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S U M M A R Y
Mechanisms of stress transfer and probabilistic models have been widely investigated to
explain earthquake clustering features. However, these approaches are still far from being
able to link individual events and to determine the number of earthquakes caused by a single
event. An alternative approach based on proximity functions allows us to generate hierarchical
clustering trees and to identify pairs of nearest-neighbours between consecutive levels of
hierarchy. Then, the productivity of an earthquake is the number of events of the next level to
which it is linked. Using a relative magnitude threshold �M to account for scale invariance in
the triggering process, we show that the �M-productivity attached to each event is a random
variable that follows an exponential distribution. The exponential rate of this distribution does
not depend on the magnitude of triggering events and systematically decreases with depth.
These results could now be used to characterize active fault systems and improve epidemic
models of seismicity.

Key words: Probabilistic forecasting; Earthquake interaction, forecasting, and prediction;
Seismicity and tectonics; Statistical seismology.

1 I N T RO D U C T I O N

The earthquake productivity is a key parameter in statistical seismol-
ogy as it gives the number of events within a space–time–magnitude
window of observation. In earthquake-size distributions, the pro-
ductivity determines the level of seismic activity independently of
the ratio between the number of large and small events. However,
an important feature of seismicity is the occurrence of space–time
clusters, which unequivocally demonstrate that earthquakes inter-
act with each other. Hence, by focusing on the way in which a
sequence of earthquakes develops over space and time, the produc-
tivity can also be regarded as the number of events resulting from
the perturbation of the state of stress induced by another earthquake.
Such a productivity has first been used to develop appropriate mod-
els of aftershock occurrence considering the empirical Omori-Utsu
law (Utsu 1969, 1970). The number of aftershocks in a given time
interval can then be computed according to the magnitude m of
the mainshock and the properties of the power-law aftershock de-
cay rate (Utsu et al. 1995; Shcherbakov et al. 2004; Shcherbakov
& Turcotte 2004; Holschneider et al. 2012; Davidsen et al.
2015).

Since the advent of epidemic models of seismicity (i.e. ETAS
models), the productivity has become a major issue because it is
the main ingredient that determines the increase in seismicity rate

after each earthquake (Kagan & Knopoff 1981; Ogata 1989; Helm-
stetter & Sornette 2002). In all these models, the number of events
triggered by a magnitude m earthquake is considered to vary as
a Poisson process of rate 〈N(m)&x3009 x232A; = K10αm. The re-
ported α-values vary from 0.5 to 2 (Console et al. 2003; Helmstetter
2003; Zhuang et al. 2004, 2005; Hainzl & Marsan 2008; Werner &
Sornette 2008; Wang et al. 2010; Hainzl et al. 2013), but they are
often close to the observed b-value, the slope of the earthquake-size
distribution. Nevertheless, these estimates remain uncertain due to
the difficulty of isolating the relative contributions of successive
events in a sequence.

Despite the diversity of declustering methods implemented in the
past, the research dealing with causal links within cascades of trig-
gered seismicity is still in its early stage and there is no definitive
classification as yet. A first approach is to separate the branching
structure of earthquake sequences from the background rate using
an iterative algorithm based on maximum likelihood estimation of
the parameters of an epidemic model of seismicity (Zhuang et al.
2002). Without an a priori model, a second approach is to identify,
directly and indirectly, triggered events assuming linear contribu-
tions of each earthquake to the overall seismicity rate (Marsan &
Lengliné 2008). Another approach is dedicated to the identification
of earthquake clusters using proximity functions in time–space–
magnitude domains (Baiesi & Paczuski 2004; Zaliapin et al. 2008).
All these methods confirm the dependency of the productivity on

1264 C© The Author(s) 2020. Published by Oxford University Press on behalf of The Royal Astronomical Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/222/2/1264/5841196 by C

N
R

S - ISTO
 user on 10 August 2022

http://orcid.org/0000-0002-3361-3773
http://orcid.org/0000-0002-9556-9544
http://orcid.org/0000-0002-1960-6120
mailto:narteau@ipgp.fr


Earthquake productivity law 1265

the magnitude m of the triggering event. However, less attention
has been given to the overall variability in the number N of trigger-
ing events in the seismic catalogues (Marsan & Helmstetter 2017).
Here we examine this specific issue using a proximity function and
clusters of nearest-neighbours earthquakes.

