
HAL Id: insu-03748837
https://insu.hal.science/insu-03748837

Submitted on 10 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to the geomagnetic secular variation from
a reanalysis of core surface dynamics

O. Barrois, N. Gillet, J. Aubert

To cite this version:
O. Barrois, N. Gillet, J. Aubert. Contributions to the geomagnetic secular variation from a reanalysis of
core surface dynamics. Geophysical Journal International, 2017, 211, pp.50-68. �10.1093/gji/ggx280�.
�insu-03748837�

https://insu.hal.science/insu-03748837
https://hal.archives-ouvertes.fr


Geophysical Journal International
Geophys. J. Int. (2017) 211, 50–68 doi: 10.1093/gji/ggx280
Advance Access publication 2017 July 10
GJI Geomagnetism, rock magnetism and palaeomagnetism

Contributions to the geomagnetic secular variation from a reanalysis
of core surface dynamics

O. Barrois,1 N. Gillet1 and J. Aubert2
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S U M M A R Y
We invert for motions at the surface of Earth’s core under spatial and temporal constraints that
depart from the mathematical smoothings usually employed to ensure spectral convergence of
the flow solutions. Our spatial constraints are derived from geodynamo simulations. The model
is advected in time using stochastic differential equations coherent with the occurrence of
geomagnetic jerks. Together with a Kalman filter, these spatial and temporal constraints enable
the estimation of core flows as a function of length and time-scales. From synthetic experiments,
we find it crucial to account for subgrid errors to obtain an unbiased reconstruction. This is
achieved through an augmented state approach. We show that a significant contribution from
diffusion to the geomagnetic secular variation should be considered even on short periods,
because diffusion is dynamically related to the rapidly changing flow below the core surface.
Our method, applied to geophysical observations over the period 1950–2015, gives access
to reasonable solutions in terms of misfit to the data. We highlight an important signature
of diffusion in the Eastern equatorial area, where the eccentric westward gyre reaches low
latitudes, in relation with important up/downwellings. Our results also confirm that the dipole
decay, observed over the past decades, is primarily driven by advection processes. Our method
allows us to provide probability densities for forecasts of the core flow and the secular variation.

Key words: Core; Magnetic field variations through time; Inverse theory; Probabilistic
forecasting.

1 I N T RO D U C T I O N

The past decade has seen the advent of geomagnetic data assimila-
tion techniques, aiming at modeling the core state by considering
constraints not only from geophysical observations, but also from
our knowledge of the core dynamics (Fournier et al. 2010). This
approach, widely developed to study the dynamics of surface en-
velopes (ocean and atmosphere), is particularly suited if one aims at
either predicting or understanding a dynamical systems (this latter
activity being usually referred to as reanalysis). In the context of the
geodynamo, reanalyses are promising in the perspective of imaging
unobserved quantities (such as the magnetic field, the flow or the
buoyancy flux deep in the fluid outer core), and thus isolating mech-
anisms responsible for the generation of the time-varying Earth’s
magnetic field. On the other hand, forecasts aim at proposing future
probability densities for the evolution of the field that constrains
our spatial environment, with implication in space weather – see,
for instance, the damages from cosmic rays on low Earth orbiting
satellites as they pass through areas of low magnetic intensity such
as the South-Atlantic anomaly (Heirtzler 2002; Aubert 2015).

Several avenues have been followed to handle those two ques-
tions. One is to use 3-D forward simulations of the geodynamo (Liu
et al. 2007; Fournier et al. 2013) to derive the state of the core
(magnetic, velocity and codensity fields) using the primitive induc-

tion, momentum and heat equations, given observations of the ra-
dial magnetic field at the core–mantle boundary (CMB). However,
because of the huge numerical cost required to reach Earth-like
regimes, those simulations are presently run using unrealistic di-
mensionless parameters, implying too large dissipation processes –
see, for example, the discussions by Cheng & Aurnou (2016) and
Bouligand et al. (2016). Dynamo simulations are nevertheless able
to provide static and kinematic images of the core consistent with
geomagnetic field models (e.g. Christensen et al. 2010). However,
their current development prevents from appropriately modeling the
dynamics associated with rapid changes of the secular variation (the
rate of change of the magnetic field, or SV).

An alternative avenue consists in considering reduced models
able to relatively enhance the role played by magnetic forces, as ini-
tiated by Canet et al. (2009) or Labbé et al. (2015) under the quasi-
geostrophic (QG) assumption. However, such models are not yet
operational. In the absence of entirely satisfying prognostic models,
SV predictions propagated by core surface motions have been car-
ried out, using piecewise stationary flows (Beggan & Whaler 2009;
Whaler & Beggan 2015). These first pragmatic attempts are op-
erational but do not include important information contents, for
instance on the temporal correlation of the flow, or the subgrid
errors associated with the unresolved CMB magnetic field at small
length scales. These issues have been addressed in the framework of
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Table 1. Summary of the notations used throughout this study. The state x shall here be considered as a generic notation
(either b or u or e).

Physical space Spectral space Meaning Truncation degree

Br B Radial magnetic field 1 − nCE
b

Br b Large-scale radial magnetic field 1 − no

B̃r b̃ Small-scale radial magnetic field no + 1 − nCE
b

u u Surface core flow 1 − nu

er e Subgrid errors 1 − no

d d Diffusion 1 − no

eo Main field observation errors 1 − no

bo Main field observations 1 − no

ėo SV observation errors 1 − ṅo

ḃo SV observations 1 − ṅo

x̂(t) Background state
〈x〉 Time-average state

x∗(t) Reference state
x†(f) State time Fourier transform
xf(t) Forecast
xa(t) Analysis
x′(t) Analysis error xa − x∗

nCE
b Truncation degree of CE magnetic field 30
nu Truncation degree of core flow 18
no Truncation degree of observed magnetic field 14
ṅo Truncation degree of observed SV 14

stochastic processes (see van Kampen 2007), which appear able to
estimate the probability density function (PDF) of time-dependent
core surface flows. Gillet et al. (2015b) proposed a reanalysis of
QG transient motions over 1940–2010 by means of a weak formal-
ism, while Gillet et al. (2015a) used instead an Ensemble Kalman
Filter (EnKF, see Evensen 2003) to predict the magnetic field PDF
in the context of the IGRF-12 (International Geomagnetic Refer-
ence Field – 12th generation, Thébault et al. 2015). In this latter
proof-of-concept study, subgrid errors were accounted for with an
augmented state approach (e.g. Reichle et al. 2002). We refer for
instance to Miller et al. (1999) for an illustration of the stochas-
tic EnKF efficiency to describe the evolution of the model state
PDF, and to Buizza et al. (1999) for the representation of model
uncertainties through stochastic processes, and their impact on the
prediction scores.

In the present work, we merge for the first time spatial informa-
tion provided by numerical simulations with temporal constraints
brought by specifically chosen stochastic processes. The former is
obtained by free runs of a 3-D geodynamo model, as initiated by
Fournier et al. (2011), and has been previously used to infer series
of independent snapshot core flows from geomagnetic field models
by Aubert (2013, 2014). The latter extends the algorithm developed
by Gillet et al. (2015a), in particular by considering a contribution
from core surface magnetic diffusion that improves the analysis of
Aubert (2014). Furthermore, here we follow and complement an
idea supported by Amit & Christensen (2008), and derive diffusion
from cross-covariances involving up/downwellings and the gradient
of the magnetic field below the CMB.

The present work displays similarities with the work of
Baerenzung et al. (2014, 2016), as it aims to depart from math-
ematical smoothing often employed to ensure spectral convergence
(the large-scale hypothesis, see Holme 2015), possibly enhancing
the footprint of unresolved small length-scale structures in the SV
at large length scales. Through this work, we present the first val-
idation, with synthetic experiments, of the ability to recover time-
dependent core flow features. It is also the first attempt at multiepoch

assimilation that uses spatial information from geodynamo while
analysing recent geomagnetic data.

We present in details our algorithm in Section 2. In Section 3.1,
we test and validate our approach with synthetic experiments, in
order to quantify our ability to infer information on observable and
unobservable quantities of the core state. Next in Section 3.2, we
apply our algorithm in a geophysical configuration with a reanalysis
of the COV-OBS.x1 model (Gillet et al. 2013, 2015a) over 1950–
2015. We finally discuss in Section 4 possible applications, such as
hypothesis testing or the forecast of the geomagnetic field PDF.

