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Abstract Both natural and anthropogenic seismic sources generate so-called ambient seismic waves. One
in turn can use ambient seismic waves to estimate these source distributions and study source characteristics
for instance the source mechanism. A commonly used estimation method is called matched field processing
(MFP), and the MFP results are inherently smeared by the array geometry. Another approach to estimate
ambient seismic sources is to apply full waveform inversion (FWI) to the crosscorrelations of ambient seismic
wave recordings. Both methods have pros and cons, but the model resolution and uncertainty in these two
methods are important for the interpretation. Unfortunately, this topic has attracted little attention in the past.
We propose to estimate both the model resolution matrix and model covariance matrix of the inversion using
singular value decomposition. We demonstrate our estimates using two examples, one of which is an actual
field array geometry. We quantitatively compare the model resolution of the two methods and discuss the mot
null space. We demonstrate that FWI has superior resolution with enough independent data and should be us
when computational resources permit.

Plain Language SummaryMany natural phenomena (such as ocean waves due to a hurricane or
glacier tremor due to subglacial water flow) can shake the ground and generate seismic waves. By studying t
seismic waves, we can image these natural phenomena in space and monitor the temporal evolution of these
phenomena. We focus on two common methods to image these passive sources: matched field processing
(MFP) and full waveform inversion (FWI). The resolution and uncertainties of these two methods are importar
for interpreting imaging results. Thus, we derive and calculate the model resolution for each method. We also
study the model trade-off of full waveform inversion to quantify the uncertainty in the inversion results. We
compare the resolution of the two methods using a realistic field seismic array form a past experiment. We
show that FWI has better resolution than MFP when all seismic sensors in the array are used, indicating that
FWI should be the preferred method for ambient noise source imaging when computational resources permit
its use.

1. Introduction

Many natural phenomena can generate seismic waves, such ast2@oles (e.g., Estrella et &2016 Umlauft

& Korn, 2019, landslides (e.g., Brodsky et &003, rivers (e.g., Roth et aR014 Tsai et al.2012, and ocean
waves (e.g., Hasselmant963 Longuet-Higgins,1950. Surface waves usually dominate the seismic record
ings on the Earth's surface. We refer to these seismic recordings as ambient seismic recordings and the sei:
sources as ambient seismic sources. In the ambient seismic recordings, there are commonly no clear body-v
arrivals as in earthquake recordings. Ambient seismic recordings are used to infer information aboutthe cor
sponding ambient seismic sources. For example, based on the ambient seismic waves (i.e., microseism) genel
by ocean wave coupling with the seafloor, one can estimate the coupling distribution (e.g., EFm@@Et al.,
Juretzek & Hadziioanno2016, monitor the spatial and temporal changes of the source distributions (e.g., Gal
et al., 2018 Retailleau & Gualtieri2019, study how environmental changes affect the source strength (e.g.,
Grob etal.2011), and investigate the source mechanism (e.g., Ardhuin 20aB, Gualtieri et al.202Q Nishida
etal.,2008.

One often estimates the spatial ambient seismic source distributions (strength and location) when studyi
ambient seismic sources. One can image source locations using traditional imaging methods witheut expe
sive computation [e.g., matched-field processing (MFP), Baggeroer £988 ,Bucker,1974, for example, to
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investigate glacier tremors (e.g., Umlauft et 2021) or the hydrothermal system at Old Faithful Geyser (e.g.,
Cros et al.2011). In using MFP, one crosscorrelates ambient seismic recordings to extract coherent signals at
then apply backprojection to the crosscorrelations to image the source locations (e.g., Cra®¥).aNpte

that the MFP results are not the true source strength distributions and also include seismic array artifacts (
demonstrate this in Secti@¥4). In contrast, one can estimate both the source locations and strengths by apply
ing full-waveform inversion to the same crosscorrelations (e.g., Fichtner 20&F,,Hanasoge2014 Tromp
etal.,2010. This inversion method has been applied to both low- (<0.2 Hz) and high-frequency (>2 Hz) ambient
seismic waves (e.g., Ermert et @017 Xu et al.,202Q respectively). The two source imaging methods share
some similarities (e.g., Bowden et &021). For example, Xu et al2020 demonstrate that MFP can be written

as the crosscorrelation waveform inversion sensitivity kernel with zero initial sources, and both methods requi
a subsurface velocity model as an input. In this paper, we refer to the full-waveform inversion for ambient seism
sources as source inversion. We detail the link between source inversion and MFP in2S&ction

