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Abstract. We introduce the open-source tool noisi for
the forward and inverse modeling of ambient seismic cross-
correlations with spatially varying source spectra. It utilizes
pre-computed databases of Green’s functions to represent
seismic wave propagation between ambient seismic sources
and seismic receivers, which can be obtained from existing
repositories or imported from the output of wave propagation
solvers. The tool was built with the aim of studying ambient
seismic sources while accounting for realistic wave propa-
gation effects. Furthermore, it may be used to guide the in-
terpretation of ambient seismic auto- and cross-correlations,
which have become preeminent seismological observables,
in light of nonuniform ambient seismic sources. Written in
the Python language, it is accessible for both usage and fur-
ther development and efficient enough to conduct ambient
seismic source inversions for realistic scenarios. Here, we
introduce the concept and implementation of the tool, com-
pare its model output to cross-correlations computed with
SPECFEM3D_globe, and demonstrate its capabilities on se-
lected use cases: a comparison of observed cross-correlations
of the Earth’s hum to a forward model based on hum sources
from oceanographic models and a synthetic noise source in-
version using full waveforms and signal energy asymmetry.

1 Introduction

1.1 Motivation

Cross-correlations of ambient seismic noise form the basis
of many applications in seismology from site effects studies
(e.g., Aki, 1957; Roten et al., 2006; Bard et al., 2010; Denolle
et al., 2013; Bowden et al., 2015) to ambient noise tomogra-
phy (e.g., Shapiro et al., 2005; Yang et al., 2007; Nishida
et al., 2009; Haned et al., 2016; de Ridder et al., 2014; Fang
et al., 2015; Singer et al., 2017) and coda wave interferometry
(e.g., Sens-Schönfelder and Wegler, 2006; Brenguier et al.,
2008; Obermann et al., 2013; Sánchez-Pastor et al., 2019).
Auto-correlations of the ambient noise are also increasingly
used to study seismic interfaces as suggested by Claerbout
(1968) (e.g., Taylor et al., 2016; Saygin et al., 2017; Romero
and Schimmel, 2018) and to monitor subsurface properties
(Viens et al., 2018; Clements and Denolle, 2018).

Importantly, most ambient noise studies are based on the
assumption that noise cross-correlations converge to inter-
station Green’s functions (Weaver and Lobkis, 2001; Shapiro
and Campillo, 2004; Wapenaar, 2004), which is in gen-
eral not fulfilled (e.g., Halliday and Curtis, 2008; Kimman
and Trampert, 2010; Stehly et al., 2008; Sadeghisorkhani
et al., 2017). Numerical models of noise auto- and cross-
correlations allow us to probe this assumption and eventually
circumvent it (Halliday and Curtis, 2008; Fan and Snieder,
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1598 L. Ermert et al.: Noise modeling and inversion

2009; Cupillard and Capdeville, 2010; Kimman and Tram-
pert, 2010; Fichtner, 2014; Stehly and Boué, 2017; Delaney
et al., 2017). While the number of applications based on the
Green’s function assumption is large and rapidly increasing
(Nakata et al., 2019), only a modest number of studies have
presented models of ambient noise cross-correlations them-
selves, i.e., numerical evaluations of cross-correlations due
to distributed noise sources rather than models of Green’s
functions (e.g., Nishida and Fukao, 2007; Tromp et al., 2010;
Hanasoge, 2013a; Basini et al., 2013; Ermert et al., 2017;
Sager et al., 2018b, 2020; Datta et al., 2019; Xu et al., 2018,
2019).

Several state-of-the-art open-source tools for am-
bient noise data processing are freely available, e.g.,
MSnoise (Lecocq et al., 2014), FastPCC (Ventosa
et al., 2019), yam (https://github.com/trichter/yam,
last access: 7 July 2020), and NoisePy (https:
//github.com/chengxinjiang/Noise_python, last access:
7 July 2020). However, the same cannot be said about
cross-correlation modeling tools, which have mostly been
developed ad hoc by different research groups (Hanasoge,
2013a; Fichtner, 2014; Sager et al., 2020; Xu et al., 2019).
An exception is the openly available implementation of noise
cross-correlations and sensitivity kernels in SPECFEM3D
(Tromp et al., 2010); however, in its current form it is not
tailored to the exploration of different noise source models
and their impact on cross-correlation. Moreover, it requires
high-performance computing (HPC) resources for many
applications.

Therefore, we present a tool named noisi for modeling
ambient noise cross-correlations while honoring the physics
of wave propagation and for determining source sensitivity
kernels which can be used for rapid, cross-correlation-based
ambient noise source inversion. The tool is implemented in
Python, parallelized using mpi4py (Dalcín et al., 2005), and
provided on GitHub alongside a tutorial and an exemplary
ambient noise source inversion setup. In the following pa-
per, we describe the ideas behind noisi and its implemen-
tation, compare its output to cross-correlations modeled with
SPECFEM3D_GLOBE, and illustrate its current capabilities
with selected use cases.

1.2 Using waveform databases for rapid, realistic
cross-correlation models

One of the main challenges in modeling ambient noise cross-
correlations is the adequate representation of seismic wave
propagation from the noise sources, which are in general
globally distributed (Stehly et al., 2006; Nishida and Takagi,
2016; Retailleau et al., 2018), to seismic receivers. The noise
cross-correlation implementations of Tromp et al. (2010) and
Sager et al. (2018a) honor the physics of wave propaga-
tion to the greatest possible extent but require substantial
HPC resources for inversion (Sager et al., 2020). The noisi
tool uses databases of pre-calculated seismic wavefields in-

stead to compute cross-correlations and sensitivity kernels.
It therefore presents an alternative for cross-correlation mod-
eling and noise source inversion for cases where updates to
the structure model (i.e., seismic velocities, density, and at-
tenuation) are not required. Owing to the reuse of Green’s
functions, computation is quick and inexpensive. However,
storage resources, typically on the order of 1 GB per station,
are needed to hold the Green’s function database.

