings are used to infer information about the corre-
sponding ambient seismic sources. For example, based on the ambient seismic waves (i.e., microseism) generated 
by ocean wave coupling with the seafloor, one can estimate the coupling distribution (e.g., Ermert et al., 2017; 
Juretzek & Hadziioannou, 2016), monitor the spatial and temporal changes of the source distributions (e.g., Gal 
et al., 2018; Retailleau & Gualtieri, 2019), study how environmental changes affect the source strength (e.g., 
Grob et al., 2011), and investigate the source mechanism (e.g., Ardhuin et al., 2015; Gualtieri et al., 2020; Nishida 
et al., 2008).

One often estimates the spatial ambient seismic source distributions (strength and location) when studying 
ambient seismic sources. One can image source locations using traditional imaging methods without expen-
sive computation [e.g., matched-field processing (MFP), Baggeroer et al., 1988; Bucker, 1976], for example, to 

Abstract  Both natural and anthropogenic seismic sources generate so-called ambient seismic waves. One 
in turn can use ambient seismic waves to estimate these source distributions and study source characteristics, 
for instance the source mechanism. A commonly used estimation method is called matched field processing 
(MFP), and the MFP results are inherently smeared by the array geometry. Another approach to estimate 
ambient seismic sources is to apply full waveform inversion (FWI) to the crosscorrelations of ambient seismic 
wave recordings. Both methods have pros and cons, but the model resolution and uncertainty in these two 
methods are important for the interpretation. Unfortunately, this topic has attracted little attention in the past. 
We propose to estimate both the model resolution matrix and model covariance matrix of the inversion using 
singular value decomposition. We demonstrate our estimates using two examples, one of which is an actual 
field array geometry. We quantitatively compare the model resolution of the two methods and discuss the model 
null space. We demonstrate that FWI has superior resolution with enough independent data and should be used 
when computational resources permit.

Plain Language Summary  Many natural phenomena (such as ocean waves due to a hurricane or 
glacier tremor due to subglacial water flow) can shake the ground and generate seismic waves. By studying the 
seismic waves, we can image these natural phenomena in space and monitor the temporal evolution of these 
phenomena. We focus on two common methods to image these passive sources: matched field processing 
(MFP) and full waveform inversion (FWI). The resolution and uncertainties of these two methods are important 
for interpreting imaging results. Thus, we derive and calculate the model resolution for each method. We also 
study the model trade-off of full waveform inversion to quantify the uncertainty in the inversion results. We 
compare the resolution of the two methods using a realistic field seismic array form a past experiment. We 
show that FWI has better resolution than MFP when all seismic sensors in the array are used, indicating that 
FWI should be the preferred method for ambient noise source imaging when computational resources permit 
its  use.
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investigate glacier tremors (e.g., Umlauft et al., 2021) or the hydrothermal system at Old Faithful Geyser (e.g., 
Cros et al., 2011). In using MFP, one crosscorrelates ambient seismic recordings to extract coherent signals and 
then apply backprojection to the crosscorrelations to image the source locations (e.g., Cros et al., 2011). Note 
that the MFP results are not the true source strength distributions and also include seismic array artifacts (we 
demonstrate this in Section 2.4). In contrast, one can estimate both the source locations and strengths by apply-
ing full-waveform inversion to the same crosscorrelations (e.g., Fichtner et al., 2017; Hanasoge, 2014; Tromp 
et al., 2010). This inversion method has been applied to both low- (<0.2 Hz) and high-frequency (>2 Hz) ambient 
seismic waves (e.g., Ermert et al., 2017; Xu et al., 2020, respectively). The two source imaging methods share 
some similarities (e.g., Bowden et al., 2021). For example, Xu et al. (2020) demonstrate that MFP can be written 
as the crosscorrelation waveform inversion sensitivity kernel with zero initial sources, and both methods require 
a subsurface velocity model as an input. In this paper, we refer to the full-waveform inversion for ambient seismic 
sources as source inversion. We detail the link between source inversion and MFP in Section 2.4.

Assessing estimates of ambient seismic source distributions in terms of uncertainty is necessary but has not 
been fully studied. Source inversion results can be biased by the subsurface model, for instance due to inaccu-
rate velocities (e.g., Xu et al., 2019) or anelasticity (e.g., Xu et al., 2020). Besides biases, source inversion has 
different sensitivities to seismic sources at different locations simply due to the array geometry (e.g., Burtin 
et al., 2010; Datta et al., 2019). Thus, assessing the model resolution and uncertainty (i.e., covariance) will aid 
interpretation of source inversion results. To estimate the model resolution, similar to seismic tomography stud-
ies, one can adopt synthetic reconstruction tests like the spike test (e.g., Ermert et al., 2017). In the spike test, 
one sets one or multiple spike(s) inside or outside the array as the true model and generates synthetic data from 
the source model; one then applies the source inversion to the synthetic data to check how the inversion recovers 
the spike(s). A similar test can be adopted in MFP (e.g., Gal et al., 2018). It is computationally expensive to 
assess the resolution for each source location, as one needs to conduct the spike test at all the source locations, 
bearing in mind that the sensitivity at one spike location can change due to other spikes existing simultaneously 
(e.g., Xu et al., 2020). Another commonly used test in seismic tomography studies, the checkerboard test, has not 
yet been studied in source inversion, perhaps because the checkerboard-like models do not represent plausible 
heterogeneous source distributions. In this source inversion study, we analyze the source distribution uncertainty 
under the assumption that the subsurface structure is known. It is critical to note that a trade-off exists between 
the source and the structure (Fichtner, 2014; Sager et al., 2018), and thus an inaccurate structure model leads to 
another type of the source uncertainty, which we do not consider here. This trade-off is an inherent obstacle in 
the ambient noise  source inversion problem and deserves further research. However, first we should understand 
each uncertainty individually.