Assessing estimates of ambient seismic source distributions in terms of uncertainty is necessary but has
been fully studied. Source inversion results can be biased by the subsurface model, for instance due to inac
rate velocities (e.g., Xu et aRp19 or anelasticity (e.g., Xu et aR020. Besides biases, source inversion has
different sensitivities to seismic sources at different locations simply due to the array geometry (e.g., Burti
et al.,201Q Datta et al.2019. Thus, assessing the model resolution and uncertainty (i.e., covariance) will aid
interpretation of source inversion results. To estimate the model resolution, similar to seismic tomography stu
ies, one can adopt synthetic reconstruction tests like the spike test (e.g., ErmeR0&falln the spike test,

one sets one or multiple spike(s) inside or outside the array as the true model and generates synthetic data 1
the source model; one then applies the source inversion to the synthetic data to check how the inversion reco
the spike(s). A similar test can be adopted in MFP (e.g., Gal &0418. It is computationally expensive to
assess the resolution for each source location, as one needs to conduct the spike test at all the source locat
bearing in mind that the sensitivity at one spike location can change due to other spikes existing simultaneou
(e.g., Xu et al.2020. Another commonly used test in seismic tomography studies, the checkerboard test, has n
yet been studied in source inversion, perhaps because the checkerboard-like models do not represent plau:
heterogeneous source distributions. In this source inversion study, we analyze the source distribution uncertai
under the assumption that the subsurface structure is known. It is critical to note that a trade-off exists betwe
the source and the structure (Fichti2]14 Sager et al2018, and thus an inaccurate structure model leads to
another type of the source uncertainty, which we do not consider here. This trade-off is an inherent obstacle
the ambient noissource inversion problem and deserves further research. However, first we should understar
each uncertainty individually.

To calculate the model resolution efficiently, we frame source inversion as a linear inversion problem using
waveform misfit function. Given that singular value decomposition (SVD) is commonly used to estimate line
ar-inversion model resolution (e.g., in tomography studies, Aster 20aB), we propose to calculate the model
resolution using SVD. We also present the model resolution of MFP theoretically. Within this frame work, we
calculate the model covariance matrix of source inversion (Sedtidvie then demonstrate our estimation of the
model resolution and covariance through two array examples (S8}tiwhere we compare the model resolu

tion of source inversion to MFP in a field array geometry. Lastly, we assess application of winnowing data to o
calculation and discuss the model null space in all these methods (S&ction

2. Estimation of the Model Resolution and Covariance

For source inversion, we calculate the model resolution matrix and covariance matrix using singular valt
decomposition (Sectiok.1 and2.2). We then demonstrate that framing source inversion as a nonlinear inversion
problem provides the same model covariance matrix as the linear source inversion gS8ctila also apply

SVD to MFP to provide the model resolution, and we demonstrate that the MFP result includes the array infc
mation (Sectior2.4).

