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S U M M A R Y
It is well known that the axial dipole part of Earth’s magnetic field reverses polarity, so that
the magnetic North Pole becomes the South Pole and vice versa. The timing of reversals
is well documented for the past 160 Myr, but the conditions that lead to a reversal are still
not well understood. It is not known if there are reliable ‘precursors’ of reversals (events
that indicate that a reversal is upcoming) or what they might be. We investigate if machine
learning (ML) techniques can reliably identify precursors of reversals based on time-series
of the axial magnetic dipole field. The basic idea is to train a classifier using segments of
time-series of the axial magnetic dipole. This training step requires modification of standard
ML techniques to account for the fact that we are interested in rare events—a reversal is
unusual, while a non-reversing field is the norm. Without our tweak, the ML classifiers lead to
useless predictions. Perhaps even more importantly, the usable observational record is limited
to 0–2 Ma and contains only five reversals, necessitating that we determine if the data are
even sufficient to reliably train and validate an ML algorithm. To answer these questions we
use several ML classifiers (linear/non-linear support vector machines and long short-term
memory networks), invoke a hierarchy of numerical models (from simplified models to 3-D
geodynamo simulations), and two palaeomagnetic reconstructions (PADM2M and Sint-2000).
The performance of the ML classifiers varies across the models and the observational record
and we provide evidence that this is not an artefact of the numerics, but rather reflects how
‘predictable’ a model or observational record is. Studying models of Earth’s magnetic field
via ML classifiers thus can help with identifying shortcomings or advantages of the various
models. For Earth’s magnetic field, we conclude that the ability of ML to identify precursors of
reversals is limited, largely due to the small amount and low frequency resolution of data, which
makes training and subsequent validation nearly impossible. Put simply: the ML techniques we
tried are not currently capable of reliably identifying an axial dipole moment (ADM) precursor
for geomagnetic reversals. This does not necessarily imply that such a precursor does not exist,
and improvements in temporal resolution and length of ADM records may well offer better
prospects in the future.

Key words: Dynamo: theories and simulations; Magnetic field variations through time;
Palaeointensity; Reversals: process, time scale, magnetostratigraphy; Time-series analysis.

1 I N T RO D U C T I O N

Computers and hand-held devices have become a normal part of
our daily lives and along with computers came the broad use of
statistical algorithms, typically referred to as machine learning (ML)
or artificial intelligence (AI). By now, ML and AI are encountered
daily: the algorithms sort our email for spam, suggest the next video
we want to watch, assist in completing our tax returns, and present

us with advertisements that are deemed of interest. The incredible
success of ML/AI is in large part due to the availability of massive
amounts of data: looking through vast amounts of emails makes it
possible to identify features that render an email suspicious. Another
reason for the success of ML/AI is that very simple strategies can
often be very successful: it is likely that you will enjoy watching
a video very similar to the one you just enjoyed watching. Simple
strategies are easy to discover. Finally, if the ML/AI algorithm makes
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a mistake, the consequences are usually ‘minor’—the company
makes less money because the advertisement strategy is suboptimal,
or you may need to delete a few or a lot of additional emails.

None of the above is generally true in Earth science or in geo-
physics and the study of Earth’s deep interior. There are no vast
amounts of data—every measurement and observation is the result
of a long, costly effort. Simple prediction strategies are useless—I
may often turn out to be right when I predict that the weather to-
morrow will be the same as the weather today, but such a prediction
strategy misses the point of predicting changes in the current con-
ditions. And finally, a ‘wrong’ assessment or prediction can have
disastrous consequences, for example when predicting the path of
a hurricane.

Nonetheless, there are many ingenious and careful efforts to port
the success of ML and AI into Earth science, keeping the above
mentioned problems in mind. We follow this path as well. The
problem we are concerned with is predicting reversals in the polar-
ity of the Earth’s axial magnetic dipole field. Such reversals have
occurred numerous times throughout Earth’s history (Cande & Kent
1995; Lowrie & Kent 2004; Ogg 2012), most recently around 780
kyr ago (the Brunhes–Matuyama reversal). And while the occur-
rence and timing of reversals is well documented, the conditions
that lead to a reversal are not fully understood. We note that while
studies of simulations suggest that detailed predictions of the geo-
magnetic field may be limited to less than a century (Hulot et al.
2010; Lhuillier et al. 2011a), ‘coarse’ predictions of macroscopic
features of the field may be possible over much longer timescales
(Morzfeld et al. 2017). Indeed this possibility has led to multiple
studies aimed at searching for precursors—events or patterns of
behaviour that indicate an upcoming reversal. For example Olson
et al. (2009) investigate a dynamo model during two periods of
dipole collapse and highlight, for example, patterns of reverse flux
patches as potential precursors. Other examples include (e.g. Con-
stable & Korte 2006; Laj & Kissel 2015; Valet & Fournier 2016;
Brown et al. 2018), which carefully study the past behaviour Earth’s
magnetic field leading up to reversals, in particular with regards to
the (fast) decay in intensity of the modern field.

A natural idea is to use ML to search for precursors to reversals
within the time evolution of Earth’s magnetic field. Here, we are
limited to searching for precursors in reconstructed time-series of
the axial dipole (or virtual axial dipole moment) of Earth’s magnetic
field, because these are the only ‘data’ available. The non-dipole field
is not well documented over the geological timescales of millions
of years, relevant to the dynamics of reversals.

We search for precursors of reversals of Earth’s magnetic field
using ‘classifiers’ (see, e.g. Goodfellow et al. 2016). The basic idea
of a classifier is simple. One can train ML algorithms to sort input
data into two (or more) classes. The two classes can, for exam-
ple, be ‘cats’ and ‘dogs’. The procedure is to feed a large set of
‘training data’ to an ML algorithm and to subsequently validate
the algorithm on independent ‘validation data’ to avoid overfit-
ting. The training data are a large collection of images of cats
and dogs, each image being accompanied by a ‘label’, indicating
whether the image contains a dog or a cat, while the validation
data consist of a different set of labelled images of cats and dogs.
The validation step is crucial to avoid overfitting. After training
and validation, the algorithm can be used to classify new images.
To port these ideas to reversals of Earth’s magnetic field we swap
‘cats and dogs’ for segments of a time-series that either precede a
reversal event or not. The rest of this paper is dedicated to deter-
mining under what circumstances this simple idea might actually be
useful.

A first difficulty is caused by the fact that reversals are rare
(five reversals over the past 2 Myr), which means that the data
are imbalanced. The difficulty of training standard ML algorithms
with imbalanced data is that they tend to favour strategies which
may learn to assign a single output to every input. For example,
when the algorithm, during training, almost exclusively encounters
images of cats, the ML may ‘think’ that every image is that of a
cat. This is due to the fact that the ML often optimizes ‘accuracy’
(or similar loss functions) during training. Accuracy is the ratio of
correct classifications to the number of classifications made. If the
data are imbalanced, one can achieve a high accuracy via useless
prediction strategies, that assign the same output to every input (see
also Gwirtz et al. 2021). To address this issue we tweak standard
ML techniques, specifically linear and non-linear support vector
machines (SVM) and long short-term memory networks (LSTM,
see, e.g. Hochreiter & Schmidhuber 1997; Cristianini & Shawe-
Taylor 2000), to penalize false negatives (failing to correctly predict
a reversal) more severely than false positives (incorrectly predicting
that a reversal will occur) during the training period. Our tweak is an
effective, yet computationally intensive way to deal with imbalanced
data and may prove useful in other applications of ML.

A second difficulty, which is harder to overcome, is the limited
amount of data we can use to train and validate an ML algorithm.
The observational record of Earth’s axial magnetic dipole field is
limited and the palaeomagnetic reconstructions we consider cover
just the last 2 Myr, containing five reversals (PADM2M (Ziegler
et al. 2011) and Sint-2000 (Valet et al. 2005)). This may severely
limit what any ML algorithm can do. To address the limited amount
of data, we study ML also in the context of model output from
computational simulations because these ‘data’ are not limited. The
goal is to use models to discover what is in principle feasible (large
training and/or validation data sets), to better interpret results ob-
tained in practice (limited data). The models we consider are the
simplified differential equation model of Gissinger (2012), a revers-
ing 3-D dynamo simulation and the stochastic models of Pétrélis
et al. (2009) and Morzfeld & Buffett (2019).