2 M E T H O D S

For each pair of earthquakes {i, j}, we compute the proximity func-
tion (Baiesi & Paczuski 2004),

ηi j =
{

ti j (ri j )df 10−bmi for ti j > 0,

+∞ for ti j ≤ 0,
(1)

where tij = tj − ti is the interevent time, rij the spatial distance
between the epicentres, mi the magnitude of event i, df the frac-
tal dimension of the epicenter distribution and b the slope of
the earthquake-size distribution. Hierarchical clustering trees of
nearest-neighbour events are then constructed using a threshold η0

for the proximity function (Zaliapin & Ben-Zion 2013, 2016). Here,
this threshold value is computed using a non-parametric method,
without fitting a model to the distribution of η-values. Instead, we
generate a random version of the same catalogue by shuffling the
earthquake times. Assuming that the distribution of η-values of this
random catalogue provides the non-clustered reference distribution
for the real catalogue, we select the η0-value for which the two
types of errors compensate each other: same probability of having
causally related events with η > η0 and independent events with η

< η0 (Note 1 in the Supporting Information).
Here all earthquakes are considered as triggering events (parents).

Using the threshold η0-value between two consecutive levels of
hierarchy, each earthquake is also considered as a triggered event
(child) if it is linked to the higher level of hierarchy. Considering only
the first nearest-neighbour in the time–space–magnitude domain
(i.e. the smallest η-value), a triggered event is associated with only
one triggering event. According to these rules, isolated earthquakes
with no parent and no child can occur. All hierachical clustering
trees are built from a primary triggering event, which has no parent.
From any earthquake, there is a single path to a unique primary
event. Level 0 of the hierarchical clustering trees is only composed
of primary triggering events (no parent). Level 1 is composed of
earthquakes triggered by events from level 0 and so on. Interestingly,
a triggered event may have a larger magnitude than its triggering
events. Thus, we study seismicity patterns beyond the traditional
mainshock-aftershock sequences.

For each triggering earthquake, we count the number of trig-
gered events at the lower hierarchical level using a relative mag-
nitude threshold �M to account for scale invariance in the trig-
gering process (i.e. Mtriggering − Mtriggered < �M). This number of
triggered events is defined as the �M-productivity (hereafter the
productivity). The distribution of the number of triggered events
for an earthquake population is defined as the productivity dis-
tribution with a mean denoted ��M and called the clustering
factor.

3 E A RT H Q UA K E P RO D U C T I V I T Y I N
W O R L DW I D E A N D R E G I O NA L
C ATA L O G U E S

We select events worldwide using the ANSS Comprehensive earth-
quake catalogue ComCat and a completeness magnitude Mc = 4.5
from 1980 to 2018. We only estimate the productivity for the 1490

Figure 1. Earthquake productivity in the worldwide catalogue. Dots show
the distribution of the number of triggered events for M ≥ 6.5 earthquakes
using a relative magnitude threshold �M = 2. The solid line is the expo-
nential law with parameter �2, the mean number of triggered events derived
from the data. The histogram shows the Poisson distribution with parameter
�2. Inset shows the cumulative productivity distributions for primary and
secondary triggering events.

Mtriggering ≥ 6.5 earthquakes. They are associated with 6437 trig-
gered events using a relative magnitude threshold �M = 2. The
choice of these values is not critical as long as Mtriggering ≥ Mc +
�M and the number of triggering and triggered events is sufficient
for statistical robustness (Note 2 of the Supporting Information).

Fig. 1 shows the distribution of the number of triggered events
as well as the exponential and the Poisson distributions with the
same rate parameter �2 = 6437/1490. This comparison indicates
that the productivity distribution is consistently described by an
exponential law using the mean number of triggered events as a
single rate parameter. Earthquakes triggered by primary events can
themselves be secondary triggering events and so on until the final
branches of the hierarchical clustering trees (see examples in Note 3
of the Supporting Information). The inset of Fig. 1 shows that the
productivity distributions are invariant to the level of the triggering
event. Thus, there is a consistent cascade of triggering and the
exponential function appears to govern the productivity of all M ≥
6.5 earthquakes.

