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1.  Introduction

Many natural phenomena can generate seismic waves, such as CO2 fumaroles (e.g., Estrella et�al.,�2016; Umlauft 
& Korn,�2019), landslides (e.g., Brodsky et�al.,�2003), rivers (e.g., Roth et�al.,�2014; Tsai et�al.,�2012), and ocean 
waves (e.g., Hasselmann,�1963; Longuet-Higgins,�1950). Surface waves usually dominate the seismic record-
ings on the Earth’s surface. We refer to these seismic recordings as ambient seismic recordings and the seismic 
sources as ambient seismic sources. In the ambient seismic recordings, there are commonly no clear body-wave 
arrivals as in earthquake recordings. Ambient seismic recordings are used to infer information about the corre-
sponding ambient seismic sources. For example, based on the ambient seismic waves (i.e., microseism) generated 
by ocean wave coupling with the seafloor, one can estimate the coupling distribution (e.g., Ermert et�al.,�2017; 
Juretzek & Hadziioannou,�2016), monitor the spatial and temporal changes of the source distributions (e.g., Gal 
et�al.,�2018; Retailleau & Gualtieri,�2019), study how environmental changes affect the source strength (e.g., 
Grob et�al.,�2011), and investigate the source mechanism (e.g., Ardhuin et�al.,�2015; Gualtieri et�al.,�2020; Nishida 
et�al.,�2008).

One often estimates the spatial ambient seismic source distributions (strength and location) when studying 
ambient seismic sources. One can image source locations using traditional imaging methods without expen-
sive computation [e.g., matched-field processing (MFP), Baggeroer et�al.,�1988; Bucker,�1976], for example, to 

Abstract  Both natural and anthropogenic seismic sources generate so-called ambient seismic waves. One 
in turn can use ambient seismic waves to estimate these source distributions and study source characteristics, 
for instance the source mechanism. A commonly used estimation method is called matched field processing 
(MFP), and the MFP results are inherently smeared by the array geometry. Another approach to estimate 
ambient seismic sources is to apply full waveform inversion (FWI) to the crosscorrelations of ambient seismic 
wave recordings. Both methods have pros and cons, but the model resolution and uncertainty in these two 
methods are important for the interpretation. Unfortunately, this topic has attracted little attention in the past. 
We propose to estimate both the model resolution matrix and model covariance matrix of the inversion using 
singular value decomposition. We demonstrate our estimates using two examples, one of which is an actual 
field array geometry. We quantitatively compare the model resolution of the two methods and discuss the model 
null space. We demonstrate that FWI has superior resolution with enough independent data and should be used 
when computational resources permit.

Plain Language Summary  Many natural phenomena (such as ocean waves due to a hurricane or 
glacier tremor due to subglacial water flow) can shake the ground and generate seismic waves. By studying the 
seismic waves, we can image these natural phenomena in space and monitor the temporal evolution of these 
phenomena. We focus on two common methods to image these passive sources: matched field processing 
(MFP) and full waveform inversion (FWI). The resolution and uncertainties of these two methods are important 
for interpreting imaging results. Thus, we derive and calculate the model resolution for each method. We also 
study the model trade-off of full waveform inversion to quantify the uncertainty in the inversion results. We 
compare the resolution of the two methods using a realistic field seismic array form a past experiment. We 
show that FWI has better resolution than MFP when all seismic sensors in the array are used, indicating that 
FWI should be the preferred method for ambient noise source imaging when computational resources permit 
its  use.
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investigate glacier tremors (e.g., Umlauft et�al.,�2021) or the hydrothermal system at Old Faithful Geyser (e.g., 
Cros et�al.,�2011). In using MFP, one crosscorrelates ambient seismic recordings to extract coherent signals and 
then apply backprojection to the crosscorrelations to image the source locations (e.g., Cros et�al.,�2011). Note 
that the MFP results are not the true source strength distributions and also include seismic array artifacts (we 
demonstrate this in Section�2.4). In contrast, one can estimate both the source locations and strengths by apply-
ing full-waveform inversion to the same crosscorrelations (e.g., Fichtner et�al.,�2017; Hanasoge,�2014; Tromp 
et�al.,�2010). This inversion method has been applied to both low- (<0.2�Hz) and high-frequency (>2�Hz) ambient 
seismic waves (e.g., Ermert et�al.,�2017; Xu et�al.,�2020, respectively). The two source imaging methods share 
some similarities (e.g., Bowden et�al.,�2021). For example, Xu et�al.�(2020) demonstrate that MFP can be written 
as the crosscorrelation waveform inversion sensitivity kernel with zero initial sources, and both methods require 
a subsurface velocity model as an input. In this paper, we refer to the full-waveform inversion for ambient seismic 
sources as source inversion. We detail the link between source inversion and MFP in Section�2.4.