We note that a reversal must always follow a period during which
the axial dipole field is weak. The reason is the continuity of the evo-
lution of Earth’s magnetic field (which is undisputed). The strength
of the axial dipole must drop to a low value, before it can ultimately
collapse to zero, and then re-build in opposite polarity. Thus, a sim-
ple precursor of a reversal is an intensity threshold. If the intensity
of the axial dipole field drops below the threshold, a reversal may
be unavoidable (or at least very likely to occur). This idea has been
studied in detail in Gwirtz et al. (2021), clearly spelling out the
capability and limitations of threshold-based predictions of Earth’s
magnetic reversals. The present paper can be viewed as an extension
of this previous work, looking in detail into the question of whether
there are dynamics in the axial dipole field that indicate an upcom-
ing reversal. For that reason, we benchmark the ML techniques of
this study against the simpler threshold-based predictions of Gwirtz
et al. (2021). ML is only useful if it can reliably outperform sim-
pler methods. Further illumination of our experiments with ML is
provided by analysis of the autocorrelation structure of our various
models and palaeomagnetic reconstructions that allow us to better
document the evolutionary nature of the reversals and what makes
them more or less predictable.

The remainder of this paper is organized in the following way. In
Section 2 we introduce the models and palaeomagnetic reconstruc-
tions that we use, provide relevant background on threshold-based
predictions, and briefly outline SVMs and LSTMs. In Section 3, we
describe the procedures we use to train and validate ML algorithms
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for use in predicting reversals of Earth’s axial dipole field. The
results of a collection of numerical experiments are presented in
Section 4 followed by a discussion of their robustness and geophys-
ical significance in Section 5. We present conclusions in section 6.

2 B A C KG RO U N D : M O D E L S ,
PA L A E O M A G N E T I C
R E C O N S T RU C T I O N S ,
T H R E S H O L D - B A S E D P R E D I C T I O N S
A N D M A C H I N E L E A R N I N G

We summarize relevant background materials, beginning with a
brief review of numerical models for Earth’s axial dipole field and
palaeomagnetic reconstructions of that field. Next, we review pre-
vious work on threshold-based predictions, and the definitions of
low-dipole events and prediction horizons. Finally, we describe the
ML methods we use in this paper.

2.1 Numerical models and palaeomagnetic
reconstructions

The low-dimensional model we use is that of Gissinger (2012) and
consists of the coupled ordinary differential equations

dQ

dt
= μQ − V D,

dD

dt
= −νD + V Q,

dV

dt
= � − V + Q D, (1)

where μ = 0.119, ν = 0.1, and � = 0.9. The three scalar values of
Q, D and V are representative of the quadrupole, dipole and fluid
velocity, respectively. The sign of D indicates polarity (today’s or
reversed polarity) so that a change in sign corresponds to a dipole
reversal. We refer to this model as the G12 model and use the
G12 millennium timescale (1 dimensionless time unit = 4 kyr) of
Morzfeld et al. (2017) to convert model time into geological time. A
segment of the dipole of a G12 simulation is shown in the top panel
of Fig. 1. We note that we only work with the D variable of the G12
model, which serves as a proxy for the Earth’s axial dipole. The
other two variables of G12 remain opaque to all ML/thresholding
methods we use. The reason is that only the dipole field of Earth
is observable. We briefly bring up other simplified models in the
context of some numerical experiments, but do not describe these
in detail here (see Gwirtz et al. 2021, for more details on other
simplified models).

We additionally consider a 3-D numerical dynamo simulation
which exhibits polarity reversals. The simulation is part of an ensem-
ble of reversing simulations run by N. Schaeffer (ISTerre, CNRS,
Université Grenoble Alpes), A. Fournier and T. Gastine (both af-
filiated with Université Paris Cité, Institut de Physique du Globe
de Paris). The time-series of the axial dipole from this simulation
was previously studied in Gwirtz et al. (2021), where further details
of the numerical model and its favourable comparisons with the
geomagnetic field can be found. Time in the non-dimensional sim-
ulation is scaled such that the secular-variation timescale matches
that of Earth (415 yr, see Lhuillier et al. 2011b). A segment of
the time-series of axial dipole intensity from this simulation can
be seen in the bottom panel of Fig. 1. The entire simulation covers

147 Myr (at a time step of 43.09 years) and contains about 360 low-
dipole events (see below for our explicit definition), 109 of which
are reversals.

We also consider the PADM2M and Sint-2000 palaeomagnetic
axial dipole moment (PADM) reconstructions (Valet et al. 2005;
Ziegler et al. 2011), derived from estimates of the virtual axial
dipole moment (VADM) of Earth’s field over the last 2 Myr. The
geomagnetic polarity timescale of Cande & Kent (1995) is used
to determine the timing of reversals with a modification made in
PADM2M for the Cobb mountain sub-chron (see Morzfeld et al.
2017). Both reconstructions are evaluated at time steps of 1 kyr and
are shown in Fig. 2, where, as in G12, the sign indicates polarity
and we accordingly have introduced a change in sign corresponding
to reversals of the axial dipole field. Here, the PADMs are scaled
so that their time average is equal to one. We note that despite
covering the same period of time there are some differences between
PADM2M and Sint-2000 resulting from the selection, volume, and
interpretation of available data. This reflects an inherent uncertainty
in reconstructing the past magnetic field of the Earth which we
must be aware of when working with and drawing conclusions from
palaeomagnetic reconstructions (Morzfeld et al. 2017).

2.2 Review of threshold-based reversal predictions

The ML techniques we present here extend the framework of
threshold-based predictions and we therefore provide a review of
these ideas. For more details, we refer to Gwirtz et al. (2021).

2.2.1 Low-dipole events

The numerical experiments of Section 4 involve training SVMs to
predict low-dipole events. We define low-dipole events as in Gwirtz
et al. (2021). Specifically, a low-dipole event starts when the axial
dipole changes sign or its intensity drops below a value called the
start-of-event threshold (ST) and it ends when the intensity recovers
to above a second value called the end-of-event threshold (ET). This
definition is illustrated in Fig. 3 where ST and ET are indicated by
light blue and green horizontal lines, respectively, and a low-dipole
event is highlighted in blue. This approach allows spans of time
during which intensity is low to be identified as one single event.
For example, the Cobb mountain subchron, seen in PADM2M and
Sint-2000 around 1.2 Myr in the past (Fig. 2) is a single low-dipole
event (and not a sequence of two reversals). To make this definition
comparable across the models and reconstructions, axial dipole
time-series are scaled to the respective model or reconstruction’s
average intensity and thresholds are expressed as a percentage of
that average. Following Gwirtz et al. (2021), we use ST=10 per cent
and ET=80 per cent, which means that an event starts when the
intensity drops below 10 per cent of the average value and it ends
when it exceeds 80 per cent of the average value.

2.2.2 Prediction horizons

The reversal predictions we make are ‘coarse’ in the sense that we
predict whether a low-dipole event will begin within an a priori
specified period of time, called the prediction horizon (PH)—the
precise timing of the reversal is not considered (Morzfeld et al.
2017). This is illustrated in Fig. 3 where the length of the double-
sided purple arrow indicates the PH. In the illustration, an event
does occur in the future, but beyond the PH. Therefore, the correct
prediction would be that no low-dipole event begins within the PH.
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Figure 1. Axial dipole intensity as a function of time for the (a) G12 and (b) 3-D models (see Section 2.1). The sign indicates polarity and the amplitude is
scaled such that the average intensity is one. The time scaling of both models is explained in the text.

Figure 2. Modified versions of the PADM2M (yellow) and Sint-2000 (purple) palaeomagnetic reconstructions of the axial dipole (PADM) covering the last
2 Myr. The sign indicates polarity and the amplitude is scaled such that the average intensity for each time-series is one.