The productivity distribution remains exponential when the rel-
ative magnitude threshold �M increases from 1 to 2.6 (Fig. 2a).
As expected, the mean values ��M is decreasing according to the
b-value of the earthquake-size distribution (Fig. 2b). In addition,
keeping a constant relative magnitude threshold �M, the distribu-
tion of triggered events and its mean value ��M are almost the same
regardless of the magnitude of triggering earthquakes (Figs 2c and
d). Hence, both the exponential shape of the productivity distribu-
tion and the clustering factor ��M can be considered as generic
properties of earthquakes whatever their size.

The exponential shape of the productivity distribution is observed
in the entire seismogenic layer and Fig. 3 shows the dependence of
the clustering factor �2 on depth (examples of productivity distri-
butions using different depth ranges are shown in Note 4 of the
Supporting Information). The rapid decay rate of the �2-value with
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(a) (b)

(c) (d)

Figure 2. Dependence of earthquake productivity on magnitude ranges in the worldwide catalogue. (a) Distribution of the number of triggered events of M ≥
6.5 earthquakes using a relative magnitude threshold �M ∈ {1, 1.2, . . . , 2.6}. (b) The mean number of events ��M with respect to the relative magnitude
threshold �M. (c) Distribution of the number of triggered events with respect to the magnitude Mtriggering of the triggering event using a relative magnitude
threshold �M = 2. We take Mmin ≤ Mtriggering < Mmax with Mmax = Mmin + 0.2 and Mmax ∈ {6.5, 6.7, . . . , 8.1}. (d) The average number ��M of triggered
events with respect to the magnitude of the triggering event for �M ∈ {1, 2, 2.5}.

respect to depth from 10 to 100 km indicates that the productiv-
ity is impacted by rock properties and environmental parameters
governing the rupture process.

In order to validate these observations made worldwide, we anal-
yse the productivity distributions in seven areas using regional seis-
mic catalogues (Fig. 4). In these catalogues, lower completeness
magnitudes allow us to investigate the productivity distribution in
smaller magnitude ranges. The exponential behavior is ubiquitous
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Figure 3. Earthquake productivity with respect to depth in the worldwide catalogue. Average number of triggered events with respect to depth for M ≥ 6.5
earthquakes using a relative magnitude threshold �M = 2. Triggering events are chosen with respect to depth using an overlapping sliding window of 100
events with a step of 50 events. Horizontal and vertical errorbars show the depth interval and the 90 per cent credibility intervals of the likelihood function,
respectively.

in all areas but the mean number �2 of triggered events varies from
one region to another (Fig. 4a). It could be a consequence of the
earthquake depth distribution, but also of other seismogenic prop-
erties such as creep, stress regime or heat flux (Narteau et al. 2009;
Zaliapin & Ben-Zion 2016). In subduction zones along Japan, Kam-
chatka and New Zealand the �2-value decreases with the depth of
the triggering events from 10 to 100 km (Figs 4a–c). In California,
where strike-slip faulting prevails, the productivity also drops with
depth and the decrease in �2-value is systematically observed in
the brittle layer from 5 to 13 km, where most of the earthquakes
occur (Fig. 4d). Finally, to determine the proportion of foreshocks,
we take �M = 0 (i.e. Mtriggered ≥ Mtriggering) to compare the average
productivity of M ≥ 4.5 earthquakes in the different areas (Note 5 in
the Supporting Information). The largest value is observed in Kam-
chatka (0.12), the smallest in New Zealand and in the worldwide
catalogue (0.06).

4 C O N C LU D I N G R E M A R K S

To explore the underlying dynamics of earthquake clusters in space
and time, the basis of our approach is to attach to each event a pro-
ductivity, that is a number of directly triggered events. In addition
to the Omori-type decay in seismicity rate which is generally de-
scribed by non-stationary Poisson process, the number N of events
triggered by a single earthquake follows a Poisson distribution with
mean λ

pp(N = k) = λk exp(−λ)

k!
. (2)

We propose here that this mean (expectation) number is not deter-
ministic. Instead, it is a random variable that follows an exponential
distribution

pe(λ) = 1

��M
exp

(
− λ

��M

)
. (3)

Its mean ��M is the clustering factor. This �M-productivity law
is independent of the magnitude of triggering events and charac-
terizes the earthquake clustering process across scales according to
the relative magnitude threshold. Combining eqs (2) and (3), the
unconditional probability density function of N writes

p(N = k) =
∫ ∞

0

λk exp(−λ)

k!
× 1

��M
exp

(
− λ

��M

)
dλ

= 1

k!��M
×

(
1 + 1

��M

)−(k+1)

�(k + 1)

= 1

1 + ��M

(
��M

1 + ��M

)k

.