2 M O D E L S A N D M E T H O D S

2.1 Spatial cross-covariances from geodynamo
simulations

The variables used in the present work are summarized in Table 1.
We use spherical coordinates (r, θ , φ), and the associated unit vec-
tors (1r, 1θ , 1φ). In the frequency range considered in this study
(periods longer than one year), the mantle can be considered as
an insulator (Jault 2015). The potential magnetic field B = −∇V ,
above the CMB (of radius c = 3485 km), is projected onto spherical
harmonics:

V (r, θ, φ) = a
nb∑

n=1

(a

r

)n+1 n∑
m=0

[
gm

n cos(mφ) + hm
n sin(mφ)

]

× Pm
n (cos θ ), (1)

where {gm
n , hm

n } are the Gauss coefficients, a = 6371.2 km is the ref-
erence radius of the Earth and Pm

n are the Schmidt semi-normalized
Legendre functions of degree n and order m. The same decompo-
sition holds for the secular variation ∂Br/∂t with the coefficients
{ġm

n , ḣm
n }, for which we define the spectrum (Lowes 1974)

R(n, t) = (n + 1)
n∑

m=0

[
ġm

n (t)2 + ḣm
n (t)

2
]
, (2)
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and its time average 〈R〉 (n). We use the notation

〈X〉 = 1

te − ts

∫ te

ts

X (t)dt, (3)

with [ts, te] the studied time-span. Divergence-free surface core
motions are expressed as (e.g. Bloxham 1989)

uH (θ, φ) = ∇ × (T r1r ) + ∇H (r S), (4)

with the toroidal T and poloidal S scalars:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T (θ, φ) =
nu∑

n=1

n∑
m=0

[
tc

m
n cos(mφ) + ts

m
n sin(mφ)

]
Pm

n (cos θ )

S(θ, φ) =
nu∑

n=1

n∑
m=0

[
sc

m
n cos(mφ) + ss

m
n sin(mφ)

]
Pm

n (cos θ )

.

(5)

tc,s
m
n and sc,s

m
n are the toroidal and poloidal spherical harmonic coef-

ficients, which are stored into a vector u(t), of size NU = 2nu(nu + 2).
Magnetic and velocity fields are truncated at degree, respectively, nb

and nu (see below). We define the core flow spatial power spectrum
as

S (n, t) = n(n + 1)

2n + 1

n∑
m=0

[
tc,s

m
n (t)2 + sc,s

m
n (t)2]

, (6)

and its time average 〈S 〉 (n).
To build the spatial prior of our model, we use a forward inte-

gration of a geodynamo simulation, the Coupled Earth (CE) model
(Aubert et al. 2013). It solves the momentum, codensity and induc-
tion equations under the Boussinesq approximation, for an electri-
cally conducting fluid within a spherical shell (of aspect ratio 0.35
between the inner core and the CMB), assuming no-slip (respec-
tively free-slip) conditions at the inner (respectively outer) bound-
ary. It furthermore accounts for a heterogeneous mass-anomaly flux
at both the inner and outer boundaries, together with a gravitational
coupling between the inner core and the mantle. Its construction
leads to similarities with the Earth’s dynamo from both a static
(magnetic field morphology) and a kinematic (secular variation and
core flow structure) point of view.

We use NCE = 1505 realizations from the CE dynamo to infer
statistics on the magnetic field and the flow, truncated at respectively
nCE

u = 18 and nCE
b = 30. All realizations are snapshots of a free run,

separated by 90 yr—dimensionless times are scaled into years as in
Aubert (2015), following Lhuillier et al. (2011). The dimensionless
magnetic field is scaled into physical units by matching its spatial
spectrum at the CMB to that of the COV-OBS field model, averaged
over 1840–2010.

We write B the vector containing magnetic field coefficients; for
reasons detailed below, we dissociate its resolved component at
degrees n ∈ [1, no = 14], stored in b, and its unresolved component
at degrees n ∈ [no + 1, nCE

b ], stored in a vector b̃. SV coefficients
up to degree ṅo are stored in a vector ḃ, of size NSV = ṅo(ṅo + 2).
We use the notation

X̂ = 1

NCE

NCE∑
k=1

Xk (7)

to define the ensemble average (or background) over realizations
{Xk}k∈[1,NCE], which approximates the statistical expectation E[X ].
Cross-covariances between flow coefficients are accounted for

through the covariance matrix

Puu = E
[
(u − û) (u − û)T ] = 1

NCE − 1

NCE∑
k=1

(
uk − û

) (
uk − û

)T
,

(8)

with a similar expression for Pbb = E[(b − b̂)(b − b̂)T ], Pḃḃ =
E[(ḃ − ˆ̇b)(ḃ − ˆ̇b)T ], Pbu = E[(b − b̂)(u − û)T ] and Pub = PT

bu .

2.2 A time-dependent stochastic model

The evolution of the magnetic field B within the Earth’s core is
governed by the induction equation

∂ B

∂t
= ∇ × (u × B) + η∇2 B, (9)

where η is the magnetic diffusivity. Contrary to the core flows u for
which we do not have any direct measurements, the magnetic field
at the CMB is estimated via the downward continuation, through an
insulating mantle, of records at and above the surface of the Earth.
Only its radial component Br is continuous through the CMB. Its
evolution at the core surface is governed by (Holme 2015)

∂ Br

∂t
= −∇H · (uH Br ) + η∇2 Br . (10)

However, we cannot have a complete access to all terms in the above
equation. First, the diffusion term in eq. (9) can only be partially
obtained knowing only Br at the CMB (see Gubbins 1996). We
can nevertheless improve our estimate of diffusion using correla-
tions between the surface field and flow with the magnetic field
underneath. In practice, we do not resolve diffusion by means of a
dynamical model. It results instead from a linear estimate involving
covariance matrices between the core surface flow and the magnetic
field at and below the CMB, that is, diffusion is approximated as
η∇2Br = d(u, Br), where d is a linear operator. This point is detailed
in Section 2.3.

Furthermore, because of the geometric attenuation from the CMB
upward to the Earth’s surface, and the larger power contained into
the lithospheric field at short wavelengths, the main field is resolved
only for degrees n ≤ no = 14. Only the large-scale fraction of the
radial magnetic field Br is available in eq. (10) to retrieve informa-
tion on u. The unresolved component B̃r = Br − Br nevertheless
generates observable SV: the subgrid electromotive force (e.m.f.)
associated with the unresolved field is a major source of uncer-
tainty in eq. (10), and the principal limitation in the estimation of
core motions from geomagnetic data (Eymin & Hulot 2005; Pais &
Jault 2008). Properly accounting for these subgrid errors is crucial
to obtain an unbiased estimate of the core state and its associated
posterior errors (Gillet et al. 2015b; Baerenzung et al. 2016).

In that framework, we shall consider the projection of equation
(10) onto large length scales,

∂ Br

∂t
= −∇H · (uH Br ) + er + d(uH , Br ), (11)

with er = −∇H · (uH B̃r ) the subgrid errors. Just as Br and ∂Br/∂t in
Section 2.1, er and d are expanded into spherical harmonics, stored
at each epoch t into vectors e and d. Hereafter, the e.m.f. term on
the right-hand side of eq. (10) is written in matrix form A(B)u,
with A a matrix of size NSV × NU. In eq. (11), the e.m.f. arising
from the resolved and unresolved magnetic fields write, respectively,
A(b)u and e = A(b̃)u. From realizations {b̃k, uk}k∈[1,NCE] of the CE
dynamo, we obtain a set of realizations {ek}k∈[1,NCE], from which we
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derive the cross-covariance matrix Pee = E
[
(e − ê) (e − ê)T ]

using
an expression similar to eq. (8). Note that we consider below ê = 0
(subgrid errors are a priori unbiased), since from realizations of the
CE dynamo, we find that the ensemble average of subgrid errors is
much less than its associated standard deviation.