Figure 3. Illustration of the ML prediction strategy. The thick blue line represents a time-series of axial dipole intensity. The thin blue and green horizontal
lines show the start-of-event and end-of-event thresholds (which define low-dipole events). The search window (dashed rectangle) encompasses the time-series
segment used to make a prediction of whether a low-dipole event will start within a prediction horizon (purple arrow) from the present (to the right of the
search window).
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Table 1. Prediction horizons (equal to av-
erage event durations), in kyr, of the mod-
els and palaeomagnetic reconstructions.

G12 3-D PADM2M Sint-2000

3.2 16.4 11.7 10.2

The PH needs to be chosen prior to any training and validation and
should be such that one anticipates the start of a low-dipole event
by a meaningful span of time. Specifically, if the PH is short, we
may only predict events when they have already begun. Conversely,
for an excessively long PH, anticipating an event becomes trivial
because reversals/low-dipole events are likely to occur within a very
large time window. In Gwirtz et al. (2021), time was rescaled such
that one dimensionless time unit was equal to the average duration
of a low-dipole event in each respective model and reconstruction.
Prediction horizons of one dimensionless time unit were then used
and it was verified that subsequent results are not sensitive to the
choice of PH (within the range of a few event durations). Here, we
also use a PH of one average event duration, listed in Table 1 for the
G12 and 3-D models and the two palaeomagnetic reconstructions.

2.2.3 Threshold-based predictions

The threshold-based prediction strategy of Gwirtz et al. (2021) is
as follows: predict that a low-dipole event will begin within the
prediction horizon whenever the axial dipole intensity is below a
predefined level called the warning threshold. During training, we
can label the true outcome as either positive (P), a low-dipole event
begins within the prediction horizon or, negative (N), an event does
not begin within the prediction horizon. Each prediction of the
threshold-based strategy can thus be labelled as a true positive
(TP), true negative (TN), false positive (FP) or false negative (FN).
An ‘optimal’ warning threshold is determined during the training
phase by applying a collection of candidate warning thresholds
to a set of training data, tabulating the total number of true/false
positives/negatives, and selecting the warning threshold which max-
imizes the Matthews correlation coefficient (MCC)

MCC = TP · TN − FP · FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

. (2)

A perfect MCC score is one, while a score near zero (or an un-
defined score in the case where the denominator is zero) indicates
poor predictions (and negative MCC scores suggest to reverse the
prediction strategy altogether). The MCC is useful as it is robust
when evaluating classifications of imbalanced data (Chicco & Jur-
man 2020) like those we face in the prediction of low-dipole events.
Specifically, low-dipole events are rare and therefore one could ob-
tain a high accuracy, which is another popular skill score, by always
predicting that no event will occur. To see why, recall that accuracy
is defined as the ratio of all correct predictions (TP and TN), and
all predictions made (P+N):

ACC = TP + TN

P + N
. (3)

If P � N (very few low-dipole events), then ACC can be large,
even if TP is zero (we never predict that an event will occur). As a
specific example, consider the case of training data with only one
low-dipole event out of 100 training instances (P = 1, N = 99). A
strategy that assigns N (no low-dipole event) to any input scores an
accuracy of ACC = 99 per cent (because TP=0, TN = 99). This
strategy, however, cannot be useful because it misses the point of

Figure 4. Illustration of SVMs. 2-D training data (dots) are labelled accord-
ing to their classes, with class 1 being ‘blue’ and class 2 being ‘red.’ A linear
SVM attempts to separate the two classes by a hyperplane (orange line), ob-
tained via optimization of a loss function. A non-linear SVM effectively lifts
the training data into a higher dimensional space where a separating plane is
determined, again via optimization of a loss function. After projecting back
into the original space, the classifier of the non-linear SVM—which is a
plane in the higher dimensional space—appears as a curve (grey line) in the
lower dimensional space (see text and Cortes & Vapnik 1995,for details).

being able to predict that a low-dipole event can occur. The use
of the MCC avoids these issues—indeed, the MCC for a strategy
which always makes the same prediction, as in the above example,
is undefined (poor predictions). Further details of threshold-based
predictions and their skills are discussed in detail in (Gwirtz et al.
2021). In this paper, threshold-based predictions serve as a baseline
for the performance of the more sophisticated ML techniques.

2.3 Machine learning methods

We primarily use linear SVMs to search for precursors of reversals
and major excursions (defined as events during which the field in-
tensity drops below 10 per cent of its typical value, see above). This
is done by training them to classify segments of time-series accord-
ing to whether they precede low-dipole events (see Section 3). We
use SVMs because they have been around for nearly three decades
(Cortes & Vapnik 1995) and have since become a fundamental and
widely used ML technique (see, e.g. Kim 2003; Ben-Hur et al.
2008; Ma & Guo 2014; Murty & Raghava 2016; Kok et al. 2021).
Additionally, linear SVMs are conceptually easy to understand. In
simple terms, training a linear SVM for binary classification—the
case where there are only two possible classes—works as follows.
Suppose the objects one wishes to classify are described by an
n-dimensional vector and one has numerous examples of these ob-
jects, along with their correct classification (training data). The
training of a linear SVM amounts to determining the (n − 1)-
dimensional hyperplane which separates the two classes with the
maximum possible margin. In the case where the classes are not
completely separable, training can include the minimization of a
loss function which is dependent on the distance of misclassified
objects from the candidate hyperplane (and thus their correct class).

Fig. 4 illustrates, via a cartoon, how SVMs separate training
data. Specifically, the data are 2-D, and each dot in the x−y-plane
is one datum that is labelled as a member of class 1 (blue) or
class 2 (red). The orange line is the separating hyperplane (a line
in this 2-D example) obtained by the SVM via optimizing the loss
function. In this example, the classes are not linearly separable

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/231/1/520/6595302 by C

N
R

S user on 16 M
arch 2023



Predicting dipole reversals with ML 525

and the linear SVM tries to settle on a line which achieves some
separation while minimizing the extent of misclassifications (see
appendix for further details). When the SVM is tasked to classify
new data, it will assign classes according to which side of the
separating hyperplane the new data fall on.

We also acknowledge that results could be sensitive to the par-
ticular choice of ML method. This can, again, be illustrated by the
cartoon in Fig. 4, where the data are not linearly separable. A non-
linear SVM effectively transforms data, which may not be linearly
separable, to a higher-dimensional space where it is potentially lin-
early separable (see, e.g. Cristianini & Shawe-Taylor 2000). In the
original space, this means that the boundaries that separate the two
classes can be curved surfaces rather than simple hyperplanes. In
the cartoon in Fig. 4, the result of a non-linear SVM is the grey
curve, which arguably better separates the two classes.

For our case of searching for precursors of reversals, the above
implies that the failure of a particular ML technique cannot be
taken as conclusive evidence of the absence of such precursors. For
this reason we include a number of experiments with techniques be-
yond linear SVMs, specifically with non-linear SVMs and with long
short-term memory networks (LSTMs, Hochreiter & Schmidhuber
1997), which are recurrent neural networks often used for classify-
ing time-series (see, e.g. Graves 2012). While we cannot exclude
the possibility that other ML techniques may succeed at finding
a precursor, the consistency of results we get with three different
techniques allows us to be somewhat confident in our findings.

We rely on Matlab’s machine learning toolbox to implement the
(non)linear SVMs and the LSTMs. Specifically, we use fitcsvm

to compute SVMs and trainNetwork (Matlab 2021a) to train
LSTMs. Our code can be found on Github (https://github.com/k
jg136/MLdipolePredictions). Due to the imbalanced nature of the
data mentioned in Section 1, we make a small adjustment to the
standard training algorithms. The details of these modifications are
discussed in Section 3 and the Appendix.

Finally, we want to bring up the possibility to interpret ML meth-
ods within the (perhaps more familiar) framework of inverse prob-
lems: we select our model (SVMs) and search for parameters (a
hyperplane) which optimize a misfit function (the extent of the sep-
aration of classes). Similar to an inverse problem, ML methods risk
overfitting if the selected ML model has many free parameters, but
not all of them are fully constrained by the (training) data. It is, how-
ever, difficult to interpret and account for errors in the data in ML
methods (although this is trivial in inverse problems). Particularly
in classifiers, labels are typically assumed error free—the image is
either that of a cat or a dog, it cannot be an image of a cat-like dog
or dog-like cat. Within classifiers, it thus remains unclear how to ac-
count for errors in the data and, for that reason, we do not explicitly
consider uncertainties associated with the palaeomagnetic recon-
structions. Rather, we interpret our results with the understanding
that those uncertainties may have an impact on the outcomes of our
experiments.