2.1. The Linear Source Inversion

We frame the source inversion as a classic linear inversion problem (which we refer to as the linear seurce inv
sion) because a crosscorrelation between two seismic sensors can be written as
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1)

wherer  (r) is themth (nth) sensor location, is the angular frequencg(r,, s, is the Green's function for a
seismic source &) and a sensoy,, * denotes the complex conjugaltés,) is the ambient seismic source strength
ats, N(s,) is the autocorrelation of the source wavelet and thus is a non-negative real value (e.g., Wapenaar
Fokkema20086. Q is the total number of the sources. Here, we assume that the seismic sources are independ
from each other and the subsurface structure is known. Note that the two assumptions may not be valid in prac
(e.g., Ayala-Garcia et al2021; Xu et al.,2020. We write the above equation e stations (i.e.[,, r,,...,r,,) in

matrix form as

)

where we omit for brevity. Note that in this study, we focus on a single frequency to demonstrate our analysis
while in practice one will use multiple frequencies for source inversion. In the following, we use normal symbol:
to refer to scalars, and we use lower-case bold and upper-case bold symbols to refer to vectors and matri
respectively.

We recognize that Equatiéhis a classic linear inversion probletm% Ax) with.
(3a)
(3b)
(30)

wherep is the index for the sensor paijp,andr . A is aP-by-Q matrix and® = M(M 1)/2 for M sensors. Each
element inA is a crosscorrelation between the Green's functions for two sensors to one common soufce (Equ
tion 3c¢). When calculating the Green'’s function values, we can use analytical Green’s functions or the resul
from a wave equation solver. In addition, although we do not study it here, one can use the different compone
of the Green'’s tensors (e.g., vertical-vertical or radial-vertical). We use two stations to illistra&ection3.1

Note that in Equatio, we do not consider any commonly used pre-processing procedures for ambient seismi
recordings like time-/frequency-domain normalization (e.g., Bensen &0&f7). One could incorporate the
procedures into the linear inversion with matrix multiplication or vector addition (e.g., Fichtne2é2&.,We
assess another commonly used ambient seismic data processing, winnowing crosscorrelations, dnlSection

One can use singular value decomposition (SVD) to analyze linear inversion problems, for example, calculatit
of the model resolution. We apply SVDAoas
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(4)

where andT represents the matrix transpose. While SVD for real matrices only involves matrix
transpose, the SVD here involves the conjugate transpose operation Fecagsenplex-valuedJ andV are
P-by-P and Q-by-Q matrices, respectively. The columnsUnandV are orthogonal bases for the whole data
space and whole model space, respecti@ly.a diagonal matrix and the diagonal elements are singular values.
The singular values here are non-negative and real. Singular values generally indicate how a linear invers|
constrains the corresponding model-space base vectors. For example, a larger absolute singular vatlie in the
column ofS means that thegth column vector i/ is better constrained and is less affected by data noise (e.g.,
Aster et al.2012).

Ideally for a linear inversion problem, we would like to have more linearly independent data than unknow:
model parameters. Thus, the inversion can constrain the whole model space, which means we can recover
true model. However in practice, as in source inversion, we usually have many more parameters than data, tha
Q> P. If we assum@ is a full-row-rank matrix, we only have non-zero singular values for thePficsilumns

of V (Vp). Thus, we can only use those columns in constructing a solution using the linear inversion methoc
(e.g., pseudoinverse and zeroth-order Tikhonov regularization) or using some nonlinear inversion algorithn
(Section2.3). The vectors iV, construct a subspace in the model space, and this subspace is usually referred
as the row space in linear algebra (e.g., Str2BbF). We state tha¥ , spans the row space, which means that any
vector in this space is a linear combination of the vectovs.ifiFor theQ P columns left inV, these column
vectors are orthogonal to the vector¥in Thus any linear combination of te P columns is also orthogonal

to the row space and cannot be resolved by the linear inversion. The space spann€ll by thectors is the
model null space. We discuss this space further in Setton

2.2. Model Resolution and Covariance

One use¥, to calculate the model resolution for a linear inversion problem as
®)

whereR,, is conventionally called as the model resolution matrix (e.g., Aster @0aB). The maximum real
value inR, can be up to 1. Note that in the linear inversion the®gylinks the estimated modets} and true
model ') as

(6)