The evolution of the quantities uH and er is now required to advect
the large-scale part Br of the geomagnetic field. We consider them as
random variables, and model their evolution by means of stochastic
differential equations (e.g. Yaglom 2004). The flow is governed by
an Auto-Regressive process of order 1 (AR-1), expressed with the
formulation

du

dt
+ 1

τu
(u − û) = ζ u(t), (12)

with ζ u a white noise process (actually the differential of a Wiener
process). This choice is guided by the occurrence of geomagnetic
jerks at interannual to decadal periods, which calls for continu-
ous but not differentiable samples (Gillet et al. 2015b). A process
such as that described by eq. (12) is characterized by a Laplacian
correlation function exp (−τ/τ u), where τ is the time lag. For the
sake of simplicity, a single (i.e. constant) τ u is considered for all
flow coefficients; the choice for the value of τ u is provided in Sec-
tion 3.1.1. To ensure that cross-covariances of the time-integrated
flow u are coherent with Puu , the random forcing ζ u is generated
at each time-step from the Choleski decomposition of Puu = UuUT

u

as ζ u = √
2/τuUuw, with w = N (0, 1) a normal random vector

of unit variance (see Gillet et al. 2015a). The numerical integra-
tion of eq. (12) is then performed with an Euler–Maruyama scheme
(Kloeden & Platen 1992),

u(t + �t) = u(t) − �t

τu
(u(t) − û) +

√
�tζ u(t), (13)

using a numerical time-step �t = 0.5 yr.
We follow Gillet et al. (2015a) and also consider subgrid errors

er as realizations of an AR-1 process,

de

dt
+ e

τe
= ζ e(t), (14)

with ζ e a white noise processes. The choice for an AR1 model is here
motivated by the empirical estimate of the time cross-covariances in
Gillet et al. (2015b). Indeed, they show a Laplacian-like shape (see
their fig. 1), with τ e almost independent of the spherical harmonic
degree and order. Accordingly, we use τ e = 10 yr for all coefficients
entering the vector e. We ensure that cross-covariances of the numer-
ically integrated e(t) are coherent with Pee by using the Choleski
decomposition of Pee = UeUe

T and ζ e = √
2/τeUeN (0, 1). e is

then time-stepped with the scheme

e(t + �t) =
(

1 − �t

τe

)
e(t) +

√
�tζ r (t) . (15)

Finally, the system of eqs (11), (12) and (14) is integrated to forecast
the trajectory of the Earth’s core state vector

x = [
bT uT eT

]T
. (16)

2.3 Diffusion from the CE dynamo

The diffusion term in eq. (11) cannot be obtained only from the
radial component of the field at the CMB, since its expression also
requires Gauss coefficients on a shell just below the CMB, of radius
c− = c − δ. In the spectral domain, the Laplacian writes

∇2gm
n = 2

δ2
(gm−

n − gm
n ) − 2(n + 1)

c
gm

n

(
1

δ
+ 1

c

)
− n(n + 1)

c2
gm

n ,

(17)

Figure 1. Relative fraction of energy recovered on diffusion as a function
of harmonic degree, when estimating diffusion using eq. (18), where b and
u are snapshots from the CE dynamo, in several configurations: Br and uH

are almost entirely known up to degrees, respectively, 30 and 18 (yellow);
Br and uH are entirely known up to degrees, respectively, 14 and 18 (green);
Br is entirely known up to degree 14 and the half of uH (in energy) is known
up to degree 12 (red); Br only is entirely known up to degree 14 (blue), with
no information on uH .

with δ = 2.7033 km—this last value being inherited from the numer-
ical grid set-up of the CE dynamo—and gm−

n the scalar coefficients
at radius c−. Given the dimension chosen to scale time in the CE
dynamo (see above), we have η = 1.16 m2 s−1, within the range of
expected values (Aubert et al. 2013).

In practice, we show that the knowledge of the surface field
and flow allows us to estimate the diffusion at the CMB through
covariance matrices. To this purpose, we store coefficients dm

n =
η∇2gm

n from realizations of the CE dynamo in an ensemble of
vectors {dk}k∈[1,NCE]. We calculate with an expression similar to
eq. (8), the covariance matrices Pdb = E[(d − d̂)(b − b̂)T ] and
Pdu = E[(d − d̂)(u − û)T ]. Then, knowing the flow u and the large-
scale field b at the top of the core at a given epoch, we look for the
best linear unbiased estimate (under a Gaussian distribution hy-
pothesis) of diffusion, which given our knowledge of the above
cross-covariance matrices is (e.g. Rasmussen & Williams 2006)

da = d̂ + [
Pdb Pdu

] [[
Pbb Pbu

Pub Puu

]

+
[

Rbb 0
0 Ruu

]]−1 [
b − b̂
u − û

]
, (18)

where the superscript ‘a’ stands for ‘analysis’. Rbb and Ruu are
‘observation’ error matrices on vectors b and u. Note that d̂ is not
negligible, in particular the average diffusion of the axial dipole in
the CE dynamo is significantly non-zero (see Finlay et al. 2016a).
The estimate eq. (18) differs from that of Aubert (2013, 2014),
where cross-covariances involving the flow were not considered.

Fig. 1 shows how much of the true CE diffusion can be retrieved
depending on the information considered in the inverse problem
(18). Each curve is obtained from the ratio between the Lowes
spectrum of the analysis error (difference between the analysis (18)
and the CE dynamo diffusion) and the spectrum of the CE dynamo
diffusion (spectra are averaged over the NCE snapshots of the CE
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dynamo). Ignoring cross-covariances involving the flow, the observ-
able field at degrees below 14 allows us to recover only 20 per cent
of the diffusion from degree 4 onwards (and about 55 per cent for
the lowermost degrees). In a case where the flow would be entirely
known up to degree 18, errors would drop to less than 30 per cent
at high degrees, and to less than 20 per cent for the dipole. An
intermediate error of about 40–60 per cent is found if 50 per cent
of the flow is known up to degree 12—a reasonable error estimate
following Gillet et al. (2015b). In the unrealistic case where both
the field and the flow are almost entirely known up to degrees, re-
spectively, 30 and 18, 100 per cent of the CE diffusion is retrieved
from the linear estimate (18). This shows that, assuming that cross-
covariances provided by the dynamo are meaningful, it is possible to
retrieve information on the time changes of surface diffusion from
knowledge of only the surface magnetic field and flow.

These results have important consequences on the analysis of
the SV, and encourage us to analyse diffusion in our algorithm (see
Section 2.4). Indeed, through eq. (18) diffusion is now allowed to
be responsible for rapid SV changes, because it is linearly related
to the flow. This reflects the modulation by up/downwellings of
magnetic field gradients below the CMB. Contrary to 3-D models
that would explicitly calculate diffusion, our 2-D model for the
advection/diffusion of Br at the CMB relies on an inversion: in
the forward integration of eq. (11), the diffusion term d(uH , er ) is
obtained from eq. (18) with Rbb = 0 and Ruu = 0. We consider that
our misestimation of the true diffusion in this case is negligible (cf.
Fig. 1), in particular in comparison with subgrid errors (and see fig.
9 in Aubert 2013).

2.4 Augmented state Kalman filter

Now that the forward system is set-up, we describe the algorithm
used to invert for the core state. We seek the most likely trajectory
x(t) given observations of the main field and its secular variation,
statistics on their associated errors and statistics on the core state
described in the above sections. We write bo and ḃo the vectors
containing observations of the main field and SV Gauss coefficients
(described up to degrees no and ṅo), eo and ėo their associated (unbi-
ased) errors, the statistics of which are described by the covariance
matrices Rbb = E

[
eoeoT

]
and Rḃḃ = E

[
ėoėoT

]
, respectively.

Eqs (11), (12) and (14) are used to time-step an ensemble of
Nm = 50 realizations of the forecast trajectory {xk f (t)}k∈[1,Nm ]. We
follow Gillet et al. (2015a) and use an augmented state approach
(see Evensen 2003) to invert for x. Our tool builds on a succession
of forecasts and analyses steps, analyses that we perform every
�ta year. We follow Aubert (2014) and split the analysis, for each
epoch ta where data are available, in two steps. First, we calculate an
ensemble of analyses for b from an ensemble of noisy observations
bok with the linear filter

∀k ∈ [1, Nm], bka(ta) = bk f (ta) + Kbb

(
bko(ta) − bk f (ta)

)
, (19)

with Kbb = P f
bb[P f

bb + Rbb]−1 the Kalman gain matrix and P f
bb the

forecast covariance matrix.
The remaining part of the core state is sought iteratively. We first

obtain an ensemble of diffusion analyses dka using eq. (18) and an
ensemble of bko and flows uka. Next we invert for an ensemble of
zk = [ukT ekT]T from an ensemble of corrected, noisy observations
yko = ḃko − dka using

∀k ∈ [1, Nm], zka(ta) = zk f (ta) + Kzz

(
yko(ta) − Hkzk f (ta)

)
, (20)

with Kzz = P f
zzH

k T [HkP f
zzH

k T + Ryy]−1. Supposing SV observa-
tion errors independent from errors on the diffusion analysis da

(of covariances Pa
dd ), one has Ryy = Rḃḃ + Pa

dd . We discuss below
how we approximate the covariance matrices P f

zz , P f
bb and Pa

dd . The
observation operator is Hk = [A(bka) He], with He the identity ma-
trix of rank NSV. This process (estimation of d and z) is repeated
five times, which ensures convergence of both the zka and the dka.
Note that at the first iteration, the diffusion analysis (18) is per-
formed with only observations of bo (no contribution from the flow,
or Ruu very large), whereas for the next four iterations Ruu and Rbb

in eq. (18) are estimated from the dispersion within the ensemble
of solutions.