To calculate the model resolution efficiently, we frame source inversion as a linear inversion problem using a 
waveform misfit function. Given that singular value decomposition (SVD) is commonly used to estimate line-
ar-inversion model resolution (e.g., in tomography studies, Aster et al., 2012), we propose to calculate the model 
resolution using SVD. We also present the model resolution of MFP theoretically. Within this frame work, we 
calculate the model covariance matrix of source inversion (Section 2). We then demonstrate our estimation of the 
model resolution and covariance through two array examples (Section 3), where we compare the model resolu-
tion of source inversion to MFP in a field array geometry. Lastly, we assess application of winnowing data to our 
calculation and discuss the model null space in all these methods (Section 4).

2.  Estimation of the Model Resolution and Covariance
For source inversion, we calculate the model resolution matrix and covariance matrix using singular value 
decomposition (Section 2.1 and 2.2). We then demonstrate that framing source inversion as a nonlinear inversion 
problem provides the same model covariance matrix as the linear source inversion (Section 2.3). We also apply 
SVD to MFP to provide the model resolution, and we demonstrate that the MFP result includes the array infor-
mation (Section 2.4).

2.1.  The Linear Source Inversion

We frame the source inversion as a classic linear inversion problem (which we refer to as the linear source inver-
sion) because a crosscorrelation between two seismic sensors can be written as

 21699356, 2022, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

024374 by Portail B
ibC

N
R

S IN
SU

, W
iley O

nline L
ibrary on [10/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Solid Earth

XU AND MIKESELL

10.1029/2022JB024374

3 of 17

𝐶𝐶 (𝑟𝑟𝑚𝑚, 𝑟𝑟𝑛𝑛, 𝜔𝜔) =

𝑄𝑄
∑

𝑞𝑞=1

𝐺𝐺 (𝑟𝑟𝑚𝑚, 𝑠𝑠𝑞𝑞, 𝜔𝜔)𝐺𝐺
∗ (𝑟𝑟𝑛𝑛, 𝑠𝑠𝑞𝑞, 𝜔𝜔)𝑁𝑁 (𝑠𝑠𝑞𝑞, 𝜔𝜔) ,� (1)

where rm (rn) is the mth (nth) sensor location, ω is the angular frequency, G(rm, sq) is the Green’s function for a 
seismic source at sq and a sensor rm, * denotes the complex conjugate, N(sq) is the ambient seismic source strength 
at sq. N(sq) is the autocorrelation of the source wavelet and thus is a non-negative real value (e.g., Wapenaar & 
Fokkema, 2006). Q is the total number of the sources. Here, we assume that the seismic sources are independent 
from each other and the subsurface structure is known. Note that the two assumptions may not be valid in practice 
(e.g., Ayala-Garcia et al., 2021; Xu et al., 2020). We write the above equation for M stations (i.e., r1, r2,…,rM) in 
matrix form as
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where we omit ω for brevity. Note that in this study, we focus on a single frequency to demonstrate our analysis, 
while in practice one will use multiple frequencies for source inversion. In the following, we use normal symbols 
to refer to scalars, and we use lower-case bold and upper-case bold symbols to refer to vectors and matrices, 
respectively.

We recognize that Equation 2 is a classic linear inversion problem (b = Ax) with.

𝑏𝑏𝑝𝑝 = 𝐶𝐶 (𝑟𝑟𝑚𝑚, 𝑟𝑟𝑛𝑛) ,� (3a)

𝑥𝑥𝑞𝑞 = 𝑁𝑁 (𝑠𝑠𝑞𝑞) ,� (3b)

𝐴𝐴𝑝𝑝𝑝𝑝 = 𝐺𝐺 (𝑟𝑟𝑚𝑚, 𝑠𝑠𝑞𝑞)𝐺𝐺
∗ (𝑟𝑟𝑛𝑛, 𝑠𝑠𝑞𝑞) ,� (3c)

where p is the index for the sensor pair, rm and rn. A is a P-by-Q matrix and P = M(M − 1)/2 for M sensors. Each 
element in A is a crosscorrelation between the Green’s functions for two sensors to one common source (Equa-
tion 3c). When calculating the Green’s function values, we can use analytical Green’s functions or the results 
from a wave equation solver. In addition, although we do not study it here, one can use the different components 
of the Green’s tensors (e.g., vertical-vertical or radial-vertical). We use two stations to illustrate A in Section 3.1. 
Note that in Equation 2, we do not consider any commonly used pre-processing procedures for ambient seismic 
recordings like time-/frequency-domain normalization (e.g., Bensen et  al.,  2007). One could incorporate the 
procedures into the linear inversion with matrix multiplication or vector addition (e.g., Fichtner et al., 2020). We 
assess another commonly used ambient seismic data processing, winnowing crosscorrelations, in Section 4.1.

One can use singular value decomposition (SVD) to analyze linear inversion problems, for example, calculation 
of the model resolution. We apply SVD to A as
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𝐀𝐀 = 𝐔𝐔𝐔𝐔𝐔𝐔
†
,� (4)

where 𝐴𝐴 𝐕𝐕† = (𝐕𝐕∗)
𝑇𝑇  and T represents the matrix transpose. While SVD for real matrices only involves matrix 

transpose, the SVD here involves the conjugate transpose operation because A is complex-valued. U and V are 
P-by-P and Q-by-Q matrices, respectively. The columns in U and V are orthogonal bases for the whole data 
space and whole model space, respectively. S is a diagonal matrix and the diagonal elements are singular values. 
The singular values here are non-negative and real. Singular values generally indicate how a linear inversion 
constrains the corresponding model-space base vectors. For example, a larger absolute singular value in the qth 
column of S means that the qth column vector in V is better constrained and is less affected by data noise (e.g., 
Aster et al., 2012).

Ideally for a linear inversion problem, we would like to have more linearly independent data than unknown 
model parameters. Thus, the inversion can constrain the whole model space, which means we can recover the 
true model. However in practice, as in source inversion, we usually have many more parameters than data, that is, 
Q > P. If we assume A is a full-row-rank matrix, we only have non-zero singular values for the first P columns 
of V (VP). Thus, we can only use those columns in constructing a solution using the linear inversion methods 
(e.g., pseudoinverse and zeroth-order Tikhonov regularization) or using some nonlinear inversion algorithms 
(Section 2.3). The vectors in VP construct a subspace in the model space, and this subspace is usually referred to 
as the row space in linear algebra (e.g., Strang, 2016). We state that VP spans the row space, which means that any 
vector in this space is a linear combination of the vectors in VP. For the Q − P columns left in V, these column 
vectors are orthogonal to the vectors in VP. Thus any linear combination of the Q − P columns is also orthogonal 
to the row space and cannot be resolved by the linear inversion. The space spanned by the Q − P vectors is the 
model null space. We discuss this space further in Section 4.2.