3 T R A I N I N G S V M S W I T H
I M B A L A N C E D DATA

The setup for making predictions using machine learning is as
follows. At a given point in a time-series of axial dipole intensity, we
search for precursors of low-dipole events by examining the recent
past. Subsequently we refer to the time interval in which we search
for precursors of low-dipole events as the search window (in kyr).
After applying ML to the search window, we make a prediction of

Figure 5. Accuracy (orange) and MCC (teal) as a function of the relative
size of penalty applied to false positives compared to false negatives, during
SVM training. The results shown here correspond to a classification problem
of a G12 simulation (see text for more details).

whether a low-dipole event will begin within the prediction horizon
(PH, see Section 2.2.2). This is illustrated in Fig. 3 where the
search window (dashed rectangle) contains the past segment of the
time-series (thick blue line) being examined for low-dipole event
precursors, and the length of the double-sided purple arrow indicates
the size of the PH. We do not make predictions once an event has
started, or if the search window overlaps with the end of an event.
Each prediction is compared to the ‘true’ outcome, which is labelled
either, Positive (P), or Negative (N), depending on whether a low-
dipole event begins within the PH. In this way, the challenge of
making predictions is a binary classification problem (Goodfellow
et al. 2016).

To put it simply, during training we examine segments of an axial
dipole time-series within the search window and train the SVM to
determine whether it belongs to the class P or N, that is whether an
event will soon begin or not. For example, at the time a prediction
is being made in Fig. 3, the correct classification for the time-
series segment in the search window is N; an event starts in the
future but not within the prediction horizon. Thus, every prediction
(classification) within the training data results in either a TP, TN, FP
or FN. To avoid overfitting the training data, a time-series is divided
into independent training and validation data. The training data is
used in determining the SVM which is then applied to predictions
with the validation data.

To avoid issues with imbalanced data, we use MCC during train-
ing of the SVM. But ML in general and SVM in particular are
typically not designed to work with MCC, but rather to minimize a
different ‘loss function’ (which we already indicated is problematic
when data are imbalanced). The SVM code we use, for example,
minimizes a loss function which measures the extent of separation
of classes, and the extent of misclassifications by a hyperplane.

We tweak this training process to be more robust to imbalanced
data in the following, non-intrusive way (non-intrusive meaning that
we do not need to modify the actual SVM code). During training of
an SVM, we successively reduce the weight given to misclassified
negatives (false positives), relative to misclassified positives (false
negatives) in the loss function (see the Appendix). In effect, this
emphasizes the need to correctly classify the rare positives (P)
over the more common negatives. We then select as optimal, the
SVM which maximizes MCC on the training data. This process is
illustrated in Fig. 5, where we train an SVM on a G12 simulation.
Shown (in teal) is the MCC achieved during the training of an SVM
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on a short simulation of G12, as a function of the relative size
of penalty applied to false positives compared to false negatives
(FP/FN penalty ratio). We note that MCC varies between 0.77 and
nearly 1 with the FP/FN penalty ranging from zero to one. We select
the SVM trained with the FP/FN penalty ratio of 0.55 as optimal
because it achieves the highest MCC. For comparison, we also
show accuracy (in orange) as a function of the FP/FN penalty, but
accuracy remains relatively flat (and near 100 per cent), as would
any strategy that only rarely (or never) predicts low-dipole events
to occur.

Our tweak to use the MCC (rather than other loss functions) is
non-intrusive and essentially amounts to embedding existing SVM
code within a loop where the FP/FN penalty ratio is gradually
reduced. We opted for this non-intrusive adjustment to be able to
use several ML techniques, without having to write code for each
one from scratch. Writing new ML code would entail computing
gradients of the MCC cost function, which is computationally costly
if finite differences are used, or conceptually difficult (and tedious to
code) when the gradients are computed analytically or via automatic
differentiation.

Finally, we repeat the entire training process for a number of
search window lengths. In this way, we can assess the skill (MCC)
of the classifier as a function of the time interval over which we
search for precursors of reversals. If the search window is short, the
skill of SVMs should be comparable to the skill of threshold-based
predictions. If the search window contains only one point, the SVM
is essentially finding a threshold (but the SVM threshold can differ
from the threshold of Gwirtz et al. (2021) due to different numerical
implementations of the threshold search). If the SVM skill increases
with search window, then this indicates that the dynamics leading
up to a reversal contain precursors of reversals that the SVM can
detect.

4 R E S U LT S

We present the results of numerical experiments with SVMs applied
to the models and palaeomagnetic reconstructions. In all experi-
ments, we use a PH of one average event duration (see Table 1). We
also report the skill of threshold-based predictions (Gwirtz et al.
2021), using the same training and validation data, to benchmark
the SVMs against simpler methods.

4.1 SVMs applied to G12 and 3-D models

We begin with presenting results obtained with the numerical mod-
els. Because the ‘data’ are model outputs, they are not limited in
number, which will help us interpret results obtained with limited
palaeomagnetic data. We then study the consequences of data being
limited.

4.1.1 SVMs trained on long time-series

We apply SVMs under the ideal circumstances where one has large
training and validation data sets, each containing a large num-
ber of events. Specifically, the training and validation data for
the G12 model and the 3-D model contain 180 events each (to-
talling 360 events for training and validation). For both models
and each search window considered, the SVM with FP/FN penalty
ratio that maximizes MCC on the training data is labelled as opti-
mal and is subsequently applied to the validation data. The MCC

scores on validation data as a function of the search window are
shown in Fig. 6. The red dots correspond to scores with G12
and the green dots correspond to scores with the 3-D model. The
dashed horizontal lines indicate the MCC of threshold-based pre-
dictions. We find that events in G12 are fairly predictable (MCC
near one) via SVMs or thresholds, while the predictions for the
3-D model are more challenging (MCC closer to zero for both
methods).

We note that for G12, the SVMs with search windows greater than
10 kyr perform consistently better than threshold-based predictions
[see the magnified plot of panel (b) in Fig. 6]. This indicates that
the SVMs are identifying features in the recent history of G12
time-series which indicate that a low-dipole event is about to occur
within the PH. The fact that the MCC score stabilizes beyond search
windows of around 11 kyr for the G12 model, suggests that the
SVMs are not finding additional information about upcoming low-
dipole events when looking more than 11 kyr into the past. This
implies that a search window of around 11 kyr is ‘optimal’ for G12
in the sense that the SVMs which look further back in time gain
no advantage. This stabilizing of the MCC for large windows is to
be expected: The state of the axial dipole far in the past, should
be unrelated to the present and future behaviour, due to the chaotic
nature of the G12 model.

For the 3-D model, we note that the skill of the SVM (green dots)
is lower than the skill of the threshold-based technique (dashed
green line) for every search window we tried. This is particularly
surprising for a search window of 1 kyr, for which the SVM should
indeed determine a threshold (a hyperplane in one dimension is
a point). The differences we observe here are due to the fact that
the threshold-based predictions directly search for a threshold that
maximizes MCC, while the SVM we employ tweaks the established
SVM machinery to find a threshold that maximizes MCC (see Sec-
tion 3). With a finer grid of FP/FN penalty ratios the SVM skill can
be brought closer to that of the threshold strategy, but we do not
pursue this further here.

As we will explain in detail below, the interesting quantity is
the change of skill with the size of search window, not the ‘raw’
MCC skill score. To that extent, we note that skill scores of the 3-D
model do not change with the search window, while those of G12 do
increase with search window size (up to a limit due to chaos). This
means that the SVMs cannot detect precursors for reversals (beyond
a threshold) in the 3-D model, but in the G12 model the recent
past leading up to a low-dipole event indeed contains additional
information (a precursor).