In contrast with the canonical EnKF (Evensen 2003), we do
not update, for each analysis step, the forecast covariance ma-
trices P f

zz = E[(z f − ẑ f )(z f − ẑ f )T ] and P f
bb = E[(b f − b̂ f )(b f −

b̂ f )T ] with the empirical estimate built from the ensemble of realiza-
tions. Constructing such empirical matrices with well-constrained
cross-covariances would indeed require an ensemble of size Nm at
least 10 times larger than the size of the matrix to be inverted in eq.
(20) (see Fournier et al. 2013), that is, in our case several thousands.
Even if possible (though demanding) to achieve computationally,
it is not meaningful to provide such a sophisticated algorithm if
we consider that our model does not account for any deterministic
dynamics for the flow (see Section 4.3). Furthermore, any future
algorithm including a deterministic physics will most probably be
costly, and only operational with ensemble sizes of a few hundreds
at most, as it is the case in the community studying surface fluid
envelopes (e.g. Clayton et al. 2013). To by-pass this difficulty, nu-
merical approximations are employed, as inflation to avoid ensemble
collapse (see Hamill et al. 2001), or localization to produce well-
conditioned matrices (e.g. Oke et al. 2007). However, this latter is
difficult to operate when working in the spectral domain.

We thus decide to consider frozen matrices in eqs (19) and (20).
Let first focus on the analysis for z. We write zf = za + δzf, with δzf

the stochastic increment between two analyses. Since za and δzf are
independent, and E(δzf) = 0, we find P f

zz = Pa
zz + E

[
δz f δz f T

]
, with

the analysis error covariance matrix Pa
zz = E

[
(za − ẑa) (za − ẑa)T ]

.
The evolution of the PDF for linear AR-1 models such as eqs (12)
and (14) can be described analytically (van Kampen 2007, pp. 200–
201):

E
[
δu f δu f T

] = αuPuu with αu = 2�ta/τu,

implying P f
uu = Pa

uu + αuPuu . (21)

A similar expression holds for P f
ee where αe = 2�ta/τ e. The analysis

error matrix is in principle Pa
zz = [I − KzzH] P f

zz . We emphasize in
this study two extreme configurations:

(i) for a vanishing analysis error (a model state very well con-
strained by the data), the forecast covariance matrices become
P f

uu = αuPuu and P f
ee = αePee;

(ii) on the opposite, if the innovation vector yko(ta) − Hkzk f (ta)
vanishes in eq. (20), the forecast covariance matrix shall represent
the whole model statistics, which (this is our working hypothesis)
are defined by the CE dynamo covariances, that is, P f

uu = Puu and
P f

ee = Pee.

In both cases cross-covariances between u and e are ignored when
building Pzz . The latter choice (ii) may appear suboptimal to recover
time changes in the core state, given the temporal correlation of core
motions and analyses errors (see appendix A in Gillet et al. 2015b),
while the former choice (i) might lead to underestimate the dis-
persion within the ensemble of flow solutions. These issues are
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discussed further in Sections 3.1 and 4.1. Concerning the analysis
of b, the Kalman gain matrix Kbb, in eq. (19), is almost identity,
due to the very small observation error variances entering Rbb (see
Gillet et al. 2015a, fig. 4). Thus, the choice for P f

bb does not really
affect the results: inversions performed with the whole CE dynamo
statistics (P f

bb = Pbb) and with its scaled version (P f
bb = �ta 2Pḃḃ)

actually show negligible differences.
The impact of errors on the analysis for diffusion should in prin-

ciple be considered when building Ryy for eq. (20). Here again, we
will consider two configurations. In the first one, Pa

dd is simply ig-
nored. In a second one, it is estimated once for all from the statistics
of an ensemble of diffusion analysis errors obtained from the CE
snapshot realizations using eq. (18). We shall see that these two
cases lead to very similar ensemble average solutions, with very
close posterior diagnostics (as defined in Section 2.5).

The present work improves the proof-of-concept study by Gillet
et al. (2015a), where diffusion processes were ignored. Our scheme
makes possible for diffusion errors to alter the forecast, and un-
certainties on diffusion analyses will transpire into a larger spread
within the ensemble of flow realizations. Furthermore, we derive
covariances on uH and er from the CE dynamo, whereas Gillet
et al. were using a QG topological constraint for the flow, ignor-
ing other spatial cross-covariances in both Pee and Puu to prevent
ill-conditioning.

Our approach also differs from the single-epoch algorithm of
Aubert (2013, 2014), since the core state is here time-stepped with a
(stochastic) dynamical model, carrying information from one epoch
to the other. Our treatment of er also differs from that of Aubert (see
Section 2.1): we consider that an analysis of b̃ cannot be used to
estimate er in eq. (11)—the reason why it is modeled here through
the stochastic equation (14). Indeed, from twin experiments with the
CE dynamo, we found that only a small fraction (about 20 per cent)
of the true unresolved field b̃ can be recovered from the knowl-
edge of the large-scale field b and of the cross-covariances between
them (not shown). Note that, in order to tackle this issue, Aubert
(2015) improved his series of algorithms by generating each analy-
sis within his ensemble of snapshot solutions starting from a random
realization sampling the whole CE covariances (and not from the
CE average as in Aubert 2014). The main steps for the forecast and
analysis are summarized in Table 2.

2.5 Posterior diagnostics

We now define several diagnostics that will be used to evaluate the
quality of our algorithm using synthetic experiments (Section 3.1).
To do so, we target a reference trajectory x∗, obtained by numerical
integration of the forward model. For all three vectors v = u, e
and d, we define the bias between the ensemble average and the
reference trajectories,

δv(t) = v̂(t) − v∗(t) . (22)

We additionally define the dispersion within the ensemble of state
solutions,

εv(t) =
√√√√ 1

Nm − 1

Nm∑
k=0

[vk(t) − v̂(t)]2
. (23)

The power spectrum for the flow reference trajectory u∗, dispersion
εu and bias δu are, respectively, S∗(n, t), Sε(n, t) and Sδ(n, t).
We write D(n, t) and E (n, t), the Lowes spectra for, respectively,
diffusion and subgrid errors, using an expression similar to that of
eq. (2). (D∗, E∗) and (Dδ, Eδ) stand, respectively, for the spectra of

Table 2. Summary of the augmented state Kalman Filter as implemented
in this study (with an ensemble of size Nm = 50). The core state is defined
as x = [bT uT eT]T. We refer to the main text for the definition of matrices.

1. Forecast
du/dt + τ−1

u (u − û) = ζ u (t),

de/dt + τ−1
e e = ζ e(t),

d(b, u) = d̂ + [
Pdb Pdu

] [
Pbb Pbu

Pub Puu

]−1 [
b − b̂
u − û

]
,

db/dt = A(b)u + e + d(b, u),

2. Analysis
ba(ta) = b f (ta) + Pbb [Pbb + Rbb]−1 (

bo(ta) − b f (ta)
)
,

zf(ta) = [uf(ta)T ef(ta)T]T , with Pzz =
[

αuPuu 0
0 αePee

]
,

d0 = d̂ + PdbP−1
bb [ba − b̂],

yo = ḃo − d0,

for i ∈ [1 : 5]

za(ta) = z f (ta) + PzzHT
[
HPzzHT + Ryy

]−1 (
yo(ta) − Hz f (ta)

)
,

da = d̂ + [
Pdb Pdu

] [[
Pbb Pbu

Pub Puu

]
+

[
Rbb 0

0 Ruu

]]−1 [
ba − b̂
ua − û

]
,

yo = ḃo − da,

end

the reference trajectories (d∗, e∗) and of the ensemble average bias
(δd , δe).

From these, we calculate several misfits for unobserved quantities
(surface core flow, subgrid errors and diffusion) at the analysis steps,
normalized to the reference state:

χ 2
u =

nu∑
n=1

〈
S a

δ

〉
(n)

nu∑
n=1

〈S∗〉 (n)

, χ 2
e =

nȯ∑
n=1

〈
E a

δ

〉
(n)

nȯ∑
n=1

〈E∗〉 (n)

and χ 2
d =

nȯ∑
n=1

〈
Da

δ

〉
(n)

nȯ∑
n=1

〈D∗〉 (n)

.