One can think oR,, as smearing the true model. We notice thatif0 except thegth component (i.e., ),

x¢ would be thegth column ofR,, and also the response for it model parameter. Thus, the column&jp

are the point spread functions for the individual model parameteksisia full-rank square matriR,,, would

be an identity matrix and the point spread function becomes a delta function xfvaed' would be the same.
However due to the rank deficiencyAfin practiceR,, is not an identity matrix. If the diagonal element&gf

are closer to 1, the point spread functions are also closer to the delta functions, and thus, the model parameter:
well resolved. Therefore, the diagonal elementR gfepresent the resolution for the model parameters, that is,
the source strengths hef¢if Equatior?). Note that our calculation of the model resolution is similar to Meyers
et al. 021) where they image the resolution for seismic source angular distributions. We present not only th
resolution but also the point spread functions for the source strengths (Sgction

Besides the model resolution one also 0sgandS to calculate the model covariance matrix for the inversion
results as

()

where is the data error ang, is the firstP columns ofS. One commonly uses the square root of the diago
nal elements irC , to calculate the confidence intervals or uncertainties for the model parameters; the off-di
agonal elements represent the trade-off among the different model parameters (e.g., As@d18).dNpte

that compared to the model resolution (Equafipnan extra term, , exists in the model covariance matrix
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(Equation7). Due to this term, the maximum values for the model covariance matrix can be much larger tha
1 (Section3.2). Here, we assume that the data errors are independent and constant among all crosscorrelatic
and thus, we set =1 in the following examples for simplicity. Note that one could incorporate the data error
into source inversion, especially in practice (Secfigh. We use the real values Bf, andC , since our model
parameters are real-valued. We illustrate estimation of the model resolution and covariance through the examy
in Section3.

2.3. Nonlinear Source Inversion

One commonly applies nonlinear inversion algorithms, instead of linear inversion algorithms, to source inve
sion (which we refer to as the nonlinear source inversion). When using the nonlinear source inversion, one ¢
constrain the solutions to be non-negative (i.e., seismic source stridngtEquationl). One can also use the
nonlinear source inversion to focus on not only the spectra/waveform of the crosscorrelations (Eybation
also other properties of the crosscorrelations such as the envelope (Bozd2@t&lFichtner et al.2008 or

the energy balance (i.e., the symmetry, Ermert @15 because these properties possess different sensitivities
to the seismic sources than the waveform (e.g., Sager 2058,

In the nonlinear source inversion, one defines a misfit functipto(measure the misfit between the observed
(C°) and synthetic@) crosscorrelations, where the synthetic data are based on a trial solution. For example, or
often uses the,-norm waveform misfit function written as:

8)

9)

whereb® is the observed data vector. Note that the solutions for Eq@ationthe same as for the linear source
inversion (e.g., Menk&012, Equationsl and2. To minimize the waveform misfit function, we write the gradi
ent as

(10)

wherel is the Jacobian matrix (e.g., Aster et2012). Here,J is written as

(11

where is the partial derivative of the crosscorrelati@r,, r,), with respect to the source strength,

N(s)). Based on Equatiohy we recognize that and the Jacobian matrixAs Note
that one can estimate the model covariance for the nonlinear inversion problems using the Jacobian matrix,

(e.g., Aster et al2012. SinceJ = A here, the covariance formula becomes , the model
covariance for the linear inversion (EquatinNote that in practice one commonly adopts regularization in the
nonlinear source inversion (e.g., spatially smoothing the source strengths, Erme20&#aBager et al2018.

The regularization leads to changes in the misfit functions and thus a different covariance. This topic is interesti
but beyond the scope of this study.