2.2.  Model Resolution and Covariance

One uses VP to calculate the model resolution for a linear inversion problem as

𝐑𝐑𝐦𝐦 = 𝐕𝐕𝑃𝑃𝐕𝐕
†

𝑃𝑃
,� (5)

where Rm is conventionally called as the model resolution matrix (e.g., Aster et al., 2012). The maximum real 
value in Rm can be up to 1. Note that in the linear inversion theory, Rm links the estimated model (x e) and true 
model (x t) as

𝐱𝐱
𝑒𝑒 = 𝐑𝐑𝐦𝐦𝐱𝐱

𝑡𝑡.� (6)

One can think of Rm as smearing the true model. We notice that if x t = 0 except the qth component (i.e., 𝐴𝐴 𝐴𝐴𝑡𝑡
𝑞𝑞 = 1 ), 

x e would be the qth column of Rm and also the response for the qth model parameter. Thus, the columns in Rm 
are the point spread functions for the individual model parameters. If A is a full-rank square matrix, Rm would 
be an identity matrix and the point spread function becomes a delta function, where x e and x t would be the same. 
However due to the rank deficiency of A in practice, Rm is not an identity matrix. If the diagonal elements of Rm 
are closer to 1, the point spread functions are also closer to the delta functions, and thus, the model parameters are 
well resolved. Therefore, the diagonal elements of Rm represent the resolution for the model parameters, that is, 
the source strengths here (N in Equation 2). Note that our calculation of the model resolution is similar to Meyers 
et al. (2021) where they image the resolution for seismic source angular distributions. We present not only the 
resolution but also the point spread functions for the source strengths (Section 3).

Besides the model resolution one also uses VP and S to calculate the model covariance matrix for the inversion 
results as

𝐂𝐂𝐦𝐦 = 𝜎𝜎2
(

𝐀𝐀
†
𝐀𝐀
)−1

= 𝜎𝜎2
𝐕𝐕𝑃𝑃𝐒𝐒

−2

𝑃𝑃
𝐕𝐕

†

𝑃𝑃
,� (7)

where σ is the data error and SP is the first P columns of S. One commonly uses the square root of the diago-
nal elements in Cm to calculate the confidence intervals or uncertainties for the model parameters; the off-di-
agonal elements represent the trade-off among the different model parameters (e.g., Aster et al., 2012). Note 
that compared to the model resolution (Equation 5), an extra term, 𝐴𝐴 𝐒𝐒

−2

𝑃𝑃
 , exists in the model covariance matrix 
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(Equation 7). Due to this term, the maximum values for the model covariance matrix can be much larger than 
1 (Section 3.2). Here, we assume that the data errors are independent and constant among all crosscorrelations, 
and thus, we set σ = 1 in the following examples for simplicity. Note that one could incorporate the data error 
into source inversion, especially in practice (Section 4.4). We use the real values of Rm and Cm since our model 
parameters are real-valued. We illustrate estimation of the model resolution and covariance through the examples 
in Section 3.

2.3.  Nonlinear Source Inversion

One commonly applies nonlinear inversion algorithms, instead of linear inversion algorithms, to source inver-
sion (which we refer to as the nonlinear source inversion). When using the nonlinear source inversion, one can 
constrain the solutions to be non-negative (i.e., seismic source strength, N in Equation 1). One can also use the 
nonlinear source inversion to focus on not only the spectra/waveform of the crosscorrelations (Equation 1) but 
also other properties of the crosscorrelations such as the envelope (Bozdağ et al., 2011; Fichtner et al., 2008) or 
the energy balance (i.e., the symmetry, Ermert et al., 2015) because these properties possess different sensitivities 
to the seismic sources than the waveform (e.g., Sager et al., 2018).

In the nonlinear source inversion, one defines a misfit function (χ) to measure the misfit between the observed 
(C o) and synthetic (C) crosscorrelations, where the synthetic data are based on a trial solution. For example, one 
often uses the L2-norm waveform misfit function written as:

�(�) = 1
2
∑

�,�

‖� (��, ��, �) − �� (��, ��, �)‖22,� (8)

=
1

2
(𝐀𝐀𝐀𝐀 − 𝐛𝐛

𝑜𝑜)
†
(𝐀𝐀𝐀𝐀 − 𝐛𝐛

𝑜𝑜) ,� (9)

where b o is the observed data vector. Note that the solutions for Equation 9 are the same as for the linear source 
inversion (e.g., Menke, 2012), Equations 1 and 2. To minimize the waveform misfit function, we write the gradi-
ent as

∇𝜒𝜒 = 𝐉𝐉
† (𝐀𝐀𝐀𝐀 − 𝐛𝐛

𝑜𝑜) ,� (10)

where J is the Jacobian matrix (e.g., Aster et al., 2012). Here, J is written as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝜕𝜕𝜕(𝑟𝑟1 ,𝑟𝑟2)
𝜕𝜕𝜕𝜕(𝑠𝑠1)

𝜕𝜕𝜕𝜕(𝑟𝑟1 ,𝑟𝑟2)
𝜕𝜕𝜕𝜕(𝑠𝑠2)

…
𝜕𝜕𝜕𝜕(𝑟𝑟1 ,𝑟𝑟2)
𝜕𝜕𝜕𝜕(𝑠𝑠𝑄𝑄)

𝜕𝜕𝜕𝜕(𝑟𝑟1 ,𝑟𝑟3)
𝜕𝜕𝜕𝜕(𝑠𝑠1)

𝜕𝜕𝜕𝜕(𝑟𝑟1 ,𝑟𝑟3)
𝜕𝜕𝜕𝜕(𝑠𝑠2)