(4)

where �(x) = ∫ ∞
0 t x−1 exp(−t) dt is the Gamma function. Then, the

number N of triggered events follows a geometric distribution with
the mean ��M, which naturally explains the exponential behaviors
observed worldwide and in various active tectonic settings (Figs 1,
2 and 4a).

Using hierarchical clustering trees, the persistence of the expo-
nential behaviour of the productivity law across the different levels
of hierarchy (Fig. 1) and over a wide range of earthquake size (Fig. 2)
demonstrates the relevance and validity of the hypothesis underly-
ing epidemic models of seismicity. Nevertheless, when considering
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(a)

(b) (c)

(d) (e)

Figure 4. Earthquake productivity in regional catalogues. (a) Distribution
of the number of triggered events in different seismic regions. (b–d) Average
number of triggered events with respect to depth in Kamchatka (b), Califor-
nia (c), New Zealand (d), Italy (e) using a relative magnitude threshold �M
= 2.

the variability in the number of triggered events, an exponential
distribution has never been considered before, either for theoretical
predictions or in probabilistic model inversion. Our results suggest
that such a law could improve the likelihood of epidemic models and
allow a better understanding of the clustered nature of earthquake
sequences.

In taking this step, we analyse synthetic sequences produced by
these epidemic models of seismicity to check the validity of our
statistical procedure. Numerical tests demonstrate that our hierar-
chical declustering method is able to recover both the predefined
Poisson and exponential (geometric) distributions of the productiv-
ity (Note 6 in Supporting Information). Hence, we can reject the
hypothesis that the exponential behaviour observed in real cata-
logues is an artefact of our declustering procedure.

Our investigations show similar results regardless of the nearest-
neighbours selection method (Note 7 in the Supporting Informa-
tion). Indeed, the exponential behavior emerges as soon as the
threshold distance between statistically related events remains small
enough (Note 8 in the Supporting Information). However, large

threshold value are required to distinguish between different regimes
and we show here that the best compromise value can be obtained
without fitting approximation by comparing the clustering property
of real and random catalogues.

Our findings indicate that the perturbation induced by an earth-
quake produces only a small number of events. They even show that
the most likely number of events triggered is zero. This counterintu-
itive observation must be considered with respect to the dependence
of the productivity distribution on �M (eq. 3). As the clustering fac-
tor ��M increases as 10b�M (Fig. 2b), the productivity distribution
keeps its exponential shape but is rescaled by the same factor. The
single exponential regime observed in worldwide and regional cat-
alogues can then be considered as reflecting the overall strength of
the rock material, regardless of the magnitude of the perturbation.
Beyond the individual contribution of each earthquake to the trig-
gering of future events, the branching process within cascades of
seismicity is responsible for the density and spatio-temporal pat-
terns of seismic clusters. In all cases, there is no reason to assume
a Poisson distribution to take into account the variability in the
number of earthquakes triggered by an event.

We show that the clustering factor ��M decreases with depth
(Figs 3 and 4b–e) and can now be used as a new statistical tool
for the characterization of major fault systems, as it is currently
done using earthquake-size distributions or aftershock sequences
(Narteau et al. 2009; Shebalin & Narteau 2017). In addition, the
behaviours observed in different regions of the world clearly in-
dicate that the relative number of earthquakes with no triggered
events increases as the transition from brittle to ductile behavior is
approached (Figs 4b–e). The earthquake productivity and the clus-
tering factor might then be exploited to explore faulting mechanics
at depth where continuous and discontinuous deformations coexist.
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Marsan, D. & Lengliné, O., 2008. Extending earthquakes’ reach through
cascading, Science, 319(5866), 1076–1079.

Narteau, C., Byrdina, S., Shebalin, P. & Schorlemmer, D., 2009. Common
dependence on stress for the two fundamental laws of statitical seismol-
ogy, Nature, 462, 642–645.