To examine the links (e.g., the SVD, the row space, and the null space) between nonlinear and linear sou
inversion, we analyze gradient descent algorithm, commonly used in nonlinear source inversion. We note that
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could do the same analysis with other nonlinear inversion methods. When using gradient descent, one updat:
trial solution iteratively as

(12)

where !is the gradient for the solution at thie iteration k') and is the step length. For the waveform misfit
function (Equatior®), the gradient is EquatidtD. We rewrite Equatiod0 using the SVD results as

(13)

whereb is the synthetic data vector afgis thepth singular valueu, andv, are thepth columns inU andV,
respectively. We observe that the gradient is a linear combination of the vesfgrd hrus, the gradient is in the

row space. This implies that if the initial model is in the row space, the gradient-descent algorithm should als
converge to a solution in the row space. Note that our analysis in this section is basdd-ootimemisfit fune

tion (Equation9). For other types of misfit functions (e.g., envelope or the energy balance), one would need t
use the corresponding Jacobian or Hessian matrix for the uncertainty analysis (e.g., Fichtner & @bigert,
Sager et al2018.

2.4. Matched-Field Processing

We compare MFP to source inversion. We write the formula for MFP (e.g., Cros2&t1d). using consistent
notation as

(14)

and in the vector-matrix format as
(15)

wherey(s,, ) andy are the MFP estimates. Note that the MFP estimate includes the array informdfion (
becauseA includes the Green’s functions for all the station locations in an array. yhsigjot the source
strengths as in source inversion (x@.,UsingAx! = b wherex' is the true solution, we rewrite Equatibbas.

(16)

17
(18)

wheresS; (§)) andV,, (v,) are the same as in source inversion. Note that Equiimmlicates that the MFP result
is a linear combination of the vectors\ip. Thus, the MFP result is also in the row spac&,dds is the gradient
of the waveform misfit function in nonlinear source inversion (Equdt8)n

We notice that the MFP result is a product betwaéa (or ) and the true solution (Equatiod$
and17). Thus,A'A converts the true model to the blurry estimatén(Equationsl6 and17). As such, each
column inATA is the point spread function for the corresponding source. However in conRastite., ),
which could be an identity matrix with perfect resolutidiA for MFP cannot be an identity matrix due toin
Equationl7, unless all the singular values are 1. SiA¢A acts as a filter or!, we refer toA'A (or )

as MFP filter in the following. The covariance matrix of the MFP estimate is similar to MFP filter (Apgendix
and thus, we only discuss MFP filter in the following.
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3. Examples of Model Resolution and Covariance

We present calculation of the model resolution and model covariance for two examples. The first example consi
of two stations, where we use this simple geometry to illusirated application of SVD tA. The second exam

ple is based on the geometry of the field array presented in Xu 2020.(We compute the model resolution

of both source inversion and MFP for this array; we also compute the model covariance of source inversion. \
demonstrate that these calculations can aid the source inversion. We study Rayleigh waves in the two examy
but the methodology also applies for body waves.

3.1. A Two-Station Example

We place two stationsV = 2 andP = 1) separated by 2,100 m on the Earth's surface. For the potential source
locations around the two stations, we create a source grid, 91 by 91 elements with a 40 m grid distance. !
assume that all the sources only emit vertical-direction forces on the surface (i.e., the x-y plane). We also assL
that the subsurface medium is elastic, laterally homogeneous, and isotropic. Thus in conétriiunation?),

we use the vertical-component far-field Rayleigh-wave Green's function

(19)

where is the angular frequenayis the Rayleigh-wave propagation distance from the source to the recéver,

the Rayleigh-wave phase velocity at the frequencgndi denotes the imaginary unit. Here, wecset2,000 m/s

at 3 Hz. The formula above is derived from a normalization of the full Rayleigh-wave Green's function (Hane!
etal.,2012 and has units af/kg.