To get a qualitative understanding of what patterns the linear
SVMs might find (or not find in the case of the 3-D simulation) we
directly examine the lead-up to events in the G12 and 3-D time-
series. Fig. 7 shows the axial dipole intensity 50 kyr ahead of a low-
dipole event, that is at time t = 0, the axial dipole has dropped below
0.1 (10 per cent of the average intensity). The time-series segments
shown are semi-transparent allowing the boldness of the colour to in-
dicate the amount of overlap. From these plots, the situation is clear.
The G12 model exhibits a consistent pattern that even the human eye
can pick up, especially for shorter search windows (about 10 kyr).
For the 3-D model, identifying a pattern by the human eye is diffi-
cult, even if the search window is relatively short (<10 kyr). Thus,
one may argue that artificial intelligence/machine learning, does not
increase the ability of the human eye significantly—perhaps indi-
cating that a pattern, or precursor, exists for G12, but not for the
3-D model.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/231/1/520/6595302 by C

N
R

S user on 16 M
arch 2023



Predicting dipole reversals with ML 527

Figure 6. Validation MCC as a function of search window for SVMs trained on large data sets of the G12 (red) and 3-D (green) models. Horizontal dashed
lines indicate the MCC of threshold-based predictions using the same training and validation data from G12 (red) and 3-D (green). Panel (a) shows the plot for
MCC scores in the range 0–1. Panel (b) shows the same plot zoomed into the G12 results (MCC score range 0.9–1).

Figure 7. Time-series of 50 kyr of axial dipole intensity preceding the beginning of events for (a) G12 and (b) the 3-D model. The plotted intensities are
semi-transparent with the amount of overlap indicated by the boldness of colour.

4.1.2 SVMs trained on short time-series

We note that while the time-series used to train and validate the
SVMs in Fig. 6 are long, the observational record of the Earth’s
magnetic field is relatively short. The palaeomagnetic reconstruc-
tions of PADM2M and Sint-2000 (see Section 4.2) span just the
last 2 Myr and contain only six low-dipole events. For this reason,
we repeat the process of training and validation but this time, use
training data containing only five events (the validation data, crit-
ically, remains the same). The resulting validation MCC is shown
as a function of search window by the red (G12) and green (3-D)
dots of Fig. 8. The dashed lines indicate the validation MCC for
threshold-based predictions trained on the same, short time-series
containing only five events.

The short training data has only a minor effect for predictions
of the G12 model with short search windows: the validation MCC
of SVM and threshold-based predictions remains high. This is in
line with the findings of Gwirtz et al. (2021), which suggest that
a useful threshold can be determined for G12 from a training data
containing only five events. For larger search windows the validation
skill scores of SVMs trained on G12 steadily drop off. Larger search
windows, however, should have the potential to add information and,
therefore increase skill, if there indeed is information contained in
the lead-up to a reversal (if there is none, the skill should remain
constant with the search window). Thus, an explanation for why
the skill score decreases with search window size is that SVMs

Figure 8. Validation MCC as a function of the search window for SVMs
trained on small data sets of the G12 (red dots) and 3-D (green dots) models.

with limited training data tend to overfit the training data. Due to
overfitting limited training data, the skill scores on long validation
data drop significantly. Indeed, the long validation data reveals this
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overfitting in the form of a small validation MCC. This implies that,
for reliable ‘learning’ via SVMs, one needs a large training data
set and a large validation data set which, taken together, means one
needs ‘a lot’ of data.

Perhaps unsurprisingly, in the less predictable 3-D model, short
training data has devastating effects independently of the search
window. All SVMs trained on the short time-series for search win-
dows less than 11 kyr, either always predict an event to occur or,
never predict an event to occur (and thus the MCC is undefined).
For short search windows, the MCC scores even drop below zero,
indicating that one is better served by predicting the opposite of
what the SVM predicts (on validation data). Similarly, for larger
search windows, validation MCC scores for the 3-D model are no-
tably lower than when training with large data. As in the case of
G12, the poor validation scores (on long validation data), indicate
that the SVMs overfit the short training data. In conclusion, our
numerical experiments with the G12 and 3-D models indicate that
SVMs overfit short training data and, therefore, lead to unreliable
results.

Given the limited palaeomagnetic record (PADM2M and Sint-
2000 contain only six low-dipole events) we now test an alternative
approach to training and validating SVMs when there is not ‘a lot’
of data, that is the overall time-series available is short and contains
only a few events. Instead of dividing data into two distinct training
and validation pieces, we apply stratified K-fold cross validation
(see, e.g. Japkowicz & Shah 2011). The procedure is as follows. For
a given search window and prediction horizon, all of the segments
of a time-series to be used for either training or validation are col-
lected and classified as positives or negatives (see Section 3). These
are then randomly sorted into five subsets of equal size and with
the same ratio of positives to negatives. One subset is set aside for
validation while the remaining data is used for training. The result-
ing validation MCC is recorded and the training process is repeated
four more times, each time using a different subset for validation.
The results of applying this process to time-series of G12 and 3-D
which contain only six events (just as PADM2M and Sint-2000) are
shown in Fig. 9. For each search window, the red and green dots
show the average validation MCC scores for G12 and 3-D, respec-
tively. The grey regions span the maximum and minimum MCC
values with grey dots representing the maximal/minimal validation
scores for each search window. Unfilled diamonds correspond to the
maximum MCC achieved during training an SVM on the full time-
series (no validation). The dashed lines report the average MCC
score of threshold-based predictions (following the same training
and validation procedure) for G12 (red) and 3-D (green).

For both models (G12 and 3-D), the average threshold scores
and small search window SVM scores are lower than those using
long training data. The average score for G12 is generally larger
for longer search windows, though it dips down (around a search
window size of 45 kyr) and the range of scores continues to span
lower values. The average scores of 3-D remain very low for search
windows of less than around 35 kyr before increasing to values
between 0.2 and 0.3, or around the scores found with large training
data (Fig. 6). These results highlight an important lesson for con-
sidering machine learning with the limited palaeomagnetic record.
Specifically, if only the cross-validation results were available, one
might erroneously conclude that, for example, with the 3-D model,
the increase in MCC for large search windows indicates that the
linear SVMs can find precursors to events. We know however, from
the earlier results (Fig. 6), that this is not the case. The issue is that
the K-fold cross validation, which relies on short training and vali-
dation data, cannot reliably reveal an overfitting due to the shortness

Figure 9. Average MCC validation scores resulting from a stratified fivefold
cross validation with a short time-series (six low-dipole events) for G12
(red dots) and 3-D (green dots). The grey regions cover the minimum and
maximum validation MCCs with grey dots indicating individual scores.
Dashed lines show the average MCC of threshold-based predictions subject
to the same stratified fivefold cross validation. The training MCC achieved
by fitting the full data is shown as unfilled diamonds.

of the validation data. All investigations of palaeomagnetic recon-
structions using machine learning in the above outlined framework,
must be done with these limitations in mind. This means in par-
ticular, that an increase in (validation) MCC with search window
cannot be taken as conclusive evidence that a larger search window
indeed leads to better predictions. Rather, the increased (validation)
skill may simply be due to the fact that we do not have enough data,
for training and validation, to reveal overfitting to (short) training
data.

4.2 SVMs with palaeomagnetic reconstructions

We now consider the palaeomagnetic reconstructions PADM2M and
Sint-2000. To begin, we qualitatively examine the lead-up to events
in Fig. 10. Similar to Fig. 7, Fig. 10 shows segments of each times
series during the 50 kyr preceding events. For both reconstructions,
there is an overall trend of decreasing intensity. This trend is not
as consistent as that of the G12 model but is more definitive than
anything of a similar timescale in the 3-D model (Fig. 7). Otherwise,
there is no obvious (to the human eye) pattern in the behaviour of
either time-series prior to events. Moreover, differences between
PADM2M and Sint-2000, which could lead to differing ML results,
are evident.

To search for precursors using ML, we follow the method out-
lined in the previous section and apply a stratified fivefold cross
validation strategy to the palaeomagnetic reconstructions (because
the data we have are too limited to allow for other approaches).
Fig. 11 summarizes the results of this process in the same fash-
ion as Fig. 9. For each search window, the dots show the validation
MCC scores (grey) and their average (colour). The grey region spans
the maximum and minimum validation scores and the unfilled dia-
monds show the maximum MCC training from an SVM on the full
time-series and using no independent validation. The same cross
validation strategy is used to determine an average MCC score for
threshold-based predictions which is indicated by a dashed line.
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Figure 10. Time-series of 50 kyrs of axial dipole intensity preceding the beginning of events for (a) PADM2M (Ziegler et al. 2011) and (b) Sint-2000 (Valet
et al. 2005).