Assessing estimates of ambient seismic source distributions in terms of uncertainty is necessary but has not 
been fully studied. Source inversion results can be biased by the subsurface model, for instance due to inaccu-
rate velocities (e.g., Xu et�al.,�2019) or anelasticity (e.g., Xu et�al.,�2020). Besides biases, source inversion has 
different sensitivities to seismic sources at different locations simply due to the array geometry (e.g., Burtin 
et�al.,�2010; Datta et�al.,�2019). Thus, assessing the model resolution and uncertainty (i.e., covariance) will aid 
interpretation of source inversion results. To estimate the model resolution, similar to seismic tomography stud-
ies, one can adopt synthetic reconstruction tests like the spike test (e.g., Ermert et�al.,�2017). In the spike test, 
one sets one or multiple spike(s) inside or outside the array as the true model and generates synthetic data from 
the source model; one then applies the source inversion to the synthetic data to check how the inversion recovers 
the spike(s). A similar test can be adopted in MFP (e.g., Gal et�al.,�2018). It is computationally expensive to 
assess the resolution for each source location, as one needs to conduct the spike test at all the source locations, 
bearing in mind that the sensitivity at one spike location can change due to other spikes existing simultaneously 
(e.g., Xu et�al.,�2020). Another commonly used test in seismic tomography studies, the checkerboard test, has not 
yet been studied in source inversion, perhaps because the checkerboard-like models do not represent plausible 
heterogeneous source distributions. In this source inversion study, we analyze the source distribution uncertainty 
under the assumption that the subsurface structure is known. It is critical to note that a trade-off exists between 
the source and the structure (Fichtner,�2014; Sager et�al.,�2018), and thus an inaccurate structure model leads to 
another type of the source uncertainty, which we do not consider here. This trade-off is an inherent obstacle in 
the ambient noise  source inversion problem and deserves further research. However, first we should understand 
each uncertainty individually.

To calculate the model resolution efficiently, we frame source inversion as a linear inversion problem using a 
waveform misfit function. Given that singular value decomposition (SVD) is commonly used to estimate line-
ar-inversion model resolution (e.g., in tomography studies, Aster et�al.,�2012), we propose to calculate the model 
resolution using SVD. We also present the model resolution of MFP theoretically. Within this frame work, we 
calculate the model covariance matrix of source inversion (Section�2). We then demonstrate our estimation of the 
model resolution and covariance through two array examples (Section�3), where we compare the model resolu-
tion of source inversion to MFP in a field array geometry. Lastly, we assess application of winnowing data to our 
calculation and discuss the model null space in all these methods (Section�4).

2.  Estimation of the Model Resolution and Covariance

For source inversion, we calculate the model resolution matrix and covariance matrix using singular value 
decomposition (Section�2.1 and�2.2). We then demonstrate that framing source inversion as a nonlinear inversion 
problem provides the same model covariance matrix as the linear source inversion (Section�2.3). We also apply 
SVD to MFP to provide the model resolution, and we demonstrate that the MFP result includes the array infor-
mation (Section�2.4).

2.1.  The Linear Source Inversion

We frame the source inversion as a classic linear inversion problem (which we refer to as the linear source inver-
sion) because a crosscorrelation between two seismic sensors can be written as
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� (1)

where rm (rn) is the mth (nth) sensor location, �  is the angular frequency, G(rm, sq) is the Green’s function for a 
seismic source at sq and a sensor rm, * denotes the complex conjugate, N(sq) is the ambient seismic source strength 
at sq. N(sq) is the autocorrelation of the source wavelet and thus is a non-negative real value (e.g., Wapenaar & 
Fokkema,�2006). Q is the total number of the sources. Here, we assume that the seismic sources are independent 
from each other and the subsurface structure is known. Note that the two assumptions may not be valid in practice 
(e.g., Ayala-Garcia et�al.,�2021; Xu et�al.,�2020). We write the above equation for M stations (i.e., r1, r2,…,rM) in 
matrix form as

� (2)

where we omit �  for brevity. Note that in this study, we focus on a single frequency to demonstrate our analysis, 
while in practice one will use multiple frequencies for source inversion. In the following, we use normal symbols 
to refer to scalars, and we use lower-case bold and upper-case bold symbols to refer to vectors and matrices, 
respectively.