…
𝜕𝜕𝜕𝜕(𝑟𝑟1 ,𝑟𝑟3)
𝜕𝜕𝜕𝜕(𝑠𝑠𝑄𝑄)

⋮ ⋮ ⋮ ⋮

𝜕𝜕𝜕𝜕(𝑟𝑟2 ,𝑟𝑟3)
𝜕𝜕𝜕𝜕(𝑠𝑠1)

𝜕𝜕𝜕𝜕(𝑟𝑟2 ,𝑟𝑟3)
𝜕𝜕𝜕𝜕(𝑠𝑠2)

…
𝜕𝜕𝜕𝜕(𝑟𝑟2 ,𝑟𝑟3)
𝜕𝜕𝜕𝜕(𝑠𝑠𝑄𝑄)

⋮ ⋮ ⋮ ⋮

𝜕𝜕𝜕𝜕(𝑟𝑟𝑀𝑀−1 ,𝑟𝑟𝑀𝑀 )
𝜕𝜕𝜕𝜕(𝑠𝑠1)

𝜕𝜕𝜕𝜕(𝑟𝑟𝑀𝑀−1 ,𝑟𝑟𝑀𝑀 )
𝜕𝜕𝜕𝜕(𝑠𝑠2)

…
𝜕𝜕𝜕𝜕(𝑟𝑟𝑀𝑀−1 ,𝑟𝑟𝑀𝑀 )

𝜕𝜕𝜕𝜕(𝑠𝑠𝑄𝑄)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,� (11)

where 𝐴𝐴
𝜕𝜕𝜕𝜕(𝑟𝑟1 ,𝑟𝑟2)
𝜕𝜕𝜕𝜕(𝑠𝑠1)

 is the partial derivative of the crosscorrelation, C(r1, r2), with respect to the source strength, 

N(s1). Based on Equation 1, we recognize that 𝐴𝐴
𝜕𝜕𝜕𝜕(𝑟𝑟1 ,𝑟𝑟2)
𝜕𝜕𝜕𝜕(𝑠𝑠1)

= 𝐺𝐺 (𝑟𝑟1, 𝑠𝑠1)𝐺𝐺
∗ (𝑟𝑟2, 𝑠𝑠1) and the Jacobian matrix is A. Note 

that one can estimate the model covariance for the nonlinear inversion problems using the Jacobian matrix, as 
𝐴𝐴 𝐂𝐂𝐦𝐦 =

(

𝐉𝐉†𝐉𝐉
)−1 (e.g., Aster et al., 2012). Since J = A here, the covariance formula becomes 𝐴𝐴

(

𝐀𝐀†𝐀𝐀
)−1 , the model 

covariance for the linear inversion (Equation 7). Note that in practice one commonly adopts regularization in the 
nonlinear source inversion (e.g., spatially smoothing the source strengths, Ermert et al., 2017; Sager et al., 2018). 
The regularization leads to changes in the misfit functions and thus a different covariance. This topic is interesting 
but beyond the scope of this study.

To examine the links (e.g., the SVD, the row space, and the null space) between nonlinear and linear source 
inversion, we analyze gradient descent algorithm, commonly used in nonlinear source inversion. We note that one 
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could do the same analysis with other nonlinear inversion methods. When using gradient descent, one updates a 
trial solution iteratively as

𝐱𝐱
𝑙𝑙+1 = 𝐱𝐱

𝑙𝑙 − 𝛼𝛼∇𝜒𝜒𝑙𝑙,� (12)

where ∇χ l is the gradient for the solution at the lth iteration (x l) and α is the step length. For the waveform misfit 
function (Equation 9), the gradient is Equation 10. We rewrite Equation 10 using the SVD results as

∇𝜒𝜒 =

𝑃𝑃
∑

𝑝𝑝=1

[

𝐮𝐮
†
𝑝𝑝 (𝐛𝐛 − 𝐛𝐛

𝑜𝑜)𝑆𝑆𝑝𝑝

]

𝐯𝐯𝑝𝑝,� (13)

where b is the synthetic data vector and Sp is the pth singular value; up and vp are the pth columns in U and V, 
respectively. We observe that the gradient is a linear combination of the vectors in VP. Thus, the gradient is in the 
row space. This implies that if the initial model is in the row space, the gradient-descent algorithm should also 
converge to a solution in the row space. Note that our analysis in this section is based on the L2-norm misfit func-
tion (Equation 9). For other types of misfit functions (e.g., envelope or the energy balance), one would need to 
use the corresponding Jacobian or Hessian matrix for the uncertainty analysis (e.g., Fichtner & Trampert, 2011a; 
Sager et al., 2018).

2.4.  Matched-Field Processing

We compare MFP to source inversion. We write the formula for MFP (e.g., Cros et al., 2011) using consistent 
notation as

𝑦𝑦 (𝑠𝑠𝑞𝑞, 𝜔𝜔) =
∑

𝑚𝑚𝑚𝑚𝑚

𝐺𝐺∗ (𝑟𝑟𝑚𝑚, 𝑠𝑠𝑞𝑞, 𝜔𝜔)𝐺𝐺 (𝑟𝑟𝑛𝑛, 𝑠𝑠𝑞𝑞, 𝜔𝜔)𝐶𝐶 (𝑟𝑟𝑚𝑚, 𝑟𝑟𝑛𝑛, 𝜔𝜔) ,� (14)

and in the vector-matrix format as

𝐲𝐲 = 𝐀𝐀
†
𝐛𝐛,� (15)

where y(sq, ω) and y are the MFP estimates. Note that the MFP estimate includes the array information (A †) 
because A includes the Green’s functions for all the station locations in an array. Thus, y is not the source 
strengths as in source inversion (i.e., x). Using Ax t = b where x t is the true solution, we rewrite Equation 15 as.