Figure 11. Dots showing individual MCC validation scores (grey) and their average (colour) as a function of search window resulting from stratified fivefold
cross validation with (a) PADM2M and (b) Sint-2000. The grey regions cover the minimum and maximum validation scores. Dashed lines show the average
MCC of threshold-based predictions subject to the same stratified fivefold cross validation. The training MCC achieved by fitting the full data is shown as
unfilled diamonds.

With Fig. 11 in mind one may ask: Are the SVMs detecting pre-
cursors of low-dipole events in the observational record of the axial
dipole? Unfortunately, as explained in Section 4.1.2 the limited data
restricts the level of certainty with which one can draw conclusions.
Put simply, we do not have sufficient data to reliably train and
validate an SVM.

Additionally, as discussed in Section 2.1, there is uncertainty
in the palaeomagnetic reconstructions themselves, as evidenced by
the differences between PADM2M and Sint-2000. These differences
may also lead to discrepancies in the SVM results. Most notably,
the average MCC validation scores for PADM2M are consistently
better with windows greater than 10 kyrs (similar to the G12 results
of Fig. 6) which could suggest the existence of precursors to low-
dipole events. However, this is not the case with Sint-2000 (Fig. 11)
where, on average, the validation skill score does not change with the
search window (similar to the 3-D results of Fig. 6). In our discussion
below, we dig deeper into these issues, taking into account the results
we obtained with models (where we could more directly study the
impact of very limited training/validation data), and with other ML
methods (non-linear SVMs and LSTMs).

5 D I S C U S S I O N

We discuss the geophysical significance of our results, in particular
with respect to the difficulties that the limited palaeomagnetic data

impose on training and validating SVMs. We also investigate the
robustness of the results obtained with SVMs by comparing to other
ML techniques (non-linear SVMs and LSTMs).

5.1 SVMs and numerical models

The skill of SVMs differs significantly between the G12 and 3-D
models. When trained on large data series, SVM predictions of G12
are of high quality (MCC near 1) while predictions of the 3-D model
are poor (MCC of around 0.2). This difference in predictability is in
line with results of threshold-based predictions (Gwirtz et al. 2021).
Moreover, the SVMs can pick up on precursors of low-dipole events
in the G12 model (skill increases with the search window). When
trained on a short data set, we note that the skill of SVMs deteriorates
with the search window. This implies that SVMs may be of limited
use to search for precursors of low-dipole events when the data are
limited, largely because SVMs tend to overfit. Note that our tweak to
the training of SVMs addresses imbalances in the data, but cannot
address the difficulties arising from the training data being limited.

What is perhaps most notable, however, is not the particular
MCC values but the shape of the SVM curves in Fig. 6. When
training on long simulations, SVM predictions of the G12 model
improve with the search window length, indicating that the SVM
can indeed discover (dynamic) precursors of low-dipole events. This
is in agreement with Morzfeld et al. (2017), where it was found that
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Figure 12. SVM results with the DW (Morzfeld & Buffett 2019) and P09
(Pétrélis et al. 2009) models. Dots show validation MCC as a function of the
search window length for SVMs trained on a large data set from DW (brown)
and P09 (blue). Horizontal dashed lines indicate the MCC of threshold-based
predictions using the same training and validation data from DW (brown)
and P09 (blue).

predictions with the G12 model were improved when assimilating
data over a window of time, that is, when taking dynamics leading
up to a reversal into account. The curve of validation MCC scores
of SVMs applied to the 3-D model is flat (Fig. 6), indicating that
the linear SVMs do not find precursors of low-dipole events.

To understand these findings, we remind the reader that the G12
model is defined by a system of three ordinary differential equations,
one of which represents the axial dipole (see Section 2.1). Therefore,
when SVMs identify precursors of low-dipole events in a time-series
of G12 axial dipole intensity, they are finding indicators that the
two unobserved components of the system are in a state favourable
for causing a low-dipole event. If we consider low-dimensional
models which are defined by a single quantity, precursors of low-
dipole events may not exist by construction. For example consider
stochastic differential equation (SDE) models of the form

dx = f (x)dt +
√

2q dW, (4)

where f(x) is a prescribed function of x (the drift), q is a constant,
W is Brownian motion, and the axial dipole intensity is either x
or a simple, deterministic function of x. Because the increments
of Brownian motion are uncorrelated in time, the only information
useful to predicting future behaviour is the present value of f(x).
The SDE models of Morzfeld & Buffett (2019) and Pétrélis et al.
(2009) take the form of eq. (4) and we now consider these in more
detail (the model parameters are as in Gwirtz et al. 2021). For short,
we refer to the models as DW (short for ‘double well’, Morzfeld &
Buffett 2019) and P09 (Pétrélis et al. 2009). In Fig. 12, we show
the result of SVMs applied to long training and validation data (180
events each) of the DW model (brown) and P09 model (blue). As
in Section 4, the dots represent validation MCC scores from linear
SVMs while the dashed lines indicate the validation score of the
threshold-based predictions. For both models, the SVM scores do
not improve with longer search windows. For DW and P09, this
is to be expected because both models are constructed such that,
except possibly during the occurrence of, or recovery from a low-
dipole event, the axial dipole intensity indicates the value of f(x) and
therefore, no additional information is obtained by looking into the

past. Indeed, it appears as if the axial dipole time-series of the 3-D
model essentially behaves like the solution of a scalar SDE model
(in terms of predictability via SVMs).

5.2 SVMs and palaeomagnetic reconstructions

The limited length of the palaeomagnetic reconstructions of
PADM2M and Sint-2000 makes it difficult to interpret the results
obtained by applying SVMs to search for precursors of magnetic
reversals. The linear SVM experiments of Section 4.2 do not show
convincing evidence of precursors of reversals in the palaeomag-
netic record for the following two reasons:

(i) Average skill of SVMs is different for PADM2M and Sint-
2000.

(ii) The limited data cause large uncertainties in the skill scores.

Differences in average skill may be due to the fact that the two
reconstructions rely on quite different numbers of ‘raw’ data and
process these data selections in different ways. The large uncer-
tainties in Fig. 11, however, are critical and do not allow for the
conclusion that skill improves with the search window, that is, the
SVMs are ultimately not capable of detecting precursors of rever-
sals. Additionally, we note that we must be carefu because, even
if SVMs were capable of detecting precursors, these may not nec-
essarily reflect a property of the Earth’s axial dipole, but, instead,
could be the result of the smoothing of the time-series due to the
sedimentary processes through which the past field is recorded, lim-
ited age control of individual records, or the mathematical methods
used to reconstruct that record.

If there are indeed no precursors of low-dipole events in the
palaeomagnetic reconstructions, then the use of SDE models such
as DW and P09 with the same property may be justified as a basic
stochastic field descriptor. This is in line with the results of Gwirtz
et al. (2021) where it was found that P09 had the most ‘Earth-like’
properties with respect to threshold-based predictions.

Overall, our results suggest that threshold-based predictions may
define a limit for how well one can anticipate Earth’s low-dipole
events, from only a limited observational record. The more sophis-
ticated SVMs, even tweaked to work with imbalanced data, tend to
overfit when training data is limited, which means that SVM-based
predictions may be flawed and are ultimately not able to reliably
discover precursors of low-dipole events of the Earth within the
currently available PADM records.

