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S U M M A R Y
We present investigations of rapidly rotating convection in a thick spherical shell geometry
relevant to planetary cores, comparing results from quasi-geostrophic (QG), 3-D and hybrid
QG-3D models. The 170 reported calculations span Ekman numbers, Ek, between 10−4 and
10−10, Rayleigh numbers, Ra, between 2 and 150 times supercritical and Prandtl numbers, Pr,
between 10 and 10−2. The default boundary conditions are no-slip at both the ICB and the
CMB for the velocity field, with fixed temperatures at the ICB and the CMB. Cases driven by
both homogeneous and inhomogeneous CMB heat flux patterns are also explored, the latter
including lateral variations, as measured by Q∗, the peak-to-peak amplitude of the pattern
divided by its mean, taking values up to 5. The QG model is based on the open-source pizza
code. We extend this in a hybrid approach to include the temperature field on a 3-D grid.
In general, we find convection is dominated by zonal jets at mid-depths in the shell, with
thermal Rossby waves prominent close to the outer boundary when the driving is weaker. For
the thick spherical shell geometry studied here the hybrid method is best suited for studying
convection at modest forcing, Ra ≤ 10 Rac when Pr = 1, and departs from the 3-D model
results at higher Ra, displaying systematically lower heat transport characterized by lower
Nusselt and Reynolds numbers. We find that the lack of equatorially-antisymmetric motions
and z-correlations between temperature and velocity in the buoyancy force contributes to the
weaker flows in the hybrid formulation. On the other hand, the QG models yield broadly similar
results to the 3-D models, for the specific aspect ratio and range of Rayleigh numbers explored
here. We cannot point to major disagreements between these two data sets at Pr ≥ 0.1, with
the QG model effectively more strongly driven than the hybrid case due to its cylindrically
averaged thermal boundary conditions. When Pr is decreased, the range of agreement between
the hybrid and 3-D models expands, for example up to Ra ≤ 15 Rac at Pr = 0.1, indicating
the hybrid method may be better suited to study convection in the low Pr regime. We thus
observe a transition between two regimes: (i) at Pr ≥ 0.1 the QG and 3-D models agree
in the studied range of Ra/Rac while the hybrid model fails when Ra > 15 Rac and (ii) at
Pr = 0.01 the QG and 3-D models disagree for Ra > 10 Rac while the hybrid and 3-D
models agree fairly well up to Ra ∼ 20 Rac. Models that include laterally varying heat flux
at the outer boundary reproduce regional convection patterns that compare well with those
found in similarly forced 3-D models. Previously proposed scaling laws for rapidly rotating
convection are tested; our simulations are overall well described by a triple balance between
Coriolis, inertia and Archimedean forces with the length-scale of the convection following
the diffusion-free Rhines-scaling. The magnitude of Pr affects the number and the size of the
jets with larger structures obtained at lower Pr. Higher velocities and lower heat transport
are seen on decreasing Pr with the scaling behaviour of the convective velocity displaying a
strong dependence on Pr. This study is an intermediate step towards a hybrid model of core
convection also including 3-D magnetic effects.

Key words: Earth Core; thermal vection; theories and simulations; Numerical modelling.
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1 I N T RO D U C T I O N

Many celestial bodies such as rocky and gas planets of the Solar system are rapidly rotating. The effects of rotation on fluid systems have
been widely studied—it impedes the onset of the convection (Chandrasekhar 1961), constrains heat transport (Rossby 1969) and shapes the
convection into the form of thin columns nearly invariant along the rotation axis (Busse 1970). Such convective flows are subject to a zeroth
order Geostrophic balance between the Coriolis force and the pressure gradient that arises when Ek � 1 and Ro � 1 (Julien et al. 2012),
and when the typical timescale of the convection is much longer that the rotation period, where Ek = ν/�d2 measures the viscous effects
compared to the Coriolis force and Ro = ReEk measures the non-linear inertial effects compared to the Coriolis force. Here Re = Ud/ν is the
Reynolds number with ν the kinematic viscosity of the fluid, � the angular velocity of the planet, d the typical size of the fluid container and
U the typical fluid velocity.

In this study we focus on the convective dynamics relevant for the Earth’s outer core. It is expected to be in a strongly driven state, with Re
� 1 and turbulent convection (see Roberts & King 2013, for a review). Such a regime is extremely challenging to explore both experimentally
and numerically, because of the important non-linearities and the necessity of resolving fast rotational dynamics while wishing to track the
evolution of long-lived jets and vortices (e.g., Stellmach et al. 2014; Aurnou et al. 2015; Gastine et al. 2016). The relevant dimensionless
parameters for the Earth’s core are thought to be Ek ∼ 10−15, Re ∼ 109 and Ra/Rac � 103 where Ra is the Rayleigh number and Rac is the
critical Rayleigh number for the onset of convection. The most ambitious 3-D simulations and experimental studies are only able to reach Ek
∼ 10−7; Ra/Rac ∼ 103 and Re ∼ 5 × 103 (Aubert 2015; Schaeffer et al. 2017; Sheyko et al. 2018).

One alternative avenue for studying this challenging regime is to use reduced quasi-geostrophic (QG) convection models. In their
classical form QG models consider perturbations about a leading order balance between Coriolis and Pressure gradient forces, whose axial
vorticity is invariant along the rotation axis. The dynamics is then essentially confined to the equatorial plane. Busse (1970) initially developed
QG models in an annulus geometry assuming a small boundary slope. The QG framework was later modified and extended to better account
for spherical geometry and to include phenomenon such as Ekman pumping by Cardin & Olson (1994); Aubert et al. (2003); Schaeffer &
Cardin (2005); Gillet & Jones (2006); Calkins et al. (2012). With such QG models it has been possible to investigate rotating convection for
Ekman numbers as low as Ek = 10−11 close to the onset of convection (Guervilly et al. 2019).

Such QG models are essentially a 2-D approximation of the real 3-D situation. The 2-D treatment of temperature often used in QG
models is not rigorously justified (see, e.g. Gillet & Jones 2006) and fails to capture thermal wind contributions. Furthermore such classical
QG models focus on an axially invariant approximation of the axial vorticity and on related horizontal flows in the equatorial plane. In
spherical geometry they perform worst close to the outer boundary where the boundary slope becomes large, or when the forcing becomes
large enough that the vertical velocity becomes significant, and 3-D motions set in (Calkins et al. 2013). More advanced extensions of the QG
framework have recently been proposed where the full velocity field is better accounted for by projecting onto a QG basis (Labbé et al. 2015;
Maffei et al. 2017; Gerick et al. 2020) or by z-averaging before taking the curl (Jackson & Maffei 2020). In this work, we follow Gastine
(2019) and use the QG formulation proposed by Schaeffer & Cardin (2006) that was expanded in a hybrid approach by Guervilly & Cardin
(2016, 2017) to also include a 3-D temperature field. Our numerical implementation of this hybrid QG-3D method (or simply hybrid) is an
extension of the pizza code by Gastine (2019) to include a 3-D temperature field in a spherical shell geometry. Here we explore advantages
and limitations of QG and hybrid QG-3D models compared with full 3-D core convection models.

Thermal boundary conditions may play an important role in convection in planetary cores. Strictly speaking these boundary conditions
are not fixed but time-dependent, and coupling to compositional effects should be considered (Glatzmaier & Roberts 1996). In practice
however, when considering Earth’s core, fixed heat-flux conditions at the core–mantle boundary and fixed temperature conditions at the
inner core boundary are often argued to be relevant (e.g., Gubbins et al. 2003). Early studies with heat-flux boundary conditions suggested
these might promote slightly longer wavelengths and larger convective flows (Gibbons et al. 2007; Sakuraba & Roberts 2009) although such
discrepancies have more recently been attributed to different levels of forcing (Yadav et al. 2016; Schwaiger et al. 2021). This is consistent
with an asymptotic equivalence between heat flux and temperature boundary conditions (Calkins et al. 2015) with standard universal scaling
laws retrieved far from the onset in both cases (Clarté et al. 2021). More dramatic effects are possible when the heat flux boundary conditions
vary laterally, which in some locations will enhance heat transport and can result in a preservation of large-scale downwelling systems (Mound
& Davies 2017; Long et al. 2020; Sahoo & Sreenivasan 2020). The above statements are primarily based on studies carried out at moderate
Ekman numbers (Ek ≥ 2 × 10−6) that were often weakly or moderately driven. Here, although the majority of our simulations use fixed
temperature boundary conditions, we report results of a number of calculations with imposed heat flux outer boundary condition, including
inhomogeneous cases where this varies laterally. We examine whether inhomogeneous boundary conditions continue to impact the convective
pattern in more strongly driven cases at Ekman numbers slightly smaller than those considered in previous studies (Ek ≥ 10−6 with our
hybrid approach and Ek ≥ 10−7 with our QG approach) and investigate whether QG and hybrid QG-3D models can capture relevant aspects
of convection in such cases.

Scaling laws describe how global quantities characterizing the convection, such as the convective length scale, flow speed and heat
transport, vary with the control parameters based on the underlying dynamics (e.g., Gillet & Jones 2006; King & Buffett 2013; Gastine et al.
2016). Two theoretical scaling laws have attracted much attention for describing the properties of rapidly rotating convective flows: one based
on a triple balance between the Coriolis, Inertia and Archimedean forces—called the CIA-scaling (Ingersoll & Pollard 1982; Cardin & Olson
1994)—and the other based on a triple balance between Viscous, Archimedean and Coriolis forces—called the VAC-scaling (King & Buffett
2013). Early studies at modest rotation rates had difficulty in distinguishing between the two scalings (Aubert et al. 2001; Gillet & Jones 2006;
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King & Buffett 2013), but more recent investigations have shown a preference for the CIA balance in the bulk of the fluid, away from viscous
boundary layers (Gastine et al. 2016; Long et al. 2020; Schwaiger et al. 2021). An impressive convergence towards the viscous-free scaling
in the limit of low viscosity and close to the onset of convection has also recently been described by Guervilly et al. (2019) in the context of
fluids with Prandtl numbers Pr < 1. Here our main goal is to complement these studies, using QG, 3-D and hybrid QG-3D simulations in a
thick spherical shell geometry, focusing on relatively strongly driven cases (high Ra/Rac) and exploring the role of the Prandtl number, which
may influence the typical size of the convective pattern (Calkins et al. 2012; King & Aurnou 2013; Guervilly & Cardin 2016).

The paper is organized as follows: Section 2 presents the equations and the methodology of our QG, hybrid QG-3D and 3-D models.
Section 3 presents results obtained using our models focusing on comparisons between QG, hybrid and 3-D calculations, and including cases
with inhomogoneous heat flux boundary conditions. We also describe the impact of Prandtl number on the form of convection at low Rossby
number and examine how well our results satisfy convective scaling laws. We conclude with a discussion and a summary of our findings in
Section 4.

2 M E T H O D O L O G Y

2.1 QG model formulation

In this section we first describe the basic QG model used before moving on to the new 3-D modifications we have implemented. We use the
same QG model formulation and notation as Gastine (2019), who followed closely the approach set out by Schaeffer & Cardin (2005) and
Gillet & Jones (2006). We work in cylindrical coordinates (s, φ, z) in a spherical shell between the inner radius si and the outer radius so,
rotating about the z-axis with a constant angular velocity �. The horizontal components of the velocity field u⊥, perpendicular to the rotation
axis, are assumed to be invariant along the rotation axis, that is u⊥ = (us, uφ, 0), where us and uφ are, respectively, the radial and azimuthal
velocities. It is further assumed that the dynamics is encapsulated by the evolution of the axial vorticity averaged in the z direction, such that
the dynamics is restricted to that in the equatorial plane of the spherical shell (Maffei et al. 2017). Below we refer to this as the classical QG
model in order to distinguish it from recently developed variants (Labbé et al. 2015; Gerick et al. 2020; Jackson & Maffei 2020).

Non-dimensionalization is carried out using the shell thickness d = so − si as the reference length-scale, the viscous diffusion time d2/ν
as the reference timescale, and the temperature contrast between the boundaries �T = Ti − To = T(si) − T(so) as the reference for temperature.
Throughout this study, we adopt η = si/so = 0.35 suitable for a thick shell such as the Earth’s outer core. The gravity g is assumed to be linear
with respect to the cylindrical radius such that g(s) ∝ s and it is non-dimensionalized based on its value at the outer boundary go = g(so).

Following Schaeffer & Cardin (2005) and Gastine (2019) it is assumed that the axial velocity uz varies linearly with z in the direction of
the rotation axis, including contributions from the radial velocity us and the Ekman pumping P , that is

uz(s, φ, z) = z [βus + P(Ek, u⊥, ωz)] , (1)

with P(Ek, u⊥, ωz) the Ekman pumping term deduced from Greenspan’s formula in a rigid sphere (see eq. 8),

β = 1

h

dh

ds
= − s

h2
, (2)

and h ≡ √
s2

o − s2, the half-height of a cylinder aligned with the rotation axis at a radius s. The spherical-QG continuity equation then reads

∂(sus)

∂s
+ ∂uφ

∂φ
+ βsus = 0 . (3)

We represent the non-axisymmetric QG-velocity by a streamfunction ψ such that

us = 1

s

∂ψ

∂φ
, uφ = uφ − ∂ψ

∂s
− βψ , (4)

which ensures that (3) is satisfied. uφ is the remaining axisymmetric zonal flow component. The overbar x denotes the azimuthal average of
any quantity x, such that

x ≡ 1

2π

∫ 2π

0
x dφ . (5)

The axial vorticity ωz = ez · ∇ × u is then

ωz = 1

s

∂(suφ)

∂s
− ∇2ψ − 1

s

∂(βsψ)

∂s
. (6)

The dynamics of the axial vorticity can then be described by the axial component of the curl of the momentum equation in cylindrical
coordinates, averaged in the z-axis direction, which due to the assumed 2-D form of the contributing fields, may be written

∂ωz

∂t
+ ∇⊥ · (u⊥ωz) − 2

Ek
βus = ∇2

⊥ωz − Ra

Pr

1

so

∂ϑ2-D

∂φ

+ P(Ek, u⊥, ωz) , (7)
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where the subscript ⊥ corresponds to the horizontal part of the operators—for example ∇⊥ = (
es · ∂s + r−1eφ · ∂φ

)
, u⊥ = (

us, uφ, 0
)
—and

P(Ek, u⊥, ωz) corresponds to the Ekman-pumping contribution (Schaeffer & Cardin 2005) for the non-axisymmetric motions

P(Ek, u⊥, ωz) = −

[
ωz − β

2
uφ + β

∂

∂φ
us − 5so

2h
us

]
, (8)

with

 =
( so

Ek

)1/2 1

h3/2
. (9)

The non-dimensional control parameters, the Ekman number, the Rayleigh number and the Prandtl number are, respectively, defined by

Ek = ν

�d2
, Ra = αT go�T d3

κν
, Pr = ν

κ
, (10)

where αT is the thermal expansion coefficient, ν is the kinematic viscosity and κ is the thermal diffusivity.
The z-averaged axial vorticity eq. (7) has to be supplemented by an equation to account for the axisymmetric motions. This is obtained

by taking the φ-average of the azimuthal component of the Navier–Stokes equation and reads

∂uφ

∂t
+ us

∂uφ

∂s
+ usuφ

s
= ∇2

⊥uφ − 1

s2
uφ −  uφ , (11)

where the last term on the right-hand side is the Ekman-pumping contribution for the axisymmetric motions. The boundary conditions for
the velocity field are described in detail in Section 2.4.