𝐲𝐲 = 𝐀𝐀
†
𝐀𝐀𝐀𝐀

𝑡𝑡,� (16)

= 𝐕𝐕𝑃𝑃𝐒𝐒
2

𝑃𝑃
𝐕𝐕

†

𝑃𝑃
𝐱𝐱
𝑡𝑡,� (17)

=

𝑃𝑃
∑

𝑝𝑝=1

𝑆𝑆2
𝑝𝑝

(

𝐯𝐯
†
𝑝𝑝𝐱𝐱

𝑡𝑡
)

𝐯𝐯𝑝𝑝,� (18)

where SP (Sp) and VP (vp) are the same as in source inversion. Note that Equation 18 indicates that the MFP result 
is a linear combination of the vectors in VP. Thus, the MFP result is also in the row space of A, as is the gradient 
of the waveform misfit function in nonlinear source inversion (Equation 13).

We notice that the MFP result is a product between A †A (or 𝐴𝐴 𝐕𝐕𝑃𝑃𝐒𝐒
2

𝑃𝑃
𝐕𝐕

†

𝑃𝑃
 ) and the true solution (Equations  16 

and 17). Thus, A †A converts the true model to the blurry estimate (y in Equations 16 and 17). As such, each 
column in A †A is the point spread function for the corresponding source. However in contrast to Rm (i.e., 𝐴𝐴 𝐕𝐕𝑃𝑃𝐕𝐕

†

𝑃𝑃
 ), 

which could be an identity matrix with perfect resolution, A †A for MFP cannot be an identity matrix due to 𝐴𝐴 𝐒𝐒
2

𝑃𝑃
 in 

Equation 17, unless all the singular values are 1. Since A †A acts as a filter on x t, we refer to A †A (or 𝐴𝐴 𝐕𝐕𝑃𝑃𝐒𝐒
2

𝑃𝑃
𝐕𝐕

†

𝑃𝑃
 ) 

as MFP filter in the following. The covariance matrix of the MFP estimate is similar to MFP filter (Appendix A), 
and thus, we only discuss MFP filter in the following.
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3.  Examples of Model Resolution and Covariance
We present calculation of the model resolution and model covariance for two examples. The first example consists 
of two stations, where we use this simple geometry to illustrate A and application of SVD to A. The second exam-
ple is based on the geometry of the field array presented in Xu et al. (2020). We compute the model resolution 
of both source inversion and MFP for this array; we also compute the model covariance of source inversion. We 
demonstrate that these calculations can aid the source inversion. We study Rayleigh waves in the two examples, 
but the methodology also applies for body waves.

3.1.  A Two-Station Example

We place two stations (M = 2 and P = 1) separated by 2,100 m on the Earth's surface. For the potential source 
locations around the two stations, we create a source grid, 91 by 91 elements with a 40 m grid distance. We 
assume that all the sources only emit vertical-direction forces on the surface (i.e., the x-y plane). We also assume 
that the subsurface medium is elastic, laterally homogeneous, and isotropic. Thus in constructing A (Equation 2), 
we use the vertical-component far-field Rayleigh-wave Green's function

𝐺𝐺(𝑟𝑟𝑟 𝑟𝑟) =

√

1

8𝜋𝜋𝜋𝜋𝜋𝜋∕𝑐𝑐(𝜔𝜔)
𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔∕𝑐𝑐(𝜔𝜔)+𝜋𝜋∕4),� (19)

where ω is the angular frequency, r is the Rayleigh-wave propagation distance from the source to the receiver, c is 
the Rayleigh-wave phase velocity at the frequency ω, and i denotes the imaginary unit. Here, we set c = 2,000 m/s 
at 3 Hz. The formula above is derived from a normalization of the full Rayleigh-wave Green's function (Haney 
et al., 2012) and has units of s 2/kg.

As we only have one sensor pair in this example, A is a complex-valued row vector where each element corre-
sponds to a source in the source grid. A here represents the contribution of each source location to the two-sensor 
crosscorrelation. We image the real and imaginary parts of A separately based on the source locations in the 
x–y planes (Figure 1). We observe that the two parts both contain hyperbolic shapes. This is because here all 
the elements in A can be written as 𝐴𝐴

𝑐𝑐

8𝜋𝜋𝜋𝜋
√

𝑟𝑟1𝑞𝑞𝑟𝑟2𝑞𝑞
𝑒𝑒−𝑖𝑖𝑖𝑖(𝑟𝑟1𝑞𝑞−𝑟𝑟2𝑞𝑞)∕𝑐𝑐 , where r1q is the distance between a source (sq) and 

the receiver (r1). The phase of the exponential, −ω(r1q − r2q)/c, is constant when r1q − r2q is constant; a constant 
r1q − r2q requires sq to be on a hyperbola with foci at r1 and r2. We overlay two types of hyperbolas on the images 
from formulas r1q − r2q = 2πIc/ω and r1q − r2q = (2πI − π)c/ω, where I = 0, ±1, ±2…. The locations of the 
maximum and minimum amplitudes are shifted in the two images. In the real part, the maximum amplitudes lie 
along the first hyperbolas, because the sources along the hyperbolas lead to 𝐴𝐴 𝐴𝐴−𝑖𝑖𝑖𝑖(𝑟𝑟1𝑞𝑞−𝑟𝑟2𝑞𝑞)∕𝑐𝑐 = 1 (solid curves in 
Figure 1a); the same logic applies for the minima as the second hyperbola leads to 𝐴𝐴 𝐴𝐴−𝑖𝑖𝑖𝑖(𝑟𝑟1𝑞𝑞−𝑟𝑟2𝑞𝑞)∕𝑐𝑐 = −1 (dashed 
curves in Figure 1a). The hyperbolas contribute to real values, but zero to the imaginary part as the curves lie 
along the nodes in Figure 1b. The real and imaginary parts are actually orthogonal to each other due to the 
orthogonality of the sine and cosine functions in 𝐴𝐴 𝐴𝐴−𝑖𝑖𝑖𝑖(𝑟𝑟1𝑞𝑞−𝑟𝑟2𝑞𝑞)∕𝑐𝑐 . Xu et al. (2019) observe a similar phenomenon 
in the gradient of the nonlinear source inversion with not only the waveform misfit function but also the arrival 
time misfit function. Note that these hyperbola shape will be a different shape if the subsurface is not laterally 
homogeneous.