5.3 Robustness of results

We test the robustness of our SVM methodology by repeating a
limited set of numerical experiments using two additional ML tech-
niques. We first consider a non-linear SVM. As indicated in Sec-
tion 2.3, the idea is to apply a transformation to the (training) data
that may make it linearly separable by an SVM. We use radial basis
functions for the transformation, which is a common choice (RBFs,
see, e.g. Cristianini & Shawe-Taylor 2000). This is accomplished by
using the kernel function option rbf in Matlab’s fitcsvm function.
The top row of Fig. 13 shows the result of applying a non-linear
SVM to the palaeomagnetic reconstructions using the same strat-
ified, fivefold cross validation of Section 4.2. The dots show the
validation MCC scores (grey) and their average (colour) with the
grey cloud spanning the minimum and maximum validation scores.
The unfilled diamonds show the training MCC of the non-linear
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Figure 13. Top row: dots showing individual MCC validation scores (grey) and their average (colour) as a function of search window resulting from stratified
fivefold cross validation with (a) PADM2M and (b) Sint-2000 using non-linear SVMs. The grey regions cover the minimum and maximum validation scores.
The dashed lines show the average MCC of threshold-based predictions subject to the same stratified fivefold cross validation. The training MCC achieved by
fitting the full data is shown as unfilled diamonds. Bottom row: (c) training and (d) validation MCC using large training and validation data sets of the 3-D
model with non-linear SVMs (dots) and the threshold strategy (dashed lines).

SVM (applied to the full data sets). Dashed lines show the aver-
age validation MCC of threshold-based predictions, using the same
stratified fivefold cross validation. We now see that skill increases
with search window, which suggests that the non-linear SVMs may
have discovered precursors of low-dipole events.

Using the numerical models, however, we can show that the RBFs
allow for a level of overfitting which makes the results unreliable.
Specifically, the bottom row of Fig. 13 shows training and valida-
tion scores using non-linear SVMs with a long simulation of the
3-D model with long training and long validation data (the train-
ing/validation data as in Fig. 6, so that the validation can reveal an
overfitting, see Section 4.1.2). We see that the SVM obtains training
MCCs near 1, but this skill does not generalize to long validation
data. Indeed, when inspecting skill on validation data [panel (d)
of Fig. 13], it becomes clear that the non-linear SVM has overfit.
For several search windows, the non-linear SVM fails to predict
any of the low-dipole events in the validation data (so that MCC is
undefined and thus, not reported), and even when defined, MCC on
validation data is very low (below threshold-based predictions or
linear SVMs). This is in contrast to the linear SVMs, which exhibit
roughly the same training and validation scores when trained and
validated with long data (the training MCC, not shown in Fig. 6, is
comparable to the validation MCC).

Finally, we consider the use of long short-term memory networks
(LSTMs, see Hochreiter & Schmidhuber 1997). We perform the

same set of experiments as with the non-linear SVMs (above), that
is, stratified fivefold cross validation with the palaeomagnetic re-
constructions and large training and validation data sets with the
numerical models. The results are shown in Fig. 14 where we
again find no clear evidence of low-dipole event precursors in the
palaeomagnetic reconstructions (top row). Indeed, with each re-
construction, for multiple search windows there are validation runs
during which no low-dipole events are predicted by the LSTM, re-
sulting in undefined MCC scores, and thus no averages are plotted.
Most notably, we see in the bottom row of Fig. 14 that results with
the 3-D model are similar to those with linear SVMs in that they
are unaffected by the search window. This further supports the con-
clusion that the axial dipole intensity time-series of the 3-D model
contains no precursors of low-dipole events.

5.4 Beyond ML and threshold-based predictions

To gain further insights into how to interpret the results from the
ML techniques, we study the stochastic properties of the axial dipole
time-series of the various simulations and palaeomagnetic recon-
structions without SVMs, other ML techniques, or threshold-based
predictions. Specifically, for a long simulation of G12, DW, P09,
the full simulation of the 3-D model and the entirety of PADM2M
and Sint-2000, we compute the time-series of change in axial dipole
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Figure 14. Top row: dots showing individual MCC validation scores (grey) and their average (colour) as a function of search window resulting from stratified
fivefold cross validation with (a) PADM2M and (b) Sint-2000 using LSTMs. Search windows for which the LSMTs predicted no events result in an undefined
MCC. The grey regions cover the minimum and maximum validation scores. The dashed lines show the average MCC of threshold-based predictions subject
to the same stratified fivefold cross validation. The training MCC achieved by fitting the full data is shown as unfilled diamonds. Bottom row: (c) training and
(d) validation MCC using long simulations of the 3-D model with LSTMs (dots) and the threshold strategy (dashed lines).

intensity, defined as first differences. If the axial dipole intensity at
time i is di, the time-series of change in axial dipole intensity is �di

= di + 1 − di. The idea is to use this time-series to determine if, at
any given time, correlations exist between the change that is about
to occur in axial dipole intensity, and previous changes.

The autocorrelation function of the time-series of change in ax-
ial dipole intensity is shown for the models and palaeomagnetic
reconstructions in Fig. 15. Here, we resampled the model outputs
so that the temporal resolution is approximately equal to that of the
palaeomagnetic reconstructions (1 kyr). We see that G12 exhibits
strong correlations, with the change in axial dipole intensity over the
coming 1 kyr being strongly positively correlated with the change
over the previous 1 kyr (correlation coefficient greater than 0.8).
This perhaps highlights one of the reasons why SVM predictions
proved most useful with the G12 model. For lags of less than 10 kyr,
the pattern of autocorrelations for G12 most closely resemble those
of the palaeomagnetic reconstructions, which also indicate corre-
lation between future and past changes, but perhaps to a weaker
degree, reflecting the inevitable decline in quality of the palaeofield
records on these short timescales. Interestingly, but perhaps not sur-
prisingly given the results of our SVM experiments, changes in the
axial dipole intensity of the 3-D model are largely uncorrelated over
timescales of 1 kyr. Indeed, with its absence of any large-magnitude
correlations, the 3-D model appears most similar to the SDE models
of DW and P09 for which we know future changes are independent
of the past.

In summary, the above considerations support the conclusions we
draw from using SVMs (and threshold-based predictions) to study
the models and the data:

(i) The axial dipole of the 3-D model does not contain precursors
of low-dipole events. This is supported by the fact that autocorre-
lation of the time-series of change in axial dipole intensity of the
3-D model is similar to the autocorrelation of a stochastic model,
for which we know that no precursors exist.

(ii) The axial dipole of G12 contains precursors—and the SVMs
are able to detect these, given sufficient training data. This is sup-
ported by the autocorrelation of the time-series of change in axial
dipole intensity of G12.

(iii) The palaeomagnetic reconstructions exhibit characteristics
lying between the G12 and the stochastic models: The skill of ML
methods applied to the palaeomagnetic record fall (quantitatively)
between the corresponding scores of the G12 and the stochastic
models. Similarly, the ‘shape’ of the auto correlation functions of
the palaeomagnetic records is somewhat ‘in between’ the shapes of
the stochastic models (nearly no correlation) and the G12 model
(strong correlation).

We note that one can also inspect power spectral densities (PSD)
of the axial dipole intensities and note differences between the
G12 model and the other models (3-D, P09 and DW), and the
palaeomagnetic reconstructions. This suggests that one can possibly

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/231/1/520/6595302 by C

N
R

S user on 16 M
arch 2023



Predicting dipole reversals with ML 533

Figure 15. Autocorrelation functions of time-series of change in axial dipole intensity for (a) G12, (b) 3-D, (c) DW, (d) PADM2M, (e) Sint-2000 and (f) P09.

make connections between PSDs and predictability, but we do not
pursue these ideas any further here.

6 C O N C LU S I O N S

We applied machine learning methods to search for dynamic pre-
cursors of reversals and major excursions (collectively, low-dipole
events) of Earth’s axial dipole field. We benchmarked the ML tech-
niques and implied predictions against a simpler threshold-based
strategy which does not take dynamics into account. To make this
possible, we equipped some standard ML tools with a tweak to
more robustly handle imbalanced data—data where one event oc-
curs much more frequently than another (no low-dipole event ver-
sus low-dipole event). Studying low-dipole events of Earth is diffi-
cult because data are limited. We address this issue by invoking a
hierarchy of models for Earth’s axial dipole. By training and val-
idating ML methods on model output, which is not subject to any
limitation on the amount of data, we can study the effects of limited
data on ML techniques, which helps with interpreting the results
obtained when applying ML to the limited set of data we have. Our
main findings are as follows.