The other coupled prognostic equation used to complete the system is the QG-temperature perturbation equation,

∂ϑ2-D

∂t
+ ∇⊥ · (u⊥ϑ2-D) + βusϑ2-D + us

dT cond
2-D

ds
= 1

Pr
∇2

⊥ϑ2-D , (12)

where the temperature is written as a perturbation about a mean 2-D conducting state, that is T2-D = T cond
2-D + ϑ2-D, where T cond

2-D is the conducting
background state, a solution of ∇2T cond

2-D = 0 subject to the chosen boundary conditions. For fixed-temperature boundary conditions at si and
so this yields

T cond
2-D = 1

ln η
ln [(1 − η)s] ,

dT cond
2-D

ds
= 1

s ln η
. (13)

Further details on the boundary conditions for the temperature field, including the possibility of heat flux boundary conditions are given in
Section 2.4.

2.2 Extended hybrid QG-3D model

In this study we follow Guervilly (2010) and Guervilly & Cardin (2016) and go beyond the classical QG model presented in the previous
section to develop a hybrid QG-3D model in which the QG perturbation temperature eq. (12) is replaced by the full 3-D temperature equation

∂ϑ3-D

∂t
+ u3-D · ∇ϑ3-D + ur

dT cond
3-D

dr
= 1

Pr
∇2ϑ3-D , (14)

where r is the spherical radius and u3-D = (
ur , uθ , uφ3-D

)
is the 3-D velocity in spherical coordinates. Similarly to the QG case, we write the

temperature as a perturbation temperature about the conducting background state, that is T3-D = T cond
3-D + ϑ3-D. We compute the conducting

temperature profile, or dimensionless radial temperature profile, T cond
3-D , as the solution of ∇2T cond

3-D = 0, which for a fixed temperature contrast
between ri and ro without internal heating, yields

T cond
3-D (r ) = rori

r
− ri ,

dT cond
3-D

dr
= −riro

r 2
. (15)

This is the full 3-D version of eq. (13) in spherical geometry. We reconstruct the 3-D velocity field, u3-D using the conversion between
cylindrical and spherical coordinate systems as needed in this equation, from the QG velocity field, such that⎧⎪⎪⎨⎪⎪⎩

ur (r, θ, φ3-D) = sin θ us(s, φ) + cos θ uz(s, φ, z) ,

uθ (r, θ, φ3-D) = cos θ us(s, φ) − sin θ uz(s, φ, z) ,

uφ3-D(r, θ, φ3-D) = uφ(s, φ) ,

(16)

where uz is proportional to z and incorporates the effects of the Ekman pumping (see eq. 1) consistent with our initial QG assumption (eq. 3),
and where the cylindrical quantities are cast onto the 3-D grid using a bi-linear extrapolation (see Appendix D1 for more details). Inside the
Tangent cylinder, the velocities are set to zero and thus only temperature diffusion and thermal wind effects occurs in that region.

Considering a 3-D temperature field, eq. (7) becomes

∂ωz

∂t
+ ∇⊥ · (u⊥ωz) − 2

Ek
βus = ∇2

⊥ωz − Ra

Pr

〈
1

ro

∂T3-D

∂φ3-D

〉
+ P(Ek, u⊥, ωz) , (17)
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where the angular brackets 〈x〉 refer to the axial or z-average of any quantity x defined by

〈x〉 ≡ 1

2h

∫ h

−h
x dz . (18)

The equation for the zonal motions (11) is not modified as it does not involve the temperature.
Since we treat the temperature in 3-D, we can now also take into account the thermal wind contribution to the velocity field which results

in an extra term being added to uφ3-D, and which satisfies

∂uφ3-D

∂z
= RaEk

2Pr

g(r )

r

∂T3-D

∂θ
. (19)

Integrating between the position z and the height of the column above the equator, h, we obtain

uφ3-D(r, θ, φ3-D) = uφ3-D(h, θ, φ3-D) − RaEk

2Pr

∫ h

z

g(r )

r

∂T3-D

∂θ
dz′ , (20)

where g(r) = r/ro is the 3-D gravity field. Here, for efficiency, the thermal wind contribution is assumed to be symmetric about the equatorial
plane, although this condition can be relaxed if needed depending on the chosen boundary conditions.

Because of the full 3-D treatment of the heat equation, the consideration of the thermal wind effects and the fact that the thermal
boundary conditions are the same as in the 3-D case, it is natural to expect the hybrid QG-3D model to behave better than the classical QG
model when compared with a full 3-D model, a hypothesis that will be further assessed in Section 3.

2.3 3-D model formulation

In order to compare the results of our QG and hybrid QG-3D models, we also consider a purely 3-D model. Similarly to the two previous
setups, we consider convection of a Boussinesq fluid enclosed in a spherical shell of inner radius ri and outer radius ro rotating about the
z-axis. The same scales and dimensionless parameters are used and thus the 3-D Navier–Stokes equations read

∇·u3-D = 0 , (21)

∂u3-D

∂t
+ u3-D · ∇u3-D + 2

Ek
ez × u3-D = −∇ P

+ Ra

Pr

r

ro
ϑ3-Der + ∇2u3-D , (22)

∂ϑ3-D

∂t
+ u3-D · ∇ϑ3-D + ur

dT cond
3-D

dr
= 1

Pr
∇2ϑ3-D , (23)

where P is the pressure, and er,z are, respectively, the unit vectors in the radial and the axial directions.
The velocity field, u3-D, is decomposed into poloidal W and toroidal Z potentials following:

u3-D = ∇ × (∇ × Wer ) + ∇ × Zer . (24)

2.4 Boundary conditions

Since our focus is on modelling the dynamics of the Earth’s outer core, we treat the fluid shell as a container with rigid, impenetrable, and
co-rotating walls. This implies that in the rotating frame of reference all velocity components should vanish at so and si in the QG or hybrid
models and at ri and ro in the 3-D calculations.

Imposing fixed temperature at the boundaries yields, respectively, for the QG- and the 3-D temperature field

ϑ2-D = 0, at s = {si , so} , (25)

ϑ3-D = 0, at r = {ri , ro} .

In this study, the majority of our simulations are conducted under these boundary conditions, but we also consider another set of thermal
boundary conditions with a fixed temperature at the inner radius and an imposed flux at the outer boundary. The latter involves

∂ϑ

∂r
= 0, at r = ro, ϑ = 0, at r = ri . (26)

where ϑ can either be ϑ2-D or ϑ3-D. The heat flux (or the temperature) may be spatially variable, and any combination of fixed temperature and
fixed heat flux at either the inner or the outer boundary can be applied in our model.

Below we present a number of examples performed using a fixed heat flux at the outer boundary and a fixed temperature at the inner
boundary (see Section 3.3). With heat-flux boundary conditions at the outer boundary the radial conductive profiles become

T cond−Q
2-D = Ti + Qoso ln

(
s

si

)
, (27)
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T cond−Q
3-D = Ti + Qor 2

o ln

(
1

ri
− 1

r

)
, (28)

where Ti and Qo are, respectively, the temperature at the inner boundary and the heat flux at the outer boundary. The Rayleigh number should
then be understood as a flux-based Rayleigh number, that is

RaQ = αT go Qod4

νκ
. (29)

Lateral variations in the amplitude in the heat flux are then defined by

Q∗ = |Qmax − Qmin|
|Qo| . (30)

2.5 Numerics

The calculations presented here were carried out using an extension of the open-source pseudo-spectral spherical QG code pizza (Gastine
2019)—available at https://github.org/magic-sph/pizza under the GNU GPL v3 license. The pizza code is written in Fortran, uses a Fourier
decomposition in φ and either Chebyshev collocation (Glatzmaier 1984), or a sparse Chebyshev integration method in s (e.g., Stellmach
& Hansen 2008; Muite 2010; Marti et al. 2016). It also supports a number of implicit-explicit (IMEX) time-stepping schemes including
multi-step methods (e.g., Ascher et al. 1995) and semi-implicit Runge–Kutta schemes (e.g., Ascher et al. 1997). The reader is invited to
consult (Gastine 2019) for further details about the original implementation of pizza and its parallelization.

The purely 3-D simulations were computed with the open-source magnetohydrodynamics code MagIC (Wicht 2002; Gastine et al. 2016)
– available at http://www.github.com/magic-sph/magic under the GNU GPL v3 license. Similarly to pizza, MagIC supports various multistep
and Runge-Kutta IMEX time schemes.

In this study, 3-D fields in pizza and MagIC are expanded in Spherical Harmonics up to the degree and order �max in the angular (θ , φ)
directions and in Chebyshev polynomials with Nr collocation grid points in the radial direction. The 2-D quantities in pizza are expanded
in Fourier series up to the degree Nm in the azimuthal direction and in Chebyshev polynomials up to degree Ns in the radial direction. The
open-source SHTns1 library is used in both codes to handle the Spherical Harmonic Transforms (Schaeffer 2013). Parallelization of the hybrid
QG-3D code relies on the Message Passing Interface (MPI) library.

Our numerical implementation follows closely the approach of Schaeffer & Cardin (2005); Guervilly (2010); Guervilly & Cardin (2016),
with an important difference that they used finite differences in radius while we resort to a Chebyshev collocation method. In the hybrid setup,
the z-extrapolation of the variables from the 2-D grid to the 3-D grid is computed using eq. (16). Reduction of the quantities from the 3-D
grid back onto the 2-D grid, and the computation of the thermal wind, relies on two z-integration functions described in the Appendix D1.
For clarity, all 3-D quantities are labelled with a subscript 3-D (such as uφ3-D), QG quantities have no subscripts.

2.6 Posterior diagnostics

We next introduce the various diagnostics and notations that are used for the analysis of the simulations. The Nusselt number Nu, which
characterizes the heat transport of the system, is defined here in the fixed temperature configuration as the ratio between the total heat flux
and the heat carried by conduction, that is

Nu = 1 +
dϑ̂

dr
|r=ro

dT cond

dr
|r=ro

, (31)

where the temperature perturbation ϑ can be either ϑ2-D or ϑ3-D and Tcond is either T cond
2-D (13) or T cond

3-D (15) and in QG calculations r and ro are
replaced by s, so. Note that in the heat flux boundary case, this definition of Nu leads to Nu = 1 because ∂ rϑ(ro) = 0, so following Goluskin
(2016) we instead use

Nu� = T cond(ri ) − T cond(ro)

ϑ̂(ri ) − ϑ̂(ro)
. (32)

In the above expressions, x̂ corresponds to the time average of any quantity x, such that

x̂ ≡ 1

τ

∫ t0+τ

t0

xdt , (33)

with τ the averaging time.

1https://bitbucket.org/nschaeff /shtns
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The dimensionless kinetic energy, Ekin per unit volume, is defined by

Ekin = 1

2

1

V

∫
V

u2
⊥dV ′ , (34)

where V corresponds to the full spherical shell volume in the 3-D configurations and the volume outside the tangent cylinder in the QG setups.
In the QG case we thus have dV ′ = h(s)s ds dφ. From this expression, we define a diagnostic for the fluid velocity which characterizes the
average flow speed, based on the root-mean-square (r.m.s.) of the velocity, and which is denoted by the Reynolds number

Re =
√̂

2Ekin . (35)

We also define the time-averaged convective Reynolds number, where the axisymmetric zonal flow contribution has been removed, since it
can represent a significant fraction of the total kinetic energy without directly contributing to the heat transfer (Gastine et al. 2016),

Rec = ̂

√
2(Ekin − Ezon) , (36)

where Ezon is the dimensionless axisymmetric kinetic energy per unit volume, similar to (34), that is defined by Ezon = 1/2V
∫
V uφ

2dV ′ and
is associated with the time-averaged zonal Reynolds number,

Rezon =
√̂

2Ezon . (37)

Finally, for the typical flow length-scale we use the typical cylindrical radial velocity length-scaleL−1
us

, determined from the time-averaged
us energy spectrum

L−1
us

=

̂
⎛⎜⎜⎜⎜⎝

d
mmax∑
m=0

mus m

π

mmax∑
m=0

us m

⎞⎟⎟⎟⎟⎠ . (38)

3 R E S U LT S

We present here results of rapidly rotating convection, focusing on a regime well above the onset of convection, that is Ra � 5 Rac. We explore
Ekman numbers from Ek = 10−4 down to Ek = 10−10, and consider Prandtl numbers from Pr = 10 down to Pr = 10−2, and moderate-to-high
supercriticalities ranging from Ra = 1.7 Rac up to = 157.3 Rac, reaching Ra as large as 4.83 × 1014. As well as hybrid QG-3D simulations
we present a large number of purely QG cases; these are more computationally efficient to run and allow a more comprehensive exploration
of the parameter space. We also present a collection of fully 3-D runs computed with MagIC (Wicht 2002) and which have been either
specifically computed for this study or taken from Schwaiger et al. (2021). The temporal convergence of the runs has been ensured by running
each simulation long enough to obtain a statistical equilibrium of the diagnostics. The numerical truncation ranges from (Ns, Nm)/(Nr, �max)
= (97, 96)/(97, 96) for the highest/lowest Ek/Ra of (10−4/2 × 106) up to (Ns, Nm)/(Nr, �max) = (9217, 9216)/( −, −) for the lowest/highest
Ek/Ra numbers (10−10/4.83 × 1014). In total 144 runs have been performed and a list of their key diagnostics is given in Table A1.

Fig. 1 summarizes all the runs we have carried out with fixed temperature contrast for this study in terms of their heat transfer Nu as a
function of the applied forcing Ra. The colours indicate the Ekman numbers while the different Prandtl numbers explored are indicated with
different symbol shapes and transparency. Hybrid QG-3D and purely 3-D runs are marked with hatched and empty symbols, respectively.

3.1 Heat transfer

Previous work by Guervilly et al. (2019) has explored the parameters at low Ekman numbers—reaching down to Ek = 10−11—and have
validated the hybrid approach for a weakly supercritical Ra and low Pr setup (e.g., Guervilly & Cardin 2017; Guervilly et al. 2019) in a full
sphere geometry.

Here, we extend the Rayleigh number range to reach higher supercriticalities and restrict ourselves to higher Ekman numbers (Ek ≤
10−10) with a focus around Ek = 10−6 in order to facilitate comparisons with full-3-D simulations. All our runs have Ro � 1 as is appropriate
for QG convection studies. A small number of cases conducted at the highest Ekman numbers have a local Rossby numbers based on the
length-scale of the flow which are up to 0.1 (this is discussed further in Section 3.5).