We apply SVD to A and achieve U, S, and V. Since we only have one row in A, U is a scalar, 1. S is a row vector 
and all the elements are zeros except one real value in the first element (S1). The first column of V (V1) is the only 
basis vector in the model space spanned by A and thus is a scaled version of A. Therefore the model resolution, 
or the diagonal elements of 𝐴𝐴 𝐕𝐕1𝐕𝐕

†

1
 , is a scaled version of 𝐴𝐴

𝑐𝑐2

64𝜋𝜋2𝜔𝜔2𝑟𝑟1𝑞𝑞𝑟𝑟2𝑞𝑞
 , the square of the non-exponential part in the 

elements of A (Figure 1c). To confirm this, we plot two model resolution contours crossing two different points 
(Figure 1c). For each point, we plot another curve across the point and set that r1qr2q on the curve is constant. We 
observe that the contours overlap with the two curves. Thus, the high model resolution values surrounding the two 
stations are due to the singularities at the two station locations. The model resolution and the diagonal elements 
of the covariance matrix are similar (Figures 1c and 1d) because in this case, Equations 5 and 7 are the same but 
are scaled with 1 and 𝐴𝐴 𝐴𝐴−2

1
 , respectively. The MFP filter in this example would be the same as the source-inversion 

model resolution but is scaled with 𝐴𝐴 𝐴𝐴2

1
 (Equation 17). Thus, we do not image this MFP filter. We consider the 
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off-diagonal elements of the source-inversion model resolution matrix and model covariance matrix in the next 
example. We also image the diagonal and off-diagonal elements of MFP filter in the next example.

3.2.  A Field-Array Example

3.2.1.  Source Inversion

The array geometry (22 stations in Figure 2a) is adopted from a real array in Hartousov, Czech Republic, to moni-
tor fumeroles (i.e., mofettes)—natural CO2 leaks at the Earth's surface (e.g., Estrella et al., 2016). Based on the 
Rayleigh-wave phase velocities in this area, we use a 200 m/s phase velocity at 5 Hz. We use the same source grid 
as Xu et al. (2020), a 41-by-41 element grid with 5 m grid spacing on Earth's surface (i.e., the x–y plane). We pick 
two in-array and one outside array elements in the grid to aid our illustration of the model resolution and covari-
ance (hypothetical sources 1, 2, and 3 in Figure 2a). Following the logic as in the previous example, we construct 
A using all 231 sensor pairs (Figures 2a and 2b). We apply SVD to A to calculate the model resolution and the 
diagonal elements of the covariance matrix for the source grid (Figures 2c and 2d). The model resolution is higher 
inside the array than outside the array. The resolution quantitatively indicates that this array configuration is not 

Figure 1.  Illustration of the real (a) and imaginary (b) part of A, the model resolution (c), and the diagonal elements of 
the model covariance matrix (d) for the two-station example. The black triangles are the two stations where the stations 
r1 and r2 are located at (−1,050, 0) and at (1,050, 0), respectively. The solid and dashed hyperbolas (a) and (b) represent 
r1q − r2q = 2πIc/ω and (2πI − π)c/ω, respectively. Here, ω = 6π for 3 Hz, c = 2,000 m/s and I = 0, ±1, ±2… The black 
contours (c) and (d) are based on the values at points (0, −900) and (0, −200) indicated by the two stars. Each point in the 
gray dashed curves (c) and (d) possesses a constant distance product between the point and two stations (Jones, 2007). The 
distance product here, r1qr2q, is between (0, −900) or (0, −200) and the two station locations.
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Figure 2.  Illustration of the array geometry and the 231 sensor pairs (a), the sensor-pair-path number on each grid (b), the model resolution (c), and diagonal elements 
of the model covariance matrix (d) and the MFP filter (e) for the field array example. The black triangles are the stations. The gray lines in (a) are the 231 sensor pairs 
used in the example. The three empty black stars (1, 2, 3) are the three hypothetical sources used in illustration of the point spread functions from the model resolution 
(f), (i), (l), the trade-off between parameters (g), (j), (m), and the point spread functions from the MFP filter (h), (k), (n). In each point-spread-function subplot, we 
normalize the image with a scale, the absolute maximum value in the function, and the scale is in the top right-hand corner of the subplot.
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sensitive to the four corners of the source grid. Inside the array, the resolution correlates with the sensor-pair path 
density (Figure 2b), and the high resolution is distributed where the sensor-pair paths are dense (e.g., hypothetical 
source 2 in Figure 2c). Besides of showing only the diagonal elements of the model resolution matrix, we also 
image the columns in the matrix to illustrate the point spread functions of individual grid nodes (Figures 2f, 2i, 
and 2l). For our hypothetical source locations 1, 2, and 3, the point spread functions possess high values at and 
around the hypothetical source locations. The point spread functions for the inside-array hypothetical sources 
(Figures 2f and 2i) are close to a spike function. However, the point spread function for the outside-array hypo-
thetical source (Figure 2l) is far from a spike function due to no path coverage.

We observe that for the model covariance matrix, the diagonal elements possess high values, especially at the 
edges (Figure 2d). Note in this example, we have many small singular values (much less than 1, Figure 3a). Thus, 
the small singular values increase the covariance values through the 𝐴𝐴 𝐒𝐒

−2

𝑃𝑃
 term in calculation of model covariance 

matrix (Equation 7). Based on the model covariance matrix, we also demonstrate the trade-off through the 95% 
confidence ellipsoid for the parameter pairs between the three hypothetical sources (Figures 2g, 2j,  2m, and 
Appendix B). If a trade-off exists between two parameters, the ellipsoid is tilted off either the parameter axes 
(Figures 2g and 2j). Thus, one needs to consider the trade-off when interpreting the source inversion results.