(24)

The superscript ‘a’ for the spectra at numerator means those are cal-
culated for the analysis vectors δa

v = v̂a − v∗. We recall that brack-
ets stand for time-averaged spectra. We also calculate the error with
respect to the reference state normalized to the spread within the
ensemble (e.g. Sanchez et al. 2016),

ξ 2
u (t) =

∑
i

(
ûi (t) − u∗

i (t)
)2

NU εu i (t)2
, ξ 2

e (t) =
∑

i

(
êi (t) − e∗

i (t)
)2

NSV εei (t)2
and

ξ 2
d (t) =

∑
i

(
d̂i (t) − d∗

i (t)
)2

NSV εd i (t)2
. (25)

If such quantities are larger (respectively lower) than one, the dis-
persion within the ensemble under- (respectively over-) estimates
the errors to the reference state.

We shall finally consider the Fourier transform u†(f) of the time-
series u(t), with f the frequency, from which we build a power spec-
trum S †(n, f ) with an expression similar to eq. (6). Writing S †

∗ ,
the spectrum for the reference trajectory u∗ and Ŝ †

δ the spectrum
for δa

u = ûa − u∗, we construct the ratio

C (n, f ) = Ŝ †
δ (n, f )

Ŝ †
∗ (n, f )

. (26)

This quantity characterizes our ability to recover core flow time
changes: it is zero if the average analysis perfectly matches the
reference trajectory, and about unity or greater if the average anal-
ysis completely misses the reference trajectory.
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3 R E S U LT S

3.1 Synthetic experiments

3.1.1 Construction of the reference trajectory

In order to test our algorithm and validate our approach, we first use
our method in a synthetic configuration, based on twin experiments.
This allows us to quantify how much of the core motions can be
retrieved and to isolate key ingredients in the inversion scheme. In
this step before an application to geophysical data, we attempt at
building a realistic synthetic model. The reference surface core flow
u∗

H is described up to degree nu = 18 and is numerically integrated
using eq. (12), using τ u = 30 yr. Because our model accounts
here for a non-zero background solution, we consider a value of τ u

shorter than the 100 yr preferred by Gillet et al. (2015b), but still
significantly longer than both �ta (here equal to 1 yr) and τ e. The
reference magnetic field B∗

r is truncated at degree nCE
b = 30, and

advected with

∂ B∗
r

∂t
= −∇H · (

u∗
H B∗

r

) + d
(
u∗

H , B∗
r

)
. (27)

Diffusion for the reference trajectory should in principle be es-
timated from eq. (18), with Rub involving the magnetic field up to
nCE

b . However, accounting for cross-covariances with many unre-
solved field coefficients leads to an ill-conditioned matrix, because
of the limited amount of realizations of the CE dynamo. We thus
decide to ignore cross-covariances between the flow u and the unre-
solved magnetic field b̃—at degrees n ∈ [15, 30]—when estimating
magnetic diffusion, that is, diffusion of small length-scales field
coefficients is not directly influenced by the flow. Note that we have
tested several intermediate configurations (e.g. gradually smooth-
ing these cross-covariances) with no significant difference on the
statistics of the large-scale (observed) magnetic field.

We initialize the reference trajectory from one realization of the
CE dynamo, before the stochastic model defined by eqs (12) and
(27) is time-stepped from epoch ts = 1950 to te = 2020. Before to go
further, we emphasize that our forward model has been constructed
such that a non-negligible part of the SV is associated with diffusion
(about 10 per cent of the total SV in power, for all length scales,
see Fig. 2). Temporal variations of diffusion correlate with those
of the flow. As a consequence, the contribution from diffusion is
not restricted to low frequencies. At first sight, this may appear sur-
prising since diffusion derives from the slowly varying main field.
However, radial diffusion at the CMB is enslaved to the magnetic
field at and below the core surface, which is dynamically coupled
to core motions. The link between diffusion and a core flow stretch-
ing and twisting magnetic field lines below the CMB transpires in
the analysis illustrated with Fig. 1. As a consequence, diffusion is
potentially responsible for rapid SV changes at the CMB, as shown
with the reference trajectories of SV Gauss coefficients of different
orders in Fig. 2. We have yet to demonstrate that temporal varia-
tions of the diffusion are linked to rapid flow variations in a fully
self-consistent dynamical model run at parameters closer to Earth’s
core values. However, for the mechanistic reasons stated here, we
anticipate that this may be the case in the Earth’s core, and we have
thus constructed our direct model accordingly.

3.1.2 Reanalysis performances: comparative tests

We consider below five configurations, with properties summarized
in Table 3. We investigate the impact of accounting for subgrid

errors and diffusion in the core state, in the case where we do
not scale the model cross-covariances (cases A, B and C). We
further analyse the improvement brought by considering scaled
model cross-covariances (case D), with both diffusion and er en-
tering the model state. These four cases A–D are run while ignor-
ing Pa

dd when building Ryy . A last case E is investigated, where
we account for Pa

dd as described in Section 2.4 (and otherwise
similar to the configuration D). It will be discussed at the end of
this section.

We initialize the flow and the field from a random draw within the
CE realizations, before we perform the reanalysis of the core state
with the algorithm presented in Section 2.4. Data error statistics
entering Rbb and Rḃḃ are estimated as the COV-OBS.x1 uncertain-
ties (Gillet et al. 2015a) evaluated in 2010 (during the satellite era),
ignoring cross-covariances. Together with the reference model tra-
jectory B∗

r , these statistics are used to build an ensemble of Nm = 50
realizations of noisy Gauss coefficient observations,

∀k ∈ [1, Nm], bok(t) = b∗(t) + eok(t) with E(eokeokT ) = Rbb . (28)

We use an equivalent process to build an ensemble of ḃok from ḃ∗

and Rḃḃ. The SV observation error spectrum is shown in Fig. 4.
We first focus on the impact of subgrid errors. If no significant

differences on the average SV prediction and the SV forecast disper-
sion is observed between cases A and B, ignoring er in the model
state generates a significant bias between the analysed diffusion
and the diffusion of the reference trajectory. This is illustrated with
Fig. 3 (top left and bottom left), where we show time-series for the
several SV contributions to ḣ1

1—a coefficient representative of the
typical behaviour observed in synthetic series, and the dynamics
of which is rich enough to make clear the distinction between SV
sources. Indeed, the analysed SV contribution from diffusion in case
B shows, for coefficients of all degrees, important offsets at some
epochs (e.g. from 1980 onwards on ḣ1

1 series). On the contrary, we
manage to recover a significant amount of the reference diffusion
when including er in the core state, with a dispersion that most of
the time encompasses the reference diffusion. We thus conclude
that accounting for er is mandatory to obtain an unbiased estimate
of the a posteriori diffusion PDF. In cases A and D, where both er

and diffusion are analysed, we obtain a similar performance on the
diffusion estimation (see Table 3).

Fig. 4 presents in case D, the power spectra of the several contri-
butions to the SV. It confirms that the power stored into the analysed
diffusion is about 10 per cent that of the observed SV at all length
scales. The magnitude of the subgrid errors, similar to that of dif-
fusion at low degrees, appears slightly larger towards small length
scales (n ≥ 9). In Fig. 5 (upper and middle rows), we show examples
of flow coefficients time-series, accounting or not for er. Ignoring
subgrid errors, we find a significant bias between the reference and
analysed flows for all but the largest length-scale coefficients: the
reference flow trajectory lays outside the a posteriori distribution
provided by the ensemble spread. Accounting for er, this inconsis-
tency is canceled. The bottom row of Fig. 5 shows example of flow
estimates in case D: if the spread within the ensemble of analyses
has been reduced, the ensemble of solutions nevertheless encom-
passes the reference trajectory at all periods, showing that scaling
covariance matrices has helped to better target the reference trajec-
tory. The good fit to SV changes with a biased analysis in case B
arises at the expense of a strong aliasing: the analysed core flow
shows too large a power spectrum from spherical harmonic degree
n ≥ 4, as illustrated in Fig. 6. This drawback disappears as er is
reinstated in the model state (case A). By scaling matrices (case
D), we obtain a flow solution presenting an even lower average
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Figure 2. Time-series of SV coefficients (black, ±σ the SV observation error in grey-shaded area) for the reference trajectory, superimposed with the
contributions from diffusion (yellow) and subgrid errors (blue). From top to bottom: g0

1 , h6
6 and g9

13.

spectrum, without increasing the analysis error (i.e. a simpler solu-
tion as close to the reference trajectory).