Fig. 2 displays all the Nusselt numbers of our data set versus the supercriticality, Ra/Rac. The critical Rayleigh numbers have been
computed for each configuration using either the Linear Solver Builder package (LSB, Valdettaro et al. 2007) for QG models, or
the open-source linear solver SINGE (https://bitbucket.org/vidalje/singe, see Vidal & Schaeffer 2015) for 3-D configurations, although we
have used the asymptotic expression of Dormy et al. (2004) for Pr = 1 when Ek < 10−7 in this latter case. Concerning the hybrid QG-3D
model, we have determined the onset for three configurations – at Pr = 1 and Ek = {10−4 , 10−5 , 10−6} – by time-integrating the nonlinear
eqs (11–14–17) using the pizza code with an initial sectorial temperature perturbation and by bracketing the Rayleigh number until the
critical value is attained. When Ek ≤ 10−7 or Pr �= 1 we have assumed the same critical Rayleigh as for 3-D configurations. In all cases, a
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136 O. Barrois, T. Gastine and C.C. Finlay

Figure 1. Nusselt number, Nu as a function of the Rayleigh number, Ra. Summary of all the runs with fixed temperature contrast considered in this study
with the various Ekman and Prandtl numbers displayed with, respectively, different colours and symbols. The runs performed using the hybrid approach are
represented with hatched symbols and the full 3-D runs with empty symbols.

Figure 2. Nusselt number, Nu as a function of the supercriticality, Ra/Rac. Various Ekman and Prandtl numbers displayed with, respectively, different colours
and symbols. The runs performed using the hybrid approach are represented with hatched symbols and the full 3-D runs with empty symbols.

simple extrapolation using the asymptotic scaling for rotating convection Rac ∼ Ek−4/3 has been used whenever the aforementioned techniques
could not be applied for practical reasons. Concerning Pr = 1, the Rac values obtained with LSB and SINGE methods agree within ∼6 per
cent at all Ek and follow the expected converging trend (Dormy et al. 2004). The Rac value of the hybrid model is ∼2 per cent lower than that
of the 3-D at Ek = 10−4 and ∼13 per cent lower at Ek = 10−6. The mc values obtained with all methods agree with each other within a range
of m ± 2 in all configurations. See Appendix C for more details about our estimates of Rac.

We can observe that for the lowest supercriticalities (Ra ≤ 10 Rac) all the points in the weakly non-linear regime follow a power law of
the form Nu − 1 ∼ Ra/Rac − 1. For stronger forcing with Ra > 10 Rac, the numerical models seem to approach an asymptotic behaviour
of the form Nu∝(Ra/Rac)α (black and blue dotted-line for the QG and 3-D runs, respectively) with no additional dependence on the Ekman
number. A simple polynomial fit suggests a power law with a slope of about α � 1.1, an exponent in line with previous findings of rotating
convection in spherical shells with ri/ro = 0.35 and fixed temperature boundary conditions (e.g., Yadav et al. 2016). This is somewhat lower
than the theoretical asymptotic scaling for rapidly rotating convection Nu ∼ Ra3/2Ek2Pr−1 put forward by Julien et al. (2012) and retrieved
in the 3-D spherical shell computations by Gastine et al. (2016) when ri/ro = 0.6. The QG runs are slightly offset compared to 3-D cases
towards larger Nusselt numbers for the same supercriticality (Ra/Rac). Strikingly however, this asymptotic scaling is followed only by the
QG and 3-D simulations, while the hybrid runs follow a much shallower slope Nu ∼ (Ra/Rac)1/5. Several outliers also appear in the QG
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QG, Hybrid and 3-D core convection models 137

Figure 3. Meridional section of the φ-averaged azimuthal velocity uφ3-D contribution including the effect of the 3-D thermal wind for the 3-D (a) and the
hybrid (b) cases. A 3-D extension of the purely QG φ-averaged azimuthal velocity [using eq. (16)] is also presented (c). The three computations have been
carried out at the same parameters Ek = 10−6, Pr = 1, and Ra = 2 × 109 (= 10.6 Rac for the 3-D, = 12.3 Rac for the hybrid, and = 11.3 Rac for the QG
setups]. The resolution is (Nr, �max) = (129, 341) in the 3-D case, (Ns, Nm)/(Nr, �max) = (257, 256)/(257, 256) in the hybrid case and (Ns, Nm) = (385, 384) in
the QG case. The same colourbar is used in all cases and is saturated to highlight finer structures.

and 3-D configurations: the series of QG points at Pr = 10 seem to follow a different slope with Nu values considerably higher than the
values obtained at Pr �= 10 for the same Ra/Rac ratio. All the QG and 3-D runs at Pr = 0.1 (filled and empty diamonds) lie below the mean
trend, suggesting that the heat transport is less efficient for the same supercriticality when Pr < 1. Overall, the purely 3-D and QG cases are
generally in agreement and we find two different behaviours (diverging around Ra/Rac ∼ 10), a weakly non-linear regime and a regime with
steep scaling at higher forcing levels, while the hybrid QG-3D setup starts to significantly depart from the 3-D configuration for Ra > 10 Rac

(at Pr = 1) and follows a much shallower scaling behaviour.
In constrast, when Pr = 10−2 the QG and 3-D models disagree above Ra/Rac = 10, while the range of accordance between the hybrid

QG-3D and the 3-D configurations seems to extend to higher Ra, up to Ra > 15 − 20 Rac at Pr = 0.1−0.01, suggesting the range of
agreement between the two latter models may be larger at low Pr and low Ra/Rac (as suggested in previous studies, e.g., in Guervilly &
Cardin 2016, 2017; Guervilly et al. 2019).

3.2 Comparison of convective planforms

3.2.1 Comparison at modest driving

To further investigate the features observed in Fig. 2, we begin by comparing results from our hybrid QG-3D model with 3-D and QG
simulations at modest driving, which we define here to be the parameter regime where Ra ≤ 20 Rac, for a case at Ek = 10−6, Pr = 1 and Ra
= 2 × 109 (= 10.6 Rac for the 3-D, = 12.3 Rac for the hybrid, and = 11.3 Rac for the QG setups).

In Fig. 3 we present a comparison of meridional sections of the φ-averaged azimuthal velocity uφ3-D obtained in a 3-D simulation (a),
from our hybrid QG-3D model (b) and from the QG model (c). The resolution of the QG case is (Ns, Nm) = (385, 384), the hybrid case uses
a spatial resolution of (Ns, Nm)/(Nr, �max) = (257, 256)/(257, 256), and the resolution in the 3-D case is (Nr, �max) = (129, 341).

Fig. 4 additionally displays the φ-averaged temperature field T3-D (top panel) in the purely 3-D (a), hybrid (b) and QG (c) cases as well
as equatorial sections of the z-averaged vorticity ωz (lower panel) in 3-D (d), hybrid (e) cases, and in the purely QG case (bottom – f). Note
that in the 3-D configuration, this involves a z-averaging procedure—we average over the North Hemisphere only inside the TC—while this
is straightforward in QG and hybrid cases. As previously stated the control parameters are strictly the same.

Considering the meridional profiles of the zonal velocities (Fig. 3) we observe that the innermost retrograde jet near the tangent cylinder
is slightly offset outwards in the 3-D case while it is very close to the inner boundary in the hybrid case and QG case, creating an artificially
strong shear at the tangent cylinder. In both the 3-D and hybrid cases, these two jets display a similar columnar structure that spans the entire
height of the shell with the strongest velocity amplitude (compared to the other jets) and that do not vary much with z. In the bulk, beside this
fairly geostrophic jet, we find several thinner and weaker jets which are ageostrophic and demonstrate that the thermal wind has an important
effect here; these features are reproduced in the hybrid case but not in the QG case.

In the QG case, we retrieve the strongest jet near the tangent cylinder, followed by perfectly geostrophic jets of alternating sign, with
prograde jets dominating near the CMB. It is worth noting that Rezon � Rec in all three cases (the exact values are given at the end of this
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138 O. Barrois, T. Gastine and C.C. Finlay

Figure 4. Top panel: comparison of the meridional section of the φ-averaged of the temperature field T3-D for the 3-D (a), the hybrid (b) and the QG case
(c). The QG temperature field has been extended in z using the conversion between cylindrical and spherical coordinate systems. Bottom panel: z-averaged
vorticity for the 3-D simulation (d), and equatorial section of the axial vorticity ωz for the hybrid QG-3D simulations (e), and the QG-simulation (f). The three
computations have been carried out at the same parameters Ek = 10−6, Pr = 1 and Ra = 2 × 109. The spatial resolution in the 3-D case is (Nr, �max) = (129,
341); in the hybrid case is (Ns, Nm)/(Nr, �max) = (257, 256)/(257, 256); and in the QG case is (Ns, Nm) = (385, 384) (bottom). For the three temperature and
the three vorticity plots, respectively, the same colourscales are used. Note that the colourscale for the vorticity is saturated to highlight the fine structure of the
flows.
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QG, Hybrid and 3-D core convection models 139

section) which is consistent with the relatively weak zonal jets found in the bulk. Near the equator, the amplitude of the azimuthal velocity is
slightly larger in the 3-D case compared with the hybrid case. Since the velocity inside the tangent cylinder is set to zero before applying the
thermal wind approximation in our hybrid approach, significant differences with the 3-D models are visible in that region. Overall however,
the hybrid case qualitatively reproduces much of the zonal flow dynamics that happens in the bulk of the 3-D case, although there are
discrepancies towards the inner and outer boundaries.

Turning to the azimuthally averaged temperature fields (Figs 4a–c), we find that the profiles in the 3-D and hybrid QG-3D cases are
very similar with isothermal lines that are bent across the tangent cylinder and that extend in the equatorial plane. These isothermal lines are
slightly more squeezed towards the equatorial plane in the 3-D case compared to the hybrid case and there is a difference in the spacing of the
isotherms in the z-direction, likely due to the simple relationship we have used to reconstruct uz. For these parameters, the 3-D temperature
profile is rather well retrieved in the hybrid case, in contrast to the QG case which does not have the correct temperature profile and displays
a largely homogeneous temperature in the bulk and a sharp drop toward the outer boundary.

Figs 4(c)–(e) shows a comparison of the axial vorticity ωz between the purely 3-D, the hybrid, and the purely QG cases. Considering the
shell from the inner core to mid-depths, we find it hard to distinguish the three planforms of convection which all display filaments of vorticity
of similar amplitude and length-scales, wider near the inner boundary, and sheared in the azimuthal direction with a gradual reduction of the
convective cells size with increasing s. Closer to the outer boundary, the convective pattern changes in all cases with the filaments becoming
more radially elongated. This transition occurs at about the same radius s ∼ so − 1/3 in each case. Obvious differences are seen approaching
the outer boundary of the container. In both the hybrid and the purely QG cases the velocity field transitions into elongated azimuthal structures
typical of thermal Rossby waves. The vorticity in the 3-D case, on the other hand, becomes almost perpendicular to the outer boundary with
very thin and radially elongated filaments. The discrepancy may reflect a fundamental difference in the boundary geometry between the
different configurations: in both the QG and the hybrid model the slope of the container |β| (2) increases with the cylindrical radius. This
treatment impedes radial motions and favors the propagation of thermal Rossby waves over the advective processes such as the stretching
term due to βus which becomes the dominant source of axial vorticity because of the steepening of the slope at large radii; a phenomenon
expected to weaken with an increasing forcing (Guervilly & Cardin 2017). Other QG implementations that also incorporate the horizontal
components of vorticity have recently been developed and may perform better in this low latitude region (see, e.g. Labbé et al. 2015; Maffei
et al. 2017; Gerick et al. 2020).

Global diagnostics in the 3-D and hybrid cases are rather similar with a convective Reynolds Rec, a zonal Reynolds Rezon and a Rossby
number Ro of, respectively, 448.1, 97.1 and 4.58 × 10−4 in the 3-D case, and 404.4, 86.9 and 4.14 × 10−4 in the hybrid case. The Nusselt
number Nu differs more strongly with values of 2.38 in the 3-D case and of 1.67 in the hybrid case. The same diagnostics obtained for
the purely QG simulation are 550.4, 126.6 and 5.65 × 10−4, respectively for Rec, Rezon and Ro while Nu = 5.05. This example indicates
how the hybrid approach is capable of accounting the 3-D convective dynamics happening in the fluid bulk at modest driving (here with
Ra = 10.6 Rac).

3.2.2 Limitations of the hybrid approach

We now compare results from our hybrid QG-3D model with 3-D and QG simulations for a more strongly driven case at Ek = 10−6, Pr = 1
and Ra = 1010 (= 53.2 Rac for the 3-D, = 61.3 Rac for the hybrid and = 63.4 Rac for the QG setup). Below we use the term ’strong driving’
to refer to the parameter regime where Ra > 20 Rac.

In Fig. 5 we present the φ-averaged temperature field T3-D (top panel) in the purely 3-D (a), hybrid (b) and QG (c) cases as well as the
z-averaged vorticity ωz in the 3-D case (d), and equatorial sections of the axial vorticity in the hybrid (e), and the QG cases (f). The resolution
in the 3-D, hybrid and QG cases is, respectively (Nr, �max) = (321, 682), (Ns, Nm)/(Nr, �max) = (513, 512)/(513, 341) and (Ns, Nm) = (577,
576).

Compared to the previously moderately forced case, the meridional sections of the temperature field now significantly differ. The hybrid
temperature stays similar to the previous case at Ra = 2 × 109, while in the purely 3-D case we find the temperature is better mixed with
isotherms further away from each others and less contrast in the fluid bulk. The QG temperature profile still does not present the correct
temperature variation across the bulk but is more homogeneous and displays a sharper contrast toward the CMB when compared with the
lower forced case. Rapid variations of the isotherms close to the boundaries in the 3-D and QG cases indicate the formation of thermal
boundary layers, whereas the hybrid model has not developed such layers. Similarly, looking at sections of the axial vorticity, the hybrid and
3-D cases now show significant differences. The vorticity in the 3-D case is much stronger than in the hybrid case, with filaments that are more
sheared in the azimuthal direction and with significantly perturbed thin Rossby waves near the outer boundary. The hybrid case has in contrast
not departed far from the previously moderately driven case, the main difference being that the convective motions now span the entire shell
with larger convective cells. We also observe that convection has started inside the tangent cylinder in the 3-D configuration and is already
vigorous at these parameters. Interestingly, the QG case seems to be closer to the 3-D case than the hybrid, with filaments of vorticity strongly
sheared in the φ-direction and a vigorous convective pattern degenerating into thin Rossby waves towards the outer boundary. Overall, the
purely 3-D and QG cases have reached a regime of vigorous convection with a well-mixed temperature background while the hybrid case
displays much weaker convection, comparable to the modest driving regime. These differences are also observed in the global diagnostics
with Rec, Rezon, Ro and Nu that are respectively equal to 3339.8, 2405.2, 4.12 × 10−3 and 19.5 in the 3-D case; 1455.9, 829.5, 1.68 × 10−3
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140 O. Barrois, T. Gastine and C.C. Finlay

Figure 5. Top panel: comparison of the meridional section of the φ-averaged of the temperature field T3-D for the 3-D (a), the hybrid (b) and the QG case
(c). The QG temperature field has been extended in z using the conversion between cylindrical and spherical coordinate systems. Bottom panel: z-averaged
vorticity for the 3-D simulation (d), and equatorial section of the axial vorticity ωz for the hybrid QG-3D simulations (e), and the QG-simulation (f). The three
computations have been carried out at the same parameters Ek = 10−6, Pr = 1 and Ra = 1 × 1010 (= 53.2 Rac for the 3-D, = 61.3 Rac for the hybrid and
= 63.4 Rac for the QG setup). The resolution in the 3-D, hybrid and QG cases is, respectively (Nr, �max) = (321, 682), (Ns, Nm)/(Nr, �max) = (513, 512)/(513,
341) and (Ns, Nm) = (577, 576). For the three temperature and the three vorticity plots, respectively, the same colourscales are used. Note that the colourscale
for the vorticity is saturated to highlight the fine structure of the flows.
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Figure 6. Kinetic energy spectra of the vertically averaged total velocity, 1
2 u2

⊥ = 1
2

(
u2

s + u2
φ

)
, as a function of the order m + 1, for the 3-D (cyan plain line),

hybrid (green dotted–dashed line) and QG (orange dotted line) models, for a configuration conducted with the same parameters in the three cases Ek = 10−6,
Pr = 1 and Ra = 1 × 1010. The resolution in the 3-D, hybrid and QG cases is, respectively (Nr, �max) = (321, 682), (Ns, Nm)/(Nr, �max) = (513, 512)/(513,
341) and (Ns, Nm) = (577, 576).