We recognize that Equation�2 is a classic linear inversion problem (b�=�Ax) with.

� (3a)

� (3b)

� (3c)

where p is the index for the sensor pair, rm and rn. A is a P-by-Q matrix and P�=�M(M���1)/2 for M sensors. Each 
element in A is a crosscorrelation between the Green’s functions for two sensors to one common source (Equa-
tion�3c). When calculating the Green’s function values, we can use analytical Green’s functions or the results 
from a wave equation solver. In addition, although we do not study it here, one can use the different components 
of the Green’s tensors (e.g., vertical-vertical or radial-vertical). We use two stations to illustrate A in Section�3.1. 
Note that in Equation�2, we do not consider any commonly used pre-processing procedures for ambient seismic 
recordings like time-/frequency-domain normalization (e.g., Bensen et� al.,�2007). One could incorporate the 
procedures into the linear inversion with matrix multiplication or vector addition (e.g., Fichtner et�al.,�2020). We 
assess another commonly used ambient seismic data processing, winnowing crosscorrelations, in Section�4.1.

One can use singular value decomposition (SVD) to analyze linear inversion problems, for example, calculation 
of the model resolution. We apply SVD to A as
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� (4)

where  and T represents the matrix transpose. While SVD for real matrices only involves matrix 
transpose, the SVD here involves the conjugate transpose operation because A is complex-valued. U and V are 
P-by-P and Q-by-Q matrices, respectively. The columns in U and V are orthogonal bases for the whole data 
space and whole model space, respectively. S is a diagonal matrix and the diagonal elements are singular values. 
The singular values here are non-negative and real. Singular values generally indicate how a linear inversion 
constrains the corresponding model-space base vectors. For example, a larger absolute singular value in the qth 
column of S means that the qth column vector in V is better constrained and is less affected by data noise (e.g., 
Aster et�al.,�2012).

Ideally for a linear inversion problem, we would like to have more linearly independent data than unknown 
model parameters. Thus, the inversion can constrain the whole model space, which means we can recover the 
true model. However in practice, as in source inversion, we usually have many more parameters than data, that is, 
Q�>�P. If we assume A is a full-row-rank matrix, we only have non-zero singular values for the first P columns 
of V (VP). Thus, we can only use those columns in constructing a solution using the linear inversion methods 
(e.g., pseudoinverse and zeroth-order Tikhonov regularization) or using some nonlinear inversion algorithms 
(Section�2.3). The vectors in VP construct a subspace in the model space, and this subspace is usually referred to 
as the row space in linear algebra (e.g., Strang,�2016). We state that VP spans the row space, which means that any 
vector in this space is a linear combination of the vectors in VP. For the Q��� P columns left in V, these column 
vectors are orthogonal to the vectors in VP. Thus any linear combination of the Q��� P columns is also orthogonal 
to the row space and cannot be resolved by the linear inversion. The space spanned by the Q��� P vectors is the 
model null space. We discuss this space further in Section�4.2.

2.2.  Model Resolution and Covariance

One uses VP to calculate the model resolution for a linear inversion problem as

� (5)

where Rm is conventionally called as the model resolution matrix (e.g., Aster et�al.,�2012). The maximum real 
value in Rm can be up to 1. Note that in the linear inversion theory, Rm links the estimated model (x e) and true 
model (x t) as

� (6)

One can think of Rm as smearing the true model. We notice that if x t�=�0 except the qth component (i.e.,  ), 
x e would be the qth column of Rm and also the response for the qth model parameter. Thus, the columns in Rm 
are the point spread functions for the individual model parameters. If A is a full-rank square matrix, Rm would 
be an identity matrix and the point spread function becomes a delta function, where x e and x t would be the same. 
However due to the rank deficiency of A in practice, Rm is not an identity matrix. If the diagonal elements of Rm 
are closer to 1, the point spread functions are also closer to the delta functions, and thus, the model parameters are 
well resolved. Therefore, the diagonal elements of Rm represent the resolution for the model parameters, that is, 
the source strengths here (N in Equation�2). Note that our calculation of the model resolution is similar to Meyers 
et�al.�(2021) where they image the resolution for seismic source angular distributions. We present not only the 
resolution but also the point spread functions for the source strengths (Section�3).