As mentioned in Section 2.4, one may wonder whether using
scaled matrices would not lead to underestimate a posteriori uncer-

tainties. This is actually not the case, as illustrated in Fig. 6 where,
for cases A and D, the spectrum for the spread within the ensemble
of flow solutions is larger than the spectrum for the bias between
u∗ and û. The same spectra in case B clearly lead to discard this

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/211/1/50/3950253 by C

N
R

S - ISTO
 user on 10 August 2022



58 O. Barrois, N. Gillet and J. Aubert

Table 3. Posterior diagnostics of eq. (24) for the analysed models xa(t) in the four cases investigated in the
synthetic reanalysis. The last column corresponds to the flow misfit, but considering the velocity field only up to
degree n = 8.

Case d er Scaled P Pa
dd χ2

d χ2
e χ2

u χ2
u[n≤8]

A Yes Yes No No 0.59 1.59 0.55 0.31
B Yes No No No 1.76 � 1.51 0.70
C No Yes No No � 1.73 0.62 0.33
D Yes Yes Yes No 0.59 1.75 0.54 0.30
E Yes Yes Yes Yes 0.59 1.68 0.53 0.30

Figure 3. Series of SV coefficients ḣ1
1 for synthetic experiments: comparison of our model predictions from Nm = 50 reanalyses (average in dark red, ±2σ in

light red) with the synthetic observations (reference trajectory in black, ±σ observation errors in grey). Contributions from er (average analysis in blue, ±σ

in light blue) and from diffusion (average analysis in yellow, ±σ in light yellow) are also shown, with the reference diffusion in thick yellow and the reference
subgrid errors in thick blue. The four cases A (top left), B (bottom left), D (top right) and E (bottom right) are shown.

configuration. The dispersion seems slightly less overestimated in
case D than in case A. This observation is confirmed with the di-
agnostics ξ u, e, d of eq. (25), shown in Fig. 7 as a function of time,
for cases A, B and D: in case A (respectively D), we overestimate
by a factor about 1.8 (respectively 1.4) the uncertainties on the flow
and on diffusion (i.e. the posterior dispersion is a bit conservative),
while it is strongly underestimated in case B. We also overestimate
the uncertainties on subgrid errors (by a factor about 2) in both
cases A and D. Note a warm-up period of about 5–10 yr before the
algorithm reaches approximately steady misfit values. If both cases
D and A show similar scores in Table 3 for the flow and diffusion,
the diagnostics ξ u, d tend to favour case D.

We observe also in the spatial domain the bias observed in the
spectral domain, as illustrated with the snapshot surface flow maps
in Fig. 8: cases A and D (including er) are much closer to the

reference trajectory than case B (no er). The strong aliasing in case
B is obvious on the map of the horizontal divergence. To a lesser
extent, case A also shows a larger amount of meanders than the
simplest case D. The strong bias obtained for the average model
as er is ignored is confirmed by normalized misfit values larger
than unity for both diffusion and core motions (see Table 3). On
the contrary, the three cases A, C and D accounting for er show
far less biases for both observed and unobserved quantities: the
relative error on core motions for degrees n ≤ 8 decreases to about
30 per cent. However, since the power in core flows is larger towards
long periods, the misfits and spectra discussed so far are dominated
by the time-average state, and give little information about the time
changes of the core state.

We now investigate more closely the core flow resolution as a
function of wave number and period, and present in Fig. 9, for the
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Figure 4. Time-average SV spatial power spectra: spectrum 〈R∗〉 (n) for
the reference SV trajectory (green circled thick line), for observation errors
(thin green line), and for our estimate of the errors on diffusion (thin yellow)
obtained from the diagonal elements of Pa

dd . We show in blue (cases D) and
cyan (case E), the spectra, at the analysis step, for the contributions from
diffusion 〈D〉 (n) (diamonds), from subgrid errors 〈E 〉 (n) (stars), and for
the dispersion within the ensemble of SV predictions (dotted lines).

four cases, the ratio C (n, f ) defined by eq. (26). The comparison
proposed in Fig. 9 (top left and bottom left) clearly stresses that
ignoring er (case B), almost no information on flow fluctuations is
retrieved from degree n ≥ 3, while a decent amount of information is
obtained up to degree n  10 for the lowermost frequencies in case
A. We also visualize with Fig. 9 (top right) that ignoring diffusion but
accounting for er (case C) generates a much less severe mismatch
than ignoring er but including diffusion (the worst case B). This
confirms that a significant part of the flow may be retrieved under the
frozen flux approximation even when this assumption is not exact
(and see the snapshot core flow inversions from dynamo simulations
by Rau et al. 2000). Still, since improving our knowledge of the flow
indirectly improves our estimate of diffusion, we obtain a slightly
better reanalysis in case A than in case C: we conclude that if it is
mandatory to include er in the core state, it is also worth accounting
for diffusion in our algorithm.

We now specifically focus on case D with both er and diffusion,
but scaling the model covariance matrices according to the stochas-
tic prior dispersion (see Section 2.4). While the scaling eq. (21)
only marginally improves diagnostics dominated by long periods
(see Fig. 6 and Table 3), Fig. 9 (bottom right) shows that it allows us
to slightly better recover rapidly changing flow patterns, especially
towards small length scales. We witness here that allowing at each
analysis step for a too large innovation (the prior constraint on the
model increment in cases A–C is weaker than in case D), we lose
some constraints on the transient motions. For those reasons, even
if no significant improvement is seen for slow core flow changes,
we are inclined to favour case D (which also provides simpler so-
lutions and misfits ξ u, d closer to one). We compare in Fig. 10, for
our preferred case D, the spatial distribution of the contribution
from diffusion to the SV at the CMB. We overall find the correct
amplitude (of the order of ±5 nT yr−1), and are able to localize
some of the main diffusion patches, as for instance in the Eastern
hemisphere between ±40◦ latitude. The largest patterns appear in
the equatorial area. These are found to correlate well with the main
up/downwellings at the CMB (compare the maps of diffusion and
∇h · (uH ) in Fig. 8).

We finally compare case D to the last configuration E, where
in addition errors on the analysis of diffusion are accounted for.
Surprisingly, we see very little changes concerning both the scores
of Table 3, the diagnostics in Fig. 7, resolution charts C (n, f ) (not
shown) or the flow spectra (Fig. 6). The latter almost superimpose
in the two cases not only for the ensemble average flow, but also
for the flow dispersion and the average analysis error. Interestingly,
the ensemble average diffusion and subgrid errors (as well as their
associated dispersion) are also very similar in the two cases (see
Fig. 3). The main difference concerns the SV prediction: if these
are in average similar in the two cases, a much larger dispersion is
found in case E than in case D (see Fig. 3). This behaviour derives
from the much looser constraint imposed in case E on the fit to
SV data (through Ryy), and is characterized by enhanced model
prediction errors in case E (see Fig. 4).

3.2 Geophysical application

We now apply our algorithm to an ensemble of realizations of the
geomagnetic field model COV-OBS.x1, from ts = 1950 to te = 2020.
The model prior is the same as that used for the synthetic experiment,
that is, the configuration of case D (unless specified otherwise) with
τ u = 30 yr and �ta = 1 yr. As in the synthetic experiments, analysed
flow and diffusion are very similar in cases E and D except for SV
predictions, and we only show results for the latter configuration.
Performing inversions with instead τ u = 100 yr, that is, with a pre-
factor αu of 0.020 instead of 0.067 in eq. (21), only minor changes
are observed on the ensemble average solution.

3.2.1 Contributions to the secular variation

During the whole studied time-span, the dispersion within the en-
semble of SV forecasts is large enough to include the observed
SV changes within ±2σ , even when jerks occur during the most
accurate satellite era (see Fig. 11). Our algorithm thus provides a
coherent estimate of the PDF for the SV coefficients in this geo-
physical context. Subgrid errors and diffusion both represent about
20 per cent of the total dipole decay, and potentially contain a non-
zero average contribution. The same observations holds for a non-
dipole SV coefficient such as ḣ1

2, shown in Fig. 11 (right). Note
that COV-OBS.x1 from 2015 onwards is the result of a prediction,
built on magnetic records prior to 2014.6 and on the time cross-
covariances of the magnetic model prior (Gillet et al. 2015a). For
those reasons, observations errors in our study drastically increase
after 2015, leading to the widening of the ±2σ values in Fig. 11.