Databases of pre-calculated Green’s functions have re-
cently been applied to a variety of seismological problems,
such as source inversion of earthquakes (Dahm et al., 2018;
Fichtner and Simutė, 2018), landslides (Gualtieri and Ek-
ström, 2018), and ambient noise (Ermert et al., 2017; Datta
et al., 2019). Although the generation of such databases
themselves often requires HPC resources, they can be shared
to provide access to the results of costly wave propagation
simulations to users without access to those resources. This is
achieved, for example, by the IRIS Synthetics Engine (Syn-
gine) repository (IRIS, 2015; Krischer et al., 2017) and by
tools for the extraction and management of Green’s func-
tion databases (van Driel et al., 2015; Heimann et al., 2019).
The noisi tool enables the use of Syngine databases for
modeling noise cross-correlations. However, it is not limited
to these; rather, pre-calculated Green’s function databases
from any numerical wave propagation solver, which may in-
clude 3-D Earth structure, topography, etc., can be used with
noisi after appropriate formatting.

1.3 Possible applications

Various examples fall within the range of possible appli-
cations of noisi. For example, it can be used to probe
the quality of Green’s functions retrieved from noise cross-
correlations in a variety of different source scenarios, such as
those previously studied in simplified models, e.g., by Hal-
liday and Curtis (2008), Kimman and Trampert (2010), and
Fichtner (2014). Furthermore, the influence of noise sources
on the reliability of scattering and attenuation measurements
can be studied, again previously explored by Fan and Snieder
(2009), Stehly and Boué (2017), and Nie et al. (2019). In
addition, ground motion auto-correlations, i.e., power spec-
tral densities of seismic noise, can be modeled for arbi-
trary noise source distributions. Finally, it can be utilized for
noise source inversion when no updates to the Earth struc-
ture model are required, similar to the pioneering study by
Nishida and Fukao (2007), who inverted observed cross-
correlations for the source distribution of the Earth’s hum,
and as performed by Ermert et al. (2017), Xu et al. (2018,
2019), and Datta et al. (2019).

2 Cross-correlation modeling

Ambient seismic noise can be considered the superposition
of elastic waves that have propagated from various traction
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sources N(ξ ,ω) at the Earth’s surface ∂⊕. The amplitude
of the sources depends on location ξ and frequency ω; their
complex phase is treated as a random variable. One compo-
nent of ground motion ui observed at a seismic receiver at
location x can be modeled as the convolution of the noise
source time series with the impulse response of the Earth or
Green’s function G. In the frequency domain, this relation is
expressed as (Aki and Richards, 2002)

ui(x,ω)=

∫
∂⊕

Gin(x,ξ ,ω)Nn(ξ ,ω) dξ , (1)

where summation over repeated indices is implied. The cor-
relation of two such signals, averaged over an observation
period, can be expressed by multiplication in the frequency
domain, i.e.,

Cij (x1,x2,ω)= 〈u
∗

i (x1,ω)uj (x2,ω)〉

=

〈∫∫
δ⊕

G∗in(x1,ξ1,ω)N
∗
n (ξ1,ω)

·Gjm(x2,ξ2,ω)Nm(ξ2,ω)dξ1dξ2

〉
, (2)

where 〈〉 denotes time averaging and the correlation is written
as a convolution with the time-reversed or complex conjugate
signal as indicated by the ∗. We adopt an integral descrip-
tion here as we assume that the noise sources N(ξ1,ω) and
N(ξ2,ω) are generally extended and vary continuously over
more or less extended source areas. Equation (2) only as-
sumes that seismic signals at the receivers are predominantly
seismic waves and that further observational noise, such as
instrument tilt, has been removed or is expected to be inco-
herent in the cross-correlation.

Hence noise cross-correlation modeling has to address
how to parametrize the noise sources Nm(ξ ,ω) and how
to model the propagation of their signals to receivers
(Gjm(x,ξ ,ω)). To deal with sources of unknown, stochas-
tic phases, it is commonly assumed that they are spatially
uncorrelated when averaged over a sufficiently long observa-
tion span or that their correlation length is far below obser-
vational resolution (e.g., Snieder, 2004; Nishida and Fukao,
2007; Tromp et al., 2010; Stutzmann et al., 2012; Hanasoge,
2013b; Farra et al., 2016; Xu et al., 2018; Datta et al., 2019).
Upon this assumption, the noise sources can be described by
their location-dependent power spectral density (PSD),

〈N∗n (ξ1,ω)Nm(ξ2,ω)〉 = Snm(ξ1,ω)δ(ξ1− ξ2) , (3)

removing the requirement to model their phase. Assuming
that the change in Green’s functions in between observation
windows is negligible, Eq. (2) can be rearranged so that the
source PSD can be substituted and the cross-correlation be-
comes

Cij (x1,x2,ω)=

∫
δ⊕

G∗in(x1,ξ ,ω)

·Gjm(x2,ξ ,ω)Snm(ξ ,ω)dξ , (4)

which greatly simplifies the model. The sources Nn,Nm are
traction sources as mentioned above so that Snm can be re-
garded as a power spectral density of pressure at the Earth’s
surface (with units of Pa2 s). Importantly, ambient seismic
source amplitudes usually vary with the observation period.
For example, oceanic sources show both short-term and sea-
sonal variations (Ardhuin et al., 2011; Stutzmann et al.,
2012). Therefore, the cross-correlations C generally depend
on the time and duration of observation. Often, such time
dependence due to source variability is regarded as a nui-
sance effect in ambient noise studies, and stacks are formed
to mitigate this effect (e.g., Stehly et al., 2009). However,
we illustrate and discuss below how using modeling tools
like noisi enables us to incorporate source information for
an extended interpretation of what signals cross-correlations
may contain.

For the evaluation of Eq. (4), source–receiver reciprocity
(Aki and Richards, 2002) is invoked,

Gjm(x2,ξ ,ω)=Gmj (ξ ,x2,ω), (5)

so that a point force source can be placed at the location of
one seismic receiver, and the Green’s functions to any source
at the Earth’s surface is recorded, which is far more practi-
cable than simulating waves from a large number of possible
seismic noise source locations to the receiver.

If an Earth model is assumed a priori, e.g., the Preliminary
Reference Earth Model (Dziewoński and Anderson, 1981)
or another model resulting from seismic tomography, the
obtained Green’s functions Gin(x1,ξ ,ω) and Gjm(x2,ξ ,ω)

are fixed throughout the simulation or inversion, and Eq. (4)
can be evaluated multiple times while requiring only one po-
tentially costly wave propagation simulation per receiver or
none if prepared databases such as the ones from Syngine are
used. This strategy is implemented in the noisi tool.