Besides the model resolution one also uses VP and S to calculate the model covariance matrix for the inversion 
results as

� (7)

where �  is the data error and SP is the first P columns of S. One commonly uses the square root of the diago-
nal elements in Cm to calculate the confidence intervals or uncertainties for the model parameters; the off-di-
agonal elements represent the trade-off among the different model parameters (e.g., Aster et�al.,�2012). Note 
that compared to the model resolution (Equation�5), an extra term,  , exists in the model covariance matrix 



Journal of Geophysical Research: Solid Earth

XU AND MIKESELL

10.1029/2022JB024374

5 of 17

(Equation�7). Due to this term, the maximum values for the model covariance matrix can be much larger than 
1 (Section�3.2). Here, we assume that the data errors are independent and constant among all crosscorrelations, 
and thus, we set � �=�1 in the following examples for simplicity. Note that one could incorporate the data error 
into source inversion, especially in practice (Section�4.4). We use the real values of Rm and Cm since our model 
parameters are real-valued. We illustrate estimation of the model resolution and covariance through the examples 
in Section�3.

2.3.  Nonlinear Source Inversion

One commonly applies nonlinear inversion algorithms, instead of linear inversion algorithms, to source inver-
sion (which we refer to as the nonlinear source inversion). When using the nonlinear source inversion, one can 
constrain the solutions to be non-negative (i.e., seismic source strength, N in Equation�1). One can also use the 
nonlinear source inversion to focus on not only the spectra/waveform of the crosscorrelations (Equation�1) but 
also other properties of the crosscorrelations such as the envelope (Bozda� et�al.,�2011; Fichtner et�al.,�2008) or 
the energy balance (i.e., the symmetry, Ermert et�al.,�2015) because these properties possess different sensitivities 
to the seismic sources than the waveform (e.g., Sager et�al.,�2018).

In the nonlinear source inversion, one defines a misfit function (� ) to measure the misfit between the observed 
(C o) and synthetic (C) crosscorrelations, where the synthetic data are based on a trial solution. For example, one 
often uses the L2-norm waveform misfit function written as:

� (8)

� (9)

where b o is the observed data vector. Note that the solutions for Equation�9 are the same as for the linear source 
inversion (e.g., Menke,�2012), Equations�1 and�2. To minimize the waveform misfit function, we write the gradi-
ent as

� (10)

where J is the Jacobian matrix (e.g., Aster et�al.,�2012). Here, J is written as

� (11)

where  is the partial derivative of the crosscorrelation, C(r1, r2), with respect to the source strength, 

N(s1). Based on Equation�1, we recognize that  and the Jacobian matrix is A. Note 

that one can estimate the model covariance for the nonlinear inversion problems using the Jacobian matrix, as 

 (e.g., Aster et�al.,�2012). Since J�=� A here, the covariance formula becomes  , the model 
covariance for the linear inversion (Equation�7). Note that in practice one commonly adopts regularization in the 
nonlinear source inversion (e.g., spatially smoothing the source strengths, Ermert et�al.,�2017; Sager et�al.,�2018). 
The regularization leads to changes in the misfit functions and thus a different covariance. This topic is interesting 
but beyond the scope of this study.