To decrease the covariance values, we truncate the singular values to avoid the small singular values (much less 
than 1), which increase the covariance matrix values. For the source inversion with all 231 sensor pairs, we trun-
cate the singular values at a threshold (i.e., 10% of the maximum singular value, Figure 3a) and then repeat the 
computation of the model resolution matrix and the model covariance matrix (Figures 3b and 3c, respectively). 
Compared to using all the singular values (Figure 2c), the model resolution no longer includes high values on 
the image edges (Figure 3b) and the point spread functions are still focused (Figures 3e, 3h, 3k). However, the 
truncation leads to decrease of both the resolution values and the peak values of the point spread functions. Mean-
while, due to the truncation, the diagonal element values of the model covariance matrix decrease (Figure 3c) and 
the confidence ellipse sizes are much smaller (Figures 3f, 3i, 3l), which indicate lower uncertainty and param-
eter trade-off in the source inversion. Although the truncated SVD brings these benefits, we need to notice that 
this approach is in fact a regularization for the source inversion (e.g., Aster et al., 2012). Therefore, the model 
resolution matrix and the model covariance matrix from the truncated SVD describe the regularized solution, 
not the true solution. We present another way to decrease the covariance matrix values without regularization in 
Section 4.1.

3.2.2.  Comparison to MFP

We image the MFP filter (Section 2.4) to visualize the sensitivity of MFP to different sources. In the 231-sensor-
pair example without truncation of singular values, we observe that the diagonal components (Figure 2e) corre-
late to the sensor-pair path density (Figure 2b), where the inside-array sources generally possess higher resolution 
than the outside-array sources. Inside the array, the filter values are heterogeneous and much less than 1. Further-
more  the columns in the MFP filter provide the point spread functions corresponding to the three hypothetical 
sources (Figures 2h, 2k, 2n). We observe that the MFP filter blurs the true source strengths, no matter if the 
sources are in the array or outside array; furthermore, each source strength is blurred differently. The point spread 
functions of MFP are less focused than of the source inversion around the hypothetical sources (Figures 2f, 2i, 2l). 
This difference is because the MFP result inherently includes the array information (Equation 15).

We also apply the truncated SVD to the MFP filter (Equation 17). For the diagonal elements, we do not observe 
obvious changes from the truncation (Figure 3d); the scale values (absolute maximum values) in the MFP point 
spread functions are almost the same as before the truncation (Figures 3g, 3j, 3m). This is because the singular 
values contribute to MFP filter as the 𝐴𝐴 𝐒𝐒

2

𝑃𝑃
 term (Equation 17), and thus, the small singular values do not contrib-

ute much even before the truncation. Therefore, MFP is more robust to the small singular values than source 
inversion.

One needs to remove the MFP filter from the MFP results, in order to achieve the true source strength information 
like in monitoring the seismic source spatial-temporal changes (e.g., Gal et al., 2018). This removal is similar 
to the deconvolution of array response from seismic source backprojection results (e.g., Haney, 2014) or from 
surface wave dispersion estimates (e.g., Luo et al., 2008; Mikesell et al., 2017; Trad et al., 2003). However one 
can use MFP as a fast option to locate the seismic sources, since MFP only involves matrix multiplication and 
does not require inversion.
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Figure 3.  The model resolution and covariance for all the sensor pairs through the truncated SVD. (a) The singular values 
for all 231 sensor pairs (red dots, Figure 2) and the 47-sensor-pair example (black dots, Figure 4). The two gray dashed lines 
indicate the truncation location, the 156th singular value which is 10% of the largest singular value. All the calculation and 
figure settings for the resolution and covariance match those in Figure 2.
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4.  Discussion
To further our understanding even more, instead of using all the sensor pairs in the field array example, we choose 
a subset of the pairs to estimate the model resolution and covariance (Section 4.1). We then demonstrate the 
existence of the model null space in the different methods, for example, MFP and source inversion (Section 4.2). 
We finally discuss application of our analyze in the seismic array design (Section 4.3) and the limitation of our 
calculation of resolution and covariance (Section 4.4)

4.1.  Winnowing Sensor Pairs

In practice, one winnows sensor pairs in an array to choose the crosscorrelations with high signal-to-noise ratio. 
We use 47 sensor pairs from the field array (Figure 4a) selected by Xu et al. (2020), where these sensor pairs 
sample the area heterogeneously (Figure 4b). For the source inversion with the 47 sensor pairs, we repeat the 
computation of the model resolution matrix and the covariance matrix. Compared to the 231-sensor-pair example 
(Figure 2c), the model resolution here no longer includes high values on the image edges (Figure 4c), but due 
to the rank deficiency in this example, the model resolution values decrease. Furthermore, all the point spread 
functions are far from a spike function, no matter if the hypothetical source is inside or outside of the array 
(Figures 4f, 4i, 4l). We notice that most of the singular values here are larger than the truncation threshold used 
in the 231-sensor-pair example (Figure 3a). Thus, the diagonal element values of the model covariance matrix 
decrease (Figure 4d). However, note that the diagonal elements provide underestimated uncertainties because of 
the trade-off among the parameters (e.g., Aster et al., 2012), especially between the hypothetical sources 2 and 3 
(Figure 4m). We observe that the trade-offs among the hypothetical sources are different from the 231-sensor-pair 
example. Thus, one needs to recalculate the model resolution and covariance matrices if one changes the sensor 
pairs used in source inversion.

We also image the MFP filter using the 47 sensor pairs. Similar to the 231-sensor pair example, we also observe 
the correlation relationship between the diagonal elements and the sensor-pair path density (Figure 4e). The MFP 
point spread functions here (Figures 4h, 4k, 4n) blurs the true source strengths similarly to the source inversion 
(Figures 4f, 4i, 4l).

4.2.  Null Space

We notice that we have only used a part (subspace) of the whole model space. The whole model space is of 
dimension Q, that is, the source number. Due to the rank of A (e.g., P and P < Q), A does not span the whole 
model space and thus a model null space exists. The model null space is spanned by the last Q − P columns in V 
(Section 2.1). If we add any vectors (e.g., x0) in the model null space to the solutions for A, the data fitting will 
not change (e.g., Aster et al., 2012), since

𝐀𝐀𝐀𝐀0 = 𝐔𝐔𝐔𝐔𝐔𝐔
†
𝐱𝐱0 = 𝐔𝐔 [𝐒𝐒𝑃𝑃 𝟎𝟎] [𝐕𝐕𝑃𝑃 𝐕𝐕𝐽𝐽−𝑃𝑃 ]

†
𝐱𝐱0 = 𝐔𝐔𝑃𝑃𝐒𝐒𝑃𝑃𝐕𝐕

†

𝑃𝑃
𝐱𝐱0 = 0,� (20)

where x0 is orthogonal to the row space spanned by VP (e.g., Strang, 2016). Thus, a solution from solving A 
provides the same misfit as the combination of the solution and x0. If we incorporate the error in the observed 
data, the null space will be larger, which means even more solutions can satisfy the misfit between the synthetic 
and observation data within the error (e.g., Deal & Nolet, 1996; Fichtner, 2021). However, if we use multiple 
frequencies instead of one frequency, the model null space should be reduced.