Similar to the derivation of the forward model, the misfit
gradient with respect to noise source parameters, which is
needed for noise source inversion, can be obtained. For one
receiver pair and components i and j , the misfit sensitivity
kernel is given by

Knm(x1,x2,ξ)=

ω1∫
ω0

G∗in(x1,ξ ,ω)

·Gjm(x2,ξ ,ω)fij (x1,x2,ω)dω, (6)

where f (x1,x2,ω) depends on the chosen measurement
function used to compare modeled and observed noise cross-
correlations and the last two indices of the kernel, nm, re-
fer to the source (cross-)components. The misfit gradient can
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then be compiled as a sum of sensitivity kernels. For details
on kernels and inversion, the interested reader is referred to
Tromp et al. (2010), Hanasoge (2013a), Fichtner (2014), Er-
mert et al. (2017), Sager et al. (2018b), and Xu et al. (2019).

The noisi tool computes both forward model and sensi-
tivity kernels. It has been constructed to fulfill both tasks in
a simple, flexible, and computationally inexpensive way, and
addresses them as follows. Noise sources are treated as spa-
tially varying power spectral densities according to Eq. (3).
Wave propagation Green’s functions Gin are read from a
database in HDF5 format (Folk et al., 2011). The tool in-
cludes setup routines for (i) analytic surface wave Green’s
functions, (ii) Green’s functions for spherically symmetric
Earth models provided by instaseis (van Driel et al.,
2015) with wavefield databases hosted by the Syngine repos-
itory (Krischer et al., 2017), and (iii) Green’s functions for
laterally varying Earth models obtained from AxiSEM3D
(Leng et al., 2016, 2019). The AxiSEM3D solver can account
for a number of predefined mantle models, topography, and
crustal model crust1.0 (Laske et al., 2013). In addition to
these three options, custom waveform databases can be con-
structed by formatting results of wave propagation modeling
as an HDF5 database usable by noisi.

3 Implementation

The core tasks of the tool are to evaluate Eqs. (4) and (6).
This is done by approximating the integrals by a weighted
sum:

Cij (x1,x2,ω)

=

∫
δ⊕

G∗in(x1,ξ ,ω)Gjm(x2,ξ ,ω)Snm(ξ ,ω)dξ ,

≈

ns∑
s=1

[
G∗in(x1,ξ s,ω)Gjm(x2,ξ s,ω)

·Snm(ξ s,ω)
]
1ξ s, (7)

and accordingly for Eq. (6). These computational tasks
mostly rely on NumPy (Oliphant, 2020). PyYAMl (Simonov,
2014) is used to handle readable and commented configura-
tion files, SciPy (Millman and Aivazis, 2011) for signal pro-
cessing tasks, ObsPy (Beyreuther et al., 2010) for signal pro-
cessing, geodetic functions, and access to seismic data for-
mats, h5py (Collette, 2013) for the handling of the HDF5
format, mpi4py (Dalcín et al., 2005) for parallelization us-
ing MPI, and Cartopy for basic plotting. The installation of
instaseis (van Driel et al., 2015) is optional and allows
users to obtain Green’s functions from reciprocal or merged
instaseis databases which can, for example, be down-
loaded from the Syngine repository (Krischer et al., 2017).

Below we briefly describe the implementation in more de-
tail following a possible sequence of work to create a cross-
correlation model and noise source inversion.

3.1 Definition of source model grid

The discretized noise source grid that will be used throughout
modeling and inversion is predefined and fixes the locations
of possible noise sources. For each evaluation of Eqs. (4)
and (6), Green’s functions Gin and source spectra Snm at
locations ξ s are matched by index. This reduces computa-
tional effort during modeling and inversion. The grid setup
aims to collect locations of approximately equal surface area
around each point on the surface of the WGS84 ellipsoid.
This is achieved by selecting points at equal distance (in me-
ters) in latitudinal and longitudinal direction. The parameters
to be specified by the user are grid step, as well as minimum
and maximum coordinates. An example for a regional grid is
shown in Fig. 1e.

Since the rectangle rule is used for spatial integration
(Eq. 7), a finer grid reduces integration error. For the com-
parison to SPECFEM3D_globe (shown below), the spacing
is chosen as one half of the shortest expected seismic wave
length, while for the synthetic inversion in Sect. 5.2, it is
set to one quarter of the shortest wave length. Either rule
of thumb produces satisfactory results, although small im-
provements are obtained using the finer spacing (see Supple-
ment). To exclude that integration errors severely affect the
modeled cross-correlations, testing the convergence of the re-
sults with decreasing grid step is recommended in particular
when body waves in the cross-correlations are considered.
Improvements of spatial integration are the subject of current
developments (e.g., Igel, 2019).

The grid only defines source longitude and latitude but
does not specify elevation. The influence of an eventual to-
pography of the underlying wave propagation model on the
surface area of each grid cell is neglected. However, topog-
raphy itself can be taken into account; the Green’s functions
Gin describe propagation from and to the surface of the un-
derlying numerical wave propagation model. Therefore, to-
pography and bathymetry are determined by their value in
the respective geographic location of the wave propagation
model.

3.2 Source model parametrization

Instead of parametrizing the sources as fully sampled spectra
at each grid point, their spectra are represented by a small
number of Gaussian functions of frequency in each grid lo-
cation, which reduces the dimensionality of the model and
inverse problem and ensures that the source PSD in each lo-
cation is smooth. This is illustrated in Fig. 1, which shows an
example of a basic source model that may be subsequently
updated by noise source inversion. The model contains
sources which are homogeneously distributed throughout the
ocean (panel a), as well as a localized source (panel c); note
that their maximum amplitudes differ. Each of these distri-
butions are associated with a different amplitude spectrum
(panels b and d). Thus, in any location of the source grid, the
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Figure 1. Illustration of noise source model parametrization. The upper panels show spatial source distributions (a, c) with different spec-
tra (b, d). Note the difference in maximum amplitudes. (Similar figures can be reproduced by following the Jupyter Notebook tutorial for
noisi). Panel (e) shows the grid on which source spectra are defined; power spectral densities, corresponding to the term Snm of Eq. (4)
for the grid locations ξ marked by yellow stars, are shown in (f). These are the superposition of spectra (b) and (d), with spatially varying
amplitudes specified by distributions (a) and (c), respectively.

effective source spectrum is a superposition of both spectra
weighted by their respective distribution. This is shown in
panel f, with spectra at locations marked by yellow stars on
the map in panel e: On the continent (48◦ N, 12◦ E), the spec-
trum is flatly zero, whereas in the North Sea (57◦ N, 4◦ E) it
shows a single peak associated with the source distribution
and spectrum in panels a and b. In the Bay of Biscay, the
localized strong source of panels c and d, which varies at
shorter distance from 45◦ N, −4◦ E to 45.5◦ N, −4.5◦ E, is
also visible.