As we only have one sensor pair in this examflés a complex-valued row vector where each element-corre
sponds to a source in the source ghidthere represents the contribution of each source location to the two-sensor
crosscorrelation. We image the real and imaginary parfs séparately based on the source locations in the
x-y planes (Figurd). We observe that the two parts both contain hyperbolic shapes. This is because here ¢
the elements i\ can be written as , wherer1q is the distance between a sourqqe énd

the receiverr(). The phase of the exponential, (r,, r,,)/c, is constant wheny, r,, is constant; a constant

g Iy requiress, to be on a hyperbola with foci gtandr,. We overlay two types of hyperbolas on the images
from formulasr,, r,,=2Ic/ andry, r,,=(21 )c/ , wherel =0, £1, £2.... The locations of the
maximum and minimum amplitudes are shifted in the two images. In the real part, the maximum amplitudes |
along the first hyperbolas, because the sources along the hyperbolas lead to (solid curves in
Figure1a); the same logic applies for the minima as the second hyperbola leads to (dashed
curves in Figureld). The hyperbolas contribute to real values, but zero to the imaginary part as the curves li
along the nodes in Figurb. The real and imaginary parts are actually orthogonal to each other due to the
orthogonality of the sine and cosine functions in . Xu et al. 019 observe a similar phenomenon

in the gradient of the nonlinear source inversion with not only the waveform misfit function but also the arriva
time misfit function. Note that these hyperbola shape will be a different shape if the subsurface is not lateral
homogeneous.

We apply SVD tdA and achievé), S, andV. Since we only have one rowAn U is a scalar, 1Sis a row vector

and all the elements are zeros except one real value in the first el&nerit€ first column o¥ (V) is the only

basis vector in the model space spanned layd thus is a scaled versionfaf Therefore the model resolution,

or the diagonal elements of , is a scaled version of , the square of the non-exponential part in the
elements oA\ (Figurelc). To confirm this, we plot two model resolution contours crossing two different points
(Figurelc). For each point, we plot another curve across the point and sefthain the curve is constant. We
observe that the contours overlap with the two curves. Thus, the high model resolution values surrounding the t
stations are due to the singularities at the two station locations. The model resolution and the diagonal eleme
of the covariance matrix are similar (Figuesandld) because in this case, Equati&end7 are the same but

are scaled with 1 and , respectively. The MFP filter in this example would be the same as the source-inversior
model resolution but is scaled with (Equationl7). Thus, we do not image this MFP filter. We consider the
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Figure 1. lllustration of the real (a) and imaginary (b) par#gfthe model resolution (c), and the diagonal elements of

the model covariance matrix (d) for the two-station example. The black triangles are the two stations where the stations
r, andr, are located at ( 1,050, 0) and at (1,050, 0), respectively. The solid and dashed hyperbolas (a) and (b) represent
Mg Toq= 2lc/ and (2 )c/ , respectively. Here, =6 for 3 Hz,c=2,000 msandl =0, £1, +2... The black

contours (c) and (d) are based on the values at points (0, 900) and (0, 200) indicated by the two stars. Each point in the
gray dashed curves (c) and (d) possesses a constant distance product between the point and two sta603)(Jdres,
distance product here,,,, is between (0, 900) or (0, 200) and the two station locations.

off-diagonal elements of the source-inversion model resolution matrix and model covariance matrix in the ne
example. We also image the diagonal and off-diagonal elements of MFP filter in the next example.

3.2. A Field-Array Example
3.2.1. Source Inversion

The array geometry (22 stations in FigBepis adopted from a real array in Hartousov, Czech Republic, to-moni
tor fumeroles (i.e., mofettes)—natural Cl@aks at the Earth's surface (e.g., Estrella e2@1.§. Based on the
Rayleigh-wave phase velocities in this area, we use a 200 m/s phase velocity at 5 Hz. We use the same source
as Xu etal.2020, a 41-by-41 element grid with 5 m grid spacing on Earth's surface (i.e., the x—y plane). We pick
two in-array and one outside array elements in the grid to aid our illustration of the model resolution and coval
ance (hypothetical sources 1, 2, and 3 in Fi@ayeFollowing the logic as in the previous example, we construct

A using all 231 sensor pairs (Figusand2b). We apply SVD tAA to calculate the model resolution and the
diagonal elements of the covariance matrix for the source grid (Fuaesi2d). The model resolution is higher
inside the array than outside the array. The resolution quantitatively indicates that this array configuration is n
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