Ogata, Y., 1989. Statistical model for standard seismicity and detection of
anomalies by residual analysis, Tectonophysics, 169(1-3), 159–174.

Shcherbakov, R. & Turcotte, D.L., 2004. A damage mechanics model for
aftershocks, Pure appl. Geophys., 161, 2379–2391.

Shcherbakov, R., Turcotte, D.L. & Rundle, J.B., 2004. A generalized Omori’s
law for earthquake aftershock decay, Geophys. Res. Lett., 31(L11613),
doi:10.1029/2004GL019808.

Shebalin, P. & Narteau, C., 2017. Depth dependent stress revealed by after-
shocks, Nat. Commun., 8(1), 1–8.

Utsu, T., 1969. Aftershocks and earthquake statistics (i): some parameters
which characterize an aftershock sequence and their interrelations, J.
Faculty Sci., Hokkaido Univ., Ser. VII (Geophys.), 2, 129–195.

Utsu, T., 1970. Aftershocks and earthquake statistics (ii): further investi-
gation of aftershocks and other earthquake sequences based on a new
classification of earthquake sequences, J. Faculty Sci., Hokkaido Univ.,
Ser. VII (Geophys.), 3, 197–266.

Utsu, T., Ogata, Y. & Matsu’ura, R., 1995. The centenary of the Omori
formula for a decay law of aftershocks activity, J. Phys. Earth, 43, 1–33.

Wang, Q., Schoenberg, F.P. & Jackson, D.D., 2010. Standard errors of pa-
rameter estimates in the etas model, Bull. seism. Soc. Am., 100(5A),
1989–2001.

Werner, M.J. & Sornette, D., 2008. Magnitude uncertainties impact seismic
rate estimates, forecasts, and predictability experiments, J. geophys. Res.,
113(B8), doi:10.1029/2007JB005427.

Zaliapin, I. & Ben-Zion, Y., 2013. Earthquake clusters in southern California
I: identification and stability, J. geophys. Res., 118(6), 2847–2864.

Zaliapin, I. & Ben-Zion, Y., 2016. A global classification and characteriza-
tion of earthquake clusters, Geophys. J. Int., 207(1), 608–634.

Zaliapin, I., Gabrielov, A., Keilis-Borok, V. & Wong, H., 2008. Cluster-
ing analysis of seismicity and aftershock identification, Phys. Rev. Lett.,
101(1), 018501.

Zhuang, J., Ogata, Y. & Vere-Jones, D., 2002. Stochastic declustering of
space-time earthquake occurrences, J. Am. Stat. Ass., 97(458), 369–380.

Zhuang, J., Ogata, Y. & Vere-Jones, D., 2004. Analyzing earthquake cluster-
ing features by using stochastic reconstruction, J. geophys. Res., 109(B5),
doi:10.1029/2004JB003157.

Zhuang, J., Chang, C.-P., Ogata, Y. & Chen, Y.-I., 2005. A study on the
background and clustering seismicity in the Taiwan region by using point
process models, J. geophys. Res., 110(B5), doi:10.1029/2004JB003157.

S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Supplementary Information.pdf

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/222/2/1264/5841196 by C

N
R

S - ISTO
 user on 10 August 2022

http://dx.doi.org/10.1029/2001JB001580
http://dx.doi.org/10.1029/2011JB009054
http://dx.doi.org/10.1029/JB086iB04p02853
http://dx.doi.org/10.1126/science.1148783
http://dx.doi.org/10.1038/nature08553
http://dx.doi.org/10.1016/0040-1951(89)90191-1
http://dx.doi.org/doi:10.1029/2004GL019808
http://dx.doi.org/10.1038/s41467-017-01446-y
http://dx.doi.org/10.4294/jpe1952.43.1
http://dx.doi.org/10.1785/0120100001
http://dx.doi.org/10.1029/2007JB005427
http://dx.doi.org/10.1002/jgrb.50179
http://dx.doi.org/10.1093/gji/ggw300
http://dx.doi.org/10.1103/PhysRevLett.101.018501
http://dx.doi.org/0.1198/016214502760046925
http://dx.doi.org/10.1029/2004JB003157
http://dx.doi.org/10.1029/2004JB003157
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggaa252#supplementary-data