Figure 7. Top panel: spherical time-averaged radial temperature profiles T̂3-D(r ) for four cases conducted at the same parameters at Ek = 10−6 and Pr = 1
using our hybrid method (dotted lines) or a 3-D model (full lines) with varying Ra from Ra = 109 (green curves) up to Ra = 2.66 × 1010 (red curves). Bottom
panel: same as above but for the cylindrical radial z-averaged temperature profiles <T3-D > (s). Note that the latter profiles are not time-averaged and were
derived from snapshots.

and 2.20 in the hybrid case; and 2584.4, 1845.5, 3.18 × 10−3 and 36.3 in the QG case. Between the Nu and Rec numbers of the hybrid and
3-D models, we have observed a relation of the form NuH yb/Nu3-D ∝ (ReH yb

c /Re3-D
c )2/5.

Examining the kinetic energy spectra for the horizontal velocity, shown in Fig. 6, we find that the QG, 3-D and hybrid models show
similar decreasing slopes up to m ∼ 200, although there is less energy in the hybrid model. The spectrum for the hybrid configuration also
shows more steeply decreasing slope at large m, confirming the lack of power at small length-scales already seen in the convective planforms.

Fig. 7 shows the time-averaged radial temperature profiles T̂3-D(r ) (a) and example snapshots of z-averaged cylindrical temperature
profiles <T3-D > (s) (b) obtained with the purely 3-D and the hybrid setups at Ek = 10−6 and Pr = 1 for a series of increasing supercriticalities,
ranging from Ra = 109 = 5.3 Rac up to Ra = 2.66 × 1010 = 141.5 Rac. We retrieve the fact that the profiles are fairly similar when
Ra ≤ 2 × 109 ∼ 10 Rac (green and cyan curves), while the hybrid and purely 3-D temperature profiles diverge significantly as Ra is further
increased. We observe the formation of thermal boundary layers at both spherical shell boundaries with a well-mixed interior in the 3-D
case while the hybrid temperature profiles do not vary much (red and yellow curves) and stay close to the radial conducting state (blue
dashed-curve). The same conclusions can be drawn when looking at the z-averaged cylindrical radial temperature profiles (Fig. 7b) although
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Figure 8. Buoyancy power Ra
Pr ur gT3-D, decomposed into its equatorially symmetric (ES, uE S

r gT E S
3-D ) and equatorially antisymmetric (EAS, uE AS

r gT E AS
3-D ) for

the 3-D (cyan curves) and the hybrid (green curves) models for two different simulations carried out at Ek = 10−6, Pr = 1 and Ra = 2 × 109 (a), and at Ek =
10−6, Pr = 1 and Ra = 1 × 1010 (b).

here we can observe that the inner boundary temperature decreases with increasing Ra in both setups with a slightly larger decrease of
<T3-D > (si) in the 3-D case compared to the hybrid case. Note the increased activity inside the tangent cylinder in the 3-D case when
Ra ≥ 1010 which is not accounted for in our hybrid QG-3D model. The evolution of <T3-D > (si) in both the 3-D and hybrid cases is
important: the temperature at the ICB drops significantly when Ra is increased, suggesting that approximating the fixed 3-D temperature
at ri by a fixed temperature at si in the QG-approach [about T2-D(si) ∼ 0.445 at all Ra] is rather crude (again see Fig. 5c). Because of this
reduction of temperature with increasing Ra at the inner boundary in cylindrical coordinates, we expect that the driving in the purely QG
configuration will eventually disagree with the 3-D setup at very large Rayleigh numbers before the 3-D convection reaches the non-rotating
regime.

The fundamental difference between the 3-D and the QG/hybrid models lies in the assumed QG nature of the velocity field and in the use
of z-averaging to represent the convective dynamics. This implies that both the equatorially antisymmetric parts and the z-component of the
buoyancy force are missing in the QG and hybrid models compared to the full 3-D setup. An important difference between the hybrid and the
QG setups is that the boundary conditions at the inner core are applied over the entire tangent cylinder in the QG case, artificially providing
more power to the QG setup compared to the hybrid or the 3-D configurations. This enables the QG model to transition more quickly towards
a turbulent state as Ra is increased.

Convective power is locally given by the quantity Ra
Pr ur gT3-D, which we can decompose into its equatorially symmetric (ES) and

equatorially antisymmetric (EAS) components. Fig. 8 presents results concerning the integrated ES and EAS convective power profiles as a
function of the spherical radius obtained with the 3-D and the hybrid models for the two cases of Section 3.2.1 and Section 3.2.2, that is at
Ek = 10−6, Pr = 1, Ra = 2 × 109 and at Ek = 10−6, Pr = 1, Ra = 1 × 1010, respectively. At Ra = 2 × 109, we retrieve a similar buoyancy
power profile for the hybrid and 3-D models, although the hybrid model has less energy especially towards the CMB. EAS modes become
noticeable between Ra = 2 × 109 (where they are almost zero) and Ra = 5.5 × 109 (where they account for 9 per cent of the total power) and
grow increasingly strong, reaching 23 per cent of the convective power by Ra = 1010. In addition, we find that 10 per cent of the power is
driven by the Ra

Pr uz gz T3-D at Ra = 2 × 109 which grows to 30 per cent at Ra = 1010.
At Ra = 2 × 109, we find that the peak-to-peak ratio between the convective power in the 3-D and hybrid models is around 1.5 from

which (based on the IAC scaling, see Section 3.5 and Fig. 13) we expect a ratio between the velocities of 1.52/5 ∼1.17, close to the actual
ratio of Re3-D

c /ReH yb
c = 448.1/404.4 ∼ 1.11. At Ra = 1 × 1010, we have Re3-D

c /ReH yb
c = 3339.9/1455.9 ∼ 2.29 which requires a ratio of

2.295/2–7.97 in terms of the convective power. The missing power due to the EAS modes and the z-component of the buoyancy force are
alone not sufficient to explain all of this difference. In the strongly driven regime, it is possible that the lack of convection inside the tangent
cylinder (although this represents only 15–20 per cent of the total volume of the shell) and the enforced linearity of uz (see eq. 1) may also
contribute to missing power at high Ra/Rac, but it is difficult to separate these contributions given the models in our database.

To summarize, our results suggest that the differences in the transition to turbulence in the 3-D, QG and hybrid come from differences
in the underlying convective power. The Hybrid and QG models lack the equatorially antisymmetric and the z-component of the convective
power. This leads to a delayed transition to turbulent flow in the hybrid model. Differences are less noticeable in the QG case, likely because
the inner thermal boundary condition is applied over the entire tangent cylinder. At strong forcing the lack of convection inside the tangent
cylinder and assumed linearity of uz in the hybrid model may also play a role.

The above limitations result in the hybrid setup remaining in the weakly non-linear regime with only a small increase of the heat
transport and of the velocity with increasing Ra. This is in line with the previously observed discrepancies in the heat transport (see Fig. 2)
with Nusselt numbers that stay on a lower slope in the hybrid case than in the purely QG and the 3-D cases. In the hybrid configurations,
the thermal-boundary layers do not fully develop, and the temperature profiles do not significantly depart from the background conducting
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state,which translates into weaker convection when the forcing is increased. In the QG configuration the missing buoyancy power is partly
offset by additional power provided by the cylindrical boundary conditions. In practice, this means the hybrid QG-3D method has a range
of good agreement with full 3-D computations which is limited to Ra ≤ 10 Rac, at Pr = 1, and has a decreasing predictive capacity with
increasing Ra. On the contrary, we cannot point to important disagreements between the QG and 3-D data sets, suggesting that the QG model
retains its predictive power, even at high Ra/Rac, at least in this particular configuration. The impact of that conclusion on the whole data set
will be further discussed in Section 3.5.

3.3 Influence of laterally varying heat flux boundary conditions

In this section we present examples of rapidly rotating convection with an imposed laterally varying heat flux condition at the outer boundary
and a fixed temperature condition at the inner boundary. Under these conditions, 26 additional runs have been performed and key control
parameters are given in Table B1.

We first present in detail a comparison of results obtained from QG, 3-D and hybrid QG-3D calculations carried out at the same
parameters Ek = 10−6, Pr = 1 and RaQ = 8 × 109 with a � = m = 2, Q∗ = 3 lateral variation about the imposed heat-flux condition. The
resolutions in the 3-D, hybrid and QG cases are, respectively (Nr, �max) = (321, 341), (Ns, Nm)/(Nr, �max) = (385, 416)/(385, 416) and (Ns,
Nm) = (513, 512).

Fig. 9 displays example snapshots of the 3-D temperature field at the CMB T3-D(ro) using heat-flux boundary conditions for the 3-D
model in (a) and the hybrid model in (b). Both cases show the expected � = m = 2 variation due to regions of higher and lower heat flux,
and we also see the imprint of the underlying convection linked to the regions of enhanced heat-flux at the equator alternating with large
quiescent regions of high temperature associated with lower heat-flux. The amplitude of the temperature anomalies in the hybrid case is
however larger with temperature variations in the hybrid and 3-D cases spanning −1.49 ≤ T3-D(ro) ≤ 0.38 and 0.23 ≤ T3-D(ro) ≤ 1.11,
respectively. The imprint of the underlying convection is more clearly seen in the larger eddies evident in the hybrid case, especially at
mid-to-high latitudes. This is consistent with the weaker convective forcing that occurs in the hybrid compared with the 3-D configuration, as
discussed in Section 3.2.2. This is also reflected in global diagnostics, with lower Nu� values of 2.03 in the hybrid case compared with 7.15
in the 3-D case. The sharp transition from convective to diffusive-only dynamics inside the tangent cylinder due to our hybrid implementation
is again obvious in Fig. 9(b).

Turning to the convective dynamics of the column-averaged axial vorticity (Figs 9c–e) we observe significant differences between the
three cases. The vorticity structures up to r ∼ 2/3ro are qualitatively similar in the 3-D and the QG cases (c and e) while the hybrid case (d)
displays larger scale vortices and a less turbulent structure, consistent with it being less strongly driven. Close to the outer boundary, all cases
show the expected m = 2 lateral variation with alternating regions of weak and enhanced convection, although there are differences in the
exact locations and morphologies of these regions in the presented snapshots.

At these parameters the hybrid approach fails to retrieve the small length-scale convective structures at high latitudes found in the 3-D
case and has a noticeable temperature offset at the outer boundary. On the other hand it does reproduce similar, albeit larger scale, structures
at mid-to-low latitudes. This is evident for example in the plots of the temperature anomaly in the top panels of Fig. 9, towards the centre of
the images and close to the equator, where signatures of vigorous convection and related wave structures are seen. The observed differences
in the bottom panels of Fig. 9 can largely be attributed to differences of the buoyancy power in the three cases. At these parameters our hybrid
approach is unable to drive convection which is as turbulent as that seen in the 3-D case, while the purely QG is slightly over-driven compared
with the 3-D case. Note that standard global diagnostics can be misleading here as they involve averages over the entire shell.

Fig. 10 explores further the impact of laterally varying heat flux boundary conditions, showing results from a more extreme convective
regime using the QG model which is computationally least expensive. It presents examples of equatorial snapshots of the axial vorticity ωz

in four cases with top heat flux/bottom-temperature imposed boundary conditions: (a) Ek = 10−6, Pr = 1, RaQ = 4 × 109 with no lateral
variations; (b) same parameters (Ek = 10−6, Pr = 1, RaQ = 4 × 109) but with a m = 2, Q∗ = 3 lateral variation; (c) same parameters (Ek =
10−6, Pr = 1, RaQ = 4 × 109) but with a m = 1, Q∗ = 3 lateral variation; and Ek = 10−6, Pr = 1, RaQ = 3.6 × 1010 with a m = 2, Q∗ = 3
lateral variation (d). Cases (a–c) have thus the same parameters but different lateral heat-flux conditions applied while case (d) has the same
lateral heat-flux conditions as case (b) but is approximately ten times more supercritical. The case without lateral variations in (a) features
very similar convective patterns compared with fixed temperature boundary conditions setups (see e.g., Fig. 4). Namely, filaments of axial
vorticity are sheared in the bulk by zonal jets of alternating direction, becoming thinner, and degenerating into thermal Rossby waves towards
the outer boundary.

The bottom panel demonstrates that the laterally varying heat flux has been successfully imposed and can drastically modify the
convective planform when these lateral variations are sufficiently large. In the case with a m = 1 and Q∗ = 3 pattern (c), we observe that the
right hemisphere is not convecting above s ∼ so − 1/3 and displays only a wide spiraling arm covering this region, a result similar to previous
3-D studies (see, e.g. the fig. 4 of Mound & Davies 2017). For the case with a m = 2 pattern with Q∗ = 3 (b), we observe a similar behaviour
with regions of weak convection dominated exclusively by azimuthal motions near the outer boundary, as was also seen in Fig. 9(e) with
RaQ = 8 × 109. The boundary perturbation does not penetrate very deep in the shell at these parameters (s ∼ so − 1/3 in the m = 1 case,
and s ∼ so − 1/4 in the m = 2). The final case (d) has been conducted at a larger forcing (RaQ = 3.6 × 1010) and displays similar, although
more turbulent, features compared to the previous cases. The region of weak convection is however smaller and limited to fluid regions above
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144 O. Barrois, T. Gastine and C.C. Finlay

Figure 9. Top panel: comparison of the temperature field at the CMB T3-D(ro) for (a) the 3-D case and (b) the hybrid case. Bottom panel: z-averaged vorticity for
the 3-D simulation (c), and equatorial section of the axial vorticity ωz for the hybrid QG-3D simulations (d) and the QG-simulation (e). The three computations
have been carried out at the same parameters Ek = 10−6, Pr = 1 and RaQ = 8 × 109 imposing a � = m = 2, Q∗ = 3 lateral variation about the imposed
heat-flux condition. The resolutions in the 3-D and hybrid cases are, respectively (Nr, �max) = (321, 682) and (Ns, Nm)/(Nr, �max) = (385, 416)/(385, 416) and
is (Ns, Nm) = (513, 512) in the QG case. For the three vorticity plots, the same colourscale is used and is saturated to highlight the fine structure of the flows.

s ∼ so − 1/6. It may be that in the limit of very large RaQ convection, the region affected by the inhomogeneous boundary conditions could
shrink to a very thin layer close to the outer boundary.