As in the synthetic experiments, the spread in SV predictions
is larger in case E (Fig. 11, bottom) than in case D. We note a
shift towards zero of the average axial dipole decay, larger as ġ0

1

reaches large values prior to 1985. Still the dispersion in case E
encompasses the observed SV, except during the warm-up phase. It
is worth noticing that diffusion and subgrid errors show rather sim-
ilar average trajectories in the two cases E and D, with comparable
dispersion.

Our ensemble of forecasts tends, in average, to drive the system
towards low SV values. This observation is particularly clear as the
recorded SV reaches large values, generating the sawtooth pattern
on ġ0

1 prior to 1980, and during phases where |ḣ1
2| increases (see

Fig. 11). It is to be expected with the kind of stochastic model we
employ, where the most likely flow forecast decays exponentially
towards the background flow ûH in a time τ u, driving the average
SV forecast naturally to lower values. As such, our average model is
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60 O. Barrois, N. Gillet and J. Aubert

Figure 5. Core flow coefficients series from synthetic experiments for t0c
1 (left) and t1c

8 (right): comparison of Nm = 50 reanalyses (ensemble mean in dark
red, ±2σ in light red) with the reference trajectory (black), in cases A (top), B (middle) and D (bottom).

not designed to present a predictive power. We associate the better
predictions for the dipole decay during the satellite era to the lower
value of ġ0

1 at that epoch, and to an observed SV decreasing in a
similar manner to the AR-1 model.

Our re-analysis confirms that the dipole decay is primarily driven
by advection, as suggested in Finlay et al. (2016a). Nonetheless, we
find a non-zero negative contribution from diffusion to the dipole
decay before 1980 (down to −6 nT yr−1 in the early 1960s). This
observation contrasts with the previous estimate by Finlay et al.,
who found a diffusion contribution almost stationary at about +5
nT yr−1. The difference reflects the impact of flow motions on the

analysis of diffusion (see Section 2.3). For the most recent and
best documented epochs since 2000, where ġ0

1 reaches lower values
(from 10 to 15 nT yr−1), we still find that diffusion is not the major
source of the dipole decay.

3.2.2 Magnetic diffusion and westward gyre

In the spatial domain (see the middle column of Fig. 12), our
analysis of diffusion shows localized patches reaching up to ±12
nT yr−1, as for instance below Indonesia. Again, these are in
relation with up/downwellings (Fig. 12, right-hand column) that
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Figure 6. Core flow time-average power spectra 〈S 〉 (n) in cases A (red),
B (yellow), D (blue) and E (cyan), for the ensemble average û (thick lines),
the analysis error δu (thin lines) and the dispersion within the ensemble
εu (dotted lines). The green circled line shows 〈S 〉 (n) for the reference
trajectory u∗. Blue and cyan spectra almost superimpose.

primarily shows up in the equatorial area. This link is not sys-
tematic though, because diffusion is not enslaved only to the flow:
it also depends locally on the magnetic field morphology. Indeed,
the large upwelling to the northeast of Brazil in 1960 is associ-
ated with little diffusion. The link between up/downwellings and
surface diffusion was suggested by Amit & Christensen (2008),
through the poloidal flow component carried by columnar struc-
tures. However, we do not retrieve the prominent diffusion feature
that they highlight below the Pacific. Here, we associate the local-
ized diffusion patterns in the equatorial belt with the eccentric west-
ward gyre put forward by Pais & Jault (2008). As Aubert (2013)
and Gillet et al. (2015b) before us (under respectively a dynamo
norm and a QG constraint), we retrieved here this planetary-scale
structure in our reanalysis (right-hand column of Fig. 12). We find
up/downwelling and the largest signatures of diffusion where the
gyre reaches the equatorial area. Although influenced by the pri-
marily equatorial symmetric CE dynamo prior, our solution dis-
plays in this area a velocity field that crosses the equator, violating
locally the QG assumption, in agreement with the conclusions of
Baerenzung et al. (2016).

Interestingly, our estimate of diffusion also differs from that of
Chulliat & Olsen (2010). From the analysis of satellite field models,
they found below the South Atlantic ocean violations of topological
constraints derived from the assumption of an infinitely conducting
outer core (namely changes of the magnetic flux passing through
areas delimited by null-flux curves, see for instance Jackson 1996),
which they interpret as the signature of diffusion. Our solutions do
not show particularly large diffusion in conjunction with the South
Atlantic Anomaly (see Fig. 12, left-hand and middle columns).
We associate the difference with the findings of Chulliat & Olsen
to the role played by subgrid processes: they blur our image of
null-flux curves, which soften the topological constraints (cf. Gillet
et al. 2009). Alternatively, we see a possible correlation between the
localized equatorial patches of diffusion and the rapid changes in the
secular acceleration (∂2Br/∂t2, see Chulliat & Maus 2014; Chulliat
et al. 2015), through flow perturbations around the westward gyre
(Finlay et al. 2016b). Indeed strong secular acceleration patterns are
found under Indonesia and Central to South America, the location

Figure 7. Time evolution of the misfits ξu (top), ξd (middle) and ξ e (bot-
tom), given in eq. (25), in cases A (red), B (yellow), D (blue) and E (cyan).

where we also isolate the strongest diffusion and up/downwelling
features.

Fig. 12 shows that the westward gyre is present since 1960, sug-
gesting a temporal stability of the largest flow features (the rms
velocity over the CMB in 1960, 1985 and 2010 are, respectively,
13.9, 14.0 and 12.3 km yr−1). However, towards the most recent
epochs, it strengthens below South America and the Atlantic ocean,
at the same time the large upwelling present below NE Brazil around
1960 vanishes. We also note the occurrence of secondary circula-
tions with decadal time-scales, such as the vortices below 30◦ lat-
itude in the Eastern Pacific hemisphere and those centred around
±30◦ latitude in the western Pacific, which are present in 1985 but
have almost disappeared in 2010. The westward gyre also appears
as a complex structure, with modulation of its meanders throughout
the studied era. Even though our ensemble average solution does
not capture the fastest changes in the core trajectory at small length
scales (cf. Fig. 9), maps shown in Fig. 12 suggest nevertheless that
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62 O. Barrois, N. Gillet and J. Aubert

Figure 8. Maps of the horizontal divergence of the flow (red–blue colour scale, in century−1) and of the flow (green stream function) at the CMB, for the
average analysis in 2015, in cases A (top left), B (bottom left), D (top right) and for the reference trajectory (bottom right). The thicker the stream function, the
stronger the velocity norm (rms velocity over the CMB: 13.28 km yr−1).

some time-dependent meso-scale eddies seem to be robust (see
Gillet et al. 2015b; Amit & Pais 2013).

3.2.3 Length-of-day predictions

We now confront the result of our reanalysis to an independent geo-
physical observation, namely changes in the length of day (LOD).
LOD data are here computed from annual means of angular mo-
mentum series provided by the International Earth Rotation and
Reference System Service (IERS) (the C04 series, see Bizouard
& Gambis 2009) cleaned for solid tides (the IERS 2000 model)
and for atmospheric predictions from the National Center for En-
vironmental Prediction/National Center for Atmospheric Research
(NCEP/NCAR) reanalysis (see Zhou et al. 2006, and references
therein). A 1.4 ms cy−1 trend has been removed, corresponding
to the observed LOD trend over the past centuries (Stephenson
et al. 1984). LOD predictions from our ensemble of flow models are
computed using eq. (101) of Jault & Finlay (2015), which accounts
for the effect of compressibility on the radial density profile—
though very little difference is found with the original formula by
Jault et al. (1988).

Fig. 13 shows that during the whole studied time-span, our model
provides a convincing prediction for the decadal LOD changes. The
recorded geodetic series is captured within the ±σ predictions,
and the 1994 local extremum in the LOD is partially caught by the
ensemble average reanalysis—we have knowledge of no flow model
capable of entirely predicting this bump, an issue first put forward by
Wardinski (2005). Focusing during the satellite era, we also note a
mismatch between LOD data and our ensemble average prediction,
which does not catch the maximum around 2008, contrary to the
QG reconstruction by Gillet et al. (2015b)—although the 2008 peak
still lays within our ±σ envelope.