Any number of such distributions can be superimposed
to create a source model. Gaussian PSDs and their spatial
weights at each grid point are stored in HDF5 format as de-
tailed in the Appendix E. Examples for all input files are also
provided in the GitHub repository. The parameters for setup
are geographic distributions (geographically homogeneous,
ocean, and Gaussian “blob”), as well as the central frequency
and variance of the Gaussian spectra. Custom source models
can be created by modifying the underlying HDF5 file (an
example is shown in Sect. 5.1).

3.3 Wavefield databases

Green’s functions are stored in one HDF5 file per seismic re-
ceiver component. The format is specified in the Appendix C.

For the preparation of this database, routines are provided
that take a seismic station list, the format of which is also
specified in the Appendix B, as input. One may set up a
database for analytic far-field surface wave Green’s functions
for 2-D homogeneous media (following Fan and Snieder,
2009); obtaining Green’s functions for PREM or other refer-
ence models additionally requires an instaseis database
(e.g., downloaded from Syngine). If a surface wavefield out-
put from AxiSEM3D is provided, Green’s functions can be
extracted from this surface wavefield, allowing us to include
3-D lateral Earth structure. If run on multiple processors, the
task of preparing the Green’s function database is performed
in embarrassingly parallel mode in that each receiver compo-
nent is prepared on one core.

Custom wavefields can be built by converting the format
of previously computed surface wavefields. Similarly to the
example of converting from AxiSEM3D output, output from
any other wave propagation solver may be interpolated at the
grid locations and stored in the HDF5 format as detailed in
the Appendix C for use with the noisi tool. Crucially, the
HDF5 format (Folk et al., 2011) allows convenient access to
single Green’s functions. These may be stored either as time
series or complex spectra; details on this choice are explained
below.

https://doi.org/10.5194/se-11-1597-2020 Solid Earth, 11, 1597–1615, 2020
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3.4 Evaluation of cross-correlations

The tool evaluates correlations for all possible combinations
of stations specified in the station list (see Appendix B)
and the selected component, optionally including auto-
correlations. If run on multiple processors, tasks are again
distributed according to a simple embarrassingly parallel
scheme.

While the convolutions of Eqs. (4) and (6) are performed
in the frequency domain for speed, storage of the Green’s
functions may be more convenient in the time or frequency
domain depending on the application; procedures for either
domain are implemented. When storage is in the frequency
domain, no fast Fourier transform (FFT) of the Green’s func-
tions is needed during calculation, which eases the compu-
tation. As the Green’s functions are real functions of time,
their spectra are Hermitian so that storing their non-negative-
frequency part suffices to describe them fully. However, the
Green’s functions have to be zero padded prior to fast Fourier
transform in order to preclude circular convolution and to in-
crease frequency resolution. When the Green’s functions are
stored in the time domain, this zero padding is done on the
fly during computation before FFT is performed. Thus, the
number of samples decreases compared to frequency domain
storage, resulting in reduced storage and I/O effort despite
the increased computational effort of performing FFT.

The resulting cross-correlations are saved in SAC format
with essential metadata contained in the SAC header.

3.5 Measurements and evaluation of sensitivity kernels

To run noise source inversion, observed auto- and/or cross-
correlations must be provided as SAC files with their head-
ers containing a fixed set of metadata as specified in the Ap-
pendix A (usage similar to IRIS DMC, 2015). Measurements
can then be performed on the data and the modeled cross-
correlations yielding a misfit between the current model and
the observations. Implemented measurements include win-
dowed and full waveforms, mean squared amplitudes, and
the logarithmic signal energy ratio between a causal and
a-causal correlation branch. For details on these measure-
ments, see Sager et al. (2018a). Running the measurement
will additionally determine the term f (ω) of Eq. (6), which
is frequently referred to as adjoint source. This term corre-
sponds to the derivative of the measurement with respect to
the synthetic cross-correlation trace. Sensitivity kernel com-
putation is run analogous to the forward model, i.e., reading
in Green’s functions for each source location identified by
index. Kernels are saved as ` by m by n dimensional arrays,
where ` is the number of Gaussian PSD spectra, m the num-
ber of applied bandpass filters, and n the number of source
locations.

4 Comparison to SPECFEM3D_GLOBE

To the best of our knowledge, the only currently available
open-source model of noise cross-correlations and their sen-
sitivity kernels was provided by Tromp et al. (2010). Thus,
we use their implementation to validate and cross-check the
output of forward modeling with noisi. The implementa-
tion by Tromp et al. (2010) follows a different strategy. It
models the cross-correlation wavefield by inserting the in-
verse Fourier transform of the term Gjm(x2,ξ ,ω)Snm(ξ ,ω)

of Eq. (4) as a source term of the wave propagation simula-
tion yielding Cij (x,x2,τ ) in any location of the model do-
main.