(i) ML is robustly capable of identifying precursors of low-dipole
events of the G12 model. Taking the dynamics preceding a low-
dipole event into account, the ML could indeed perform more ac-
curately than a simpler threshold-based strategy that does not take
dynamics into account. This increase in predictive capability due to
ML, however, is conditioned on large training data sets and is some-
what minor, because even simple threshold-based strategies already
lead to accurate predictions. Moreover, the simpler threshold-based
strategy is more robust in view of limited training data and, for these
reasons, perhaps preferable to sophisticated ML methods.

(ii) The axial dipole time-series of a 3-D numerical dynamo
model does not contain dynamic precursors of low-dipole events.
We arrived at this conclusion by applying several ML techniques
(so that we do not overlook precursors by choosing inappropriate
algorithms) and by detailed comparisons to scalar stochastic dif-
ferential equation (SDE) models which, by construction, do not

contain dynamic precursors. If the 3-D simulation accurately repre-
sents the characteristics of Earth’s axial dipole evolution, then this
implies that one need not search for dynamic precursors of low-
dipole events in Earth’s axial dipole time evolution. As an aside,
our study suggests that the axial dipole of this 3-D simulation can
be modelled by a scalar SDE (but we cannot rule out that other
simulations may exhibit different characteristics).

(iii) We did not find convincing evidence of dynamic precursors
of low-dipole events in two palaeomagnetic reconstructions. This
does not rule out that such precursors may exist, but collectively our
study makes a strong case that the current reconstructions of axial
dipole dynamics leading up to a reversal do not contain significant
information that renders viable ML predictions of an upcoming
reversal or major excursion.

We emphasize that our study does not allow us to rule out the ex-
istence of dynamic precursors of Earth’s low-dipole events, or that
other numerical techniques may be able to discover these. More
sophisticated ML methods, however, typically require a greater
amount of training data to constrain a large number of parame-
ters within the ML algorithm. It is therefore unlikely that more
sophisticated ML techniques can robustly identify precursors of
low-dipole events in PADM2M or Sint-2000. However, currently
available shorter high resolution reconstructions of axial dipole dy-
namics and their power spectra suggest that the geomagnetic field
may be more similar to the G12 models in its spectral behaviour than
to the 3-D model, leaving room for hope that future palaeomagnetic
work may ultimately enable successful identification of precursory
behaviour. Another way forward is to focus on realistic numerical
models and supply ML methods with features of the magnetic field
beyond the axial dipole. This may increase our understanding of the
dynamics leading up to a reversal or major excursion. Direct appli-
cation of these ideas to Earth’s magnetic field, however, will remain
difficult because we have only limited data of the past (or even
present) state of the geodynamo, beyond its large-scale features.
Moreover, geodynamo models are routinely run with parameters
far from those speculated to be realistic for Earth’s dynamo (due to
computational constraints), so even ‘realistic’ model outputs should
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be interpreted carefully. Nonetheless, our experiments and expla-
nations indicate that ML techniques, despite their limitations, may
be useful for improving our understanding of reversals of Earth’s
magnetic field and we hope that our work sparks interest in these
ideas.

A C K N OW L E D G M E N T S

KG was supported by an appointment to the NASA Postdoctoral
Program at Goddard Space Flight Center, administered by Oak
Ridge Associated Universities under contract with NASA. TD
was supported by a Summer Undergraduate Research Fellowship
(SURF), awarded by Scripps Institution of Oceanography, Univer-
sity of California, San Diego. MM and KG were supported by the
US Office of Naval Research (ONR) grant N00014-21-1-2309. CC
was supported by CC was supported by NSF grant EAR 1953778.
AF was supported by the French Agence Nationale de la Recherche
under grant ANR-19-CE31-0019 (revEarth).

All authors contributed to the ideas presented in this paper with
KG taking the lead and writing the first draft. KG, TD and MM
wrote the code.

DATA AVA I L A B I L I T Y

Code for implementing the machine learning strategies described is
available on github (https://github.com/kjg136/MLdipolePrediction
s). The code and numerical results used to generate the figures have
been archived at (https://zenodo.org/record/6568036#.Yof1bi-B30
o).

R E F E R E N C E S
Batuwita, R. & Palade, V., 2013. Class Imbalance Learning Methods for

Support Vector Machines, Chapter 5, pp. 83–99, John Wiley & Sons,
Ltd..

Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B. & Rätsch, G., 2008.
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A P P E N D I X : B A C KG RO U N D O N
S U P P O RT V E C T O R M A C H I N E S

We provide additional detail on how (linear) support vector ma-
chines (SVM) solve a binary classification problem and how we
tweak Matlab code to be able to deal with imbalanced data.

Consider a collection of data of the form (xi , yi ), for i = 1, ...
k where xi ∈ Rn and yi ∈ {1, −1} indicates which of two classes
the vector xi belongs to. The +1 here could be the class of ‘cats’
(or time-series chunks followed by a low-dipole event), and the −1
could identify ‘dogs’ (or time-series chunks not followed by a low-
dipole event). The hyperplane that separates the two classes can be
parametrized by the set of all points x ∈ Rn such that wTx + b = 0
for some w ∈ Rn , and scalar b.

If the data are linearly separable, a SVM finds the separating
hyperplane by solving the optimization problem
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min
w,b

(
1

2
||w||22

)
, (A1)

s.t. yi (wTxi + b) ≥ 1, for all i = 1, ...k, (A2)

(Cortes & Vapnik 1995). The above is to be understood in the
following way. The unknowns are the n elements of the vector w
and the scalar b. These n + 1 parameters define the separating
hyperplane and are determined by minimizing the 2-norm of w,
subject to (s.t.) the k (number of training data) constrains in (A2);
in (A1), the vertical bars denote the two norm of a vector, for
example if w is an n-dimensional vector with elements wi, i = 1,

. . . , n, then ||w||2 =
√∑n

i=1 w2
i .

If the data are not linearly separable, as is the case in almost all
problems, including our study, the SVM determines a hyperplane
by solving the optimization problem

min
w,b

(
1

2
||w||22 + 1

2

k∑
i=1

[CFN(1 + yi ) + CFP(1 − yi )]ξi

)
(A3)

with

ξi = max(0, 1 − yi (w
Txi + b)) (A4)

for all i = 1,...k where CFN and CFP are constants and where ξ i are
‘slack variables’. (Batuwita & Palade 2013). The slack variables
ξ i are a measure of the extent of misclassifications by a candidate
hyperplane and the constants CFN and CFP determine the size of
penalty assigned to false negatives (incorrectly assigning the class
of y = −1) and false positives (incorrectly assigning the class of y
= 1), respectively.

We use Matlab’s fitcsvm function, and we note that fitcsvm
performs the required optimization by considering the dual La-
grangian form of (A3). Numerically, the optimization is imple-
mented via the sequential minimal optimization algorithm (Platt
1998).

Our tweak of using SVMs on imbalanced data is implemented
as follows. Matlab’s fitcsvm function allows for (limited) mod-
ification through user input, which we use to vary the ratio r =
CFP/CFN (the FP/FN penalty ratio) within the code. For a fixed value
of r, the constants are CFN = (P + N)/(P + rN) and CFP = r(P
+ N)/(P + rN), where P and N are the number of positives and
negatives in the training data, respectively. Here, we determine one
SVM for each value of r (on a grid), compute the resulting MCC
over the training data, and declare the SVM that maximizes MCC as
optimal.

Finally, we provide detail of how the training data are composed
when searching for precursors of low-dipole events. Suppose that n
= 1. Then the training data xi are scalars and are simply the elements
of the time-series of the axial dipole. The labels indicate whether
or not each element (time instance) is followed by a low-dipole
event within the prediction horizon or not. In this case, the SVM
essentially determines a threshold. If n = 2, the training data are
2-D vectors xi that contain two consecutive axial dipole intensities.
The first element of each xi is the ‘current’ axial dipole intensity and
the second element is the axial dipole intensity one time step prior
to the first element. The labels are as before and indicate whether
or not the sequence xi is followed by a low-dipole event within
the prediction horizon or not. This train of thought generalizes
to n > 2, for which each xi contains n consecutive axial dipole
intensities.
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