Our results demonstrate that imposing a fixed heat flux at the outer boundary does not drastically change the QG-convection compared
to a fixed temperature boundary condition. However, imposing a lateral variation of heat flux at the CMB certainly can inhibit the convective
motions in a region near the surface whose size depends on Q∗ and the supercriticality, consistent with the findings in 3-D computations
(Mound & Davies 2017).

3.4 Influence of the Prandtl number at low Rossby number

Focusing on the hybrid and 3-D series at Ek = 10−6, Pr = 0.1, we find the same limitations as in Section 3.2.2, with an apparent lack of energy
in the hybrid configuration when Ra is increased (see Fig. 2). However as Pr is decreased, larger velocities are attained at smaller Nusselt
numbers, and the range of agreement across the hybrid and 3-D configurations expands (up to Ra ∼ 15 × Rac at Pr = 0.1). We observed similar
convective patterns between the hybrid and 3-D models at all Pr (1, 10−1, 10−2) when Ra ≤ 15 × Rac. Unfortunately, the lowest Prandtl runs are
extremely computationally costly to run, especially with the 3-D approach, because powerful zonal flows and velocities are triggered even at low
Nu inducing difficulties to reach a converged power balance. For example, for a run at Ek = 10−6, Pr = 0.01, Ra = 5 × 108 = 19.3 Rac,
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QG, Hybrid and 3-D core convection models 145

Figure 10. Equatorial snapshots of axial vorticity, ωz, for purely QG runs with heat-flux imposed at the top and a fixed temperature imposed at the bottom: Ek
= 10−6, RaQ = 4 × 109, Pr = 1 with no lateral variations (a); same parameters (Ek = 10−6, RaQ = 4 × 109, Pr = 1) but with a m = 2, Q∗ = 3 lateral variation
(b); same parameters (Ek = 10−6, RaQ = 4 × 109, Pr = 1) but with a m = 1, Q∗ = 3 lateral variation and (c) and Ek = 10−6, RaQ = 3.6 × 1010, Pr = 1 with a
m = 2, Q∗ = 3 lateral variation (d). The cases (a–c) have the same colourscale displayed on the top right and the case (d) has its own colourscale displayed on
the bottom right. Note that the colourscales are saturated to highlight the fine structure of the flows. The four cases are purely QG and their spatial resolution
is (Ns, Nm) = (513, 512) in all cases.

the convective Reynolds number reaches 11 968.4 for a Nu of 2.07 in the 3-D case; Rec values that were not even reached by Ra = 140 Rac

at Pr = 1. The two 3-D runs at Pr = 10−2 however appear closer to the hybrid trend of Fig. 2 with comparable Nu up to Ra/Rac = 20,
whereas the QG model departs from the 3-D trend around Ra ∼ 10 Rac with much higher Nu in the QG cases. Our results do thus indicate
better agreement between the hybrid and the 3-D configurations at low Pr (as also observed by Guervilly et al. 2019); in contrast the QG
configuration performs less well in this regime. We expect nonetheless the hybrid model to depart from the 3-D when Ra is sufficiently
increased, as observed for our Pr = 0.1 series. The exact Ra/Rac range of agreement when Pr is decreased further below 0.1 requires more
3-D and hybrid runs in this challenging regime in order to be determined.

We next take advantage of the computationally more efficient purely QG setup to study convective flows at more extreme parameters,
that is at lower Ek and higher Ra. In particular, we investigate here the impact of the Prandtl number in this regime. Fig. 11 shows
example snapshots of axial vorticity ωz (top panel) and of azimuthal velocity uφ (bottom panel) in the equatorial plane for two cases:
Ek = 10−8, Pr = 1, Ra = 8.99 × 1012 = 142 Rac (left-hand column) and Ek = 10−8, Pr = 10−2, Ra = 3.37 × 1010 = 6.1 Rac (right-
hand column). Despite the much higher supercriticality attained in the Pr = 1 case, these two runs have comparable Rossby numbers: 4.10 ×
10−4 for the Pr = 1 case and 5.97 × 10−4 for the Pr = 10−2 case. Both cases are purely QG calculations, and 3-D temperature effects have
not been included.

In both cases, the azimuthal velocity (c and d) displays multiple zonal jets of alternating direction (blue is retrograde and red is prograde
flows), which directly translate in the axial vorticity (a and b) into alternating rings of cyclonic (ωz > 0 in red) and anticyclonic (ωz < 0 in
blue) vortices. Between two alternating jets, the vortices are streched out and sheared into azimuthally elongated filaments, which involve a
direct cascade of energy from the large to the small length-scales (Rhines 1975; Gastine 2019). Potential vorticity, (ωz + 2/Ek)/h, is mixed
due to stirring by the turbulent motions, and creates these characteristic concentric jets with a typical size that is approximately predicted by
the Rhines-scale (Ro/β)1/2 (Rhines 1975). Closer to the boundary, we see the influence of the slope and the β-effect where the steepening of
the curvature of the container impedes the radial advection of the vortices and causes the dynamics to degenerate into azimuthally elongated
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146 O. Barrois, T. Gastine and C.C. Finlay

Figure 11. Left: Equatorial snapshot of the axial vorticity ωz (a) and of the azimuthal velocity uφ (c), for a numerical simulation with parameters Ek = 10−8,
Pr = 1 and Ra = 8.99 × 1012 = 142 Rac . For this case the spatial resolution is (Ns, Nm) = (3073, 3072). Right: Equatorial snapshot of the axial vorticity ωz

(b) and of the azimuthal velocity uφ (d), for a numerical simulation with parameters Ek = 10−8, Pr = 10−2 and Ra = 3.37 × 1010 = 4.1 Rac . The spatial
resolution in that case is (Ns, Nm) = (3457, 3456). Respectively, for the ωz and uφ , the same colourbars are used for both cases and are saturated.

motions typical of thermal Rossby waves, as previously observed in Section 3.2.1. Fig. 12 additionally shows the time-averaged cylindrical
radial profiles of potential vorticity along with the time-averaged zonal flow. Retrograde zonal jets where potential vorticity gradients are
slightly stronger (marked by white stripes in Fig. 12), seem narrower than in the regions where the gradients are weaker (corresponding to
prograde jets), a result already found by Guervilly & Cardin (2017). Since large supercriticalities are required to obtain well-formed potential
vorticity staircases, the case with Pr = 10−2 does not show a comparable degree of homogenization, due to the significantly lower Ra/Rac

reached in that case, despite similar values of Ro.
Besides the two cases having comparable Rossby numbers and time-averaged kinetic energy spectra, the Pr = 1 case (Figs 11a–c)

displays smaller eddies and thinner jets than the Pr = 10−2 case with a larger number of coherent jets (8 in the Pr = 1 case compared to 3 in
the Pr = 10−2 case). Near the outer boundary the transition of the dynamics into thermal Rossby waves happens deeper in the shell in the Pr
= 10−2 compared to the Pr = 1 case. This transition is also visible in the φ-velocity where the jets lose their coherence around s ∼ so − 1/3;
a direct consequence of the lower supercriticality attained in the Pr = 10−2 case (Ra = 6.1 Rac in that case, compared to Ra = 142 Rac for
the Pr = 1 case).

In the low Rossby regime explored here (Ro < 6 × 10−4), changing the Prandtl number by a factor 100 drastically modifies the form of
the convective pattern. We find that decreasing Pr results in fewer and wider jets as well as larger convective structures that are maintained at
a much lower supercriticality. This effect has previously been reported by Guervilly & Cardin (2017) who suggested a weak dependence of
Ro on Pr (see Table A1 or the next section).

3.5 Scaling laws for rapidly rotating convection

We now finally explore the scaling behaviour of rapidly rotating turbulent convection in our three model setups. Theoretical scaling laws of
rotating convection can be derived by considering the following dimensional 3-D vorticity equation

∂ω

∂t
+ (u·∇) ω + 2�·∇u = ∇ × (αT ϑ3-D g) + ν∇2ω . (39)

In the limit of rapid rotation, the Proudman–Taylor theorem promotes z invariant flows with l⊥ � l//, where l⊥ and l// correspond to the
convective flow length-scale perpendicular and parallel to the rotation axis. Assuming that l// ∼ d, this implies that the gradients orthogonal
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QG, Hybrid and 3-D core convection models 147

Figure 12. Time averaged radial profiles of the the planetary vorticity 2Ek−1/h (black-dotted curve), potential vorticity ˆ(ωz + 2/Ek)/h(s) (orange curve)
and the azimuthal velocity ûφ(s) (blue curve); for the numerical simulation with parameters Ek = 10−8 Pr = 1, Ra = 8.99 × 1012 = 142 Rac and a spatial
resolution of (Ns, Nm) = (3073, 3072) (a), and the numerical simulation with parameters Ek = 10−8, Pr = 10−2, Ra = 3.37 × 1010 = 6.1 Rac and a spatial
resolution of (Ns, Nm) = (3457, 3456) (b). The shaded area and the white stripes correspond, respectively, to the fluid regions where the azimuthal velocity is
positive (prograde jets) and negative (retrograde jets). The planetary vorticity (black-dotted curve) indicates the asymptotic behaviour of the potential vorticity
in a perfectly mixed shell.

to the axis of rotation ∇⊥ can be approximated by 1/l⊥, while the axial gradients ∂/∂z simply scale as 1/d. It also follows that ω ∼ Uc /l⊥,
where Uc is a typical convective velocity.

In the diffusivity-free limit relevant for planetary convective cores, the dominant terms entering eq. (39) involve a triple balance between
Coriolis, Inertia and Archimedean forces (Hide 1974; Ingersoll & Pollard 1982; Cardin & Olson 1994; Gillet & Jones 2006)

2�·∇u ∼ u·∇ω ∼ ∇ × (αT ϑ3-D g) . (40)

or in terms of scaling quantities

�
Uc

d
∼ Uc

ωc

l⊥
∼ αT g

�

l⊥
, (41)

where � is a typical temperature perturbation. The balance between Coriolis and Inertia terms yields

l⊥
d

∼ (Rec Ek)1/2 ∼ Ro1/2 . (42)

This diffusion-free scaling is commonly known as the Rhines scaling (Rhines 1975) and it is expected to hold in the limit of Ek � 1 when
viscous effects become negligible in the bulk of the fluid (e.g., Gastine et al. 2016; Guervilly et al. 2019). The other equality which enters
eq. (41) coupled with the additional assumption that αT gUc� ∼ ν3

d4 Ra(Nu − 1)Pr−2 (see Jones 2015) yields in its dimensionless form

Rec ∼
[

Ra

Pr 2
(Nu − 1)

]2/5

Ek1/5 . (43)
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148 O. Barrois, T. Gastine and C.C. Finlay

Figure 13. Top panel: typical length-scale of the radial velocity, Lus , as a function of the Rossby number Rec E . A best-fitting power law using only the runs
with Ro ≤ 10−3 is shown by the dotted–dashed line. Bottom panel: convective Reynolds number, Rec, as a function of Ra(Nu − 1)Pr−2Ek1/2 (eq. 43). The
Ekman and Prandtl numbers are indicated with colours and shapes, respectively, and the hybrid runs are indicated with the corresponding hatched symbols and
the full 3-D runs with empty symbols. The theoretically predicted scaling corresponding to the CIA balance (eq. 43) is shown by the dotted–dashed line.

This equation is known as the inertial scaling of the convective velocity for rotating convection (or the CIA scaling, e.g Gillet & Jones 2006;
King & Buffett 2013).

Note that another equilibrium would hold if viscous effects would replace inertia in the vorticity balance (40). This equilibrium is
sometimes referred to as the VAC scaling, Rec ∼ [ Ra

Pr2 (Nu − 1)]1/2 Ek1/3, where Viscous, Archimedean and Coriolis effects are the dominant
terms (Aubert et al. 2001; King & Buffett 2013). We will not discuss this scaling since it does not provide a suitable interpretation of the
numerical simulations in the turbulent QG regime (Gastine et al. 2016; Guervilly et al. 2019; Schwaiger et al. 2021), as is also found with
our simulations.

We now analyse the relevance of the asymptotic scaling laws eqs (42-43) in the context of our ensemble of numerical simulations with
fixed temperature contrast. Fig. 13 shows all our numerical simulations compared with the CIA scaling laws for convective velocity and
length-scale. On the top panel, the typical non-dimensional length-scale of the convection Lus is plotted against the Rossby number Ro =
RecEk, corresponding to (42), while the bottom figure shows Rec as a function of Ra(Nu-1)Pr−2Ek1/2, corresponding to (43). We observe that
the Rhines scale captures well the behaviour observed in our simulations. The majority of the points are aligned (black dotted–dashed line),
and departures from the theory are confined to the highest Ekman numbers (Ek ≥ 10−5). Introducing a local Rossby number RoL = Ro d/Lus

we find that all our runs have RoL < 0.1 (not shown) which indicates that our primary assumption holds at the local level, even if the
geostrophic constraint can be weaker for the highest values of RoL (associated with the highest Ek) of our data set. There is no additional Pr
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dependence since all the simulations with Pr �= 1 are close to the average scaling behaviour. The best-fitting for the whole data set yields a
power law with an exponent of 0.31 for the Ro dependency but considering only the runs with Ro ≤ 10−3, we find a steeper slope with an
exponent of α ∼ 0.41, a value comparable to that obtained in 3-D parameters studies (Gastine et al. 2016; Long et al. 2020) but shallower
than the theoretical 1/2 scaling. Using QG models at Ekman numbers as low as Ek = 10−11, Guervilly et al. (2019) showed that l⊥/d ∼ Ro1/2

is gradually approached in the low viscosity limit appropriate for planetary cores.
The bottom panel of Fig. 13 shows that most of our simulations agree well with the CIA theoretical scaling law—with the power exponent

2/5 (black dotted line)—especially for Ek ≤ 10−6. Cases at higher Ekman number (Ek ≥ 10−5; red and orange symbols) depart from the
theory, following instead a power law with a lower exponent consistent with a deviation observed from the Rhines scaling at higher Ek. The
simulations conducted at different Prandtl numbers are also well aligned with the CIA power law and are parallel to the Pr = 1 series but
shifted upward for Pr < 1 and downward for Pr > 1. The clear separation between the series at different Prandtl numbers suggests that there is
a dependency on Pr in the Rec scaling which affects the prefactor of the scaling law and is not accounted for in the CIA scaling law (43). The
hybrid runs (hatched symbols) are offset leftwards and downwards compared to the purely QG runs, reflecting that lower Nusselt numbers
and velocities are reached for the same parameters. This shift can be understood in terms of the limitations discussed in Section 3.2.2 with an
effective lack of buoyancy power when Ra is increased, yielding lower velocities—that is Rec—and lower heat transport effectiveness—that
is Nu, hence weaker Ra(Nu − 1)—for the same control parameters {Ek , Pr , Ra}. Note that the purely 3-D runs (empty symbols) are
also shifted towards the left and stand between the hybrid and the QG cases, indicating that the QG runs are, in contrast, overpowered
compared to the 3-D cases. This is likely due to the cylindrical boundary conditions in the QG case: the temperature imposed at the inner
boundary is fixed for the whole column (and not only for the inner core surface) at all Ra, artificially supplying more thermal power to the
bulk compared to the purely 3-D setup (see Fig. 7b). Parameter studies with either QG or 3-D models (e.g., Gillet & Jones 2006; Guervilly
2010; King & Buffett 2013) have reported exponents steeper than 2/5. This has been attributed by Gastine et al. (2016) to the sizeable role
played by viscous dissipation in the boundary layers for Rec < 104. Discrepancies arise at high Ek and low Ra/Rac where the VAC balance is
probably more suitable and at high Ra/Rac where the QG approximation no longer holds (as has been observed in, e.g. Gastine et al. 2016).
The CIA scaling law hence partly captures the actual scaling behaviour of the convective velocity: fitting all the data with Pr = 1 yields
Rec = 0.53 [Ra(Nu − 1)Ek1/2]0.43 in reasonable agreement with the theory, although the Pr dependence is not well accounted for.