To examine the links (e.g., the SVD, the row space, and the null space) between nonlinear and linear source 
inversion, we analyze gradient descent algorithm, commonly used in nonlinear source inversion. We note that one 
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could do the same analysis with other nonlinear inversion methods. When using gradient descent, one updates a 
trial solution iteratively as

� (12)

where � �  l is the gradient for the solution at the lth iteration (x l) and �  is the step length. For the waveform misfit 
function (Equation�9), the gradient is Equation�10. We rewrite Equation�10 using the SVD results as

� (13)

where b is the synthetic data vector and Sp is the pth singular value; up and vp are the pth columns in U and V, 
respectively. We observe that the gradient is a linear combination of the vectors in VP. Thus, the gradient is in the 
row space. This implies that if the initial model is in the row space, the gradient-descent algorithm should also 
converge to a solution in the row space. Note that our analysis in this section is based on the L2-norm misfit func-
tion (Equation�9). For other types of misfit functions (e.g., envelope or the energy balance), one would need to 
use the corresponding Jacobian or Hessian matrix for the uncertainty analysis (e.g., Fichtner & Trampert,�2011a; 
Sager et�al.,�2018).

2.4.  Matched-Field Processing

We compare MFP to source inversion. We write the formula for MFP (e.g., Cros et�al.,�2011) using consistent 
notation as

� (14)

and in the vector-matrix format as

� (15)

where y(sq, � ) and y are the MFP estimates. Note that the MFP estimate includes the array information (A †) 
because A includes the Green’s functions for all the station locations in an array. Thus, y is not the source 
strengths as in source inversion (i.e., x). Using Ax t�=�b where x t is the true solution, we rewrite Equation�15 as.

� (16)

� (17)

� (18)

where SP (Sp) and VP (vp) are the same as in source inversion. Note that Equation�18 indicates that the MFP result 
is a linear combination of the vectors in VP. Thus, the MFP result is also in the row space of A, as is the gradient 
of the waveform misfit function in nonlinear source inversion (Equation�13).

We notice that the MFP result is a product between A †A (or  ) and the true solution (Equations�16 
and�17). Thus, A †A converts the true model to the blurry estimate (y in Equations�16 and�17). As such, each 
column in A †A is the point spread function for the corresponding source. However in contrast to Rm (i.e.,  ), 
which could be an identity matrix with perfect resolution, A †A for MFP cannot be an identity matrix due to  in 
Equation�17, unless all the singular values are 1. Since A †A acts as a filter on x t, we refer to A †A (or  ) 
as MFP filter in the following. The covariance matrix of the MFP estimate is similar to MFP filter (Appendix�A), 
and thus, we only discuss MFP filter in the following.
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3.  Examples of Model Resolution and Covariance

We present calculation of the model resolution and model covariance for two examples. The first example consists 
of two stations, where we use this simple geometry to illustrate A and application of SVD to A. The second exam-
ple is based on the geometry of the field array presented in Xu et�al.�(2020). We compute the model resolution 
of both source inversion and MFP for this array; we also compute the model covariance of source inversion. We 
demonstrate that these calculations can aid the source inversion. We study Rayleigh waves in the two examples, 
but the methodology also applies for body waves.

3.1.  A Two-Station Example

We place two stations (M�=�2 and P�=�1) separated by 2,100�m on the Earth's surface. For the potential source 
locations around the two stations, we create a source grid, 91 by 91 elements with a 40�m grid distance. We 
assume that all the sources only emit vertical-direction forces on the surface (i.e., the x-y plane). We also assume 
that the subsurface medium is elastic, laterally homogeneous, and isotropic. Thus in constructing A (Equation�2), 
we use the vertical-component far-field Rayleigh-wave Green's function

� (19)

where �  is the angular frequency, r is the Rayleigh-wave propagation distance from the source to the receiver, c is 
the Rayleigh-wave phase velocity at the frequency � , and i denotes the imaginary unit. Here, we set c�=�2,000�m/s 
at 3�Hz. The formula above is derived from a normalization of the full Rayleigh-wave Green's function (Haney 
et�al.,�2012) and has units of s 2/kg.

As we only have one sensor pair in this example, A is a complex-valued row vector where each element corre-
sponds to a source in the source grid. A here represents the contribution of each source location to the two-sensor 
crosscorrelation. We image the real and imaginary parts of A separately based on the source locations in the 
x–y planes (Figure�1). We observe that the two parts both contain hyperbolic shapes. This is because here all 
the elements in A can be written as  , where r1q is the distance between a source (sq) and 