To compare entirely independently computed ambient
noise cross-correlations, we use AxiSEM3D (Leng et al.,
2016) to create the pre-computed wavefields on the ba-
sis of which we then compute cross-correlations with
noisi. These are compared to cross-correlations mod-
eled with SPECFEM3D_GLOBE (Komatitsch and Tromp,
2002a, b) as described by Tromp et al. (2010) and in the
SPECFEM3D_GLOBE user manual. To exclude relevant de-
viations between the models stemming from differences be-
tween the spectral element solvers, we omit laterally vary-
ing crustal models since their implementation differs be-
tween SPECFEM3D_GLOBE and AxiSEM3D and consider
the elastic case without attenuation. We perform the com-
parison of cross-correlations at periods of up to 15 s for the
spherically symmetric PREM (Dziewoński and Anderson,
1981) and for the laterally varying S40RTS (Ritsema et al.,
2011) models. Using PREM, the effects of ocean, elliptic-
ity, topography, rotation, and gravity were neglected, while
they were included with S40RTS. The ocean was modeled
as an effective load in both solvers and gravity by the Cowl-
ing approximation (Komatitsch and Tromp, 2002a). Supple-
mentary Fig. S1 illustrates the locations of the stations in
the modeling domain, which extends to 20◦ by 20◦, as well
as the shear wave velocity perturbation of S40RTS with re-
spect to PREM in this region at 20 km depth. The numer-
ical domain for the solution in SPECFEM3D_GLOBE is
set to 40◦ by 40◦ with absorbing boundaries; the larger do-
main is chosen to exclude spurious boundary reflections of
surface waves from the lag window of interest. However,
noise sources are restricted to act in the same domain as
for the other case. In AxiSEM3D, a method that couples
a spectral-element discretization with a pseudospectral ex-
pansion along the azimuth (Leng et al., 2019), we simulate
the full desired 3-D resolution inside the domain of interest.
Rather than using absorbing boundaries as in the simulation
with SPECFEM3D_GLOBE, we avoid spurious reflections
in AxiSEM3D by using a global computational domain. The
azimuthal Fourier expansion is tapered to a minimum of two
Fourier coefficients outside of our domain of interest, which
strongly reduces the additional computing time accrued due
to the global simulation.
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As source distribution for this example, we chose a ho-
mogeneous distribution of noise with a Gaussian spec-
trum peaking at a 20 s period. Figure 2 shows the
comparison of cross-correlation waveforms obtained from
SPECFEM3D_GLOBE and the combination of AxiSEM3D
and noisi interpolated to equal sampling rate and filtered
consistently by a second-order Chebyshev low-pass filter.
Each waveform is normalized to unity for better visibility;
a comparison showing the relative amplitudes can be found
in the Supplement. The traces are arranged by increasing
inter-station distance (not to scale). We observe an excellent
fit of the cross-correlation waveforms. Note that the strong
asymmetry of several cross-correlations is an effect of the
sources being confined to a bounded domain, an effect which
is reproduced consistently by both algorithms. This figure
also illustrates the effect of different models on the cross-
correlations. The correlations for S40RTS show a delay in the
arrival of the dominant surface wave groups that increases
with higher frequency, which is partially an effect of using
different crustal layers (an averaged single crustal layer was
used with PREM), as well as the negative velocity perturba-
tions of S40RTS from PREM in this region, which are illus-
trated in Fig. S1 in the Supplement.

Upon close inspection, deviations of the correlations mod-
eled by noisi from the SPECFEM3D_globe output are vis-
ible. Figure 2c and d show these increased by a factor of 10.
We suggest that these result are mostly from the approxi-
mation of the spatial integral that we adopt in Eq. (7). We
corroborate this by varying the spatial sampling (see Supple-
ment).

5 Example applications

5.1 Auto- and cross-correlation forward modeling

Forward modeling of ambient noise auto- and cross-
correlations has been employed in a number of studies, for
example, to investigate noise sources (e.g., Stutzmann et al.,
2012; Gualtieri et al., 2013; Juretzek and Hadziioannou,
2017) or to evaluate the assumption of Green’s function re-
trieval (e.g., Stehly and Boué, 2017). The noisi tool imple-
ments forward modeling for arbitrary distributions of noise
sources with Gaussian spectra. To exemplify this, we model
correlations of the Earth’s hum at a selection of receiver
locations based on the model of seismic hum as described
by Ardhuin et al. (2015) and implemented in Deen et al.
(2018) and extended to global hum sources. We use a tem-
poral subset of this space-, time-, and frequency-dependent
hum source model, namely a selection of Southern Hemi-
sphere winter months (July–September) averaged over the
frequency band 0.0035–0.007 Hz. This hum model is in-
terpolated on a dense global source grid for the noisi
tool. To illustrate the use of Green’s functions describing
different Earth structures and obtained with different wave

propagation solvers, the correlations are constructed with
two different Green’s function databases. Synthetics from
anisotropic PREM with uniform crustal layer are contrasted
with synthetics from S40RTS including attenuation, later-
ally varying crust2.0, and ocean load. These have been com-
puted with AxiSEM3D (in spherically symmetric mode) and
SPECFEM3D_GLOBE, respectively.

We illustrate a selection of the resulting correlations (se-
lected to represent the variety of inter-station paths and dis-
tances) in Fig. 3. The map shows the averaged source model
and station locations for the synthetic correlations. Addi-
tional panels show synthetic correlation traces for two Earth
models (orange: PREM; blue: S40RTS+crust2.0). At the
long periods considered here, the waveforms of both models
are similar, although subtle differences occur both in phase
and amplitude. Several cross-correlations show arrivals be-
fore the first-arriving Rayleigh wave (the arrival of a sur-
face wave traveling at 3.7 kms−1 is marked by dashed red
and green lines on the a-causal and causal branch, respec-
tively). This occurs, for example, between stations CAN and
SSB and stations INU and SSB. These phases, with ampli-
tudes far higher than those expected of fast-traveling body
waves, are due to the source distribution in this synthetic
example; similar early-arriving phases have been previously
observed. While sometimes referred to as spurious arrivals,
they are physical and can even be utilized for source localiza-
tion (Retailleau et al., 2017). Generally, the stationary phase
of surface waves in the cross-correlation with respect to noise
source distribution ensures the retrieval of fundamental mode
surface waves from noise cross-correlations (Snieder, 2004;
Tsai, 2009). However, the presence of strong or persistent lo-
calized sources off the great circle path which connects the
two receivers can give rise to arrivals before the expected
surface waves (e.g., Shapiro et al., 2006; Zheng et al., 2011),
appearing approximately at the differential travel time from
the source location to the two receivers. Modeling cross-
correlations, such as the ones in Fig. 3, opens up possibili-
ties to study them in more detail, which will possibly enable
us to utilize valuable information which might otherwise be
discarded as incoherent “noise”.

In a further step, we compare the model to observed cross-
correlations. Since stacking duration was only 3 months for
the noise source model (July–September 2013), only a few
of the modeled station pairs yield cross-correlation with an
acceptable signal-to-noise ratio. These are pairs of stations
which are (i) exceptionally quiet in the hum band, accord-
ing to probabilistic power spectral densities for the respective
time period, and (ii) at moderate or near-antipodal distance
to enhance station-to-station surface wave amplitude. These
criteria are fulfilled by CAN, SSB, and TAM. We show a
comparison of their observational cross-correlations with the
modeled ones in Fig. 4. Cross-correlations were computed
in windows of 12 h with 50 % overlap after removal of any
earthquake with Mw > 5.6 as classical, geometrically nor-
malized cross-correlations according to Eq. (1) of Schimmel
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Figure 2. Comparison between two implementations of simulation ambient noise cross-correlations with PREM (a) and S40RTS (b). Both
panels shows correlations modeled with SPECFEM3D_GLOBE, as well as with noisi, in which the latter uses Green’s functions modeled
with AxiSEM3D. A moveout of 3 kms−1 is shown by the dashed gray line (note that the y axis is only approximately to scale for better
visibility; however, the cross-correlations for both models are arranged at the same distances). The correlations are low-pass filtered by a
type II Chebyshev filter with a stopband frequency of 0.07 Hz normalized to unity and arranged by inter-station distance. An overview of
the modeling domain, stations, and mantle shear velocity model is shown in the Supplement. Panels (c) and (d) show the absolute difference
between the traces in (a) and (b) enhanced by a factor of 10. The vertical bars denote the scale.

et al. (2011) and stacked. All waveforms in Fig. 4 are nor-
malized by maximum amplitude.