3.2.4 Dispersion of the secular variation over 5 yr intervals

Finally, we address the spread of our predicted SV to geophysical
observations in a configuration where analyses are performed every
�ta = 5 yr. We consider below three configurations: that of case D
(CE cross-covariances, τ u = 30 yr), a case F where the CE cross-
covariances are multiplied by 4 (τ u = 30 yr) and a case G similar
to case D but with τ u = 100 yr instead. Note that the estimates for
diffusion, subgrid errors and the flow at the analysis step are not
significantly different in those three cases, meaning the analysed
model is relatively robust.

SV reanalyses of COV-OBS.x1 data in cases D, F and G are shown
in Fig. 14. In case D, the observed SV is almost always embedded
within ±2σ of the 5 yr SV forecasts for all coefficients but the axial
dipole (see Fig. 14, top). Our model indeed misses the trend towards
large ġ0

1 values recorded prior to 1980—in line with the natural be-
haviour of average SV forecast mentioned in Section 3.2.1. This
observation suggests three possibilities: (i) the cross-covariances,
we use from the CE dynamo do not allow enough freedom, (ii) the
decay towards the background is too fast (τ u too small), or (iii)
higher order statistics are needed to mimic the behaviour of the
dipole decay in particular, as observed in palaeomagnetic records
(Love & Constable 2003) and in numerical simulations (e.g. Bouli-
gand et al. 2005; Fournier et al. 2011).

We test the first two possibilities with cases, respectively, F and G.
The alternative (iii) could be attended using more complex stochas-
tic models (e.g. Buffett et al. 2013). By increasing the model co-
variances (Fig. 14, middle), the dispersion within the ensemble of
SV predictions is enlarged for all coefficients, and a factor of two on
the prior model dispersion is enough for the observed dipole decay
to lay within ±2σ . By increasing τ u (Fig. 14, bottom), the decay of
the SV forecast becomes naturally slower, although the dispersion
is also reduced, so that case G, as case D, does not always catch the
observed ġ0

1 within ±2σ .
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Figure 9. Resolution function C as a function of spherical harmonic degree and period, in cases A (top left), B (bottom left), C (top right) and D (bottom
right). Black (respectively white) corresponds to 0 per cent (respectively 100 per cent) difference between the reference and analysed trajectories.

Figure 10. Map of diffusion (nT yr−1) at the CMB from our analysed state in 2015: reference state (right) and ensemble average analysis in case D (left).

4 S U M M A RY A N D D I S C U S S I O N

4.1 New insights from our approach

Following earlier strategies developed for geomagnetic data assim-
ilation (Aubert 2015; Gillet et al. 2015a; Whaler & Beggan 2015),
the algorithm we present in this study proposes to mix spatial infor-
mation from Earth-like geodynamo simulations and a temporal in-
formation compatible with the frequency spectrum of geomagnetic
series, to reanalyse geomagnetic field models within a stochastic,

augmented state Kalman filter. We have shown from time-dependent
synthetic experiments that subgrid errors that arise from interac-
tions between the unresolved magnetic field at small length scales
and core motions must be accounted for. Indeed, ignoring them
leads to strong bias and aliasing in the analysed core state. By
representing sugbrid errors by means of a stochastic equation, we
significantly improve our recovery of the time-dependent core state.
Our augmented state algorithm furthermore circumvents the bias
encountered for SV predictions by Gillet et al. (2015b), who had
implemented the stochastic constraints within a weak formalism
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Figure 11. Series of SV coefficients ġ0
1 (left) and ḣ1

2 (right): for the COV-OBS.x1 model (average in black, ±σ in grey), and Nm forecasts from our assimilation
algorithm (average in dark red, ±2σ in red), in the configurations D (top) and E (bottom). In blue (respectively yellow) are shown the estimated contributions
from er (respectively from diffusion).

(i.e. through covariance matrices instead of time-stepped stochastic
equations).

We also propose a new avenue to estimate diffusion at the CMB,
from cross-correlations (inferred from geodynamo simulations) be-
tween diffusion and both magnetic and velocity surface fields. In-
deed, diffusion is related to the magnetic field at and below the core
surface, and thus is coupled to core motions. We show from synthetic
experiments that a non-negligible amount of diffusion can be recov-
ered. Our analysis furthermore suggests that diffusion must carry
a high-frequency content, through its link with up/downwellings.
Its amplitude is locally as large as about 10 nT yr−1. Our analysis
shows rather different estimations of diffusion in comparison with
previous studies: as mentioned in Section 3.2, we find no crucial sig-
nature of diffusion associated with the South Atlantic anomaly, but
instead a significant contribution on the equator below Indonesia.

4.2 Future evolution of the algorithm

The tool we derived remains nevertheless imperfect, which calls for
future methodological developments. Our algorithm indeed does
not integrate all the power of the EnKF, essentially in link with
our crude estimate of the analysis error cross-covariances (see Sec-
tion 2.4). Our attempts at approximating these more closely (e.g.
using P f

zz = αPzz + [I − KzzH] Pzz , not shown) actually underper-
form the simpler representations with frozen matrices. This calls

for alternatives to localize cross-covariances in the spectral domain
(Wieczorek & Simons 2005) if one wishes to avoid computing
thousands of realizations.

We have investigated the impact of errors on the analysed diffu-
sion, which should in principle be considered, with a crude estimate
of their cross-covariances. We found that adding their contribution
to the observation error—through the matrix Ryy in eq. (20)—only
marginally modifies the solutions for the flow and diffusion (average
and dispersion), while allowing for a larger SV spread at the anal-
ysis steps. This difference is most probably accommodated by the
flexible representation of time-correlated model errors through an
augmented state—which possibly ingest other sources of uncertain-
ties that are not explicitly accounted for. Accordingly, the impact on
the spread in 5 yr (or longer) SV forecasts may appear negligible in
comparison with uncertainties associated with our choice of prior
information (see Section 3.2.4).

4.3 An hypothesis testing tool

However, the estimate of the surface core trajectory (flow and dif-
fusion) will depend on the considered geodynamo model. In partic-
ular, the sensitivity of the analysed diffusion to the chosen dynamo
prior calls for further investigations using dynamo simulations run
at more extreme parameters (e.g. Aubert et al. 2017; Schaeffer
et al. 2017). Our algorithm is by construction flexible: any spatial
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Figure 12. Ensemble average reanalyses at epochs 1960, 1985 and 2010 (from top to bottom) at the CMB from COV-OBS.x1. Left: maps of the main radial
field Br (red–blue colour scale, in µT) and of the flow (green stream functions). Middle: maps of the contribution from diffusion to the SV (in nT yr−1). Right:
maps of the horizontal divergence of the flow (red–blue colour scale, in century−1) and of the flow (green stream functions).

Figure 13. Length-of-day (LOD) variations predicted from our ensemble
of reanalyses (average in red, ±σ in red-shaded area), compared with the
geodesic data (black). Note that we only plot here the LOD of the reanalysis
(and not of forecasts).

cross-covariances may be considered. Indeed, one only needs well-
conditioned statistics on Br, uH , er and η∇2Br from any forward
model to test different hypotheses, such as the amount of quasi-
geostrophy, the need for an asymmetric thermal forcing, etc.

Note also that our algorithm allows for possible changes in the
forward (time-integrated) stochastic model. Alternatives to our sim-
ple AR-1 representation may be considered, for both subgrid errors
and core motions (cf. Section 3.2.4). Furthermore, our AR-1 model
may be used as a zero state for comparisons with algorithms using
deterministic equations. One could for instance measure if assimi-

lation tools based on prognostic geodynamo models (e.g. Fournier
et al. 2013) perform better than the same dynamo spatial statistics
embedded in our stochastic algorithm, in either a reanalysis or a
forecast framework.

4.4 Towards an operational assimilation tool

In the perspective of developing operational geomagnetic data as-
similation tools, our algorithm may be seen as a first step before
ingesting direct magnetic records (from satellites, observatories,
etc.), instead of their interpolation through Gauss coefficients as
in this study. This may require not only the migration of observa-
tions at each analysis epochs (as done with virtual observatories,
see Mandea & Olsen 2006), but also the coestimation of external
sources together with core motions, which calls for further devel-
opments. Despite the limitations of its predictive power, we can
envision with the strategy developed throughout this study to build
IGRF candidate models (in particular the SV for the coming 5 yr
together with its associated uncertainties, see Thébault et al. 2015)
constrained by core motions.
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Figure 14. Series of SV coefficients ġ0
1 (left) and ḣ1

2 (right) for an analysis window �ta = 5 yr in case D (top), F (middle) and G (bottom). See the text for
details. The legend is the same as in Fig. 11.
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