the receiver (r1). The phase of the exponential, �� (r1q��� r2q)/c, is constant when r1q��� r2q is constant; a constant 
r1q��� r2q requires sq to be on a hyperbola with foci at r1 and r2. We overlay two types of hyperbolas on the images 
from formulas r1q� �� r2q�=�2�Ic /�  and r1q� �� r2q�=�(2�I � �� � )c/� , where I�=�0, ±1, ±2…. The locations of the 
maximum and minimum amplitudes are shifted in the two images. In the real part, the maximum amplitudes lie 
along the first hyperbolas, because the sources along the hyperbolas lead to  (solid curves in 
Figure�1a); the same logic applies for the minima as the second hyperbola leads to  (dashed 
curves in Figure�1a). The hyperbolas contribute to real values, but zero to the imaginary part as the curves lie 
along the nodes in Figure�1b. The real and imaginary parts are actually orthogonal to each other due to the 
orthogonality of the sine and cosine functions in  . Xu et�al.�(2019) observe a similar phenomenon 
in the gradient of the nonlinear source inversion with not only the waveform misfit function but also the arrival 
time misfit function. Note that these hyperbola shape will be a different shape if the subsurface is not laterally 
homogeneous.

We apply SVD to A and achieve U, S, and V. Since we only have one row in A, U is a scalar, 1. S is a row vector 
and all the elements are zeros except one real value in the first element (S1). The first column of V (V1) is the only 
basis vector in the model space spanned by A and thus is a scaled version of A. Therefore the model resolution, 

or the diagonal elements of  , is a scaled version of  , the square of the non-exponential part in the 

elements of A (Figure�1c). To confirm this, we plot two model resolution contours crossing two different points 

(Figure�1c). For each point, we plot another curve across the point and set that r1qr2q on the curve is constant. We 
observe that the contours overlap with the two curves. Thus, the high model resolution values surrounding the two 
stations are due to the singularities at the two station locations. The model resolution and the diagonal elements 
of the covariance matrix are similar (Figures�1c and�1d) because in this case, Equations�5 and�7 are the same but 
are scaled with 1 and  , respectively. The MFP filter in this example would be the same as the source-inversion 
model resolution but is scaled with  (Equation�17). Thus, we do not image this MFP filter. We consider the 



Journal of Geophysical Research: Solid Earth

XU AND MIKESELL

10.1029/2022JB024374

8 of 17

off-diagonal elements of the source-inversion model resolution matrix and model covariance matrix in the next 
example. We also image the diagonal and off-diagonal elements of MFP filter in the next example.

3.2.  A Field-Array Example

3.2.1.  Source Inversion

The array geometry (22 stations in Figure�2a) is adopted from a real array in Hartousov, Czech Republic, to moni-
tor fumeroles (i.e., mofettes)—natural CO2 leaks at the Earth's surface (e.g., Estrella et�al.,�2016). Based on the 
Rayleigh-wave phase velocities in this area, we use a 200�m/s phase velocity at 5�Hz. We use the same source grid 
as Xu et�al.�(2020), a 41-by-41 element grid with 5�m grid spacing on Earth's surface (i.e., the x–y plane). We pick 
two in-array and one outside array elements in the grid to aid our illustration of the model resolution and covari-
ance (hypothetical sources 1, 2, and 3 in Figure�2a). Following the logic as in the previous example, we construct 
A using all 231 sensor pairs (Figures�2a and�2b). We apply SVD to A to calculate the model resolution and the 
diagonal elements of the covariance matrix for the source grid (Figures�2c and�2d). The model resolution is higher 
inside the array than outside the array. The resolution quantitatively indicates that this array configuration is not 

Figure 1.  Illustration of the real (a) and imaginary (b) part of A, the model resolution (c), and the diagonal elements of 
the model covariance matrix (d) for the two-station example. The black triangles are the two stations where the stations 
r1 and r2 are located at (�1,050, 0) and at (1,050, 0), respectively. The solid and dashed hyperbolas (a) and (b) represent 
r1q��� r2q�=�2�Ic /�  and (2�I ��� � )c/� , respectively. Here, � �=�6�  for 3�Hz, c�=�2,000�m/s and I�=�0, ±1, ±2… The black 
contours (c) and (d) are based on the values at points (0, �900) and (0, �200) indicated by the two stars. Each point in the 
gray dashed curves (c) and (d) possesses a constant distance product between the point and two stations (Jones,�2007). The 
distance product here, r1qr2q, is between (0, �900) or (0, �200) and the two station locations.
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