Despite the well-known limitations of the QG approximation, and the limitations of our hybrid method at high Ra/Rac as documented
above, we find that across our entire suite of calculations, results are broadly consistent with the Rhines and CIA scaling laws with a remaining
dependence on Pr for the latter. This lends additional support to findings of previous studies that also favoured a CIA balance but focused
on a weaker forcing regime in a full sphere geometry (Guervilly et al. 2019), used a thinner spherical shell geometry and a different gravity
profile (Gastine et al. 2016) or used heat flux boundary conditions (Long et al. 2020).

4 D I S C U S S I O N A N D C O N C LU S I O N S

We have used QG, 3-D and hybrid models, the latter involving a QG velocity field and a 3-D temperature field, to explore in a thick spherical
shell the regime of strongly driven, rapidly rotating convection, focusing on low Ekman numbers 10−10 ≤ Ek ≤ 10−4, reaching supercriticalities
up to Ra ∼ 160 Rac and considering a range of Prandtl numbers close to and below unity 10−2 ≤ Pr ≤ 10, also exploring the impact of
laterally varying heat flux boundary conditions. This work involved extending the QG convection code pizza (Gastine 2019) to include the
possibility to work with laterally varying heat flux boundary conditions, a 3-D temperature field, and a thermal wind.

Using the hybrid QG-3D approach at parameters Ek ≤ 10−6 and Pr ≤ 1 we are able to reproduce important aspects of convective
dynamics seen in 3-D models for weak to moderate supercriticalities (Ra/Rac ≤ 10−15). In that regime, the meridional temperature profile
and φ-averaged azimuthal velocity are well retrieved although, as for purely QG models, the dynamical behaviour in the hybrid model
deviates from the 3-D models close to the outer boundary. When Ra is further increased, we find our hybrid model develops much weaker
convective flows compared with the 3-D configuration in all cases. In contrast, the range of agreement between the hybrid QG-3D and the
3-D configurations increases when Pr = 10−2 (as suggested by Guervilly et al. 2019) while the QG model departs from the 3-D around
Ra ∼ 10 Rac. We expect that the hybrid model will eventually diverge from the full 3-D model when Ra/Rac is sufficiently high, but the exact
value of the diverging point remains to be determined at Pr ≤ 10−2 and has not been yet numerically reached despite reaching large Re values.
This is to some extent expected since 3-D effects become important when the thermal forcing increases (Calkins et al. 2013): the appearance
of non-QG, equatorially antisymmetric, axial flows that do not vary linearly along the rotation axis—breaking the underlying classical QG
assumption—and the associated missing correlations between uz and T, are part of this discrepancy. We found these effects account for up to
46 per cent of the missing convective power for a case at Ek = 10−6, Pr = 1, Ra = 53 Rac. The thick shell geometry studied and the omission
of the dynamics inside the tangent cylinder, as well as the enforced linearity of uz, may also play a role in the less vigorous convection found
in the hybrid model. By construction in our hybrid setup the vertical motions remain weak compared to the horizontal motions. Alternative
formulations of QG-type models have recently been proposed that aim to better represent all flow components (Gerick et al. 2020; Jackson
& Maffei 2020); these could perhaps provide a means to improve on the results presented here.

In theory the hybrid method can be three to five times faster than a 3-D model when using the same resolution—because compute
time for Legendre transforms associated with the velocity field are saved. However, we did not find major computational advantages in
using the hybrid method at Pr = 1 mainly because the z-interpolation scheme requires the resolution to be high. At Pr < 1, the hybrid
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model becomes more advantageous; since the 3-D grid involves only the temperature field it can be much coarser than the 2-D grid
associated with the velocity field. The hybrid QG-3D approach studied here is nevertheless suitable for studying the rapidly rotating regime
of convection at moderate forcing (i.e. Ra/Rac ≤ 15) at all Pr and we envision that the hybrid method could become more attractive in
terms of computational resources, even at Pr = 1, if the accuracy of the interpolation methods can be improved without sacrificing too much
speed.

At the relatively low Ekman numbers considered here imposing a fixed heat flux condition at the outer boundary had little impact
on the convective dynamics, compared to using a fixed temperature condition. However imposing lateral variations in the heat flux at the
outer boundary can result in regions close to the boundary where the convection is inhibited or suppressed, and characterized by spiral
arms where only azimuthal motions are possible, even at high supercriticalities, provided Q∗—the peak-to-peak relative amplitude of the
flux perturbation—is sufficiently large. We also observe enhanced convective patterns in our QG models attached to the fluid regions
with higher heat-flux. Such alternating regions of inhibited and enhanced convection are well known from previous studies in 3-D (e.g.,
Mound & Davies 2017) and are evident in our 3-D comparison calculations carried out in a similar regime. When comparing the 3-D,
QG and hybrid models using inhomogneous thermal boundary conditions, we find that the QG and 3-D configurations are qualitatively
similar whereas the hybrid model again seems to lack buoyancy power. Despite the absence of small-scale convection found in the hybrid
setup, the basic heat anomaly pattern at the outer boundary and the upwelling/downwelling system under the enhanced flux regions are
similar to those found in the 3-D cases, suggesting that the dynamics is relatively well captured at mid-to-low latitudes. For Q∗ in the
range from 2 to 5, and for the relatively high supercriticalities explored here the underlying convection deep in the shell is not greatly
affected.

In general, we find that azimuthal shearing of axial vorticity dominates the convective dynamics in the bulk and leads to the formation
of multiple zonal jets of alternating sign when Ek ≤ 10−7, Re � 1 and Ro � 1, as reported in previous QG studies (e.g., Guervilly & Cardin
2017). When decreasing the ratio of diffusivities such that Pr ≤ 10−1, we find the QG-dynamics is not fundamentally modified: multiple
zonal jets still dominate in the bulk but a lower supercriticality is required for the same Ro number, leading to the formation of fewer and
wider zonal jets at Pr < 1.

Regarding scaling laws, our data set follows reasonably well the inertial scaling of rotating convection, which relies on a triple force
balance between buoyancy, Coriolis force and inertia (e.g., Cardin & Olson 1994; Gillet & Jones 2006). The convective flow length-scale
l⊥/d gradually approaches the asymptotic Rhines scaling l⊥ ∼ Ro1/2 at low Ek (Rhines 1975), albeit with an exponent lower than 1/2 for the
Ek considered here. For the velocity scaling, we find that the simulations with Pr = 1 follow reasonably well the theoretical CIA scaling Rec

∼ [Ra(Nu − 1)Pr−2Ek1/2]2/5 with a retrieved exponent equal to 0.43. We find a clear dependence of the velocity scaling behaviour on the
Prandtl number, which is not well described by the classical inertial scaling of rotating convection. The 3-D runs stand between the results of
the QG and the hybrid setups, suggesting that the QG configuration produces too much convective power. This is most likely a consequence
of applying temperature boundary conditions in cylindrical geometry which involves the crude approximation of a fixed temperature on the
whole tangent cylinder at si, T2-D(si) ∼ 0.445 for all Ra and may partly compensate for the lack of ageostrophic components in the QG models.
On the other hand, the hybrid configuration clearly lacks convective power at Ra/Rac ≥ 15. Our results are overall consistent with other recent
parameter studies in different geometries and studying different ranges of the control parameters (e.g., Gastine et al. 2016; Guervilly et al.
2019). The Prandtl number dependence seems to mainly affect the prefactors of the scaling laws, suggesting there is no fundamental change
in the dynamics, at least for the parameter range explored here.

This study is a first step towards a more general hybrid QG-3D approach to Earth’s core dynamics that will include the crucial effects
of a 3-D magnetic field on the QG-convection.
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A P P E N D I X A : N U M E R I C A L S I M U L AT I O N S W I T H F I X E D T E M P E R AT U R E C O N T R A S T

Table A1. Summary of the numerical simulations with fixed temperature contrast computed in this study. All models have been computed with η = ri/ro

= 0.35. Ra is the Rayleigh number (the supercriticality Ra = · × Rac is also provided), Pr is the Prandtl number, Nu is the Nusselt number, Rec is the
convective Reynolds number, Rezon is the zonal Reynolds number, Lus is the typical length-scale for the cylindrical radial velocity field and (Ns, Nm)/(Nr,
�max) are the grid size for the run.

Method Ra =· × Rac Pr Nu Rec Rezon Lus (Ns, Nm)/(Nr, �max)

Ek = 1 × 10−4

QG 4.83 × 106 =4.8 × 10 2.62 7.0 0.5 3.651 × 10−1 (193, 192)/( −, −)
QG 1.12 × 107 =10.2 × 10 7.76 14.7 1.3 3.296 × 10−1 (193, 192)/( −, −)
QG 3.87 × 107 =35.1 × 10 18.02 36.0 6.6 2.993 × 10−1 (193, 192)/( −, −)
QG 2.43 × 106 =3.4 × 1 1.91 35.9 14.7 4.481 × 10−1 (97, 96)/( −, −)
Hybrid 2.00 × 106 =6.6 × 1 1.46 54.4 27.2 4.479 × 10−1 (97, 96)/(97, 96)
QG 4.83 × 106 =6.8 × 1 3.63 72.2 40.0 3.769 × 10−1 (97, 96)/( −, −)
QG 1.93 × 107 =27.1 × 1 11.95 211.5 191.7 5.006 × 10−1 (97, 96)/( −, −)
QG 3.87 × 107 =54.3 × 1 17.69 335.2 339.4 5.884 × 10−1 (97, 96)/( −, −)
QG 4.30 × 105 =1.7 × 0.1 1.05 44.6 28.3 7.412 × 10−1 (193, 192)/( −, −)
QG 9.66 × 105 =3.3 × 0.1 1.25 114.4 120.5 6.699 × 10−1 (193, 192)/( −, −)
QG 4.83 × 106 =16.6 × 0.1 3.97 633.0 912.2 6.823 × 10−1 (193, 192)/( −, −)

Ek = 1 × 10−5

QG 1.12 × 108 =6.2 × 10 3.97 19.0 0.9 1.559 × 10−1 (1537, 1536)/( −, −)
QG 2.25 × 108 =12.4 × 10 11.86 38.8 2.7 1.424 × 10−1 (1537, 1536)/( −, −)
3-D 5.00 × 108 =30.8 × 10 15.03 97.1 13.1 − ( −, −)/(193, 170)
QG 1.12 × 109 =61.8 × 10 50.66 131.0 16.1 1.849 × 10−1 (1537, 1536)/( −, −)
3-D 2.00 × 109 =123.4 × 10 36.63 319.8 53.0 − ( −, −)/(256, 213)
QG 2.25 × 109 =123.5 × 10 72.15 210.2 38.3 2.215 × 10−1 (1537, 1536)/( −, −)
3-D 4.00 × 107 =3.8 × 1 1.39 62.9 21.9 − ( −, −)/(97, 170)
Hybrid 4.64 × 107 =4.7 × 1 1.37 78.8 27.5 2.172 × 10−1 (193, 128)/(193, 128)
QG 5.21 × 107 =5.0 × 1 2.48 111.5 31.2 2.107 × 10−1 (193, 192)/( −, −)
Hybrid 9.28 × 107 =9.4 × 1 1.60 154.9 57.4 2.385 × 10−1 (193, 128)/(193, 128)
3-D 1.00 × 108 =9.5 × 1 2.45 194.5 53.8 − ( −, −)/(97, 213)
QG 1.04 × 108 =9.9 × 1 4.82 232.8 81.5 2.578 × 10−1 (193, 192)/( −, −)
Hybrid 1.86 × 108 =18.9 × 1 1.82 272.9 131.2 2.899 × 10−1 (193, 128)/(193, 128)
3-D 2.00 × 108 =19.0 × 1 5.42 471.3 161.0 − ( −, −)/(97, 256)
QG 2.09 × 108 =19.9 × 1 10.88 436.8 214.1 3.225 × 10−1 (193, 192)/( −, −)
3-D 3.00 × 108 =28.6 × 1 8.99 741.1 338.3 − ( −, −)/(121, 288)
3-D 4.00 × 108 =38.1 × 1 11.99 959.3 499.5 − ( −, −)/(121, 288)
QG 4.18 × 108 =39.8 × 1 21.99 775.1 528.3 4.107 × 10−1 (193, 192)/( −, −)
QG 5.21 × 108 =49.7 × 1 26.52 885.7 687.5 4.765 × 10−1 (193, 192)/( −, −)
3-D 7.00 × 108 =66.7 × 1 18.09 1485.4 1031.8 − ( −, −)/(161, 426)
QG 8.36 × 108 =79.6 × 1 30.82 1216.9 1206.1 4.729 × 10−1 (385, 384)/( −, −)
QG 1.08 × 107 =3.0 × 0.1 1.31 243.8 230.9 3.568 × 10−1 (193, 192)/( −, −)
Hybrid 4.00 × 107 =11.3 × 0.1 1.41 789.1 1067.7 5.062 × 10−1 (193, 240)/(129, 144)
QG 2.16 × 107 =6.0 × 0.1 1.99 554.4 665.8 4.432 × 10−1 (193, 192)/( −, −)
QG 4.31 × 107 =11.9 × 0.1 3.47 1059.5 1493.5 5.969 × 10−1 (385, 384)/( −, −)
QG 5.39 × 107 =14.9 × 0.1 4.27 1280.3 1876.1 6.310 × 10−1 (385, 384)/( −, −)
QG 2.25 × 108 =62.0 × 0.1 15.52 3841.3 6703.9 6.159 × 10−1 (769, 768)/( −, −)
3-D 2.50 × 108 =70.8 × 0.1 8.05 4426.5 5711.5 − ( −, −)/(145, 426)
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Table A1. Continued

Method Ra =· × Rac Pr Nu Rec Rezon Lus (Ns, Nm)/(Nr, �max)

Hybrid 2.50 × 108 =70.8 × 0.1 1.82 2584.0 4611.2 7.549 × 10−1 (449, 480)/(321, 352)
QG 1.12 × 107 =5.7 × 0.01 1.87 3074.0 5093.7 8.048 × 10−1 (769, 768)/( −, −)
Hybrid 1.00 × 107 =5.1 × 0.01 1.22 2614.7 3995.6 7.580 × 10−1 (513, 512)/(321, 352)