For better visibility, windows around the R1 wave are en-
larged. Upon measuring the L2 waveform difference between
observed and modeled cross-correlation within these win-
dows, a slightly better overall fit is obtained by using a 3-D
Earth model (this holds both for the three correlations se-
lected here and the collection of all modeled correlations).

The observed cross-correlations are noisy due to the rela-
tively short stack (up to 92 d depending on data availability);
cross-correlations in this frequency band are expected to pre-
dominantly show direct, fundamental mode surface waves
between two stations only after a stacking duration of one
year and more (Haned et al., 2016). The observed traces
here may contain incidental, non-coherent apparent correla-
tions, i.e., “noise of the noise”, such as the strong arrival at
1t u 500s on the a-causal zoom of G.CAN–G.SSB. More
elaborate stacking schemes (e.g., Schimmel et al., 2011;
Ventosa et al., 2019), which are out of the scope of this
work, can reduce such effects. It is important to note, how-
ever, that similar looking phases may also be produced by
the inhomogeneous source distribution like the modeled ar-

rival at1t u−300s on the zoomed causal panel of G.CAN–
G.TAM. Modeling can enable us to distinguish and interpret
such phases.

5.2 Ambient noise source inversion

Sensitivity kernels computed with noisi can be used to
run gradient-based inversion for the distribution of ambient
seismic sources from a dataset of observed ambient noise
cross-correlations. To demonstrate the effectiveness of this
approach, we conduct two synthetic inversions using two dif-
ferent functions to measure the misfit between observations
and model. The sensitivity kernel of any misfit function for
the zz component of cross-correlation can be expressed as

Kzz(x1,x2,ξ)=

ωNyq∫
ω=0

G∗zz(x1,ξ ,ω)Gzz(x2,ξ ,ω)

· fzz(x1,x2,ω)dω, (8)

where merely the function fzz is determined by the chosen
misfit function and corresponds to the derivative of the misfit
function with respect to the modeled cross-correlation.
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Figure 3. Simulation of cross-correlations due to hum sources modeled akin to Ardhuin et al. (2015) and Deen et al. (2018). Hum sources
are localized in small areas constrained to shorelines of continents and islands. Correlations were computed using both anisotropic PREM
(yellow) and S40RTS (blue). Localized hum sources cause a host of early-arriving surface wave phases in the cross-correlations. Red and
green vertical lines mark the arrival time of a surface wave traveling at 3.7 kms−1.

As the first misfit function, we use the L2 norm of the syn-
thetic (Csyn) and observed (Cobs) correlation waveforms, i.e.,

χfwi =
1
2

[
Csyn
− Cobs

]2
, (9)

in the time domain, yielding

f (x1,x2,ω)= F
[
Csyn
− Cobs

]
, (10)

where we denote the Fourier transform by F .
An exemplary waveform sensitivity kernel for the z com-

ponents of both receivers and vertical sources is shown in
Fig. 5a. It reveals how various locations of the source distri-
bution affect the measurement. One can clearly recognize the
pattern of stationary phase regions behind the stations and the
oscillating sensitivity in between the stations (e.g., Snieder,
2004; Xu et al., 2019).

In contrast, Fig. 5b shows sensitivity Kzz of another misfit
function,

χA =
1
2

[
A(Csyn)−A(Cobs)

]2
, (11)

where

A(x(τ))= ln

(∫
[w+(τ )x(τ )]

2dτ∫
[w−(τ )x(τ )]2dτ

)
, (12)

and w+,w− denote causal and a-causal windows of the
cross-correlation, respectively, and f becomes the following
(where the dependency on the lag τ is omitted):

f (x1,x2,ω)= F
[[
Asyn
−Aobs

]
·

[
w2
+Csyn∫

[w+Csyn]2dτ
−

w2
−Csyn∫

[w−Csyn]2dτ

]]
. (13)

For simplicity, we will refer to this second measurement
as asymmetry in the following. This second sensitivity ker-
nel (Fig. 5b) is smoother than the full waveform one; the
oscillating sensitivity between the stations is removed due
to the windowing by w−,w+, and the stationary phase re-
gions have opposite signs of sensitivity due to the ratio∫
[w+(τ )x(τ )]

2dτ∫
[w−(τ )x(τ )]2dτ . A body wave is caught in the measurement
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Figure 4. Forward modeled and observed cross-correlations. No fitting or inversion was undertaken; the forward model is built upon the hum
mechanism by Ardhuin et al. (2015) and Deen et al. (2018) using PREM (yellow lines) and S40RTS (blue lines). Correlations are normalized
by maximum amplitude. Red and green vertical lines indicate windows of± 20 min around a minor-arc surface wave traveling at 3.7 kms−1.
These are enlarged in the respective bottom panels.

Figure 5. Illustration of sensitivity kernels. (a) Normalized vertical-component sensitivity kernel Kzz(x1,x2,ξ) of full waveform L2 misfit
χfwi (Eq. 9). The station locations x1,x2 are marked by red triangles. Frequency integration runs from 0 Hz to the Nyquist frequency,
but the source spectrum peaks at dominant frequency 0.05 Hz and filters out everything above 0.1 Hz. (b) Normalized sensitivity kernel
Kzz(x1,x2,ξ) of windowed asymmetry measurement χA (Eq. 11). Similar figures can be obtained by adapting the Jupyter Notebook tutorial
for noisi.
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window adding a faint ring of sensitivity near the stations
probably due to body wave–surface wave interaction (Sager
et al., 2018a). The term fzz(x1,x2,ω) encompasses the dif-
ferences between both sensitivity kernels of Fig. 5 by taking
the form of Eqs. (10) and (13) for waveforms and asymmetry
measurement, respectively.