The model null space also exists in the nonlinear source inversion. For the gradient descent algorithm, since the 
gradient is in the row space (Section 2.3), if the initial model is also in the row space, the model null space of the 
nonlinear source inversion is the same as the linear source inversion. Thus, if the initial model includes a part in 
the model null space, this part will not be changed during the updating (Claerbout, 2014, Chapter 2.3.4). Finally, 
note that the model null space also exists in MFP (Equation 18).

The model null space also exists for the misfit functions other than the L2-norm waveform misfit (χ, e.g., enve-
lope) in the nonlinear source inversion. We recognize that these misfit functions are functions of the synthetic 
waveforms (i.e., b) of a trial solution. These misfit function values do not vary if we incorporate a vector (x0) from 
the linear-source-inversion model null space, since
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Figure 4.  The model resolution, the model covariance, and the MFP filter for the 47 sensor pairs. All the calculation and 
figure settings match those in Figure 2.
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𝜒𝜒(𝐛𝐛) = 𝜒𝜒 (𝐛𝐛 + 𝐀𝐀𝐀𝐀0) .� (21)

Therefore, the model null space for any misfit function includes the model null space of the linear source inver-
sion. Note that we do not consider regularization of model parameters in the misfit function (e.g., Tikhonov 
regularization). Regularization leads to the misfit function directly depending on the model parameters and thus 
changes the model null space. Our analysis could be applied for a given regularization to determine the regular-
ized solution resolution (Section 3.2.1).

4.3.  Designing and Assessing a Seismic Array

Given that with the analysis presented, one can assess the resolution of an array for source distribution analysis, 
and the design of an observation array could be optimized. For example, if one plans to delineate an ambient 
seismic source spatial distribution (e.g., CO2 fumaroles) and has the rough estimate of the source location and the 
subsurface velocity, one could use the analysis presented here to design an array that maximizes the model resolu-
tion around the estimated source locations. Meanwhile one could also apply this analysis to assess the resolution 
of an existing array to potential source locations.

4.4.  Limitations in This Estimation

Our analysis above is based on SVD and only involves the array geometry and physics of the inversion. However 
in practice, one needs to consider the data errors if one plans to incorporate sensor pairs with different signal-to-
noise ratios. For example, one can use the data standard deviation or the data covariance matrix to weight the data 
and A in the inversion (e.g., Aster et al., 2012). This incorporation would be especially necessary where the high 
signal-to-noise-ratio sensor pairs are not enough to constrain the inversion.

Our analysis can work for source inversion with low parameter numbers (around 10 3), for example, in near surface 
or urban environments. However, for inversions with large parameter numbers (e.g., ≥10 5), the SVD in our anal-
ysis requires expensive computation cost. To minimize the parameter numbers, one can change the source grid 
from a homogeneous grid to a spatially variable grid (e.g., Igel et al., 2021) or adapt the grid size based on the 
model resolution (Section 3), for example, smaller/larger grids in the high/low-resolution areas. Another way to 
avoid the expensive computation cost is to estimate the model resolution and covariance using the Lanczos bidi-
agonalization (e.g., Yao et al., 1999; Zhang & Thurber, 2007).

Our estimation of the model resolution and covariance is based on the linear inversion or the nonlinear inver-
sion with the waveform misfit function. However, for the nonlinear source inversion with other types of misfit 
functions (e.g., envelope), the Jacobian matrix is not exactly A and thus our estimation here may not always be 
applicable. In that case, to estimate the model resolution and covariance, one could utilize the Hessian matrix 
(e.g., Aster et al., 2012; Fichtner & Trampert, 2011b) or adopt the Monte Carlo algorithm (e.g., Tarantola, 2005).

5.  Conclusion
We calculate the model resolution matrix and model covariance matrix for the ambient source inversion problem 
using linear inversion theory. The model resolution estimates, the diagonal elements of the resolution matrix, 
are generally higher inside than outside an array, and the inside-array resolution estimates are correlated with 
the sensor-pair path density. Meanwhile the columns (i.e., point spread functions) of the resolution matrix indi-
cate the blurring effect of source inversion. We demonstrate that the model covariance matrix of the linear 
source  inversion is the same as the nonlinear source inversion with the L2-norm waveform misfit function. The 
covariance matrix provides uncertainty estimates and the trade-off among the sources. We also demonstrate that 
the results of matched field processing (MFP) are blurred by the MFP filter, and thus the model resolution of 
MFP is worse than source inversion when all sensor pairs are used in the field example. We finally demonstrate 
that the model null space for the linear source inversion also exists in MFP and the nonlinear source inversion. 
This research theoretically aids studies about estimation of the ambient seismic source distributions.
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Appendix A:  MFP Covariance
We write the covariance of the MFP estimate as.

Cov(𝐲𝐲) = 𝐀𝐀
†
Cov(𝐛𝐛)𝐀𝐀,� (A1)

= 𝜎𝜎2
𝐕𝐕𝑃𝑃𝐒𝐒

2

𝑃𝑃
𝐕𝐕

†

𝑃𝑃
,� (A2)

where we assume that the data errors are constant and independent among all crosscorrelations. Note that Equa-
tion A2 is identical to the MFP filter (Equation 17) if we further assume σ = 1.

Appendix B:  Computation of Confidence Interval
We present a pseudocode for computation of the 95% confidence ellipsoid for two model parameters in an inver-
sion problem. The computation is from Aster et al., 2012 Chapter 2.2 (Algorithm 1).

Data Availability Statement
We use synthetic data and describe how to generate the synthetic data in the manuscript.
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