Ek = 1 × 10−6

QG 2.25 × 1010 =67.6 × 10 50.47 493.7 89.0 1.075 × 10−1 (4097, 4096)/( −, −)
3-D 8.00 × 108 =4.3 × 1 1.42 146.7 33.1 − ( −, −)/(129, 256)
3-D 1.00 × 109 =5.3 × 1 1.55 195.9 41.7 − ( −, −)/(129, 256)
Hybrid 1.00 × 109 =6.1 × 1 1.44 206.8 35.4 1.164 × 10−1 (257, 256)/(257, 256)
QG 1.12 × 109 =6.3 × 1 2.81 292.2 48.5 1.208 × 10−1 (385, 384)/( −, −)
3-D 2.00 × 109 =10.6 × 1 2.38 448.1 97.1 − ( −, −)/(129, 341)
Hybrid 2.00 × 109 =12.3 × 1 1.67 404.4 86.9 1.456 × 10−1 (257, 256)/(257, 256)
QG 2.00 × 109 =11.3 × 1 5.05 550.4 126.6 1.547 × 10−1 (385, 384)/( −, −)
QG 2.25 × 109 =12.7 × 1 5.75 620.7 153.6 1.598 × 10−1 (385, 384)/( −, −)
3-D 2.80 × 109 =14.9 × 1 3.44 700.6 176.9 − ( −, −)/(161, 426)
3-D 3.50 × 109 =18.6 × 1 4.77 997.7 266.6 − ( −, −)/(181, 426)
Hybrid 4.00 × 109 =24.5 × 1 2.01 740.7 256.0 1.879 × 10−1 (257, 256)/(257, 256)
QG 4.49 × 109 =25.3 × 1 12.79 1190.0 539.7 2.121 × 10−1 (385, 384)/( −, −)
3-D 5.50 × 109 =29.3 × 1 9.43 1803.9 1014.4 − ( −, −)/(201, 426)
Hybrid 7.80 × 109 =47.9 × 1 2.14 1239.3 571.8 2.401 × 10−1 (385, 384)/(385, 384)
QG 8.99 × 109 =50.7 × 1 28.31 2145.5 1419.2 2.902 × 10−1 (577, 576)/( −, −)
3-D 1.00 × 1010 =53.2 × 1 19.46 3339.9 2405.2 − ( −, −)/(321, 682)
Hybrid 1.00 × 1010 =61.3 × 1 2.20 1455.9 829.5 2.622 × 10−1 (513, 512)/(513, 341)
QG 1.12 × 1010 =63.4 × 1 36.27 2584.4 1845.5 3.192 × 10−1 (577, 576)/( −, −)
3-D 1.60 × 1010 =85.1 × 1 31.36 5272.2 4102.7 − ( −, −)/(433, 682)
QG 1.80 × 1010 =101.4 × 1 58.65 3793.5 3109.7 3.882 × 10−1 (577, 576)/( −, −)
QG 2.25 × 1010 =126.7 × 1 72.09 4520.3 3957.2 4.265 × 10−1 (769, 768)/( −, −)
Hybrid 2.60 × 1010 =159.5 × 1 2.90 2963.4 2090.2 3.829 × 10−1 (513, 512)/(513, 341)
3-D 2.66 × 1010 =141.5 × 1 45.94 7285.0 7945.6 − ( −, −)/(577, 853)
Hybrid 1.03 × 108 =2.0 × 0.1 1.09 317.5 227.5 1.671 × 10−1 (385, 384)/(257, 171)
QG 1.16 × 108 =2.2 × 0.1 1.22 396.8 285.3 1.790 × 10−1 (385, 384)/( −, −)
Hybrid 2.06 × 108 =4.1 × 0.1 1.23 821.6 684.4 2.438 × 10−1 (385, 384)/(257, 171)
QG 2.31 × 108 =4.4 × 0.1 1.73 1049.2 855.3 2.564 × 10−1 (385, 384)/( −, −)
QG 4.63 × 108 =8.8 × 0.1 2.84 2161.3 2044.0 3.378 × 10−1 (385, 384)/( −, −)
QG 9.26 × 108 =17.7 × 0.1 5.43 3990.9 4472.9 4.296 × 10−1 (577, 576)/( −, −)
3-D 1.00 × 109 =19.7 × 0.1 2.77 3790.7 3458.6 − ( −, −)/(257, 309)
Hybrid 1.00 × 109 =19.7 × 0.1 1.68 3196.6 3663.4 3.678 × 10−1 (385, 384)/(257, 171)
QG 1.15 × 109 =22.1 × 0.1 6.87 4768.8 5706.2 4.569 × 10−1 (577, 576)/( −, −)
QG 1.85 × 109 =35.3 × 0.1 11.72 6791.4 9383.2 4.970 × 10−1 (769, 768)/( −, −)
3-D 2.00 × 109 =39.4 × 0.1 5.95 7575.3 8782.8 − ( −, −)/(321, 426)
Hybrid 2.00 × 109 =39.4 × 0.1 1.89 4975.7 6699.7 4.566 × 10−1 (385, 384)/(257, 256)
QG 2.25 × 109 =42.9 × 0.1 13.95 7845.2 11884.2 4.495 × 10−1 (769, 768)/( −, −)
3-D 5.00 × 109 =98.5 × 0.1 12.77 12743.8 22752.8 − ( −, −)/(385, 1024)
Hybrid 5.00 × 109 =98.5 × 0.1 2.14 8225.4 13536.3 5.201 × 10−1 (769, 768)/(385, 384)
QG 4.85 × 107 =1.8 × 0.01 1.20 2274.7 2943.8 4.144 × 10−1 (577, 576)/( −, −)
QG 9.71 × 107 =3.6 × 0.01 1.65 4930.7 7871.4 4.566 × 10−1 (577, 576)/( −, −)
Hybrid 1.00 × 108 =3.9 × 0.01 1.23 4749.7 7399.9 4.566 × 10−1 (353, 384)/(225, 256)
Hybrid 1.30 × 108 =5.0 × 0.01 1.29 6020.8 9797.3 4.908 × 10−1 (513, 512)/(225, 256)
QG 1.94 × 108 =7.1 × 0.01 2.54 8888.8 17077.8 4.993 × 10−1 (1025, 1024)/( −, −)
3-D 2.00 × 108 =7.7 × 0.01 1.45 6538.2 11456.1 − ( −, −)/(321, 682)
Hybrid 2.00 × 108 =7.7 × 0.01 1.38 8233.1 14835.2 4.583 × 10−1 (961, 1008)/(241, 288)
QG 2.25 × 108 =8.9 × 0.01 2.97 9761.0 19614.7 4.339 × 10−1 (1025, 1024)/( −, −)
QG 2.43 × 108 =8.2 × 0.01 3.00 10636.1 21312.7 5.072 × 10−1 (1537, 1536)/( −, −)
Hybrid 4.00 × 108 =15.5 × 0.01 1.52 13556.1 24142.9 6.494 × 10−1 (1249, 1344)/(289, 384)
3-D 5.00 × 108 =19.3 × 0.01 2.07 11968.4 28074.3 − ( −, −)/(321, 1024)

Ek = 1 × 10−7

QG 2.43 × 1010 =7.4 × 1 2.97 714.3 115.3 6.781 × 10−2 (577, 576)/( −, −)
Hybrid 5.00 × 1010 =15.1 × 1 1.73 1038.9 580.6 8.735 × 10−2 (577, 672)/(577, 384)
QG 4.83 × 1010 =14.8 × 1 5.74 1459.0 848.3 1.148 × 10−1 (769, 768)/( −, −)
Hybrid 6.45 × 1010 =19.4 × 1 1.81 1315.6 887.7 9.837 × 10−2 (769, 768)/(769, 384)
3-D 6.50 × 1010 =19.6 × 1 3.85 1853.8 910.8 − ( −, −)/(433, 682)
QG 6.50 × 1010 =19.9 × 1 8.55 1879.9 1362.0 1.073 × 10−1 (769, 768)/( −, −)
Hybrid 8.00 × 1010 =24.1 × 1 1.82 1501.6 1048.2 1.1068 × 10−1 (769, 768)/(769, 512)
QG 9.66 × 1010 =29.6 × 1 13.91 2685.4 2343.9 1.290 × 10−1 (769, 768)/( −, −)
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Table A1. Continued

Method Ra =· × Rac Pr Nu Rec Rezon Lus (Ns, Nm)/(Nr, �max)

3-D 1.00 × 1011 =30.1 × 1 7.79 3325.4 2798.3 − ( −, −)/(513, 896)
Hybrid 1.00 × 1011 =30.1 × 1 1.94 1821.0 1382.9 1.112 × 10−1 (769, 512)/(769, 512)
QG 1.93 × 1011 =59.3 × 1 31.71 4833.0 5217.6 1.711 × 10−1 (769, 768)/( −, −)
QG 2.43 × 1011 =74.5 × 1 40.75 5865.3 6659.6 1.857 × 10−1 (1153, 1152)/( −, −)
QG 3.87 × 1011 =118.6 × 1 69.78 8834.0 10483.3 2.202 × 10−1 (1537, 1536)/( −, −)
QG 4.83 × 1011 =148.2 × 1 92.81 10796.3 12937.1 2.390 × 10−1 (2049, 2048)/( −, −)
Hybrid 2.20 × 109 =2.0 × 0.1 1.16 1182.5 703.5 1.208 × 10−1 (769, 768)/(513, 256)
Hybrid 2.70 × 109 =2.5 × 0.1 1.19 1517.0 925.8 1.259 × 10−1 (769, 768)/(513, 256)
QG 4.99 × 109 =6.0 × 0.1 1.82 3005.5 1994.4 1.434 × 10−1 (769, 768)/( −, −)
QG 1.12 × 1010 =13.6 × 0.1 3.23 6091.6 5945.9 1.704 × 10−1 (769, 768)/( −, −)
QG 2.00 × 1010 =24.1 × 0.1 5.67 9833.7 11422.3 2.066 × 10−1 (769, 768)/( −, −)
QG 2.49 × 1010 =30.1 × 0.1 7.28 11883.6 14389.5 2.254 × 10−1 (1025, 1024)/( −, −)
QG 4.00 × 1010 =48.3 × 0.1 12.71 17857.6 23170.1 2.555 × 10−1 (1537, 1536)/( −, −)
QG 2.25 × 109 =5.8 × 0.01 2.54 20527.5 30576.4 2.840 × 10−1 (1537, 1536)/( −, −)
QG 5.62 × 109 =14.5 × 0.01 4.73 43765.4 65138.1 4.050 × 10−1 (4609, 4608)/( −, −)

Ek = 3 × 10−8

Hybrid 1.07 × 1011 =6.8 × 1 1.44 748.5 259.5 4.613 × 10−2 (769, 768)/(769, 256)
QG 1.20 × 1011 =7.9 × 1 2.98 1088.2 364.3 5.043 × 10−2 (769, 768)/( −, −)
QG 2.40 × 1011 =15.7 × 1 6.05 2144.8 1667.4 7.173 × 10−2 (1025, 1024)/( −, −)
QG 4.81 × 1011 =31.5 × 1 13.88 4052.7 4268.4 9.658 × 10−2 (1025, 1024)/( −, −)
QG 9.62 × 1011 =62.9 × 1 33.00 7528.6 9158.5 1.249 × 10−1 (1025, 1024)/( −, −)
QG 1.20 × 1012 =78.6 × 1 42.72 9179.8 11560.0 1.361 × 10−1 (1025, 1024)/( −, −)
QG 1.92 × 1012 =125.8 × 1 71.35 13560.0 18168.4 1.589 × 10−1 (1537, 1536)/( −, −)
QG 2.40 × 1012 =157.3 × 1 90.78 18102.3 24309.7 1.836 × 10−1 (2305, 2304)/( −, −)

Ek = 1 × 10−8

QG 5.21 × 1011 =8.2 × 1 2.92 1523.8 889.8 3.807 × 10−2 (1025, 1024)/( −, −)
QG 1.04 × 1012 =16.5 × 1 5.95 3073.2 2900.9 5.469 × 10−2 (1537, 1536)/( −, −)
QG 2.09 × 1012 =32.9 × 1 13.99 5994.2 7201.6 7.423 × 10−2 (1537, 1536)/( −, −)
QG 4.18 × 1012 =66.0 × 1 32.65 11052.2 15298.2 9.662 × 10−2 (2049, 2048)/( −, −)
QG 4.49 × 1012 =71.0 × 1 35.20 12059.8 16988.9 9.931 × 10−2 (3073, 3072)/( −, −)
QG 8.99 × 1012 =142.0 × 1 77.22 22869.3 34026.5 1.308 × 10−1 (3073, 3072)/( −, −)
QG 5.62 × 1010 =4.1 × 0.1 1.36 3747.8 1887.6 6.280 × 10−2 (1537, 1536)/( −, −)
Hybrid 1.00 × 1011 =4.2 × 0.1 1.58 4358.6 2942.0 8.157 × 10−2 (1537, 1536)/(513, 171)
QG 1.12 × 1011 =8.1 × 0.1 1.83 7519.1 5751.9 8.310 × 10−2 (1537, 1536)/( −, −)
QG 2.25 × 1011 =16.2 × 0.1 2.93 13375.8 14941.6 1.030 × 10−1 (2049, 2048)/( −, −)
QG 1.12 × 1010 =2.0 × 0.01 1.33 15817.8 12622.1 1.220 × 10−1 (2049, 1536)/( −, −)
QG 2.00 × 1010 =3.6 × 0.01 1.60 27367.1 24838.9 1.399 × 10−1 (2049, 2048)/( −, −)
QG 2.25 × 1010 =4.1 × 0.01 1.96 28161.1 24492.0 1.448 × 10−1 (3073, 2048)/( −, −)
QG 3.37 × 1010 =6.1 × 0.01 2.05 40509.8 43890.5 1.470 × 10−1 (3457, 3456)/( −, −)
QG 3.93 × 1010 =7.1 × 0.01 2.24 44887.0 54466.6 1.319 × 10−1 (3457, 3456)/( −, −)
QG 4.49 × 1010 =8.1 × 0.01 2.47 49801.2 61299.8 1.647 × 10−1 (4097, 4096)/( −, −)
QG 1.12 × 1011 =20.3 × 0.01 4.43 120663.5 206311.7 1.496 × 10−1 (9217, 9216)/( −, −)

Ek = 1 × 10−9

QG 2.25 × 1013 =17.6 × 1 5.99 6366.9 7671.7 3.002 × 10−2 (3073, 2048)/( −, −)
QG 4.49 × 1013 =35.2 × 1 11.75 16231.2 24728.6 5.514 × 10−2 (3073, 3072)/( −, −)
QG 2.25 × 1012 =9.4 × 0.1 2.20 16253.8 7816.3 4.624 × 10−2 (4609, 4096)/( −, −)

Ek = 1 × 10−10

QG 4.83 × 1014 =17.6 × 1 5.99 15563.3 17876.4 1.964 × 10−2 (6145, 6144)/( −, −)

A P P E N D I X B : N U M E R I C A L S I M U L AT I O N S W I T H I N H O M O G E N E O U S H E AT F LU X
B O U N DA RY C O N D I T I O N S

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/231/1/129/6572365 by C

N
R

S - ISTO
 user on 10 August 2022



QG, Hybrid and 3-D core convection models 155

Table B1. Summary of the numerical simulations with inhomogeneous heat flux boundary conditions computed in this study. All models have been
computed with η = ri/ro = 0.35. RaQ is the flux-based Rayleigh number, Y(m)/(�, m) is the mode m (QG) or (�, m) (hybrid or 3-D) of the imposed lateral
flux variations (Y0 or Y0, 0 indicates no lateral variations), Q∗ is the relative amplitude of the lateral flux variations, Pr is the Prandtl number, Nu� is the
Nusselt number based on the temperature contrast in the shell, Rec is the convective Reynolds number, Rezon is the zonal Reynolds number, Lus is the
typical length-scale for the cylindrical radial velocity field and (Ns, Nm)/(Nr, �max) are the grid size for the run.