This illustrates that inversions using different strategies to
measure data-model misfits (waveform, asymmetry, etc.) will
produce different optimal models of the noise source distri-
bution. For example, provided adequate coverage, one can
expect a higher resolution to result from using the L2 wave-
form misfit, which has more short-wavelength spatial fea-
tures.

This appears even more clearly once we conduct the inver-
sion. We first construct a synthetic dataset by forward mod-
eling cross-correlations from a source distribution shown in
Fig. 6a, which has a low background level of sources in the
left half of the domain, along with three strong Gaussian-
shaped sources marked by green crosses at varying dis-
tances outside the array, which is marked by red trian-
gles. The right half of the domain is source free. The fre-
quency content of the starting model is homogeneous for
all sources (background and blobs), with Gaussian power
spectral density S(ξ ,ω) of Eq. (3) having a mean frequency
of 0.05 Hz and standard deviation of 0.02 Hz. We compute
cross-correlations through PREM at all station pairs of the ar-
ray and add Gaussian noise with an amplitude of± 5% of the
average root mean square of all synthetic cross-correlation
traces.

To treat the inversions with different measurements con-
sistently, we proceed in the same manner concerning filtering
and smoothing. The inversion starts at a lower frequency, and
a higher frequency band is added (taking two measurements
after bandpass filtering in two different bands) after 20 iter-
ations. Gaussian smoothing is applied in lieu of a more for-
mal regularization, and smoothing length is decreased after
20 iterations. The optimization itself is performed with the
L-BFGS algorithm of the SciPy minimize module (Nocedal
and Wright, 2006; Millman and Aivazis, 2011). Results are
shown in Fig. 6. The second row (panels c and d) shows re-
sults from full waveform inversion (panel c) and asymmetry
inversion (panel d). The centers of the Gaussian perturbations
to be retrieved are marked by green crosses also on the recov-
ered models to simplify comparison with the target model.
Titles indicate the respective measurements, and numbers in
brackets show the minimum and maximum of the recovered
source distributions; the maximum amplitude of 1 is not fully
recovered by any of the inversions due to the smoothing reg-
ularization.

As expected, the full waveform misfit performs better at
recovering the perturbations. The recovery succeeds reason-
ably well for sources that are close to the array, whereas
sources at a greater distance are more smeared both towards
and away from the array. The sources close to the array suf-
fer fairly little smoothing and demonstrate that it is possible

to not only retrieve the direction but in this case also the ap-
proximate location of ambient noise sources predominantly
imaged by fitting surface wave measurements.

The logarithmic signal energy ratio misfit shows stronger
inversion artifacts and images a rather crude impression of
the target model with stronger smearing effects. In addi-
tion, this inversion was terminated after 44 iterations due its
falling below the threshold for minimal misfit improvement,
which might indicate that it is trapped in a local minimum or
simply suggests very slow convergence.

Figure 6e–h show example waveforms for two station
pairs. Predicted waveforms by the final models (blue lines)
are shown along with noise-free synthetic data (dark gray)
and the synthetic data with additive noise which were used
for inversion (light gray). Note that the gray traces do not
vary between the left and right columns, whereas the blue
traces show results for different measurements. Traces in
the first row correspond to a station pair which is oriented
southwest–northeast and marked by dashed circles, i.e., its
stationary phase aligns approximately with the source at−3◦

and −3◦; the signal-to-noise-ratio is high, and the waveform
measurement results in an excellent fit to the noise-free syn-
thetic data. On the other hand, the bottom row corresponds to
a station pair oriented north–south and marked by solid cir-
cles. In this case, sources in the stationary phase region are
very low, and strong sources are located outside of it. The
signal-to-noise ratio is low and the fit worse with some de-
gree of overfitting. The asymmetry measurement appears to
be more sensitive to additive noise and performs worse at re-
covering waveforms. For the favorably oriented station pair,
it recovers phases reasonably well; amplitudes cannot be re-
covered with this measurement because it is based on a ratio
that removes absolute amplitude information. For the unfa-
vorably oriented station pair, neither phase nor amplitude fit
well.

While the full waveform misfit produces a very satisfac-
tory image in this synthetic case, it has a very low tolerance
for errors in the seismic velocity model (Sager et al., 2018b;
Xu et al., 2019). On the other hand, the logarithmic energy ra-
tio misfit, which produces a poor image of the target, is very
robust with respect to perturbations of the velocity model
(Sager et al., 2018b) and has been shown to perform better in
scenarios with spatially separated source perturbations (Er-
mert et al., 2017; Sager et al., 2018b). Our proposed strategy
for ambient seismic source inversion is to consider several
misfits for inversion and base interpretations on the synopsis
of the results. The modular structure of noisi allows us to
implement new measurement functions without adapting any
other part of the code by adding functions with the same call
and return parameters to these scripts. Besides the measure-
ments illustrated above, the L2 misfit of signal energy in the
surface wave window is implemented.
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Figure 6. (a, b) Synthetic inversions of ambient seismic source distribution. The target model is shown in (a). (b) shows the misfit reduction
using two different measurements. After 20 iterations, an additional frequency band was added to the inversion, and smoothing decreased. (c,
d) Recovered source distributions. Titles indicate the respective measurement; the numbers in brackets indicate the minimum and maximum
values of the color scale. (e–h) Comparison of waveforms from the final models to the synthetic data. For this comparison, we chose a
particularly good (e, f) and a particularly bad (g, h) example. Synthetic data from the target model, including additive noise, are shown by
light gray lines. For comparison, we also show the noise-free synthetics in dark gray lines, which were not used for inversion but show that
the inverted model retrieves the coherent information rather than the random noise. Modeled waveforms obtained from the inverted source
distributions based on the full waveform and asymmetry are shown in blue. Colored circles indicate the location of the station pairs.

6 Discussion and conclusions

The noisi tool allows users to create correlations for a va-
riety of source models without the burden of costly numeri-
cal wave propagation simulations by utilizing instaseis
or to run noise source inversion at reduced cost with pre-
calculated Green’s function databases from AxiSEM3D or
other wave propagation solvers. Due to its implementation in
Python, the tool can be easily modified and integrated into
a rapidly growing ecosystem of seismologic applications in

Python (e.g., Beyreuther et al., 2010; Hosseini and Sigloch,
2017; van Driel et al., 2015; Heimann et al., 2019; Lecocq
et al., 2014).