Method RaQ Y(m)/(�, m) Q∗ Pr Nu� Rec Rezon Lus (Ns, Nm)/(Nr, �max)

Ek = 1 × 10−4

Hybrid 1.00 × 107 Y2, 2 3 1 1.59 135.1 68.3 3.142 × 100 (65, 96)/(65, 96)
Ek = 1 × 10−5

Hybrid 2.00 × 108 Y2, 2 3 1 1.67 425.4 87.7 4.488 × 10−1 (129, 128)/(129, 128)
Hybrid 4.00 × 108 Y2, 2 3 1 1.71 543.1 110.0 6.283 × 10−1 (129, 128)/(129, 128)

Ek = 1 × 10−6

QG 2.00 × 109 Y0 − 1 4.20 460.2 119.5 2.417 × 10−1 (385, 384)/( −, −)
Hybrid 2.00 × 109 Y2, 2 3 1 2.11 484.6 195.7 1.963 × 10−1 (289, 320)/(289, 320)
QG 2.00 × 109 Y2 3 1 30.32 144.4 192.5 8.491 × 10−2 (385, 384)/( −, −)
QG 4.00 × 109 Y0 − 1 4.25 927.8 300.8 1.745 × 10−1 (385, 384)/( −, −)
QG 4.00 × 109 Y1 3 1 13.16 611.9 135.4 1.366 × 10−1 (513, 512)/( −, −)
3-D 4.00 × 109 Y2, 2 3 1 4.33 735.6 256.8 − ( −, −)/(257, 341)
Hybrid 4.00 × 109 Y2, 2 3 1 1.59 773.5 429.4 1.496 × 10−1 (337, 384)/(337, 384)
QG 4.00 × 109 Y2 3 1 8.86 640.3 120.2 1.745 × 10−1 (513, 512)/( −, −)
QG 8.00 × 109 Y0 − 1 5.88 1257.9 656.8 2.417 × 10−1 (513, 512)/( −, −)
3-D 8.00 × 109 Y2, 2 3 1 7.15 974.7 352.4 − ( −, −)/(321, 341)
Hybrid 8.00 × 109 Y2, 2 3 1 2.03 1414.7 489.6 2.618 × 10−1 (385, 416)/(385, 416)
QG 8.00 × 109 Y2 3 1 13.92 893.8 238.4 1.496 × 10−1 (513, 512)/( −, −)
Hybrid 1.26 × 1010 Y2, 2 3 1 1.90 1306.3 1162.2 2.417 × 10−1 (417, 448)/(417, 448)
QG 2.60 × 1010 Y2 3 1 21.59 1456.0 835.3 1.745 × 10−1 (513, 512)/( −, −)
QG 3.60 × 1010 Y0 − 1 10.26 231.0 186.2 1.653 × 10−1 (513, 512)/( −, −)
QG 3.60 × 1010 Y2 3 1 22.61 1914.1 957.0 3.142 × 10−1 (513, 512)/( −, −)
QG 3.60 × 1010 Y2 5 1 59.32 720.5 185.5 1.963 × 10−1 (1537, 1536)/( −, −)

Ek = 1 × 10−7

QG 1.62 × 1011 Y0 − 1 5.88 2736.8 2336.3 1.745 × 10−1 (1537, 1536)/( −, −)
QG 1.62 × 1011 Y2 2 1 7.18 2392.5 2067.1 1.257 × 10−1 (1537, 1536)/( −, −)
QG 1.62 × 1011 Y2 5 1 17.85 1538.2 822.0 8.055 × 10−2 (1537, 1536)/( −, −)
QG 3.20 × 1011 Y0 − 1 10.86 2699.1 2280.1 1.653 × 10−1 (1537, 1536)/( −, −)
QG 3.20 × 1011 Y1 3 1 119.83 1150.9 385.8 9.240 × 10−2 (1537, 1536)/( −, −)
QG 3.20 × 1011 Y2 3 1 24.42 1752.4 1117.0 1.527 × 10−1 (1537, 1536)/( −, −)

A P P E N D I X C : O N S E T O F C O N V E C T I O N

We compute the onset of rotating convection using the open source software SINGE2 (Vidal & Schaeffer 2015) for the 3-D configuration
and the Linear Solver Builder package (LSB, Valdettaro et al. 2007) for the QG setup. In absence of a dedicated linear solver for the
hybrid QG-3D configuration, we make the assumption that the critical Rayleigh number for this setup is the same as in the 3-D configuration,
except for 3 cases at Ek = {10−4 , 10−5 , 10−6} and Pr = 1, for which, we have determined the onset by time-integrating the non-linear
eqs (11–14–17) using pizza with an initial sectorial temperature perturbation and by bracketing the Rayleigh number until the critical value
is attained. Fig. C1 displays the Rac values obtained for the three methods at Pr = 1 and 10−4 ≤ Ek ≤ 10−8.

Both SINGE and LSB codes solve for the generalized eigenvalue problems formed by the linearized Navier–Stokes and temperature
equations. They seek normal modes of the form

f (r, θ, φ) = F(r, θ ) exp(λt + imφ) ,

in the 3-D configuration and of the form

g(s, φ) = G(s) exp(λt + imφ) ,

in the QG setup. Starting at a given Ra, the critical Rayleigh number Rac for a given azimuthal wavenumber mc is attained when R(λ) = 0.
Note that for the 3-D configuration, it becomes numerically demanding to determine the onset of convection using a linear solver for Ek <

10−7 for Pr ≥ 1 and for Ek < 10−6 ; Pr < 1. For the cases with Pr = 1, we then resort to using the asymptotic expansion derived by Dormy
et al. (2004) for spherical shells with differential heating (see their eq. 3.25a). For the remaining configurations the leading-order asymptotic
scaling for the onset of rotating convection Rac ∼ Ek−4/3 is used. Table C1 summarizes the critical Rayleigh numbers Rac and azimuthal
wavenumbers mc for the different setups.

2https://bitbucket.org/vidalje/singe
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Figure C1. Evolution of the critical Rayleigh number Rac as a function of the inverse Ekman number Ek−1 at Pr = 1 with fixed temperature difference across
the shell, for our QG (using LSB, in red), hybrid (time-stepped with pizza for Ek ≤ 10−6, in green) and 3-D (using SINGE for Ek ≤ 10−7, in cyan) models,
and compared with an analytical solution in the Ek → 0 limit (Dormy et al. 2004, in black).

Table C1. Summary of the critical Rayleigh numbers Rac and critical azimuthal wavenumbers mc computed for our different setups. We
have computed the onset of the hybrid method for three configurations but have otherwise assumed that hybrid QG-3D and purely 3-D runs
have the same Rac.

Ek Pr Setup Rac mc Computation method

1 × 10−4 10 QG 1.101 × 106 8 LSB

1 × 10−4 1 QG 7.121 × 105 8 LSB

1 × 10−4 1 Hybrid 6.82 × 105 8 Time-integrated with pizza

1 × 10−4 1 3-D 6.94 × 105 7 SINGE

1 × 10−4 0.1 QG 2.911 × 105 6 LSB

1 × 10−4 0.01 QG 1.663 × 105 4 LSB

1 × 10−5 10 QG 1.819 × 107 18 LSB

1 × 10−5 10 3-D and Hybrid 1.621 × 107 17 SINGE

1 × 10−5 1 QG 1.050 × 107 16 LSB

1 × 10−5 1 Hybrid 9.83 × 106 16 Time-integrated with pizza

1 × 10−5 1 3-D 1.05 × 107 15 SINGE

1 × 10−5 0.1 QG 3.623 × 106 11 LSB

1 × 10−5 0.1 3-D and Hybrid 3.53 × 106 11 SINGE

1 × 10−5 0.01 QG 1.967 × 106 6 LSB

1 × 10−5 0.01 3-D and Hybrid 1.952 × 106 6 SINGE

1 × 10−6 10 QG 3.322 × 108 38 LSB

1 × 10−6 1 QG 1.773 × 108 33 LSB

1 × 10−6 1 Hybrid 1.63 × 106 33 Time-integrated with pizza

1 × 10−6 1 3-D 1.88 × 108 31 SINGE

1 × 10−6 0.1 QG 5.24 × 107 23 LSB

1 × 10−6 0.1 3-D and Hybrid 5.076 × 107 23 SINGE

1 × 10−6 0.01 QG 2.728 × 107 12 LSB

1 × 10−6 0.01 3-D and Hybrid 2.587 × 107 12 SINGE

1 × 10−7 10 QG 6.446 × 109 80 LSB

1 × 10−7 1 QG 3.259 × 109 69 LSB

1 × 10−7 1 3-D and Hybrid 3.321 × 109 67 SINGE

1 × 10−7 0.1 QG 8.287 × 108 47 LSB

1 × 10−7 0.1 3-D and Hybrid 2.219 × 108 − Ek4/3 extrapolation from Ek = 1 × 10−6 ; Pr = 0.1
1 × 10−7 0.01 QG 3.868 × 108 26 LSB

3 × 10−8 1 QG 1.529 × 1010 102 LSB

3 × 10−8 1 3-D and Hybrid 1.568 × 1010 − Dormy et al. (2004)
1 × 10−8 1 QG 6.332 × 1010 145 LSB

1 × 10−8 1 3-D and Hybrid 6.492 × 1010 − Dormy et al. (2004)
1 × 10−8 0.1 QG 1.383 × 1010 98 LSB

1 × 10−8 0.01 QG 5.548 × 109 56 LSB

1 × 10−8 0.1 3-D and Hybrid 4.781 × 109 − Ek4/3 extrapolation from Ek = 1 × 10−6 ; Pr = 0.1
1 × 10−9 1 QG 1.276 × 1012 310 LSB

1 × 10−9 0.1 QG 2.396 × 1011 205 LSB

1 × 10−10 1 QG 2.749 × 1013 − Ek4/3 extrapolation from Ek = 1 × 10−9 ; Pr = 1
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Figure D1. Convergence of the relative error for the two z-integration schemes applied to an analytical field as a function of the resolution: the scheme used
for the z-average of the buoyancy (blue curve) and the z-integration scheme used for the thermal wind (green curve). The dotted grey-curve displays the order
of convergence of each scheme. The analytical function used for this test is z sin(π z) (eq. D4).

A P P E N D I X D : C O D E VA L I DAT I O N, B E N C H M A R K S A N D S C A L I N G

D1 Benchmark of the z-integral functions

In this section, we describe numerical tests we have carried out in order to validate our hybrid QG-3D extension of pizza. In linking the
QG and 3-D parts of the code there are two key aspects that require validation: (i) the z-averaging (18) of the 3-D buoyancy to obtain its
contribution on the QG-grid and (ii) the z-integration of the 3-D temperature field to compute the thermal wind contribution (20) on the 3-D
grid.

In order to discuss the validation and the accuracy of our numerical schemes, we define a relative error estimate, erel, as

erel( f ) =
[{

( fref − f )2
}

s{
f 2
ref

}
s

]1/2

, (D1)

where the brackets in the above equation correspond to an average over the annulus

{ f }s ≡ 1

V

∫ 2π

0

∫ so

si

f h(s) s ds dφ . (D2)

D1.1 Analytical benchmark of z-averaging

Our computation of the z-averaged buoyancy term in eq. (17) relies on a simple bilinear interpolation and a basic averaging: Nz = 2Ns points
are regularly distributed between h and −h for each cylindrical radius s on the QG-grid and the 4 nearest points of the 3-D grid are used to
interpolate the value of the field at the corresponding z points; then a simple summation divided by the number of points is performed along
the z-direction at each location in the equatorial plane to obtain the average. The bilinear interpolation is expected to have an accuracy of order
2 and the basic summing an accuracy of order 1. We choose a simple and fast order 1−2 scheme because retaining the speed and efficiency of
the QG approach is our priority and it is readily parallelized. It has also been chosen in previous studies (Guervilly 2010; Guervilly & Cardin
2016).

We tested our parallel implementation of this z-averaging scheme by comparison with an analytical solution. We considered the following
3-D field

f ′(r, θ, φ) = z sin(π z) , with z = r cos θ , (D3)

whose z-integral is

f (s, φ) =
∫ h

−h
f ′(r, θ, φ)dz =

[
sin(π z)

π 2
− z cos(π z)

π

]h

−h

. (D4)

Then we compute the relative error value, erel, obtained between our scheme and this analytical solution while testing different grid sizes, to
test the accuracy and the convergence of our scheme. We set Nr = Ns = Nz/2, Nm = Nφ3-D = 2 × Nθ , and we vary the grid size from (Ns, Nm)
= (16, 16) to (Ns, Nm) = (512, 512). The results are displayed as a function of the grid resolution in Fig. D1 (blue curve). The maximum
value of the averaged function f is 0.338396. As expected, we find that the accuracy varies approximately as 1.2–1.4 times the grid resolution.
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The accuracy (∼ {
1 × 10−1 , 4 × 10−3

}
) and the convergence of our scheme (order 1.2−1.4) validates our implementation of

eq. (17).

D1.2 Analytical benchmark of z-integration for thermal wind

Turning to the implementation of the thermal wind (20), our implementation relies on a 2-neighbours interpolation scheme and performs a
z-integration between any point, (r, θ ), on the 3-D grid and the half-height of the column of fluid above this point, h, by interpolating and
summing the Nz points across the θ lines directly above the position of interest. Because only 2 points are involved in the interpolation and
the integration is again a basic sum, we expect the scheme to have an accuracy of order 1. In order to test the accuracy of this procedure we
compare against the integral of the same analytical function considered in the previous test (eq. D4) but here evaluate the analytic integral
between z and h. We again compute erel compared to the analytical solution (D4), fix Nr = Ns = Nz/2, Nm = Nφ3-D = 2 × Nθ and vary the grid
size from (Ns, Nm) = (16, 16) to (Ns, Nm) = (1024, 1024).

The results are displayed in Fig. D1 (green curve) and we can observe that the accuracy at the lowest resolution is ∼2 × 10−1 and 7 ×
10−3 at the highest resolution. The maximum value of the integrated function f is 0.462040. We find that the scheme for the z-integration of
the thermal-wind contribution has the expected accuracy of order 1 (see the slope), validating our implementation of the scheme.
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