Disadvantages compared to implementations integrated
into spectral element solvers, such as the ones by Tromp
et al. (2010) and Sager et al. (2018a), are the rigid setting
of the source grid and the approximation of spatial integrals.
These are evaluated by weighted sums which can lead to ap-
proximation artifacts (see Fig. 2). Tromp et al. (2010), Basini
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et al. (2013), and Sager et al. (2018a) evaluate the spatial in-
tegrals using the spectral element basis, which is expected to
approximate the integral better at a comparable spatial reso-
lution. However, this is not a conceptual but rather a current
practical limitation of the tool and could thus be overcome by
adapting the wavefield storage and spatial integration. While
the errors in Fig. 2c and d may appear large, they may of-
ten be negligible in comparison to data noise and can be fur-
ther diminished by increased spatial sampling. The storage
burden of the Green’s function database may be regarded as
another disadvantage. However, wavefields at the surface of
the modeling domain have to be temporarily stored in either
type of implementation to allow the application of the ambi-
ent source spectra, and thus the choice to reuse them appears
intuitive. Finally, and most importantly, the tool is not fit to
perform ambient noise full waveform adjoint tomography.
This task requires iterative updates to the Earth model and
can be achieved by SPECFEM3D_globe or the recently de-
veloped Salvus (Afanasiev et al., 2018). Both of these imple-
ment a spectral element model of the cross-correlation wave-
field (Tromp et al., 2010; Sager et al., 2020). Extension of
noisi to compute structure sensitivity kernels is possible
but highly impractical because storing the required volume
wavefield would be cumbersome, and the re-computation of
the wavefield after each structural update would defeat the
purpose of using pre-computed wavefields.

The output of the wavefield at the Earth’s surface either in
full or sampled at particular predefined grid locations poses
practical challenges for input/output and storage in both
types of applications. As an example, the retained wavefield
utilized by SPECFEM3D_GLOBE for creating the cross-
correlations of a single reference station in Fig. 2 amounts to
180 GB for the 40◦ by 40◦ domain with 15 s being the short-
est period. Furthermore, the wavefield at the surface needs to
be either post-processed for usage with noisi or convolved
with the ambient noise source spectrum (e.g., Tromp et al.,
2010). This is made cumbersome by the high temporal sam-
pling of the numerical wavefield, which is imposed by the
Courant–Friedrichs–Lewy criterion. The ease of computing
cross-correlations with noisi is in part a consequence of
decimating simulated Green’s functions in time by factors of
10 and more. In turn, built-in sparser representation and/or
output of the surface wavefield in numerical solvers, such as
currently implemented by Salvus (Boehm et al., 2016), par-
tially alleviates the burden and may pave the way for faster
and computationally cheaper noise cross-correlation mod-
eling without recourse to pre-calculated wavefields. In the
meantime, further developments of the presented tool may
include improvements of the spatial integration. To the best
of our knowledge, it closes a current gap in the application of
Green’s function databases for noise cross-correlation mod-
eling.
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Appendix A: SAC headers

The following SAC headers on observed cross-correlation
traces can be used with noisi in order to perform measure-
ments with the goal of ambient seismic source inversion.
Only a few of them are essential to provide the necessary
information to the tool. These are marked in bold.

b: (float), minimum lag
e: (float), maximum lag
stla: (float), latitude of station 1
stlo: (float), longitude of station 1
evla: (float), latitude of station 2
evlo: (float), longitude of station 2
user0: (float), number of stacked windows
user1: (float), window length for observed cross-correlation computation
user2: (float), window overlap during observed cross-correlation computation
dist: (float), station pair distance in meters
az: (float), station pair azimuth in degrees
baz: (float), station pair back azimuth in degrees
kstnm: (string), station code of station 1
kevnm: (string), station code of station 1
kt0: (string), date of earliest window in cross-correlation stack (YYYYjjj)
kt1: (string), date of latest window in cross-correlation stack (YYYYjjj)
kuser0: (string), network code of station 2
kuser1: (string), location code of station 2
kuser2: (string), channel code of station 2
kcmpnm: (string), channel code of station 1
knetwk: (string), network code of station 1

Appendix B: Example input station list

Stations to be used in modeling need to be specified in a
comma-separated list (with one example line) as follows.

net,sta,lat,lon
G,CAN,-35.318715,148.996325
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Appendix C: Wavefield format

The tool expects to find Green’s functions organized as
HDF5 files by seismic receiver channel with filenames
NETWORK.STATION..CHANNEL.h5 for the networks
and stations listed in the input file list (see above). Each
HDF5 file needs to contain the following data structure.
Both single and double precision floats may be used for the
“data” and “sourcegrid” datasets. Single precision is used by
default.

group “/”
dataset ”data” (float), shape: ntraces by nt, Green’s functions
dataset “sourcegrid” (float), shape: 2 by ntraces, geographic grid
dataset “stats”, metadata attribute ”Fs” (float), sampling rate in Hz

attribute “data_quantity” (string), ”DIS”, ”VEL” or ”ACC”
attribute “fdomain” (int), 0 for time domain, 1 for frequency domain
attribute “nt” (int), number of samples
attribute “ntraces” (int), number of source locations
attribute reference_station (string), SEED identifier of station

Appendix D: Noise source format

The tool expects to find the noise source model as HDF5
files with name starting_model.h5 (for each iteration) with
the following data structure.

group “/”
dataset “coordinates” (float), shape: 2 by ntraces; geographic grid
dataset “frequencies” (float), shape: Number of frequency samples after zero-padded, next power of 2, real FFT of nt; frequency axis
dataset “model” (float), shape: ntraces by number of basis functions; spatial weights of noise source model
dataset “spectral_basis” (float), shape: number of basis functions by length of frequency axis; spectral basis functions
dataset “surface_areas” (float), shape: ntraces; approximate surface area of grid cell
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Code and data availability. The Python code can be downloaded
from GitHub (https://github.com/lermert/noisi, Ermert and Igel,
2020). A tutorial in the form of a Jupyter Notebook is provided as
the main item of documentation and details each step for the com-
putation of cross-correlations and sensitivity kernels.

The GitHub repository contains a set of basic test cases to be
passed by further developments. It also provides a numerical test
for the consistency of forward model and gradient, which can be
employed for the development of additional misfit functions.

All observed seismic data used to prepare this paper were down-
loaded from IRIS Data Management Center.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/se-11-1597-2020-supplement.
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